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Abstract

The systems engineering (SE) discipline has been extensively adopted in the aerospace industry.
However, traditional SE approaches, which are centred on the development and control of written
documents, are becoming too expensive. Model-based systems engineering (MBSE) aims to mitigate
this issue by introducing modelling and information centralization into the traditional SE practices.
MBSE has been applied successfully in conceptual design processes, but its application to the design
of a spacecraft subsystem is yet to be fully demonstrated. In this work, a methodology based on the
OOSEM is proposed for the design of a spacecraft subsystem, which includes a framework for integrating
MBSE with simulation through a model transformation approach. This methodology is demonstrated by
being applied to the design of an Attitude Determination and Control System (ADCS). Some benefits
of MBSE are verified, and we conclude that an MBSE approach can be applied at the subsystem-
level, while properly integrating systems engineering with other specialized domains of knowledge. We
further demonstrate that model transformation approaches are capable of successfully generating fully

functioning simulators from SysML specification.
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1. Introduction

1.1. Motivation and Objectives

The aerospace industry has historically been among
the main proponents of Systems Engineering (SE),
with some crediting this discipline as a main driver
of success in the development of complex systems
[5, 22]. As systems become more distributed and
interconnected, and as their development becomes
more de-centralized, the traditional mechanisms
through which SE ensured consistency — written
documents — are becoming increasingly inadequate
[7]. Model-based systems engineering (MBSE), the
application of systems modeling “to support anal-
ysis, specification, design, and verification of the
system being developed” [8], can help mitigate this
issue. With MBSE, information is centralized in
a system model which represents a single source
of truth, ensuring consistency and traceability and
leading to improved complexity management.

In the last 15 years, the interest of researchers in
MBSE has increased over time [13], but some obsta-
cles still have to be overcome for MBSE to be fully
adopted in the industry. Some research has been
done showing that MBSE can successfully be ap-
plied in support of system-level conceptual design
processes [14, 23]. However, when applied to the

design of subsystems, MBSE faces the challenge of
integrating the systems engineering discipline with
specialized domains of knowledge. In specific, the
system model created with MBSE must be inte-
grated with discipline-specific engineering models
and simulation.

In this work, a methodology based on the
OOSEM is proposed for the design of a spacecraft
subsystem, which includes a framework for integrat-
ing MBSE with simulation through a model trans-
formation approach. The methodology is demon-
strated by being applied to the design of an Atti-
tude Determination and Control System (ADCS) of
a small satellite, where simulation is used to eval-
uate subsystem performance and compare alterna-
tive designs.

We apply MBSE in support of a design process
of a spacecraft subsystem, inside the scope of a
spacecraft design process. This constitutes a case
study that is not currently available in literature.
In addition, the application of model transforma-
tion approaches to integrate MBSE with simulation
is rare in literature, and the validity of this type of
approach in the context of complex dynamic be-
haviour simulation is still to be assessed.

The remainder of this work, starts with a review



of literature followed by a discussion of the most
relevant concepts to the development of this work.
Then, we discuss the proposed methodology, includ-
ing the developed model transformation framework,
after which we demonstrate it as applied to the de-
sign of an ADCS. In the end, performance simula-
tion results are presented.

1.2. Literature Review

Some works have been developed concerning the ap-
plication of MBSE to the design of spacecraft sub-
systems. The derivation of subsystem requirements
from customer needs and requirement verification
using simulation have been performed for an ADCS
[11]. A development process for AOCS software us-
ing SysML has been developed and integrated with
code generation [21]. Also, the design of an ADCS
has been developed with the Vitech MBSE method-
ology [12], and a satellite communication system ar-
chitecting framework has been developed with the
OOSEM methodology [10]. There is a lack of case
studies that present an MBSE approach applied to
the design process of a subsystem inside the context
of a complete spacecraft design.

There are two common approaches to integrate
MBSE with simulation: co-simulation and model
transformation [18]. Co-simulation is the more ma-
ture of the two approaches. It has been used to
enable the reuse of a previously developed ADCS
simulator [11]. A co-simulation approach was
also developed to integrate SysML with MATLAB
scripts and other more complex simulation work-
flows which integrate multiple simulation tools [15].
These approaches are in general not scalable for
more complex projects [18].

