
1

Visual Inertial Odometry based on Image Lines
Duarte Correia, José Gaspar

Instituto Superior Técnico / UTL, Lisbon, Portugal
duartecorreiascs@hotmail.com, jag@isr.tecnico.ulisboa.pt

ABSTRACT

This work proposes to give the needed building blocks to
achieve a Simultaneous Localization and Mapping (SLAM)
solution using Visual Inertial Odometry (VIO) techniques
with Lines as features. It was motivated by new advances
in machine learning that facilitated the detection of lines in
images that could provide a richer mapping visualization tool
than classical point features. The main obstacle encountered
was the matching of lines through multiple frames to be
initialized as 3D structures. An Iterative Closest Point (ICP)
variation was introduced to remedy this problem, where the
main focus of the algorithm was to match the features instead
of finding the transformation between different views. They
are introduced and analyzed two methods for line initialization
from 2D images, one that utilizes Plucker coordinates to
represent the lines and another that minimizes 3D the distance
of a general point to back-projected rays. A Square Root
Unscented Kalman Filter (SR-UKF) is proposed based on Lie
Groups as a base for the filtering process, which can integrate
measurements from an Inertial Measurement Unit (IMU) and
visual information. As a proof of concept, the proposed
approach provided a sound localization of the drone through a
complex trajectory and provided line initializations that could
potentially maintain the filter alive. It was shown that lines
provide a rich descriptor of an environment compared to a
point cloud and that the line algorithms proposed could give
a first approximation of the map without the need for filtering
processes in cases where the localization is provided.

I. INTRODUCTION

Visual Odometry systems have been used successfully to
provide robot’s pose estimations for over 16 years, with inertial
sensors being added in recent years. Most of these systems
utilize 3D points as features that are then propagated across
multiple types of Kalman filters, usually an EKF or UKF,
but since visual odometry should be run online, the system
cannot create detailed maps of the environment traversed . A
solution to this problem comes in utilizing lines as features
since even though they can be described from six parameters,
they provide a rich map of the environment, even with few
lines. Since the main cost of updating a state through a filter
is usually bound to the dimension of the observation, lines
could reduce the execution time of filters, given that they can
provide more visual information than a single point, and as
such, provide a richer estimation of the robot’s pose.

One of the main obstacles in using lines as features has been
the difficulty in Line detection using classical methods, but
with the appearance of neural networks trained explicitly for

this purpose, this process has become faster, more reliable and
consistent. As such, the perfect opportunity arises to explore
methods that take advantage of these new detectors.

Another weakness of using lines is that usually, they do
not provide good descriptors that make it challenging to
match features across multiple images so that mapping the
environment is possible. With this problem in mind, line
matching methods should be researched.

A. Related Work

One important precedent of SLAM is the Structure from
Motion (SfM) approach, which has been studied and used with
impressive results for the past three decades [7]. Monocular
Simultaneous Localization and Mapping (MonoSLAM [6])
was the first approach in which a real-time filter achieved good
results, which leverages an Extended Kalman filter (EKF) [10]
to propagate the state. New parameterizations were proposed
to worth features in the infinite in Inverse Depth Parameteriza-
tion [13]. The Unscented Kalman Filter [25] was introduced as
an alternative to the EKF, leveraging the Unscented transform
[9] to better propagate the state and Covariance without the
need for the linearization of the system. Since the UKF
increased the computational complexity to the filter, a Square
Root-UKF (SR-UKF [24]) proposes propagating the squared
root of the Covariance, reducing the complexity closer to the
one of the EKF. Novel approaches like [3] take advantage
of Lie Groups and algebra which present a natural state
representation and permit Inertial Measurement Units (IMUs)
for state estimation.

SLAM variations that use Lines as features are first pre-
sented in [19], where a UKF is used to propagate 6-dimension
Plücker Coordinates directly and proposes a transformation of
the 2D lines to a subset of R3 paired with a representative
patch of the Line for matching purposes. Another approach
using an EKF filter is shown in [22], where it is given
a method to initialize lines using plane intersections until
their endpoints can represent them; until then, the lines are
propagated using an exterior EKF filter. In [23], different
approaches of landmark parameterizations that can be used in
EKF-SLAM with points and lines are shown. However, these
line approaches do not use inertial measurements to update the
state. As such, the mapping and localization have an inherent
scale to the actual map associated with them.

B. Problem Formulation

This thesis aims to provide the necessary building blocks to
implement a Simultaneous Localization and Mapping (SLAM)
solution using Visual Inertial Odometry with lines as features.

2

It is proposed to take advantage of a line detection neural
network to provide feature detection. For matching, it is
proposed a variation the Iterative Closest Point (ICP) where
the objective is not to obtain the transformation between the
points, but the line matches between two sets of lines.

A method that performs line initializations from the ob-
tained matches and benefits from using Plucker line coor-
dinates is analyzed. It is also introduced an initialization
technique based on the 3D distance to back-projected rays.

At last, The filtering strategy takes advantage of the lines
obtained and inertial information given by an Inertial Mea-
surement Unit (IMU) to estimate a drone’s pose and a map
of the environment using a Square Root Unscented Kalman
Filter based on Lie Groups.

II. BACKGROUND THEORY

A. Pinhole Camera Model

The pinhole camera model describes the mathematical re-
lation between the 3D coordinates of a point in space and its
2D projection on an image. It only serves as an excellent first-
order approximation of the mapping from a 3D scene to a 2D
image since it assumes no lenses or radial distortion.

The reference frame is set on the camera using its camera
center of projection C as its origin in the pinhole model. The
image frame is orthogonal to the Z-axis direction of the frame
at a focal distance, f , the distance between the lens and the
image sensor when the subject is in focus.

