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Resumo

Este trabalho propõe fornecer os blocos necessários para uma solução de Localização e Mapeamento Simultâ-
neo usando técnicas de Odometria Inercial Visual com Linhas como características. Motivado por avanços na
aprendizagem automática que facilitam a detecção de linhas em imagens fornecendo uma ferramenta de visualiza-
ção do espaço mais rica do que os pontos clássicos. O principal obstáculo encontrado foi na correspondência de
linhas através de múltiplas imagens para posterior inicialização como estruturas 3D. Foi introduzida uma variação
do algoritmo Iterative Closest Point (ICP) para abordar este problema, onde o foco principal é a correspondência
das características em vez de encontrar a transformação entre diferentes vistas. São introduzidos e analisados dois
métodos de inicialização de linhas a partir de imagens 2D, um que utiliza coordenadas Plucker para representar
linhas e outro que minimiza a distância 3D de um ponto geral aos raios retroprojectados. É proposto o uso de um
filtro de Square Root Unscented Kalman Filter com base em Grupos de Lie para o processo de filtragem, que inte-
gra medições de uma Unidade de Medição Inercial e informação visual. A abordagem proposta proporcionou uma
localização rigorosa do drone através de uma trajectória complexa e forneceu inicializações de linha que mantêm o
filtro consistente. Foi demonstrado que as linhas fornecem um descritor rico de um ambiente em comparação com
uma nuvem de pontos e que os algoritmos baseados em linhas propostos podem dar uma primeira aproximação do
mapa sem a necessidade de processos de filtragem nos casos em que a localização é fornecida.

Palavras chave: Odometria Inercial Visual, Localização e Mapeamento Simultâneo, Features de linhas, Square
Root Unscented Kalman Filter, Grupos de Lie
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Abstract

This work proposes building blocks for Simultaneous Localization and Mapping (SLAM) solution based on
Visual Inertial Odometry (VIO) techniques with Lines as features. It is motivated by advances in machine learning
that facilitate the detection of lines in images that provide a richer mapping visualization tool than classical point
features. The main building block, proposed in this work, is the matching of lines through multiple frames to
be initialized as 3D structures. An Iterative Closest Point (ICP) variation is introduced as the principal approach,
where the main focus of the algorithm is to match the features instead of finding the transformation between
different views. Two methods are introduced and analyzed for line initialization from 2D images, one that utilizes
Plucker coordinates to represent the lines and another that minimizes 3D the distance of a general point to back-
projected rays. A Square Root Unscented Kalman Filter (SR-UKF) is proposed based on Lie Groups as a base
for the filtering process, which can integrate measurements from an Inertial Measurement Unit (IMU) and visual
information. As a proof of concept, the proposes approach provided a sound localization of a drone through a
complex trajectory and line initializations that maintain the filter consistent. It is experimentally shown that lines
provide a rich descriptor of an environment compared to a point cloud and that the line algorithms proposed can
give a first approximation of the map without the need for filtering processes in cases where the localization is
provided.

Keywords: Visual Inertial Odometry, Simultaneous Localization and Mapping, Line Features, Square Root Un-
scented Kalman Filter, Lie Groups
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Chapter 1

Introduction

Visual Odometry systems have been used successfully to provide robot’s pose estimations for over 16 years,
with inertial sensors being added in recent years. One approach to visual odometry is to solve a Simultaneous
Localization and Mapping (SLAM) problem by employing Kalman filters to propagate 3D points as features.
Since visual odometry should be run online, the system cannot create detailed maps of the environment traversed
using only points. A solution to this problem comes by using lines as features since they provide a rich map
of the environment, even though they can be described from only six parameters. The main cost of updating a
state through a filter is usually bound to the dimension of the observation. Consequently, lines could reduce the
execution time of filters, given that they can provide more visual information than a single point and provide a
richer estimation of the robot’s pose while using a smaller number of features.

One of the main challenges in using lines as features has been the difficulty in line detection using classical
methods. With the appearance of neural networks trained explicitly for line detection in images, this process has
become faster, more reliable and consistent. Consequently, methods that take advantage of these new detectors
should be explored.

Another weakness of using lines is that usually, they do not provide good descriptors that make it challenging
to match features across multiple images so that mapping the environment is possible. With this problem in mind,
line matching methods should be researched.

1.1 Related Work

One important precedent of SLAM is the Structure from Motion (SfM) approach, which has been studied
and used with impressive results for the past three decades [Hartley & Zisserman, 2000]. Monocular Simulta-
neous Localization and Mapping (MonoSLAM [Davison, 2003]) was the first approach in which a real-time fil-
ter achieved good results, which leverages an Extended Kalman filter (EKF) [Kalman, 1960a] to propagate the
state. New parameterizations were proposed to worth features in the infinite in Inverse Depth Parameterization
[Montiel et al., 2006]. The Unscented Kalman Filter [Wan & Van Der Merwe, 2000], UKF, was introduced as an
alternative to the EKF, leveraging the Unscented transform [Julier & Uhlmann, 1997] to better propagate the state
and Covariance without the need for the linearization of the system. Since the UKF increased the computational
complexity to the filter, a Square Root-UKF (SR-UKF [Van der Merwe & Wan, 2001]) proposes propagating the
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squared root of the Covariance, reducing the complexity closer to the one of the EKF. Novel approaches like
[Brossard et al., 2017] take advantage of Lie Groups and algebra which present a natural state representation and
permit Inertial Measurement Units (IMUs) for state estimation.

SLAM variations that use Lines as features were first presented in [Smith et al., 2006], where an EKF filter is
used and is introduced an initialization method for lines that propagates plane intersections until their endpoints
can represent the line; until then, lines are propagated using an exterior EKF filter. In [Solà et al., 2011], different
approaches of landmark parameterizations that can be used in EKF-SLAM with points and lines are shown. In
[Perdices et al., 2014], a UKF is used to propagate 6-dimension Plücker Coordinates directly and proposes a trans-
formation of the 2D lines to a subset of R3 paired with a representative patch of the line for matching purposes.
However, these line approaches do not use inertial measurements to update the state. As such, the mapping and
localization have an inherent scale to the actual map associated with them.

1.2 Problem Formulation

This thesis aims to provide the necessary building blocks to implement a Simultaneous Localization and Map-
ping (SLAM) solution using Visual Inertial Odometry with lines as features. It is proposed to take advantage of
a line detection neural network to provide feature detection. For matching, it is proposed a variation the Iterative
Closest Point (ICP) where the objective is not to obtain the transformation between the points, but the line matches
between two sets of lines.

A method that performs line initializations from the obtained matches and benefits from using Plucker line
coordinates is analyzed. It is also introduced an initialization technique based on the 3D distance to back-projected
rays.

At last, the filtering strategy takes advantage of the lines obtained and inertial information given by an Inertial
Measurement Unit (IMU) to estimate a drone’s pose and a map of the environment using a Square Root Unscented
Kalman Filter based on Lie Groups.

1.3 Thesis Structure

Chapter 1 introduces the problem to approach in the thesis, in particular presents a short discussion on lines
as features of Visual Inertial Odometry systems and a revision of the literature that used filtering processes and
used lines as features. Chapter 2 presents the mathematical and engineering background needed to understand the
concepts being introduced and/or used in the context of this thesis. Chapter 3 introduces the problem of Visual
Inertial Odometry and provides a proposed approach to that problem. Chapter 4 provides an overview of the
different methods needed to use lines as features on the proposed approach. Chapter 5 provides an overview of
the different experiments executed as well as the results attained and a critical analysis of these results. Chapter
6 summarizes the work performed and highlights the main achievements in this work. Moreover, this chapter
proposes further work to extend the activities described in this document.