Model transformation approaches are much less
mature, mostly because of the lack of standard ma-
turity and tool support. This type of approach has
been applied to the simulation of a simple electri-
cal circuit, using the SysML2Simulink standard [2],
and to the simulation of the discrete/continuous be-
haviour of an inverted pendulum system, using a
method based on triple graph grammar [1]. These
and other examples available in literature concern
in general very simple systems.

2. Background

In the context of MBSE, a methodology is de-
fined as a set of related processes, methods, and
tools used to support the systems engineering effort
[6]. A review of some of the more notable MBSE
methodologies has been done in [6], and from these,
the Object-Oriented Systems Engineering Method
(OOSEM) [8] was selected to be used in this work,
because: (i) it is well documented; (ii) there is an
extensive example of its application in the design of
a space system [9]; and (iii) many of the reviewed
works use this methodology [15, 23, 10].

The OOSEM is a top-down, scenario-driven pro-
cess, which combines modelling techniques and a
solid systems engineering foundation with object-
oriented concepts [8]. It uses the Systems Modelling
Language (SysML) [20], a general-purpose graphi-
cal modelling language, to “support analysis, spec-
ification, design, and verification of systems” [8].

The MBSE modelling tool used in this work is the
Cameo Systems Modeler (CSM) from NoMagic, and
this tool is integrated with MATLAB/Simulink us-
ing a model transformation approach. This type of
approach consists of the automatic transformation
of the systems models into executable simulation
models. With it, a simulation model can be speci-
fied almost completely inside the model repository
and the mathematical modelling and simulation can
be performed inside the context of a simulation en-
vironment.

This approach, as opposed to co-simulation, was
selected because it ensures a better centralization
of information in the system model and because
the development of mathematical models inside the
context of a simulation environment is needed to
enable model reuse. Also, this is the type of tool
normally used by domain specialist engineers.

The methodology proposed in this work con-
cerns the preliminary design of a spacecraft sub-
system. To support this design process, a model
transformation framework is developed to enable
the generation of a Functional Engineering Sim-
ulator (FES) [4] from SysML specification. This
can be used to derive values for a set of Technical
Performance Measures (TPM), i.e., quantitative at-
tributes of system elements. The framework lever-
ages the SysPhS standard [19].

3. Approach

3.1. Methodology Adaptation

In this work, we propose an MBSE methodology
tailored for the preliminary design of a spacecraft
subsystem, which results from the adaptation and
extension of the OOSEM. In specific, the OOSEM
is modified with the purpose of adapting it to a
subsystem design process. It is also extended to
include the integration of simulation into this design
process. The model developed in this work reuses
the organization of the model developed in [9], as
well as some of its elements.

Because the spacecraft subsystem is designed in
the context of a complete spacecraft design, the
application of some activities is a pre-condition to
this work. These include the analysis of stakeholder
needs, the OOSEM process applied at the system-
level, and the complete analysis of subsystem re-
quirements, except for the subsystem state machine
behaviour definition. The artifacts that results from
the application of these activities are generated us-



ing the model in [9] as a reference.

The OOSEM is modified to include the definition
of three levels of component abstraction, instead of
the two levels defined in [8] (the same approach is
followed in [14]). These three layers are realized by
the definition of three different subsystem architec-
tures: functional, in which components are defined
in terms of their function; logical, in which these are
defined as a particular implementation of the avail-
able technology; and physical, in which the specific
component design is completely specified (e.g., a
particular procured COTS option). Additionally,
the analysis activities and evaluation of multiple
candidate architectures are only performed at the
physical abstraction layer, where component char-
acteristics can be easily determined.

3.2. Methodology Definition
The definition of the functional and logical archi-
tectures follows three steps:

1. Defining the subsystem decomposition.

2. Defining interactions between components to
realize each subsystem activity.

3. Defining the subsystem Internal Body Defini-
tion (ibd) diagram, which specifies its internal
structure.

At the logical level, software and hardware archi-
tectures are also defined, which are later integrated
with those defined for each of the other subsystems.
Also at this level, the critical properties of the com-
ponents are identified and modelled as value proper-
ties in SysML. These properties and the application
of the listed activities both support the final speci-
fication of the logical component requirements.