Figure 1: Pinhole Camera Geometry. C is the camera center and
p the principal point. The camera center is here placed
at the coordinate origin. Note the image plane is placed
in front of the camera center. From [7]

Using the geometric properties of the frames, the normalized
pinhole image projection is given by:

xn =

[
x
y

]
= f

[
X /Z
Y /Z

]
(1)

From [8] comes that after including lens distortion, the
new normalized point coordinate xd can then be calculated
as follows:

xd =

[
xd1

xd2

]
= (1 + kc1 r

2 + kc2 r
4 + kc5 r

6)xn + dx ,

(2)
where r2 = x2 + y2 and dx is the tangential distortion vec-
tor:

dx =

[
2kc3 xy + kc4 (r2 + 2x2)
kc4 xy + kc3 (r2 + 2y2)

]
. (3)

Finally, the points can be converted into homogenous pixel
coordinates in the image plane using the matrix known as the
intrinsic camera matrix K:xpyp

1

 = K

xd1

xd2

1

 =

fc1 αcfc1 cc1
0 fc2 cc2
0 0 1

xd1

xd2

1

 , (4)

where fc are the focal distances (usually expressed in mm),
cc are the coordinates of the principal point of the camera,
and s = αcfc1 encodes the skew of the angle between the x
and y sensor axes, in digital cameras it is usually 0.

Since the camera is not usually centered at the origin of
the world frame, points need to be mapped to the camera
frame. Supposing a general camera rotation, R ∈ SO(3), and
translation, T ∈ R3×1, the full projection matrix becomes

P = K
[
R T

]
∈ R3×4. (5)

1) Back-Projection of Points to Rays: Given a point x in
an image, the 3-dimensional points that map to that point
constitute a ray in space that passes through the camera center.
The ray can be represented as the connection of two points,
one being the camera center and the other P+x, where P+

is the pseudo-inverse of P. The line can then be formally
described as

X(λ) = P+x + λC . (6)

B. Line Detection

One of the most critical aspects of computer vision and
image processing is to detect image features that should
be distinct from others so that matching between images is
possible. Since the type of features used in this thesis is lines,
detecting them in images is crucial. A neural network will be
employed to detect lines; this approach will be more detailed
explained in Section IV-A.

C. Line Matching

Since the final objective is to have a 3D reconstruction of
the world, it is vital to have correct matches between lines
over different camera frames. Lines will also be matched to
reprojections of already seen lines to improve the estimations
of those features.

Sum of Squared Distances (SSD) is a naive approach
where the cost function is simply the squared distance of the
endpoints of the line between the frames. This method expects
a high image frequency or a slow-moving drone, so that lines
have limited movement between poses keeping them in similar
pixel positions.

Using only SSD proved unsuccessful to match lines but
gave an initialization to the Procrustes Orthogonal problem
[20], which can then calculate a transformation between both
sets of matched lines. This transformation can then be applied
to all lines making them closer to other lines to be matched,
providing that the first set of matches is correct. Iteratively
repeating this method is known as the Iterative Closest Point
(ICP) first proposed by [5].

3

D. Plücker Coordinates

Introduced by Julius Plücker in the 19th century Plücker
coordinates present a convenient representation for directed
lines in affine 3-Dimensional space. There all multiple con-
ventions to represent Plücker coordinates, in this thesis [2] is
used as a guide. Given two 3D points MT ∼ (M̄T |m) and
NT ∼ (N̄T |n), one can represent the line joining them by a
homogeneous ”Plücker” 6-vector LT ∼ (aT|bT), where:{

a = M̄× N̄

b = mN̄− nM̄
(7)

Other conventions for Plücker 6-vectors are also possible,
each with a bilinear constraint that the 6-vector must satisfy
in order to represent valid line coordinates. For the definition
chosen the constraint comes as

C(L) = 0 where C(L) = aTb . (8)

Given a standard (3× 4) perspective projection matrix P ∼
(P̄|p), as defined in Equation 5, a (3 × 6) matrix projecting
Plücker line coordinates is given by

P̃ ∼ (det
(
P̄
)
P̄−T |[p]xP̄) . (9)

E. Unscented Kalman Filter (UKF)

The Extended Kalman Filter [11] has been widely used to
do state-estimation on non-linear systems by approximating
the state distribution to a Gaussian distribution using a first-
order linearization of the non-linear system. This recurrent
first-order approximation introduces significant errors in the
true posterior mean and covariance of the system.

The Unscented Kalman Filter [25] proposes that the state’s
Gaussian random variable should be approximated by a min-
imal set of carefully chosen sample points denoted by sigma
points. After selection, the points are propagated through the
non-linear system.

1) The Square Root UKF (SR-UKF): The most compu-
tationally expensive operation of the UKF is on the square
root of the covariance needed whenever sigma points are
calculated. An efficient implementation using Cholesky factor-
ization has O(L3/6) time complexity. The Square-Root UKF
proposed by [24] reduces this complexity toO(LM2) by prop-
agating the covariance directly, where M is the observation
dimension.

In order to achieve this performance, it takes advantage of
three powerful linear algebra techniques, QR decomposition,
Cholesky factor updating and efficient least squares.
• QR decomposition: The QR decomposition or factoriza-

tion of a matrix A ∈ RL×N is given by, AT = QR, where
Q ∈ RN×N is orthogonal, R ∈ RN×L is upper triangular
and N ≥ L. The upper triangular part of R, R̃, is the
transpose of the Cholesky factor of Σ = AAT , i.e., R̃ is
the square root of the covariance such that R̃T R̃ = AAT .

• Cholesky factor updating: If S is the original Cholesky
factor of Σ = AAT , then the Cholesky factor of
the rank-1 update Σ ±

√
vuuT is denoted as S =

cholupdate(S,u,±v). If u is a matrix and not a vector,

then the result is M consecutive updates of the Cholesky
factor using the M columns of u.

• Efficient Least Squares: The solution to the equation
(AAT)x = ATb also corresponds to the solution of the
over determined least squares problem Ax = b. This
can be solved efficiently using a QR decomposition with
pivoting.

According to [24] even though the computational complex-
ity of the filters are of the same order the SR-UKF is about
20% faster than the UKF and about 10% faster than the EKF.