Chapter 2

Background Theory

This chapter provides an overview of the necessary mathematical basis for the development of this thesis.
More in detail, Section 2.1 gives an overview of the pinhole camera model. Section 2.2 gives an introduction to
line detection and a classic approach employing the Hough Transformation. Section 2.3 describes the different
features and cost functions used to match lines across images. Section 2.4 introduces the Plucker Coordinates
representation for lines. Finally, Section 2.5 introduces the Unscented Kalman Filter (UKF) and the Square-Root
UKF variation.

2.1 Pinhole Camera Model

The pinhole camera model describes the mathematical relation between the 3D coordinates of a point in space
and its 2D projection on an image. It serves as a first-order approximation of the mapping from a 3D scene to a 2D
image since it assumes no lenses or radial distortion.

The reference frame is set on the camera using its camera center of projection C as its origin in the pinhole
model. The image frame is orthogonal to the Z-axis direction of the frame at a focal distance, f , the distance
between the lens and the image sensor when the subject is in focus.

Figure 2.1: Pinhole Camera Geometry. C is the camera center and p the principal point. The camera center is
here placed at the coordinate origin. Note the image plane is placed in front of the camera center. From
[Hartley & Zisserman, 2000]

Using the geometric properties of the frames, the normalized pinhole image projection is given by:
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xn =

[
x

y

]
= f

[
X /Z

Y /Z

]
(2.1)

From [Heikkila & Silven, 1997] comes that after including lens distortion, the new normalized point coordinate
xd can then be calculated as follows:

xd =

[
xd1

xd2

]
= (1 + kc1 r

2 + kc2 r
4 + kc5 r

6 )xn + dx , (2.2)

where r2 = x2 + y2 and dx is the tangential distortion vector:

dx =

[
2kc3 xy + kc4 (r

2 + 2x2 )

kc4 xy + kc3 (r
2 + 2y2 )

]
. (2.3)

Finally, the points can be converted into homogenous pixel coordinates in the image plane using the matrix
known as the intrinsic camera matrix K:xpyp

1

 = K

xd1

xd2

1

 =

fc1 αcfc1 cc1

0 fc2 cc2

0 0 1


xd1

xd2

1

 , (2.4)

where fc are the focal distances (usually expressed in mm), cc are the coordinates of the principal point of the
camera, and s = αcfc1 encodes the skew of the angle between the x and y sensor axes, in digital cameras it is
usually 0.

Since the camera is not usually centered at the origin of the world frame, points need to be mapped to the
camera frame. Supposing a general camera rotation, R ∈ SO(3), and translation, t ∈ R3×1, the full projection
matrix becomes

P = K
[
R t

]
∈ R3×4. (2.5)

Given a point x in an image, the 3-dimensional points that map to that point constitute a ray in space that passes
through the camera center. The ray can be represented as the connection of two points, one being the camera center
and the other P+x, where P+ is the pseudo-inverse of P. The line can then be formally described as

X(λ) = P+x+ λc . (2.6)

2.2 Line Detection, Hough Transform

One of the most critical aspects of computer vision and image processing is to detect image features that should
be distinct from others so that matching between images is possible. Since the type of features used in this thesis
is lines, detecting them in images is crucial.

A classical way of detecting lines on an image is by using the Hough transformation [Hough, 1959]. This
approach takes advantage of an edge detector like the Canny edge detector ([Canny, 1986]) to select points to be
mapped to Hough Space. Then an accumulator bin is created that records the number of possible lines that may
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pass through a single transformed point. The most elementary way to detect a line is to interpret all values above
a threshold set on the accumulator as a line. The lines must then be intersected with edge points in order to create
line segments.

(a) Original Image (b) Edge detection using Canny edge detec-
tor

(c) Lines detected using Hough Transforma-
tion

Figure 2.2: Example of lines detected using the Hough Transformation.

Even though this method provides some line features, as shown in Figure 2.2, they are insufficient to maintain
feature tracking across multiple images since the method has difficulty reliably identifying the same lines and, in
the cases where it can recognize the same endpoints. As such, a neural network will be employed to detect lines;
this approach will be more detailed explained in Section 4.1.

2.3 Line Matching

Since the final objective is to have a 3D reconstruction of the world, it is vital to have correct matches between
lines over different camera frames. Lines will also be matched to reprojections of already seen lines to improve
the estimations of those features.

SIFT (Scale Invariant Feature Transform) Features and Descriptors [Lowe, 1999] are regularly used to match
points since they provide an attractive way to select relevant points and a 128 dimension vector descriptor per
feature, which simplifies the matching process.

Since lines are not selected with this descriptor in mind, they often do not provide good features in their
endpoints, and as such, they should not be used as a sole parameter to perform line matching. They can, however,
be used to ensure match validity to some degree.

Sum of Squared Distances (SSD) is a naive approach where the cost function is simply the squared distance
of the endpoints of the line between the frames. This method expects a high image frequency or a slow-moving
drone, so that lines have limited movement between poses keeping them in similar pixel positions.

Using only SSD proved unsuccessful to match lines but gave an initialization to the Procrustes Orthogonal
problem [Schönemann, 1966], which can then calculate a transformation between both sets of matched lines. This
transformation can then be applied to all lines making them closer to other lines to be matched, providing that the
first set of matches is correct. Iteratively repeating this method is known as the Iterative Closest Point (ICP) first
proposed by [Chen & Medioni, 1992].
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2.4 Plücker Coordinates

Introduced by Julius Plücker in the 19th century Plücker coordinates present a convenient representation for
directed lines in 5-dimensional projection space. The work [Bartoli & Sturm, 2005] is used in this thesis as a
guide for the Plücker conventions. Given two 3D points MT ∼ (M̄T |m) and NT ∼ (N̄T |n), where AT are the
homogeneous coordinates of the points A, ĀT is the inhomogeneous part and a is the homogeneous part, one can
represent the line joining them by a homogeneous "Plücker" 6-vector LT ∼ (aT|bT) with 5 degrees of freedom
(DoF), where: a = M̄× N̄

b = mN̄− nM̄
(2.7)

To reduce to 4 degrees of freedom, the same of 3D lines, a bilinear constraint must be satisfied by the 6-vector.
For the definition chosen, the constraint comes as

C(L) = 0 where C(L) = aTb . (2.8)

Given a standard (3× 4) perspective projection matrix P ∼ (P̄|p), as defined in Equation 2.5, a (3× 6) matrix
projecting Plücker line coordinates presented in [Bartoli & Sturm, 2005] is given by

P̃ ∼ (det
(
P̄
)
P̄−T |[p]xP̄) . (2.9)

2.5 Unscented Kalman Filter (UKF)

The Extended Kalman Filter [Kalman, 1960b], EKF, has been widely used to do state-estimation on non-linear
systems by approximating the state distribution to a Gaussian distribution using a first-order linearization of the
non-linear system. As a recurrent first-order approximation the EKF can introduce significant errors in the true
posterior mean and covariance of the system.

The Unscented Kalman Filter [Wan & Van Der Merwe, 2000] proposes that the state’s Gaussian random vari-
able should be approximated by a minimal set of carefully chosen sample points denoted by sigma points. After
selection, the points are propagated through the non-linear system. This improvement is demonstrated in Fig-
ure 2.3.

2.5.1 The Unscented Transform

[Julier & Uhlmann, 1997] introduced the unscented transform to calculate the sigma points deterministically.
Assuming a random variable x of dimension L that has mean x̄ and covariance Σx, a matrix X of 2L + 1 sigma
vectors Xi are created by:

X0 = x̄

Xi = x̄+ (
√
(L+ λ)Σx)i i = 1, . . . , L

Xi = x̄− (
√
(L+ λ)Σx)i−L i = L+ 1, . . . , 2L

, (2.10)
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Figure 2.3: Example of mean and covariance propagation. On the left is shown how the true mean and covariance are
propagated through the model f(). At the center, the first order linearization is used by the EKF, and on the
right is displayed the propagation using sigma points, which much closely relates to the actual sampling. From
[Van der Merwe & Wan, 2001]

where λ = α2(L + κ) − L is a scaling parameter. α determines the spread of the sigma points around the mean
and is usually a small positive value. κ is a secondary scaling parameter and usually set to 0. (

√
(L+ λ)Σx)i is

the ith row of the matrix square root that may be obtained using, e.g., Cholesky decomposition.