At the physical layer, component options are
specified through the definition of values for each
of these critical properties, and through the redefi-
nition of component multiplicities. Different archi-
tecture alternatives are compared, and as a result,
the preferred architecture is selected.

The management of requirement traceability is
performed alongside the definition of these archi-
tectures. This activity includes: (i) the capture of
text-based requirements in the model; (ii) the def-
inition of relationships between requirements and
other elements; and (iii) the continuous manage-
ment of requirement updates and analysis of trace-
ability gaps. The specification of the subsystem re-
quirements, which guide the architecture definition
process mentioned above, is part of this activity.

The verification of some of these requirements
and the comparison of subsystem designs must be
done using system performance analysis. Since the
system in question has a complex dynamic behav-
ior, this analysis must be performed using simula-

tion. In the context of an MBSE approach, per-
forming simulation consists of executing the spec-
ification contained in the system model. In this
work, this is implemented using a model transfor-
mation approach that transforms this specification
into a model specified with executable semantics,
which can be used for simulation. In this case, the
simulation model is expressed in Simulink.

3.3. Integrating MBSE with Simulation

The developed model transformation framework
aims to generate a Functional Engineering Simu-
lator from the specification of a single analysis con-
text. The analysis context is composed of the sys-
tem, the environment, and a Monitoring and Con-
trol block, which consists of scenario definition and
post-processing functions [4]. Before the transfor-
mation is performed, and the simulator is gener-
ated, the SysML specification must be developed
following these steps:

1. Modeling the components of the system and
environment in SysML and Simulink.

2. Specifying the system and environment in
SysML.

3. Specifying the analysis context and the Moni-
toring and Control block.

4. Defining values for parameters of the system,
the environment, and the simulation.

5. Creating tables in SysML outlining key aspects
and synchronising them with Excel spread-
sheets.

The process of performing engineering analysis
consists of applying the model transformation pro-
cess, which transforms the specification obtained
through the steps listed above into a simulation
model. This includes the use of the Simulink Ez-
port function of CSM. This function leverages the
SysPhS standard to generate a simulation model
from a SysML block. To extend this function’s
capabilities, a MATLAB program was developed.
After the two are executed, the final generated
Simulink model is ready to be used.

The Simulink Ezport is capable of generating the
“skeleton” of the simulation model, by exporting
the analysis context block. This “skeleton” includes
the decomposition of the analysis contert” into
blocks, the external interface of each of the com-
posing blocks, and the connections between com-
posing blocks. The lowest-level elements, named
components, are exported as black boxes, since this
is how they are specified in SysML.

These components that are defined in SysML are
also modelled mathematically in Simulink, because
SysML semantics are not adequate for modelling



behaviour of algebraic nature. This is also appro-
priate since domain specialist engineers already use
this type of tool for this activity (i.e., mathematical
modelling).

The Simulink mathematical models are used to
replace the exported SysML black box components
in the simulation model. Therefore, the black box
representations in SysML and Simulink must be
consistent. The ports contained on the SysML
block must match the inputs and outputs of the
Simulink block, and the parameters used in the
mathematical model must be identified in SysML as
value properties of the component. In SysML, the
mathematical model that represents the behaviour
of each component must be identified.

The behaviour of the system and all its compos-
ing elements should be decomposed down to the
component-level, so that it may be modelled math-
ematically in Simulink. However, the behaviour of
complex systems in general cannot be completely
decomposed into behaviour of components. To ad-
dress this issue, this framework can also transform
SysML state machines into Stateflow blocks defined
in Simulink. This is accomplished with the MAT-
LAB program that was developed.

In SysML, state machines specify the behaviour
of elements in terms of the states in which they may
be. It is common for system elements to behave
differently depending on the state of other elements
(e.g., the operation of an attitude filter may depend
on the active ADCS mode). For this reason, it is
essential for state machines to be included in the
final simulation model.

The active state of each state machine during
simulation is globally accessible in the model. This
means that mathematical models can use these ac-
tive states in their definition, as they would in a
regular simulation context.