III. VISUAL INERTIAL FEATURE-BASED SIMULTANEOUS
LOCALIZATION AND MAPPING

A. Problem Formulation

Odometry comes from the Greek words odos (meaning
”route”) and metron (meaning ”measure”) and, as such, odom-
etry is the problem of measuring a robot route through an
environment. In robots that use wheels as a way of moving,
rotary encoders can estimate the movement, but for aerial
drones, this is not possible (since they do not use wheels).
From this problem came the approach of using a camera to
estimate the robot’s pose by adjusting the position of specific
features that it could see over time; this approach is called
Visual Odometry, first proposed by [17].

An Inertial Measurement Unit (IMU) provides an inertial
estimation of the movement that can help the camera measure
the drone’s pose; when this happens, it is then called Visual
Inertial Odometry. IMUs report the angular velocity (w) and
linear accelerations (a) in the sensor frame. A rigid transfor-
mation can be used to map one frame to another:

T =

[
R t
0 1

]
, (10)

where T is the transformation matrix, R ∈ SO(3) the rotation
matrix and t ∈ R3 the translation from one from to the other.
This set of transformations constitute the Special Euclidean
Group (SE(3)).

Figure 2: Example transformation from SE(3) where T provides a
transformation from the IMU frame to the camera frame.
Adapted from [4].

One of the main advantages of using an IMU as an odometry
sensor is the speed at which it can update the system, given
its high frequency (higher than 100 Hz) and that the update on
the pose is usually straightforward. However, an IMU cannot
be used as the only sensor since the pose is obtained through
continuous integration of the accelerations from the IMU with
quantification noise. Since this noise is additive, it introduces
a bias that drifts the system away from the absolute pose.

4

B. Proposed Approach

The proposed approach closely follows the work done by
[3] in which an SR-UKF is used to integrate IMU and visual
information. One of the main innovations that it introduces is
the use of Lie Groups as a structure for the state leading to
a direct representation and propagation of the uncertainty in
the Lie Group. The filter estimates the robot’s pose (Rotation,
velocity and location), the 3D location of the features detected,
and the IMU biases, the latter being appended to the state
estimation.

1) State, Action and Measurements Model: In [3], the Spe-
cial Euclidean of multiple direct spatial isometries SE2+p(3)
group is presented to naturally represent the problem in a Lie
Group structure as leveraged in [1]. This group extends the
Special Euclidean group and provides the state representation
and a closed-form solution to the Lie exponential of the
uncertainties. The state can be then represented as

χ =

[
R v x p1 · · ·pp

0(p+2)×3 I(p+2)×(p+2)

]
∈ SE2+p(3) ,

(11)
where R ∈ SO(3) is the rotation matrix, v ∈ R3 is the velocity
of the robot, x ∈ R3 is the position of robot and finally
pk ∈ R3 is the position of the kth landmark. The uncertainties,
defined as ξ = [ξTR ξ

T
v ξ

T
x ξ

T
p1
· · · ξTpp

] ∈ R9+3p are mapped to
the Lie algebra through the transformation ξ → ξˆ defined as

ξˆ=

[
[ξR]× ξv ξx ξp1 · · · ξpp

0(2+p)×(5+p)

]
. (12)

The biases of the IMU are appended to the state and are
represented as

b =

[
bω

ba

]
∈ R6 , (13)

where bω is the bias of the angular velocity and ba the bias
of the linear velocity reported by the IMU.

a) Action model: The action model represents how the
system can change in time. It uses the information given by
the IMU to change the robot’s pose and assumes that the
landmarks do not move. The dynamics of the system read

body state

Ṙ = R [ω − bω + nω]×
v̇ = R (a− ba + na)− g
ẋ = v

(14)

IMU biases

{
ḃω = nbω

ḃa = nba

(15)

landmarks ṗi = 0, i = 1, . . . , p , (16)

where the various white Gaussian noises can be stacked as

n =
[
nT
ω nT

a nT
nω

nT
na

]T ∼ N (0,Q) . (17)

b) Measurement Model: The measurements are given by
the calibrated monocular camera that observes the p landmarks
through a standard perspective projection model, like the on
described in Section II-A. Each landmark pi is observed
through the camera as

yi =

[
yiu
yiv

]
+ ni

y , (18)

where yi is the measured pixel location of the landmark in
the camera, that is,

λ

yiuyiv
1

 = Ppi , (19)

with λ being the scale parameter, P the camera projection
matrix from Equation 5 and pi the 3-dimensional position
of the landmark in homogeneous coordinates. Finally, ni

y ∼
N (0, N) represents the pixel image noise.

2) Filter Implementation: Since the filter needs a discrete
model to propagate the state through time, To integrate the
action model on the filter, it was discretized using the Euler
method except for the Rotation.

Having the measurement from the IMU at time step k

given as uk =
[
ωT
k aTk

]T
the discrte action model equations

correspond to the f function that serves as the action model
for the filter

χk+1 = f(χk,uk, ωk) , (20)

where the state χk lives in G, and ωk ∼ N (0,Qk) is a white
Gaussian noise, associated with generic discrete measurements
of the form

yk = h(χk,vk) , (21)

where vk ∼ N (0,Rk) is a white Gaussian noise. The final
full model associated to the Right-SR-UKF-LG (Right Square
Root Unscented Kalman Filter on Lie Groups), denominated
as Fusion2018 from now on, becomes

state

{
χk = exp(ξ)χ̄k

bk = b̄k + b̃
,

[
ξ

b̃

]
,∼ N (0,Pk),

(22)

dynamics
{
χk,bk = f(χk−1,uk − bk−1,nk) , (23)

observations

Yk =
[
yT
1 · · · yT

p

]T
:= Y(χk, ωk)

ykgiven in 18, i = 1, . . . , p
,

(24)

such that (χ̄k, b̄k) ∈ R(15+3p) represents the mean (estimated)
state at time k, Pk ∈ R(15+3p)×(15+3p) is the covariance
matrix that defines the state uncertainties (ξ, b̃), and the
vector Yk contains the observations of the p landmarks with
associated Gaussian noise wk ∼ N (0,W).