The sigma points also have associated weights that are to be used when recovering the Gaussian distribution
from the transformed points:

W
(m)
0 = λ/(L+ λ)

W
(c)
0 = W

(m)
0 + (1− α2 + β)

W
(m)
i = W

(c)
i = 1/{2(L+ λ)} i = 1, . . . , 2L

(2.11)

where β is used to incorporate prior knowledge of the distribution of x.

The state can then be propagated through the non-linear model, g(), by:

ȳ ≈
2L∑
i=0

W
(m)
i g(Xi)

Σy ≈
2L∑
i=0

W
(c)
i {g(Xi)− ȳ}{g(Xi)− ȳ}T

(2.12)

This method is accurate to the third order for Gaussian inputs for all non-linearity, with the accuracy of third
and higher-order moments determined by choice of α and β.
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2.5.2 Prediction Step of the UKF

The filter’s prediction step consists of the choice of sigma points (Equation. 2.10) and consequent propagation
through the non-linear action model using the inputs given to the model. Then equation 2.12 is used to calculate
the prediction step median and covariance.

UKF Prediction Step

Calculate Sigma Points:

Xt−1 =
[
x̄t−1 x̄t−1 + (

√
(L+ λ)Σt−1) x̄t−1 − (

√
(L+ λ)Σt−1)

]
(2.13)

Propagate through the action model:
Xt = g (ut,Xt−1) (2.14)

Calculate new average and covariance:

x̄t =

2L∑
i=0

W
(m)
i X ∗[i]

t (2.15)

Σt =

2L∑
i=0

W
(c)
i {X ∗[i]

t − x̄t}{X ∗[i]
t − x̄t}T + Rt (2.16)

where Rt is a tuning parameter of the filter and is associated with the covariance gained by doing a prediction step
and ut are the inputs given to the system at time step t.

2.5.3 Update Step of the UKF

The update step is similar to the prediction step by propagating the sigma points through the observation model,
h(x), to obtain the expected observation. The Kalman gain is then calculated using the observation’s covariance
and used to update the state.

UKF Update Step

Calculate Sigma Points:

Xt =
[
xt xt + (

√
(L+ λ)Σt) xt − (

√
(L+ λ)Σt

]
(2.17)

Propagate through the measurement model and calculate prediction:

Zt = h(Xt) (2.18)

ẑt =

2L∑
i=0

W
(m)
i Z [i]

t (2.19)
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UKF Update Step (cont.)

Calculate covariance and Kalman gains from the prediction:

St =
2L∑
i=0

W
(c)
i {Z [i]

t − ẑt}{Z∗[i]
t − ẑt}T + Qt (2.20)

Σx,z
t =

2L∑
i=0

W
(c)
i {X [i]

t − x̄t}{Z∗[i]
t − ẑt}T (2.21)

Kt = Σx,z
t S−1

t (2.22)

Calculate new average and covariance:

x̄ = x̄+Kt(zt − ẑt) (2.23)

Σt = Σt − KtStK
T
t (2.24)

where Qt is a tuning parameter of the filter and is associated with the covariance gained by making an observation,
and it depends on the quality of the sensor used. zt and ẑt are the observation and expected observation at time
step t, respectively.

2.5.4 The Square Root UKF (SR-UKF)

The most computationally expensive operation of the UKF is on the square root of the covariance needed
whenever sigma points are calculated (see equations 2.13 and 2.17). An efficient implementation using Cholesky
factorization has O(L3/6) time complexity. The Square-Root UKF proposed by [Van der Merwe & Wan, 2001]
reduces this complexity to O(LM2) by propagating the covariance directly, where M is the observation dimension.

In order to achieve this performance, it takes advantage of three powerful linear algebra techniques, QR de-
composition, Cholesky factor updating and efficient least squares. From [Van der Merwe & Wan, 2001]:

• QR decomposition: The QR decomposition or factorization of a matrix A ∈ RL×N is given by, AT = QR,
where Q ∈ RN×N is orthogonal, R ∈ RN×L is upper triangular and N ≥ L. The upper triangular part of R,
R̃, is the transpose of the Cholesky factor of Σ = AAT , i.e., R̃ is the square root of the covariance such that
R̃T R̃ = AAT .

• Cholesky factor updating: If S is the original Cholesky factor of Σ = AAT , then the Cholesky factor of
the rank-1 update Σ ±

√
vuuT is denoted as S = cholupdate(S,u,±v). If u is a matrix and not a vector,

then the result is M consecutive updates of the Cholesky factor using the M columns of u.

• Efficient Least Squares: For a square matrix A, the solution to the equation (AAT )x = ATb also corre-
sponds to the solution of the over determined least squares problem Ax = b. This can be solved efficiently
using a QR decomposition with pivoting.

According to [Van der Merwe & Wan, 2001] even though the computational complexity of the filters are of the
same order the SR-UKF is about 20% faster than the UKF and about 10% faster than the EKF.
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Chapter 3

Visual Inertial Feature-Based
Simultaneous Localization And Mapping

This chapter formulates the problem in Section 3.1 and then explains the proposed solution in Section 3.2.
In Section 3.2.1, the state, action and measurement models are defined. Section 3.2.2 gives a brief overview of
Matrices on Lie Groups, and Section 3.2.3 explains the uncertainties function on those same groups. Finally, the
filter implementation is showcased in Section 3.2.4.

3.1 Problem Formulation

Odometry comes from the Greek words odos (meaning "route") and metron (meaning "measure") and, as such,
odometry is the problem of measuring a robot route through an environment. Rotary encoders in robots that use
wheels as a way of moving can estimate the movement, but this may not be possible for, e.g., robots that slide too
much (giving wrong estimations) or aerial drones that do not use wheels. From this problem came the approach
of using a camera to estimate the robot’s pose by adjusting the position of specific features that it could see over
time; this approach is called Visual Odometry, first proposed by [Nister et al., 2004].

An Inertial Measurement Unit (IMU) provides an inertial estimation of the movement that can help the camera
measure its pose; when this happens, it is then called Visual Inertial Odometry. IMUs report the angular velocity
(w) and linear accelerations (a) in the sensor frame. A rigid transformation can be used to map one frame to
another:

T =

[
R t

0 1

]
, (3.1)

where T is the transformation matrix, R ∈ SO(3) the rotation matrix and t ∈ R3 the translation from one from to
the other. This set of transformations constitute the Special Euclidean Group (SE(3)).
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Figure 3.1: Example transformation from SE(3) where T provides a transformation from the IMU frame to the camera frame.
Adapted from [Burri et al., 2016].

One of the main advantages of using an IMU as an odometry sensor is the speed at which it can update the
system, given its high frequency (higher than 100Hz) and that the update on the pose is usually straightforward.
However, an IMU cannot be used as the only sensor since the pose is obtained through continuous integration of
the accelerations from the IMU with quantification noise. Since this noise is additive, it introduces a bias that drifts
the system away from the absolute pose.

3.2 Proposed Approach

The proposed approach closely follows the work done by [Brossard et al., 2017] in which an SR-UKF is used
to integrate IMU and visual information. One of the main innovations that it introduces is the use of Lie Groups as
a structure for the state leading to a direct representation and propagation of the uncertainty in the Lie Group. The
filter estimates the robot’s pose (Rotation, velocity and location), the 3D location of the features detected, and the
IMU biases, the latter being appended to the state estimation.