Internal simulation parameters are specified in
SysML as wvalue properties of blocks. This is impor-
tant to ensure the centralization of information into
a single source of truth. The values of the param-
eters are transferred from SysML specification into
the simulation model by the MATLAB program.

As mentioned above, in some cases, the SysML
semantics are not adequate fro the representation of
concepts that are algebraic in nature. To address
this issue, the SysPhS standard provides the ca-
pability of defining components inside SysML that
correspond to Simulink native block (i.e., it enables
the import of Simulink blocks into SysML). When
the model transformation process occurs, these im-
ported block will be automatically converted into
the original Simulink native blocks.

The Monitoring and Control block is essential in
the simulation process. It is composed of blocks
that compute error indices, from time-dependent

simulation parameters, which are later used to de-
rive TPMs. The TPMs are, in turn, used for perfor-
mance requirement verification. Additionally, the
Monitoring and Control block is also responsible for
defining the simulation scenario that is executed.
With this framework, a simulation scenario is de-
fined by a set of SysML signal events, which are
transformed into Stateflow messages. These sig-
nal events trigger transitions in the state machines,
which all together define the simulation scenario im-
plemented. This way, the simulation scenario defi-
nition is also centralized in the system model.

Finally, the framework also enables the definition
of general simulation parameters in SysML (e.g.,
the Simulink model properties Stop Time, Start
Time, and Step Size). The Simulink properties
StartFCN and StopFCN can also be specified in
SysML. These enable the definition of the functions
required for the setup of the mathematical mod-
els, and for the post-processing of error indices and
generation of TPMs, respectively.

4. Methodology Demonstration

4.1. Design Context
The methodology proposed in this work is demon-
strated by being applied in the design of an ADCS
of a 1U CubeSat. The mission objective is the ob-
servation of Earth, and in this context the ADCS
must be able to orient a payload with the nadir.
The purpose of this demonstration is to assess the
validity of the proposed methodology. The ISTSat-
1 CubeSat mission [17] is used in this work as a
basis for defining realistic characteristics of the sys-
tem and mission. The architecture of the mission is
shown in Fig. 1.

bdd [Package] 2 - Structure [ Mission Architecture ] )

«block»
Environment

«block»
Mission Context

l l : Earth

: Spacecraft Rotation

parts

«block» «block» : Orbital Dynarrics
Launcher Mission : Spacecraft Interface
Enterprise
«block» «block» «systen;gggterest»
Ground Spacecraft
Station

Figure 1: Mission architecture.

The mission enterprise comprises the systems
which are the solution of the mission objectives, and
whose definition is under the control of the devel-
opment team (in this casse, the launcher is con-



trolled by a third party). The focus of this work,
at the system-level, is on the design of the space-
craft. However, the system-of-interest is the ADCS,
which is considered a subsystem of the spacecraft.
The mission context integrates the mission enter-
prise with other systems relevant to the mission and
the environment.

Further context is provided for the design process
with the definition of: (i) the system behaviour, us-
ing a state machine in SysML; (ii) the interactions
of the ADCS with other subsystems and the envi-
ronment; and (iii) the black box specification of the
subsystem, which includes the definition of a list of
requirements that the ADCS must satisfy.

These requirements are the major driver of the
subsystem design process, and they are divided into
operational, functional, and performance require-
ments, and design constraints. The design con-
straints are used in this work to limit the scope
of the design process to an adequate degree for the
application of the MBSE methodology.

4.2. Subsystem State Machine Definition

The subsystem design process starts with the defini-
tion of its behaviour using a SysML state machine.
The ADCS has three modes of operation: (i) nor-
mal pointing, representing the regular operation of
the subsystem; (ii) safe pointing, representing a safe
state of the subsystem; and (iii) detumbling, used to
reduce the angular rate of the spacecraft in the start
of the mission or in failure situations.

Fig. 2 shows a view of this state machine which
contains all the autonomous mode transitions origi-
nated in the detumbling mode. It shows how a state
machine is modelled and viewed in SysML. As men-
tioned in Section 3, this state machine can be trans-
formed into a Stateflow block when the simulation
model is generated.

stm [State Machine] ADCS Main Behavior [ STM ])

[ Normal_Pointing |

} do / normal pointing operation ’

[else] [scMode == NORMAL]

[angRate > PointThresh]
\7 [else]

[autoTrans Enabled

| Detumbling
’ do / detumbling operation

-

[angRate > PointThres h]ﬁzlse

[else]

after (stmPeriod)
[scMode == SAFE]

|

’ Safe_Pointing |

} do / safe pointing operation ’

Figure 2: Representation of the autonomous tran-
sitions originated in the detumbling mode.