The complete filter operation is shown in Figure 6, where it
is described the introduction of line features. The Propagation
and Update steps are the ones earlier defined, and steps to

5

detect features use the method described in [21] and match
features using the Matlab built-in functions. Feature Initializa-
tion is done by triangulation using the external map.

It should be noted that the Fusion2018 filter expects a good
initialization, where the state is initialized with the ground
truth values from the dataset for the pose and 30 3D landmark
positions given by [15]. The external map also uses 200 initial
features given by [15]. Landmark initializations require at least
8 different views of the same feature.

IV. LINES BASED VISUAL INERTIAL ODOMETRY

A. Line Detection using Unified Line Segment Detection
(ULSD)

Following the approach in Section II-B, where lines are
detected using the Canny Edge detector and the Hough
Transform, a more robust way of extracting 2D lines from
images was needed. A solution is presented in [12] by taking
advantage of a stacked hourglass network ([16]) to extract a
feature map used to propose and validate line predictions.

The complete network can be separated into two modules;
the first module, denominated by ”Line Proposal Network”,
tries to predict the junctions of lines using another network
outputting confidence and a junction offset map; in this first
step, duplicated junctions are also removed from the map.
Lines are predicted by trying to find line segments represented
by a Bezier curve. Finally, line segments that can match the
endpoints to two junction proposals based on the Euclidean
distance are kept. If multiple line proposals are matched with
the same junctions, only those with the shortest cost are kept.

The second module, ”Line of Interest”, takes the candidate
lines from the first module and feature map from the first
network to validate the line segment prediction. The candidate
is first passed through a Bezier Align function that samples
uniformly the line to form the final prediction, which is then
fed into another classifier network to get a confidence level for
each line. In Figure 3 is shown an overview of the network.

Figure 3: Unified Line Segment Detection (ULSD) - Network
Overview. From [12]

B. Line Matching Algorithm

Following Section II-C the chosen algorithm to pair lines
between images or the projection of 3D lines is a variation of
the Iterative Closest Point. The first step is to match lines using
the Sum of Squared Distances (SSD) between the endpoints
of two lines; minimizing the sum of this error is known as the
Assignment Problem. In order to correctly match endpoints,
the endpoints of the second line are swapped, and the distance
is recalculated; It is then chosen the orientation which provides

the smaller distance. The minimization problem is solved using
the Hungarian method proposed by James Munkres in [14].
Matches are also filtered by a maximum error cost between
any two lines.

After the first match, Procrustes is applied to the endpoints
of the matched lines. The obtained transformation is then
applied to all the points in the image so that lines that should
be matched to each other get closer together. As such, this
method requires that at least a match so that a transformation
can be calculated. An overview of this iteration is shown in
Figure 4.

Matches
were

Made?

Solve Assignment
Problem

Solve Procrustes
Transformation
with matches

Yes

No

Apply
Transformation

to all points

Intersect Lines
with the frame

Return
Lines Calculate Cost

Matrix

Lines
Obseverd

Expected
Lines

Figure 4: ICP Line Iteration Block Diagram This algorithm
matches lines using the SSD ant then adjusts the endpoints
positions of all points using the transformation found by
applying Procrustes to the matched endpoints.

Since the objective is to minimize the error given by SSD,
the method described in Figure 4 is iteratively run until the
error no longer decreases above a fixed threshold. Since the
ICP is used with the objective of matching in mind, it simply
returns the matches obtained. After the ICP algorithm is done,
RANSAC is used to filter some outliers that may appear from
overfitting to some matches. The entire algorithm is shown in
Figure 5.

No

Calculate Cost
Matrix

Solve Assignment
Problem

Calculate
Assignment Error

Do ICP Line
Iteration

Is Error Gain
lower than
threshold?

Yes

Apply RANSAC
to matches

Lines
Obseverd

Expected
Lines Return

Matches

Figure 5: ICP Line Block Diagram This algorithm performs itera-
tive matches and lines transformations until the error gain
is lower than a fixed threshold (10−6 in the case of this
thesis). The first solve of the assignment problem tolerates
a higher error in matches than subsequent iterations.

C. Line Initialization in Plücker Coordinates

Line initialization is crucial to obtain 3D features that the
filter can propagate to update the system’s state. With this
objective in mind, it was proposed by [2] a maximum likeli-
hood estimator using the squared 2D orthogonal (Euclidean)
distance from the line L to the projected endpoints weighted
by their distance to the camera, which is formally written as
the sum of the distance to both points and defined by

d2⊥(q, l) = (qTl)2/(l21 + l22) . (25)

Having 3D lines S = {L1, . . . ,Lm} and cameras M =
{P1, . . . ,Pn} the negative log likelihood function E(S,M)
for the reconstruction, corresponding to the total reprojection
error, can be written in terms of individual reprojection errors
E(Lj ,M) for each line j but since all projections should

6

correspond to the same 3D line, the final functional to be
minimized becomes

minimize
L

E(L,M) =

n∑
i=1

(
d2⊥(xi, li) + d2⊥(yi, li)

)
.

(26)
1) Linear Algorithm: Ignoring the denominator in equa-

tion (25) leads to an algebraic distance denoted da, biased
compared to the orthogonal distance. It is linear in the pre-
dicted line and defined by d2

a (q, l) = d2⊥(q, l)w2 = (qTl)2,
where the scalar factor w encapsulates the bias as w2 = l21+l22:

(w i)2 =
(

(P̃iL)1

)2
+
(

(P̃iL)2

)2
(27)

The biased linear least squares error function is then defined
by

B(L,M) =

n∑
i=1

((
xi

T
P̃iL

)2
+
(
yi

T
P̃iL

)2)

= ‖A(2n×6)L‖2 with A =

. . .

xi
T
P̃i

yi
T
P̃i

. . .

 .