3.2.1 State, Action and Measurements Model

In [Brossard et al., 2017], the Special Euclidean of multiple direct spatial isometries SE2+p(3) group is pre-
sented to naturally represent the problem in a Lie Group structure as leveraged in [Barrau & Bonnabel, 2015],
where the (2 + p) subscript signifies that the group includes the position and velocity (2) and all of the land-
marks positions (p). This group extends the Special Euclidean group and provides the state representation and a
closed-form solution to the Lie exponential of the uncertainties. The state can be then represented as

χ =

[
R v x p1 · · ·pp

0(p+2)×3 I(p+2)×(p+2)

]
∈ SE2+p(3) , (3.2)

where R ∈ SO(3) is the rotation matrix, v ∈ R3 is the velocity of the robot, x ∈ R3 is the position of robot and
finally pk ∈ R3 is the position of the kth landmark. The uncertainties, defined as ξ = [ξTR ξTv ξTx ξTp1

· · · ξTpp
] ∈

R9+3p are mapped to the Lie algebra through the transformation ξ → ξ∧ defined as
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ξ∧ =

[
[ξR]× ξv ξx ξp1 · · · ξpp

0(2+p)×(5+p)

]
. (3.3)

The biases of the IMU are appended to the state and are represented as

b =

[
bω

ba

]
∈ R6 , (3.4)

where bω is the bias of the angular velocity and ba the bias of the linear velocity reported by the IMU.

Action model

The action model represents how the system can change in time. It uses the information given by the IMU to
change the robot’s pose and assumes that the landmarks do not move and that the robot’s frame is the same as the
IMU’s. The dynamics of the system read

body state


Ṙ = R [ω − bω + nω]×

v̇ = R (a− ba + na)− g

ẋ = v

(3.5)

IMU biases

 ḃω = nbω

ḃa = nba

(3.6)

landmarks ṗi = 0, i = 1, . . . , p , (3.7)

where the various white Gaussian noises can be stacked as

n =
[
nT
ω nT

a nT
nω

nT
na

]T
∼ N (0,Q) . (3.8)

Measurement Model

The measurements are given by the calibrated monocular camera that observes the p landmarks through a
standard perspective projection model, like the on described in Section 2.1. Each landmark pi is observed through
the camera as

yi =

[
yiu

yiv

]
+ ni

y , (3.9)

where yi is the measured pixel location of the landmark in the camera, that is,

λ

y
i
u

yiv

1

 = Ppi , (3.10)

with λ being the scale parameter, P the camera projection matrix from Equation 2.5 and pi the 3-dimensional
position of the landmark in homogeneous coordinates. Finally, ni

y ∼ N (0, N) represents the pixel image noise.
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3.2.2 Matrix Lie Groups

From [Brossard et al., 2017] a matrix Lie group G ⊂ RN×N is a subset of square invertible matrices such that
the following properties hold

I ∈ G; ∀χ ∈ G,χ−1 ∈ G; ∀χ1, χ2 ∈ G,χ1χ2 ∈ G . (3.11)

Locally about the identity matrix I, the group G can be identified with a Euclidean space Rq using the matrix
exponential map expm(.) where q = dim G. Indeed, to any τ ∈ Rq one can associate a matrix τ∧ of the tangent
space of G at I called the Lie algebra g. The exponential map Exp: Rq → G for Lie group is defined as

Exp(τ) = expm(τ∧) (3.12)

Locally, it is a bijection, and one can define the Lie algorithm map log: G → Rq as the exponential inverse,
leading to

Log(Exp(τ)) = τ . (3.13)

An overview of the Lie Mappings is shown in Figure 3.2.

Figure 3.2: Lie Group Mappings - From the Group (Manifold) to the Lie algebra to the vector space and the inverse mappings.
From [Solà et al., 2018].

3.2.3 Uncertainty on Lie Groups

A random variable on the Lie Group cannot be defined as an additive noise for χ1, χ2 ∈ G since G is not
a vector space and χ1 + χ2 /∈ G does not hold. Following [Brossard et al., 2017] the probability distribution
χ ∼ NR(χ,P) for the random variable χ ∈ G is defined as

χ = Exp(ξ)χ̄, ξ ∼ N (0,P) . (3.14)

In the case of the implementation to be used, the uncertainty ξ is defined by equation 3.3. It was chosen the
right multiplication variation since it provided increased accuracy and numeral consistency compared to the left
variant.
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3.2.4 Filter Implementation

Since the filter needs a discrete model to propagate the state through time, To integrate the action model on the
filter, it was discretized using the Euler method except for the Rotation. From [Brossard et al., 2017], the discrete
action model becomes:

body state


R(t+∆t) = R(t)exp

[
(ω(t)− bω(t))∆t+ Cov(nω)

1/2 − g
√
∆t
]
×

v(t+∆t) = v(t) + (R(t) (a(t)− ba(t))− g)∆t

x(t+∆t) = x(t) + v(t)∆t

(3.15)

IMU biases

bω(t+∆t) = bω(t)

ba(t+∆t) = ba(t)
(3.16)

landmarks pi(t+∆t) = pi(t), i = 1, . . . , p (3.17)

Having the measurement from the IMU at time step k given as uk =
[
ωT
k aTk

]T
the equations from 3.15 to

3.17 correspond to the f function that serves as the action model for the filter

χk+1 = f(χk,uk, ωk) , (3.18)

where the state χk lives in G, and ωk ∼ N (0,Qk) is a white Gaussian noise, associated with generic discrete
measurements of the form

yk = h(χk,vk) , (3.19)

where vk ∼ N (0,Rk) is a white Gaussian noise. The final full model associated to the Right-SR-UKF-LG (Right
Square Root Unscented Kalman Filter on Lie Groups, from [Brossard et al., 2017]), denominated as Fusion2018
from now on, becomes

state

χk = exp(ξ)χ̄k

bk = b̄k + b̃
,

[
ξ

b̃

]
,∼ N (0,Pk), (3.20)

dynamics
{
χk,bk = f(χk−1,uk − bk−1,nk) , (3.21)

observations

Yk =
[
yT
1 · · · yT

p

]T
:= Y(χk, ωk)

ykgiven in 3.9, i = 1, . . . , p ,
(3.22)

such that (χ̄k, b̄k) ∈ R(15+3p) represents the mean (estimated) state at time k, Pk ∈ R(15+3p)×(15+3p) is the
covariance matrix that defines the state uncertainties (ξ, b̃), and the vector Yk contains the observations of the p

landmarks with associated Gaussian noise wk ∼ N (0,W).

The complete filter operation is shown in Figure 3.3, where the Propagation and Update steps are the ones
earlier defined, and steps to detect features use the method described in [Shi & Tomasi, 1994] and match features
using the Matlab built-in functions. Feature Initialization is done by triangulation using the external map.
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Figure 3.3: Fusion2018 Block Diagram Filter Proposed by [Brossard et al., 2017] to perform Visual Inertial Odometry.

It should be noted that the Fusion2018 filter expects a good initialization, where the state is initialized with the
ground truth values from the dataset for the pose (initial conditions of the robot) and 30 3D landmark positions
given by [Mur-Artal & Tardos, 2017]. The external map also uses 200 initial features given by [Mur-Artal & Tardos, 2017].



Chapter 4

Lines based Visual Inertial Odometry

This chapter details the main building blocks that make Lines based VIO. In Section 4.1 is shown the Line De-
tection method used. Section 4.2 introduces a matching algorithm created for Line Matching. Section 4.3 presents
a method to initialize Lines using Plucker coordinates. In Section 4.4 is presented a Line Initialization method
that uses a minimum square error formulation to find points that minimize the distance to the back-projected rays.
Finally, in Section 4.5, is shown how these systems are integrated into the filter described in chapter 3.

4.1 Line Detection using Unified Line Segment Detection (ULSD)

Following the approach in Section 2.2, where lines are detected using the Canny Edge detector and the
Hough Transform, a more robust way of extracting 2D lines from images was needed. A solution is presented
in [Li et al., 2020] by taking advantage of a stacked hourglass network ([Newell et al., 2016]) to extract a feature
map used to propose and validate line predictions.

The complete network can be separated into two modules; the first module, denominated by "Line Proposal
Network", tries to predict the junctions of lines using another network outputting confidence and a junction offset
map; in this first step, duplicated junctions are also removed from the map. Lines are predicted by trying to find
line segments represented by a Bezier curve. Finally, line segments that can match the endpoints to two junction
proposals based on the Euclidean distance are kept. If multiple line proposals are matched with the same junctions,
only those with the shortest cost are kept.

The second module, "Line of Interest", takes the candidate lines from the first module and feature map from the
first network to validate the line segment prediction. The candidate is first passed through a Bezier Align function
that samples uniformly the line to form the final prediction, which is then fed into another classifier network to get
a confidence level for each line. In Figure 4.1 is shown an overview of the network.
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Figure 4.1: Unified Line Segment Detection (ULSD) - Network Overview. From [Li et al., 2020]

4.2 Line Matching Algorithm

Following Section 2.3 the chosen algorithm to pair lines between images or the projection of 3D lines is a
variation of the Iterative Closest Point. The first step is to match lines using the Sum of Squared Distances (SSD)
between the endpoints of two lines; minimizing the sum of this error is known as the Assignment Problem, which
can be formally described as

minimize
a∈A

∑
Ca,f(a) (4.1)

where C is a square real-valued matrix where each matrix position (a, f(a)) is the cost of matching the line of ID
a to the line of ID f(a). The cost of the match between two lines is defined by

Ca,f(a) = ∥La
1 − Lf(a)

1 ∥2 + ∥La
2 − Lf(a)

2 ∥2 (4.2)

where Lk
i represent the ith endpoint of the line with ID k. In order to correctly match endpoints, the endpoints of

the second line are swapped, and the distance is recalculated; It is then chosen the orientation which provides the
smaller distance. The minimization problem is solved using the Hungarian method proposed by James Munkres
in [Munkres, 1957]. Matches are also filtered by a maximum error cost between any two lines.

After the first match, Procrustes [Gower & Dijksterhuis, 2005] is applied to the endpoints of the matched lines.
The obtained transformation is then applied to all the points in the image so that lines that should be matched to
each other get closer together. As such, this method requires that at least a match so that a transformation can be
calculated. An overview of this iteration is shown in Figure 4.2.



4.3 Line Initialization in Plücker Coordinates 19

Matches
were

Made? 

Solve Assignment
Problem 

Solve Procrustes
Transformation
with matches 

Yes

No

Apply
Transformation

to all points 

Intersect Lines
with the frame 

Return
Lines Calculate Cost

Matrix 

Lines
Obseverd 

Expected
Lines 

Figure 4.2: ICP Line Iteration Block Diagram This algorithm matches lines using the SSD ant then adjusts the endpoints
positions of all points using the transformation found by applying Procrustes to the matched endpoints.

Since the objective is to minimize the error given by equation 4.1, the method described in Figure 4.2 is
iteratively run until the error no longer decreases above a fixed threshold. Since the ICP is used with the objective
of matching in mind, it simply returns the matches obtained. After the ICP algorithm is done, RANSAC is used to
filter some outliers that may appear from overfitting to some matches. The entire algorithm is shown in Figure 4.3.
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Figure 4.3: ICP Line Block Diagram This algorithm performs iterative matches and lines transformations until the error gain
is lower than a fixed threshold (10−6 in the case of this thesis). The first solve of the assignment problem tolerates
a higher error in matches than subsequent iterations.

4.3 Line Initialization in Plücker Coordinates

Line initialization is crucial to obtain 3D features that the filter can propagate to update the system’s state.
With this objective in mind, it was proposed by [Bartoli & Sturm, 2005] a maximum likelihood estimator using the
squared 2D orthogonal (Euclidean) distance from the line L to the projected endpoints weighted by their distance
to the camera, which is formally written as

E(L, [x,y]) = d2⊥(x, l) + d2⊥(y, l) , (4.3)

where [x,y] are the two weighted points, l is the projection of the line L and d2⊥(q, l) is defined by

d2⊥(q, l) = (qTl)2/(l21 + l22 ) . (4.4)

Having 3D lines S = {L1, . . . ,Lm} and cameras M = {P1, . . . ,Pn} the negative log likelihood function
E(S,M) for the reconstruction, corresponding to the total reprojection error, can be written in terms of individual
reprojection errors E(Lj ,M) for each line j:
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E(S,M) =

m∑
j=1

E(Lj ,M) (4.5)

E(Lj ,M) =

n∑
i=1

(
d2⊥(x

ij , lij) + d2⊥(y
ij , lij)

)
. (4.6)

Since all projections should correspond to the same 3D line, the final functional to be minimized becomes

minimize
L

E(L,M) =

n∑
i=1

(
d2⊥(x

i, li) + d2⊥(y
i, li)

)
. (4.7)

4.3.1 Linear Algorithm

Ignoring the denominator in equation (4.4) leads to an algebraic distance denoted da, biased compared to the
orthogonal distance. It is linear in the predicted line and defined by d2

a (q, l) = d2⊥(q, l)w
2 = (qTl)2, where the

scalar factor w encapsulates the bias as w2 = l21 + l22:

(w i)2 =
(
(P̃iL)1

)2
+
(
(P̃iL)2

)2
. (4.8)

The biased linear least squares error function is then defined by

B(L,M) =

n∑
i=1

((
xiT P̃iL

)2
+
(
yi

T
P̃iL

)2)

= ∥A(2n×6)L∥2 with A =


. . .

xiT P̃i

yi
T
P̃i

. . .

 .

(4.9)

Since L is a homogeneous vector, the constraint ∥L∥2 = 1 must be added. The L that minimizes B(L,M) is
then given by the singular vector of A associated to its smallest singular value, that can be computed using SVD.

The linear algorithm provides a biased estimate of the plucker line L that can estimate the weight factors that
contain the bias of the linear least-squares error function. This process is then used iteratively until convergence,
using the difference between consecutive errors as a threshold. A correction should be made between each iteration
to ensure that the plucker constraint is satisfied, as described in 4.3.2.

4.3.2 Plücker Correction

Given a 6-vector LT ∼ (aT |bT ), this algorithm computes the closest Plücker coordinates L̂T ∼ (uT |vT ), i.e.,
uTv = 0, in the sense of the L2-norm, i.e, ∥L̂− L∥2 is minimized.
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Plücker Correction

Compute the Singular Value Decomposition (a b) = ŪΣ̄V̄T .

Let Z̄ = Σ̄V̄T , form matrix T =

[
z21 z22

z12 −z11

]
.

Compute singular vector v̂ associated to the smallest singular value of matrix T.

Define V̂ =

[
v̂1 −v̂2

v̂2 v̂1

]
and set (u v) ∼ ŪV̂ diag

(
V̂T Σ̄V̄T

)
Return L̂T ∼ (uT |vT )

4.3.3 Quasi-linear Algorithm

According to [Bartoli & Sturm, 2005], the linear algorithm misbehaves since the plücker constraint is not con-
sidered while solving the linear least-squares problem.