(28)
Since L is a homogeneous vector, the constraint ‖L‖2 = 1

must be added. The L that minimizes B(L,M) is then given
by the singular vector of A associated to its smallest singular
value, that can be computed using SVD.

The linear algorithm provides a biased estimate of the
plucker line L that can estimate the weight factors that contain
the bias of the linear least-squares error function. This process
is then used iteratively until convergence, using the difference
between consecutive errors as a threshold. A correction should
be made between each iteration to ensure that the plucker
constraint is satisfied.

2) Quasi-linear Algorithm: According to [2], the linear
algorithm misbehaves since the plücker constraint is not con-
sidered while solving the linear least-squares problem.

A new approach is suggested by rewriting the constraint as

C(L) = LTGL = 0 where G =

[
0 I
I 0

]
. Computing the null

space of LTG, using SVD, gives a base of all vectors that
satisfy the plücker constraint; this base can then be plugged
into the linear estimator (Equation. 28) to give a line L that
satisfies the plücker constraint. The estimate is then used
iteratively, as before, to compute the bias that reweighs the
least-squares problem (Equation. 27) until convergence.

3) Endpoints Extraction from the Plücker Coordinates:
Since the endpoints will be propagated through the SR-UKF
filter, they must be extracted from the Plucker Coordinates.
First, the Plucker line is transformed back into Euclidean
Coordinates, then the endpoints are estimated by finding the
closest line points to the back-projected rays of the endpoints
observed in each image. These values are then averaged to
give a final prediction of the 3D endpoints. The points chosen
are always part of the line estimated using the quasi-linear
algorithm.

D. Line Initialization Using 3D Distance to Back Propagated
Rays.

In a noiseless world, all back-projected rays from a single
3D point should intersect in that same point, but this is not
always true due to noises in the image or the camera’s pose. In
reality, the rays will pass close to the real point but probably
not over, as shown in Figure ?? ; as such, the real point should
be close to every back-projected ray from every view that can
see him. The 3D distance from a generic point P to a line
defined by L = A + λu can be calculated as:

d(L,P) =
||
−−→
AP× u||
||u||

⇒ ||
−−→
AP× u||, if ||u|| = 1.

(29)
Having the back-projected rays {L1 = A1+λu1, . . . ,Ln =

An +λun}, a mean squared error formulation can be written
as

minimize
P

F (L,P) =
1

2

n∑
k=1

||d(Lk,P)||2 . (30)

Since the minimum of the functional is found when the
gradient is equal to zero, a closed form solution is given by:

∇F (L,P) = 0

⇔
n∑

k=1

uk
2
2

+ uk
3
2 −uk

1u
k
2 −uk

1u
k
3

−uk
1u

k
2 uk

1
2

+ uk
3
2 −uk

2u
k
3

−uk
1u

k
3 −uk

2u
k
3 uk

1
2

+ uk
2
2

−−−→
AkPx−−−→
AkPy−−−→
AkPz

 = 0

⇔
n∑

k=1

Uk(P−Ak)⇔

(
n∑

k=1

Uk

)
P =

n∑
k=1

UkAk

,

(31)
where

−−−→
AkPi is ith coordinate of the vector defined by−−−→

AkP = P − Ak, and ui is the ith coordinate of the vector
u. The vectors u that define the direction of the line should
be normalized. It should be noted that this system may not be
determined for n = 2. For n = 1⇒ P = A.

E. Integration of Line Features into Fusion 2018

The algorithms proposed in this chapter served as a replace-
ment to the algorithms used to detect, match and initialize
features to the Fusion2018. One main difference is that even
though the filter propagates the endpoints of the lines as
independent landmarks, they maintain the line structures that
are then used to match the state landmarks and the images
taken by the camera. The blocks that are replaced in the
Fusion2018 filter are shown in green in Figure 6.

The external map saves the image coordinates and projec-
tion matrix of each matched view for every line ID that was
still not initialized. If there is a low number of matches to
the landmarks (they do not appear in frame) the initialization
step can be called to try and create landmarks which can be
seen by the system. The state initialization will be discussed
in Section V-E.

7

Propagation
(time update)

IMU measurement

No

YesNew Image? Detect Lines

Match Lines
to State

No

YesLines
Matched to
landmarks?

Initialize New
Landmarks from

external map

No

Yes

First
Initialization at

time ?

Use Matched Lines to perform a
measurement Update

Match Lines
to external map

for later
Initialization

Figure 6: Fusion2018 Block Diagram Filter Proposed by [3] to
perform Visual Inertial Odometry with Lines as Features.
Green blocks are the new blocks introduced to use line
features.

V. EXPERIMENTS

A. The EuRoC MAV Dataset

The dataset used in this thesis was recorded by [4] in
the context of the European Robotics Challenge (EuRoC) to
assess the contestant’s visual-inertial simultaneous localization
and mapping (SLAM) and 3D reconstruction capabilities on
micro aerial vehicles (MAVs). More specifically it will be used
the medium difficulty data set recorded on the Vicon MoCap
Room.

The dataset features an accurate 3D point cloud of the
environment captured with a laser scanner and also the 6D
pose ground truth (position and rotation) from the flight of
the AscTec ”Firefly” hex rotor helicopter, shown in Figure 7.
The drone features an Inertial Measurement Unit (IMU) and
two cameras (even though only one is used).

(a) The AscTec ”Firefly” heli-
copter.

(b) Frame transformations be-
tween the world and sen-
sors.

Figure 7: The drone used in the recorded dataset and the transfor-
mations between frames of the sensors in the drone and
the world. From [4].

The Fusion18 dataset consists of 16020 IMU measurements
and 1602 images. The IMU values can be used directly since
its frame is aligned with the body’s referential. On the other
hand, when used for image reconstruction, the camera image
coordinates need an extra transformation to ensure that the
values are mapped to the correct frame. As such, the camera
projection matrix from equation 5 becomes

P = K(Rb
wR

c
b)

T
[
I3 −(Tb

w + Rb
wR

c
bT

c
b)
]
∈ R3×4 , (32)

where Rb
a ∈ SO(3) is the rotation matrix from referential a to

b, and Tb
a ∈ R3 is the translation vector from referential a to

b; w, b and c are the referential of the world, the drone (IMU)
and the camera, respectively.

B. Line Detection with ULSD

The ULSD network can be trained separately, but since
[12] provide a pre-trained model for each type of camera,
the pinhole model is used for line detection. The confidence
interval (CI) which declines or accepts lines can be adjusted
if there is a need to detect more or fewer lines. The CI set
to 70% is used since there is an improvement in the number
of detected lines without losing accuracy, being detected on
average 67 lines per image. Lower thresholds identify repeated
lines, increasing the complexity for the matching task to
maintain lines alive through multiple frames.

C. Line Matching Validation

The algorithm was validated using subsequent images from
the Fusion18 dataset where lines were identified using the
method in Section IV-A. It is possible to check how much
the algorithm improved the number of matches obtained in
Figure 8. This growth is vital so that lines are consistently
matched across images making possible a posterior 3D ini-
tialization.

(a) Matches obtained by SSD (b) Matches obtained by ICP Line

Figure 8: Example of ICP Line improvement on matching. Blue
lines represent the lines identified on the image, and
red lines correspond to lines found in other images that
were matched to this image. Finally, green lines join the
matched endpoints.

The Fusion18 dataset was then used to better understand
how long the algorithm would take to converge and how many
matches were gained by utilizing the ICP. It was found that it
took 6.3 iterations to converge, and more than 17 matches
were gained per a pair of images. More importantly, the
percentage of pairs of images with less than 20 matches went
from 20% to less than 5%, demonstrating the power of this
algorithm in increasing the matches found. The algorithm also
showed promising results when matching lines from images
with greater time steps between them.

D. Simulation

A Matlab simulator was created to test the line initialization
techniques, which consisted of a cube centered on the origin
with random lines inside and a variable number of cameras
that would take pictures of the cube and lines. The line
initialization techniques were then tested and then compared
to the ”real” lines. In the simulator, it is possible to modify
the number of cameras, the positions of each camera and the
option to use a camera for the projection of the reconstructed
lines to assess the reprojection errors of the initialized lines.

8

The first validation was done with no noise added to the
simulator to ensure the validity of the algorithms in a case
where perfect measurements are made. The techniques resulted
in euclidean distance errors lower than 10−15, appearing from
Matlab functions’ numerical precision. These results supported
the validity of the initializations using the [2] and Section IV-D
methods, at least in a noiseless environment.

1) Effects of noise: Since reality is not noiseless, the
simulator provided three types of noise that could be tested
separately or at the same time; the first type of noise appears
from vibrations on the camera or for incorrect line detection,
and it is manifested as pixel deviations on the line positions in
the pictures taken by the camera. The other two errors come
from the camera’s pose localization and appear as location
and rotation differences from the actual pose. The noise was
modelled as a Gaussian distribution with zero average and
covariance given by noise value selected.

The cameras were placed near each other to understand the
effect of noise on the lines’ initialization. The reason was
that the simulation could be closely related to the drone flight
where there is little movement between each frame. As such,
cameras were placed less than 20 cm apart and with less than
10 degrees of total rotation between each consecutive frame.

As a first validation, all noise types were tested separately by
setting all types to zero minus the one to be tested. A common
occurrence is that the method described in section IV-C using
the Plücker coordinates misbehaves in the presence of noise
and rapidly increases the reprojection error to values where
the last frame would discard the lines. One intriguing aspect is
that the error seems to reach a plateau, which may come from
intersecting the infinite Plucker line with the back-projected
rays to retrieve the endpoints.

On the other hand, the technique using the minimum 3D dis-
tance to the back-projected rays seemed to behave predictably
when exposed to all kinds of noise. It presented worse results
in the cases where the location noise would come close to the
difference in location of each frame (around 7 cm and higher
noise). Even though it presents a lower error than the first
method, this latter algorithm seems to be more affected by
rotation noises.

Since the pixel noise should suffer fewer variations while
running the SR-UKF, it was set as fixed for the following two
experiments, where location and rotation noise were analyzed
in detail. First, the pixel noise was set to zero, the location
noise varied from 0 to 20 cm, and the rotation noise from 0 to
20 degrees, which is higher than the difference in the camera’s
pose for consecutive frames, giving a complete picture on
how the error of the initialization should vary for different
combinations of noise. The error was measured by averaging
the length from the actual endpoints and their initialization.
The results are shown in Figure 9.

As seen previously, the Plücker coordinates method showed
little resistance to noise, increasing almost instantly to values
above 2 m which would place the lines outside 1 by 1-meter
cube. A strange phenomenon is that it seemed to achieve
a little better results for small values of rotation noise but
higher than zero. This phenomenon was found across multiple
experiences, and it may be a result of the representation

(a) RMSE for the Plücker Line
Method.

(b) RMSE for the Back-Projected
Rays Method.

Figure 9: RMSE of the euclidean distance of the initialized lines to
the real lines in function of the rotation and location noise
with pixel noise fixed as zero.

used where it benefits from a slightly higher rotation between
frames to converge to a result, even though this rotation came
from noise.

Once again, the Back-Projected Rays method proved to
behave with a consistent increase in error for similar increases
in noise, one crucial aspect that should be noted is that for the
values of noise 5 degrees and 5 cm, the method showed an
error of 20 cm (on average 10 cm for each endpoint) in the
initialization close to having a pixel noise of 4. For a reliable
line initialization, the filter should maintain the location noise
under 5 cm and rotation noise under 5 degrees, expecting that
the filter can then correct the position of the lines.

E. Application of the Proposed Approaches on the EuRoC
MAV Dataset

As a first naı̈ve approach, the matching algorithm was run
across all images of the EuRoC MAV Dataset, and then lines
that survived for longer than 15 frames were initialized using
the method of the back-projected rays described in Section
IV-D. These results can be observed in Figure 10, and they
show that many of the lines follow the environment correctly.