A new approach is suggested by rewriting the constraint as C(L) = LTGL = 0 where G =

[
0 I

I 0

]
. Comput-

ing the null space of LTG, using SVD, gives a base of all vectors that satisfy the plücker constraint; this base can
then be plugged into the linear estimator (Equation. 4.9) to give a line L that satisfies the plücker constraint. The
estimate is then used iteratively, as before, to compute the bias that reweighs the least-squares problem (Equation.
4.8) until convergence.

4.3.4 Endpoints Extraction from the Plücker Coordinates

Since the endpoints will be propagated through the SR-UKF filter, they must be extracted from the Plucker Co-
ordinates. First, the Plucker line is transformed back into Euclidean Coordinates, then the endpoints are estimated
by finding the closest line points to the back-projected rays of the endpoints observed in each image. These values
are then averaged to give a final prediction of the 3D endpoints. An example is shown in Figure 4.4 in which, since
there is no noise, the closest points to the line are the intersection. The points chosen are always part of the line
estimated using the quasi-linear algorithm.

Figure 4.4: Example of the usage of back-projection rays to determine the endpoints of an estimated Plucker Line.
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4.4 Line Initialization Using 3D Distance to Back Projected Rays.

(a) Noiseless Projection where the Back Projected rays intersect
in a single point P.

(b) Back Projected rays in the presence of noise measurements
not intersecting in a single point

Figure 4.5: Example of back-projection of rays with and without noise. Both rays intersect the original point on the left since
there is no noise, but on the right, those back-projected rays do not cross in a noisy reality.

In a noiseless world, all back-projected rays from a single 3D point should intersect in that same point, but this
is not always true due to noises in the image or the camera’s pose. In reality, the rays will pass close to the real
point but probably not over, as shown in Figure 4.5 ; as such, the real point should be close to every back-projected
ray from every view that can see him. The 3D distance from a generic point p to a line defined by L = a + λu

can be calculated as the height of a parallelogram formed by a segment of the line and a vector from the line to the
generic point:

d(L,p) =
||−→ap× u||

||u||
⇒ ||−→ap× u||, if ||u|| = 1. (4.10)

Having the back-projected rays {L1 = a1+λu1, . . . ,Ln = an+λun}, a mean squared error formulation can
be written as

minimize
p

F (L,p) = 1

2

n∑
k=1

||d(Lk,p)||2 (4.11)
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where
−−→
akpi is ith coordinate of the vector defined by

−−→
akp = p− ak, and ui is the ith coordinate of the vector u.

The vectors u that define the direction of the line should be normalized so that the Equation 4.12 is valid. Since
the minimum of the functional is found when the gradient is equal to zero, a closed form solution is given by:
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4.5 Integration of Line Features into Fusion 2018

The algorithms proposed in this chapter served as a replacement to the algorithms used to detect, match and
initialize features to the Fusion2018. One main difference is that even though the filter propagates the endpoints of
the lines as independent landmarks, they maintain the line structures that are then used to match the state landmarks
and the images taken by the camera. The blocks that are replaced in the Fusion2018 filter are shown in green in
Figure 4.6.
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Figure 4.6: Fusion2018 Block Diagram Filter Proposed by [Brossard et al., 2017] to perform Visual Inertial Odometry with
Lines as Features. Green blocks are the new blocks introduced to use line features.

The external map saves the image coordinates and projection matrix of each matched view for every line ID
that was still not initialized. If there is a low number of matches to the landmarks (they do not appear in frame) the
initialization step can be called to try and create landmarks which can be seen by the system. The state initialization
will be discussed in Section 5.5.
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Chapter 5

Experiments

This chapter describes the experiments performed to validate the methodologies presented and introduced in
previous chapters. Section 5.1 introduces the dataset used to test the proposed algorithms with real data. Section 5.2
validates the line detection method introduced in Section 4.1. Section 5.3 evaluates the matching algorithm pro-
posed in Section 4.2. Section 5.4 tests the initialization techniques from Sections 4.4 and 4.3 using a simulator
created in Matlab. Finally, Section 5.5 tests the full proposed solution and compares it to the Fusion2018 filter.

5.1 The EuRoC MAV Dataset

The dataset used in this thesis was recorded by [Burri et al., 2016] in the context of the European Robotics
Challenge (EuRoC) to assess the contestant’s visual-inertial simultaneous localization and mapping (SLAM) and
3D reconstruction capabilities on micro aerial vehicles (MAVs). More specifically it will be used the medium
difficulty data set recorded on the Vicon MoCap Room.

The dataset features an accurate 3D point cloud of the environment captured with a laser scanner and also the
6D pose ground truth (position and rotation) from the flight of the AscTec "Firefly" hex rotor helicopter, shown
in Figure 5.2. The drone features an Inertial Measurement Unit (IMU) and two cameras (even though only one is
used). The full flight of the drone and the room ground truth point cloud is shown in Figure 5.1.

The Fusion18 dataset consists of 16020 IMU measurements and 1602 images. The IMU values can be used
directly since its frame is aligned with the body’s referential. On the other hand, when used for image reconstruc-
tion, the camera image coordinates need an extra transformation to ensure that the values are mapped to the correct
frame. As such, the camera projection matrix from equation 2.5 becomes

P = K(Rb
wR

c
b)

T
[
I3 −(tbw + Rb

wR
c
bt

c
b)
]
∈ R3×4 , (5.1)

where Rb
a ∈ SO(3) is the rotation matrix from referential a to b, and tba ∈ R3 is the translation vector from

referential a to b; w, b and c are the referential of the world, the drone (IMU) and the camera, respectively. Using
the 3D point cloud given by the dataset, 3D lines were initialized and used to verify that the projection matrix was
working correctly by projecting them onto different images using the pose ground truth; an example is shown in
Figure 5.3.
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Figure 5.1: Full drone flight.

(a) Sector of the Vicon MoCap Room 1 with the 3D lines used to
verify the projection matrix.

(b) Example of the lines projected using the projection matrix
and ground truth of the pose.

Figure 5.3: Lines used to test Projection Matrix and ground truths of the dataset. The Lines used are marked in red.



5.2 Line Detection with ULSD 27

(a) The AscTec "Firefly" helicopter. (b) Frame transformations between the world and sen-
sors.

Figure 5.2: The drone used in the recorded dataset and the transformations between frames of the sensors in the drone and the
world. From [Burri et al., 2016].

5.2 Line Detection with ULSD

The ULSD network can be trained separately, but since [Li et al., 2020] provide a pre-trained model for each
type of camera, the pinhole model is used for line detection. The confidence interval (CI) which declines or accepts
lines can be adjusted if there is a need to detect more or fewer lines, Figure 5.4 shows that effect. The CI set to 70%

is used since there is an improvement in the number of detected lines without losing accuracy, being detected on
average 67 lines per image. Lower thresholds identify repeated lines, increasing the complexity for the matching
task to maintain lines alive through multiple frames.

(a) Lines detected with 90% CI (default) (b) Lines detected with 70% CI (c) Lines detected with 50% CI

Figure 5.4: ULSD Line Detection - Example of multiple confidence intervals.

5.3 Line Matching Validation

The algorithm was validated using subsequent images from the Fusion18 dataset where lines were identified
using the method in Section 4.1. It is possible to check how much the algorithm improved the number of matches
obtained in Figure 5.5. This growth is vital so that lines are consistently matched across images making possible a
posterior 3D initialization.
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(a) Matches obtained by SSD (b) Matches obtained by ICP Line

Figure 5.5: Example of ICP Line improvement on matching. Blue lines represent the lines identified on the image, and red lines
correspond to lines found in other images that were matched to this image. Finally, green lines join the matched
endpoints.

The Fusion18 dataset was then used to better understand how long the algorithm would take to converge and
how many matches were gained by utilizing the ICP. It was found that it took 6.3 iterations to converge, and more
than 17 matches were gained per a pair of images. A complete overview of these results can be seen in Figure 5.6.
More importantly, the percentage of pairs of images with less than 20 matches went from 20% to less than 5%,
demonstrating the power of this algorithm in increasing the matches found. The algorithm also showed promising
results when matching lines from images with greater time steps between them.

(a) Distribution of the number of ICP iterations. (b) Cumulative Distribution of the number of matches
made between images.

Figure 5.6: Quantitive analysis of the ICP Line algorithm. On the left is presented the number of iterations that the algorithm
took to reach the fixed error gain. On the right is the cumulative distribution of the number of matches between
images. These results come from the counts achieved over 1600 images.
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5.4 Effect of Noise on 3D Lines Reconstruction

A Matlab simulator was created to test the line initialization techniques, which consisted of a cube centered
on the origin with random lines inside and a variable number of cameras that would take pictures of the cube and
lines. The line initialization techniques were then tested and then compared to the "real" lines. In the simulator, it
is possible to modify the number of cameras, the positions of each camera and the option to use a camera for the
projection of the reconstructed lines to assess the reprojection errors of the initialized lines. The simulator setup is
shown in Figure 5.7.

(a) Example of possible camera positions in the simulator
and the cube with the random lines inside.
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(b) Example of a "picture" taken by a camera in the sim-
ulator.

Figure 5.7: Simulator used to test initialization techniques. On the left is shown the 3D setup and on the right a picture taken
by one of the cameras.

The first validation was done with no noise added to the simulator to ensure the validity of the algorithms in a
case where perfect measurements are made. The techniques resulted in euclidean distance errors lower than 10−15,
appearing from Matlab functions’ numerical precision. These results supported the validity of the initializations
using the [Bartoli & Sturm, 2005] and Section 4.4 methods, at least in a noiseless environment.

The simulator provides three types of noise, shown in Figure 5.8, that can be tested separately or at the same
time. The first type of noise appears from vibrations on the camera or for incorrect line detection, and it is
manifested as pixel deviations on the line positions in the pictures taken by the camera. The other two errors
come from the camera’s pose and appear as location and rotation differences from the actual pose. The noise was
modelled as a Gaussian distribution with zero average and covariance given by noise value selected.
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Figure 5.8: Different types of Noise added in the simulation to test the initialization techniques.

The cameras were placed near each other to understand the effect of noise on the lines’ initialization. The
reason was that the simulation could be closely related to the drone flight where there is little movement between
each frame. As such, cameras were placed less than 20 cm apart and with less than 10 degrees of total rotation
between each consecutive frame. The full cameras’ pose is shown in Figure 5.9.

Figure 5.9: Simulator setup used to measure the effect of noise to the line initialization techniques.

As a first validation, all noise types were tested separately by setting all types to zero minus the one to be tested.
A common occurrence is that the method described in section 4.3 using the Plücker coordinates misbehaves in the
presence of noise and rapidly increases the reprojection error to values where the last frame would discard the
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lines. One interesting aspect is that the error seems to reach a plateau, which may come from intersecting the
infinite Plucker line with the back-projected rays to retrieve the endpoints.

On the other hand, the technique using the minimum 3D distance to the back-projected rays seemed to behave
predictably when exposed to all kinds of noise. It presented worse results in the cases where the location noise
would come close to the difference in location of each frame (around 7 cm and higher noise). Even though it
presents a lower error than the first method, this latter algorithm seems to be more affected by rotation noises.
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Figure 5.10: RMSE of the euclidean distance of the initialized lines to the real lines in function of the different types of noise.

Since the pixel noise should suffer fewer variations while running the SR-UKF, it was set as fixed for the
following two experiments, where location and rotation noise were analyzed in detail. First, the pixel noise was
set to zero, the location noise varied from 0 to 20 cm, and the rotation noise from 0 to 20 degrees, which is higher
than the difference in the camera’s pose for consecutive frames, giving a complete picture on how the error of the
initialization should vary for different combinations of noise. The error was measured by averaging the length
from the actual endpoints and their initialization. The results are shown in Figure 5.11.

(a) RMSE for the Plücker Line Method. (b) RMSE for the Back-Projected Rays Method.

Figure 5.11: RMSE of the euclidean distance of the initialized lines to the real lines in function of the rotation and location
noise with pixel noise fixed as zero.
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As seen previously, the Plücker coordinates method showed little resistance to noise, increasing almost instantly
to values above 2m which would place the lines outside 1 by 1-meter cube. A strange phenomenon is that it seemed
to achieve a little better results for small values of rotation noise but higher than zero. This phenomenon was found
across multiple experiments, and it may be a result of the representation used where it benefits from a slightly
higher rotation between frames to converge to a result, even though this rotation came from noise.

Once again, the Back-Projected Rays method proved to behave with a consistent increase in error for similar
increases in noise, one crucial aspect that should be noted is that for the values of noise 5 degrees and 5 cm, the
method showed an error of 20 cm (on average 10 cm for each endpoint) in the initialization close to having a pixel
noise of 4 as seen in Figure 5.12. For a reliable line initialization, the filter should maintain the location noise
under 5 cm and rotation noise under 5 degrees, expecting that the filter can then correct the position of the lines.

It should be noted that the surfaces were passed through a median filter and so the values on the edges may
not be entirely correct, this is evident in Figure 5.11 where the Plücker Line method shows a non-zero value for a
noiseless initialization. For these values Figure 5.10 should be used as a reference.

(a) RMSE for the Plücker Line Method. (b) RMSE for the Back-Projected Rays Method.

Figure 5.12: RMSE of the euclidean distance of the initialized lines to the real lines in function of the rotation and location
noise with pixel noise fixed as 4.

5.5 Complete System Experiments, EuRoC MAV Dataset

5.5.1 Experiment 1, Lines Matching and 3D Initialization

The matching algorithm was run across all images of the EuRoC MAV Dataset, and then lines that survived for
longer than 15 frames were initialized using the method of the back-projected rays described in Section 4.4. These
results can be observed in Figure 5.13, and they show that many of the lines follow the environment correctly.
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Figure 5.13: Line Initialization using the matching and Initialization methods proposed and using the ground truth for the
robot’s pose. It shows that there are certain lines that were correctly initialized, but that there are zones of the
map that don’t have many lines or that have many that are mostly noise.

Two main zones were identified where the technique could not initialize many lines, one where the drone
observes a curtain and the other where it sees a wall. It was recognized that this problem appears from the line
detector. This theory was validated upon inspection of the pictures taken in those areas, as shown in Figure 5.14.
The main problem from those frames is that most observed lines disappear. Since lines are only matched on
subsequent images, they are interpreted as new features when the system sees the same line again, with no relation
to the past observations.

(a) Example of frame with a curtain where few
lines are detected.

(b) Example of frame with a wall where few lines
are detected.

Figure 5.14: Example of frames where few lines are detected.
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Another important aspect is that lines that are never entirely in the camera’s frame cannot be initialized, even
though they were matched across many frames. Ignoring these lines is deliberate due to potential errors in the
endpoint locations. These lines could be initialized using the method from Section 4.3 since it does not need the
explicit endpoints’ location.

5.5.2 Experiment 2, Filtered Approach

Following the Fusion2018 filter, the robot’s pose was initialized with the ground truth. The landmarks were
initialized using ten lines selected from Figure 5.13; the proposed filter needed a higher initial landmark covariance
since the method’s precision was lower than the ORB SLAM filter. The external map was initialized without any
feature and is constructed as the filter progresses.

One of the problems encountered was that lines exhibited more pixel error from the reprojections of the land-
marks than initially expected. This error is again due to the not entirely perfect line initializations selected for the
landmarks. One solution to this problem was to allow a higher error for the first ICP line iteration. This problem
is significantly intensified in the zone where the drone looks to curtains displayed in Figure 5.14, where few lines
could be used to update the system state. This technique is termed "loose matching", and the results in Figure 5.15
show that it increases the number of features matched during the critical time steps between 3 and 4 seconds where
the curtains occupy most of the frame.