Figure 10: Line Initialization using the matching and Initialization
methods proposed and using the ground truth for the
robot’s pose.

Two main zones were identified where the technique could
not initialize many lines, one where the drone observes a
curtain and the other where it sees a wall. It was recognized
that this problem appears from the line detector. This theory
was validated upon inspection of the pictures taken in those
areas. The main problem from those frames is that most
observed lines disappear; Since lines are only matched on

9

subsequent images, they are interpreted as new features when
the system sees the same line again, with no relation to the
past observations.

1) Complete System Experiment: Following the Fu-
sion2018 filter, the robot’s pose was initialized with the ground
truth. The landmarks were initialized using ten lines selected
from Figure 10; the proposed filter needed a higher initial
landmark covariance since the method’s precision was lower
than the ORB SLAM filter. The external map was initialized
without any feature and is constructed as the filter progresses.

One of the problems encountered was that lines exhibited
more pixel error from the reprojections of the landmarks than
initially expected. This error is again due to the not entirely
perfect line initializations selected for the landmarks. One
solution to this problem was to allow a higher error for the first
ICP line iteration. This problem is significantly intensified in
the zone where the drone looks to curtains displayed in Figure
??, where few lines could be used to update the system state.
This technique was called ”loose matching”, and resulted in a
increased number of features matched during the critical time
steps between 3 and 4 seconds where the curtains occupy most
of the frame.

The position error is obtained from the Euclidean distance
between the robot’s estimated pose and the ground truth.
The rotation error is calculated using the metric proposed by
[18], where the distance between two rotation matrices can
be calculated using the logarithm map of the product of the
inverse of one of the matrices by the other. This metric can
be formally described as

d(R1,R2) = ‖ log
(
R−11 R2

)
‖ =

∥∥∥∥cos−1
(

Tr(R−11 R2)− 1

2

)∥∥∥∥ ,

(33)
where ‖.‖ denotes the Euclidean norm, R1,R2 ∈ SO(3) are
rotation matrices and log(.) represents the logarithm map log :
SO(3)→ so(3).

After the first six seconds of flight, the filter starts to deviate
and is incapable of initializing lines soon enough due to loss of
the combination of observing a new environment and passing
through another zone with a low number of lines, shown in
Figure ?? as the ”wall”. The filter tries to initialize the lines
to replace the state landmarks but diverges before fixing its
pose beyond irreparable damage. A mix of points and lines
could probably be used to combat these zones where the
environment is not very geometric; however, this approach was
not explored.

In the following steps, the filter was compared to the
Fusion2018, which works in the same circumstances since it
does not initialize new features before seven seconds into the
flight. The Fusion2018 filter is not lead to divergence since it
can find features on the textured wall.

Since the used lines have lower precision than the landmarks
used by the Fusion2018 filter, the proposed filter takes a longer
time to start updating its position and trusts the IMU readings
for the first three seconds. After the curtain section, the filter
rapidly updates its position, almost obtaining the same error
as the Fusion2018 filter. The filter excels in the rotation error
while it has observable features, always maintaining a lower

error than the IMU and the Fusion2018 filter; this may be due
to lines giving better rotational information than points. These
results are shown in Figure 11

0 1 2 3 4 5 6 7

t (s)

0

0.01

0.02

0.03

0.04

0.05

0.06

R
M

S
E

 p
os

iti
on

 (
m

)

RMSE on position as function of time

IMU only
Fusion2018
Line Based

(a) RMSE of the position in
function of time.

0 1 2 3 4 5 6 7

t (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
M

S
E

 a
tti

td
ud

e
(°

)

RMSE on attitude as function of time

IMU only
Fusion2018
Line Based

(b) RMSE of the rotation in
function of time.

Figure 11: Error of the full proposed solution compared to the
Fusion2018 filter and only using IMU.

The complete filter and ground truth trajectories are shown
in detail in Figure 12, where it is possible to check that the
filter responds to the aggressive change in direction faster than
the IMU and maintains the actual trajectory path where IMU
rapidly diverges.

(a) Side view of the flight esti-
mated by the filters.

(b) Top view of the flight esti-
mated by the filters.

Figure 12: Detailed view of the flight estimated by the filters and the
ground truth trajectory.

A summary of the obtained errors is presented in Table
I, where the improvement of using image-based features to
update the IMU predictions is evident. An aspect that should
be mentioned is that the tuning parameters of the proposed
filter had to change so that the filter would not diverge due to
noise of not only the initializations but also to the difficulty
of accurately identifying the same endpoints of lines in the
dataset.

Table I: Average RMSE of the filters tested on the EuRoC MAV
dataset.

Filter Mean Position error [cm] Mean Rotation error [deg]

IMU Only 11.18 0.117
Fusion2018 1.42 0.108
Line Base 2.15 0.091

The proof of concept presented shows that lines can be
used with success to perform Visual Inertial Odometry. An
exciting observation is that the filter can maintain a low error
value even with fewer landmarks since only 10 lines are used
(20 points) compared to the 30 used by the Fusion2018 filter.
This reduction in the state size may allow using a higher
number of updates and a higher frequency camera since the
update step scales poorly with the increase of landmarks,

10

having a complexity of O(LM2), where M is the observation
dimension and L one of the dimensions of the state.

Another promising result is observed by viewing the initial-
ized lines in Figure 10 without the ground truth point cloud,
where it is possible to get a general idea of the environment
while using a limited number of lines when compared to the
point cloud, that for reference, uses over 3 million points.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion
This work proposed to give the needed building blocks to

achieve a SLAM solution using VIO techniques with Lines
as features. It was motivated by new advances in machine
learning that facilitated the detection of lines in images that
could provide a richer mapping visualization tool than classical
point features.