The position error is obtained from the Euclidean distance between the robot’s estimated pose and the ground
truth. The rotation error is calculated using the metric proposed by [Park, 1995], where the distance between two
rotation matrices can be calculated using the logarithm map of the product of the inverse of one of the matrices by
the other. This metric can be formally described as

d(R1,R2) = ∥ log
(
R−1
1 R2

)
∥ =

∥∥∥∥cos−1

(
Tr(R−1

1 R2)− 1

2

)∥∥∥∥ , (5.2)

where ∥.∥ denotes the Euclidean norm, R1,R2 ∈ SO(3) are rotation matrices and log(.) represents the logarithm
map log : SO(3) → so(3).

(a) RMSE of the position in function of
time.

(b) RMSE of the rotation in function of
time.

(c) Number of features detected at each
timestep.

Figure 5.15: Error of the full proposed solution for two different types of ICP Line matching. The "loose matching" variation
shows an improved matching that leads to lower errors in the position during the sector where the drone is affected
by few lines detected.
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After the first six seconds of flight, the filter starts to deviate and is incapable of initializing lines soon enough
due to loss of the combination of observing a new environment and passing through another zone with a low
number of lines, shown in Figure 5.14 as the "wall". The filter tries to initialize the lines shown in Figure 5.16 to
replace the state landmarks but diverges before fixing its pose beyond irreparable damage. A mix of points and
lines could probably be used, in future works, to combat these zones where the environment is not very geometric.

Figure 5.16: Lines initialized by the filter before it diverges.

In the following steps, the filter was compared to the Fusion2018, which works in the same circumstances
since it does not initialize new features before seven seconds into the flight. The Fusion2018 filter is not lead to
divergence since it can find features on the textured wall.

Since the used lines have lower precision than the landmarks used by the Fusion2018 filter, the proposed filter
takes a longer time to start updating its position and trusts the IMU readings for the first three seconds. After the
curtain section, the filter rapidly updates its position, almost obtaining the same error as the Fusion2018 filter. The
filter excels in the rotation error while it has observable features, always maintaining a lower error than the IMU
and the Fusion2018 filter; this may be due to lines giving better rotational information than points. These results
are shown in Figure 5.17
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Figure 5.17: Error of the full proposed solution compared to the Fusion2018 filter and only using IMU.

The complete filter and ground truth trajectories are shown in Figure 5.18, and with more detail in Figure 5.19,
where it is possible to check that the filter responds to the aggressive change in direction faster than the IMU and
maintains the actual trajectory path where IMU rapidly diverges.

Figure 5.18: Flight estimated by the filters and the ground truth trajectory.
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(a) Side view of the flight estimated by the filters. (b) Top view of the flight estimated by the filters.

Figure 5.19: Detailed view of the flight estimated by the filters and the ground truth trajectory.

A summary of the obtained errors is presented in Table 5.1, where the improvement of using image-based
features to update the IMU predictions is evident. An aspect that should be mentioned is that the tuning parameters
of the proposed filter had to change so that the filter would not diverge due to noise of not only the initializations
but also to the difficulty of accurately identifying the same endpoints of lines in the dataset.

Table 5.1: Average RMSE of the filters tested on the EuRoC MAV dataset.

Filter Mean Position error [cm] Mean Rotation error [deg]

IMU Only 11.18 0.117

Fusion2018 1.42 0.108

Line Base 2.15 0.091

The proof of concept presented shows that lines can be used with success to perform Visual Inertial Odometry.
An exciting observation is that the filter can maintain a low error value even with fewer landmarks since only 10
lines are used (20 points) compared to the 30 used by the Fusion2018 filter. This reduction in the state size may
allow using a higher number of updates and a higher frequency camera since the update step scales poorly with the
increase of landmarks, having a complexity of O(LM2), where M is the observation dimension and L one of the
dimensions of the state.

The line-based approach achieved worse results when compared to the Fusion2018 filter for the position error,
explained by the difficulty of providing noiseless endpoints of the lines. In contrast, the line-based method reduces
the rotation error since lines supply directional information not provided by points.

Another promising result is observed by viewing the initialized lines in Figure 5.13 without the ground truth
point cloud, where it is possible to get a general idea of the environment while using a limited number of lines
when compared to the point cloud, that for reference, uses over 3 million points. In contrast, in Figure 5.20, there
are only 4 hundred lines, and most of the lines could be filtered by proximity since they are almost above each
other. This problem comes from the matching process where 1 to 1 matches are made, making it impossible to
match a line against multiple lines from a subsequent image. These results are aggravated in some zones due to
the confidence interval used in line detection, which in some areas could be higher, giving fewer repeating lines.
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Figure 5.20: Line Initialization using the matching and Initialization methods proposed and using the ground truth for the
robot’s pose without the ground truth point cloud. It gives a general map of the environment while using around
4 hundred lines compared to over 3 million points that the point cloud uses.



Chapter 6

Conclusion and Future Work

This chapter concludes the thesis by presenting an overview of the work developed, the methods proposed, and
details possible interesting paths for a future exploration. Section 6.1 provides the conclusion of the thesis and
Section 6.2 explores future possibilites to expand the work done by this thesis.

6.1 Conclusion

This work proposed to give the needed building blocks to achieve a SLAM solution using VIO techniques with
Lines as features. It was motivated by new advances in machine learning that facilitated the detection of lines in
images that could provide a richer mapping visualization tool than classical point features.

The main obstacle encountered was the matching of lines through multiple frames to be initialized as 3D
structures. An ICP variation was introduced to handle this problem, where the main focus of the algorithm was to
match the features instead of finding the transformation between different views. This solution proved to be very
successful in increasing the number of matches by 17 for each image pair. It also reduced the percentage of images
with less than 20 matches from 20% to less than 5%.

It was also shown that the method proposed to initialize lines using Plucker coordinates did not provide a great
response to noise and rapidly diverged. As such, a method was proposed that minimizes the distance of the 3D
point to back-projected rays; this method shows a robust and predictable response to the tested types of noise.

Finally, it was found that some zones of the environment present few lines, which leads to a potential loss of
lines to be initialized and leads the filter to diverge in the worst-case scenario; it is shown that the filter can survive
through brief moments through those zones, but some adaptations may be needed to surpass these obstacles.

As a proof of concept, the proposed approach provided a sound localization of a drone through a somewhat
complex trajectory and provided some line initializations which could potentially maintain alive the filter. It was
shown that lines provide a rich descriptor of an environment compared to a point cloud and that the line algorithms
proposed could give a first approximation of the map without the need for filtering processes in cases where the
localization is provided.
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6.2 Future Work

A mixed approach involving points and lines may solve the problem of zones where the filter cannot detect
lines. A parallel map or even filter, which uses the robot’s pose from the primary filter, can save or propagate
the point features. In the zones, with too few visible lines, the point features would substitute the line features.
Another approach that may be simpler is a truly mixed filter where, e.g., the first 20 points would correspond to
line feature (10 lines), and the last 10 points use classical features and descriptors.

Another aspect that could be improved is giving each line the possibility to match multiple lines in a subsequent
image, increasing the probability that features are kept alive during the filter propagation and providing a method
not to initialize repeated lines.

Finally, more techniques that take advantage of the point independent Plucker line coordinates should be re-
searched so that lines that do not show endpoints in the frame can be initialized without the fear of introducing a
wrong landmark to the system. Following this vein, directly propagating line coordinates inside the filtering pro-
cess would be expected to improve the precision of the lines detected. This approach would require more complete
external maps, where lines may be composed of multiple segments, but would also improve the resilience of the
navigation system upon harder (lesser) visual data.
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