The main obstacle encountered was the matching of lines
through multiple frames to be initialized as 3D structures. An
ICP variation was introduced to remedy this problem, where
the main focus of the algorithm was to match the features
instead of finding the transformation between different views.
This solution proved to be very successful in increasing the
number of matches by 17 for each image pair. It also reduced
the percentage of images with less than 20 matches from 20%
to less than 5%.

It was also shown that the method proposed to initialize
lines using Plucker coordinates did not provide a great re-
sponse to noise and rapidly diverged. As such, a method was
proposed that minimizes the distance of the 3D point to back-
projected rays; this method shows a robust and predictable
response to the tested types of noise.

Finally, it was found that some zones of the environment
present little to no lines, which leads to a potential loss of lines
to be initialized and leads the filter to divergence in the worst-
case scenario; it is shown that the filter can survive through
brief moments through those zones, but some adaptations may
be needed to surpass these obstacles.

As a proof of concept, the proposed approach provided a
sound localization of the drone through a somewhat complex
trajectory and provided some line initializations which could
potentially maintain alive the filter. It was shown that lines
provide a rich descriptor of an environment compared to a
point cloud and that the line algorithms proposed could give
a first approximation of the map without the need for filtering
processes in cases where the localization is provided.

B. Future Work
I think that that a mixed approach may solve the problem

of zones where the filter cannot detect lines. A parallel
map or even filter, which uses the robot’s pose from the
primary filter, can save or propagate the point features. In the
problematic zones, the point features would substitute the line
features while line initialization is impossible. Ways of directly
propagating line coordinates inside the filtering process should
improve the precision of the lines detected. However, this
approach would need an external map where endpoints are
saved so that line segments that may be part of the same
infinite line are matched correctly.

REFERENCES

[1] Axel Barrau and Silvere Bonnabel. An EKF-SLAM algorithm with
consistency properties. CoRR, abs/1510.06263, 2015.

[2] Adrien Bartoli and Peter Sturm. Structure-From-Motion Using Lines:
Representation, Triangulation and Bundle Adjustment. Computer Vision
and Image Understanding, 100:416–441, 2005.

[3] M. Brossard, S. Bonnabel, and J. Condomines. Unscented kalman
filtering on lie groups. In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2485–2491, 2017.

[4] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern
Rehder, Sammy Omari, Markus W Achtelik, and Roland Siegwart.
The euroc micro aerial vehicle datasets. The International Journal of
Robotics Research, 35(10):1157–1163, 2016.

[5] Yang Chen and Gérard Medioni. Object modelling by registration of
multiple range images. Image and Vision Computing, 10(3):145–155,
1992. Range Image Understanding.

[6] Davison. Real-time simultaneous localisation and mapping with a
single camera. In Proceedings Ninth IEEE International Conference
on Computer Vision, pages 1403–1410 vol.2, 2003.

[7] Richard Hartley and Andrew Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, USA, 2000.

[8] J. Heikkila and O. Silven. A four-step camera calibration procedure with
implicit image correction. In Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 1106–
1112, 1997.

[9] Simon J. Julier and Jeffrey K. Uhlmann. New extension of the Kalman
filter to nonlinear systems. In Ivan Kadar, editor, Signal Processing,
Sensor Fusion, and Target Recognition VI, volume 3068, pages 182 –
193. International Society for Optics and Photonics, SPIE, 1997.

[10] R.E. Kalman. Contributions to the theory of optimal control, 1960.
[11] Rudolph Emil Kalman. A new approach to linear filtering and prediction

problems. Journal of basic Engineering, 82(1):35–45, 1960.
[12] H. Li, H. Yu, W. Yang, L. Yu, and S. Scherer. Ulsd: Unified line segment

detection across pinhole, fisheye, and spherical cameras, 2020.
[13] J. M. M. Montiel, Javier Civera, and Andrew J. Davison. Unified inverse

depth parametrization for monocular slam. In Robotics: Science and
Systems, 2006.

[14] James R. Munkres. Algorithms for the assignment and transportation
problems. Journal of The Society for Industrial and Applied Mathemat-
ics, 10:196–210, 1957.

[15] Raul Mur-Artal and Juan D. Tardos. Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras. IEEE Transactions on
Robotics, 33(5):1255–1262, Oct 2017.

[16] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass
networks for human pose estimation, 2016.

[17] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry. In Proceedings
of the 2004 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2004. CVPR 2004., volume 1, pages I–I, 2004.

[18] F. C. Park. Distance Metrics on the Rigid-Body Motions with Applica-
tions to Mechanism Design. Journal of Mechanical Design, 117(1):48–
54, 03 1995.

[19] Eduardo Perdices, Luis Lopez-Ramos, and José Cañas Plaza. Lineslam:
Visual real time localization using lines and ukf. Advances in Intelligent
Systems and Computing, 252:663–678, 01 2014.

[20] P. H. Schönemann. A generalized solution of the orthogonal procrustes
problem. Psychometrika, 31:1–10, 1966.

[21] Jianbo Shi and Tomasi. Good features to track. In 1994 Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, pages
593–600, 1994.

[22] Paul Smith, Ian Reid, and Andrew Davison. Real-time monocular slam
with straight lines. pages 17–26, 01 2006.

[23] Joan Solà, Teresa Vidal-Calleja, Javier Civera, and Jose Maria Martinez-
Monti. Impact of landmark parametrization on monocular EKF-SLAM
with points and lines. International Journal of Computer Vision,
97(3):pp.339–368, September 2011.

[24] R. Van der Merwe and E.A. Wan. The square-root unscented kalman
filter for state and parameter-estimation. In 2001 IEEE International
Conference on Acoustics, Speech, and Signal Processing. Proceedings
(Cat. No.01CH37221), volume 6, pages 3461–3464 vol.6, 2001.

[25] E. A. Wan and R. Van Der Merwe. The unscented kalman filter for
nonlinear estimation. In Proceedings of the IEEE 2000 Adaptive Systems
for Signal Processing, Communications, and Control Symposium (Cat.
No.00EX373), pages 153–158, 2000.