In this state machine, possible autonomous tran-
sitions are evaluated periodically. These only oc-
cur if they are the flag autoTransEnabled is true.
When the angular rate is too high, the detumbling
mode is activated, otherwise one of the pointing
modes is selected according to the active spacecraft
mode. The spacecraft has a normal mode and a safe
mode, in which normal pointing and safe pointing
may be activated, respectively. The spacecraft state
machine is also exported with the model transfor-
mation approach, to be included in the simulation
model. Additionally, ADCS mode transitions may
also be forced by an operator, when required.

4.3. Subsystem Architecture Definition

The functional and logical levels of the subsystem
architecture are defined in a similar manner. The
existence of the two levels of abstraction helps the
systems engineers to completely identify and de-
compose functions, and to avoid making early de-
sign decisions that inadvertently constrain the de-
sign space. During the design definition, the func-
tional components are allocated to the logical ones,
introducing traceability into the design. Fig. 3
shows an example of this process as applied to the
hardware components of the ADCS.

«allocate» «functional»
«logical» < — — |ADCS Sensing
«hardw are» & Actuation
ADCS Hardware t
«logical» «allocate»
Gyroscope < — — «functional»
Angular Velocity |
«logical» «allocate»| Measurement
Magnetometer < _I (Body Frame)
«logical» o «functional»
Earth Sensor | «@llocale» |Known Vector
Measurement « |
) «logical» « — — | (BodyFrame) | 2.*
: «allocate»
Photodiode Set 3 «functional
; «allocate»| Torque L |
-«loglcal» HCHE ) Actuator | 1.0
Magnetic Torquer Set 3
e «functional»
. «allocate» | Momentum
ﬁneactlon Wheel Set3 < — —|accmulator 0.+

Figure 3: Example of allocation of functional com-
ponents to logical components.

Here, we will focus more on the logical level of
the architecture. The ADCS is composed of a gyro-
scope, a magnetometer, one photodiode installed in
each face of the CubeSat (except for the face point-
ing to the nadir), and an Earth sensor (installed in
the face pointing to the nadir). The attitude deter-
mination, performed with an attitude filter, com-
bines the measurements of the gyroscope with two
vector measurements. In safe pointing mode, the



magnetometer and photodiodes ared used (the lat-
ter for estimating the sun vector). In normal point-
ing mode, the Earth sensor is used in the place of
the photodiodes.

In terms of actuators, the ADCS is composed of
three magnetic torquers and may or may not in-
clude three reaction wheels (the decision is made
later, using simulation to compare alternative de-
signs). In safe pointing mode, only magnetic tor-
quers are used. The ADCS also includes on-board
estimation of the spacecraft position. The atti-
tude controller algorithms for the pointing modes
are based on PD control techniques.

As discussed in Section 3, after the subsystem is
decomposed into components, interactions between
components are modelled to realized subsystem ac-
tivities. In Fig. 4, an example of one of these in-
teractions is presented, concerning the operation of
the ADCS in the detumbling mode, at the logical
level of abstraction.

produced by a magnetic torquer. In parallel, the
spacecraft position is estimated with numerical in-
tegration, and a data report is generated. This data
report is defined as an output, as it is sent to the
avionics subsystem.

The specification of the internal structure of the
subsystem follows, which is based on the specified
interactions (such as the one in Fig. 4), and on the
defined subsystem external interface. At the logical
level the internal structure of the subsystem is also
divided into hardware and software blocks, which
represent the hardware and software architectures
of the subsystem. These are integrated with those
of the other subsystems.

In Fig. 5, part of the internal structure of the
ADCS is represented, concerning its software archi-
tecture. Each of the token exchanges modelled in
the activities like the one shown in Fig. 4 is at-
tributed to one connector in the idb diagram rep-
resented in Fig. 5. The internal structure of blocks,
represented in this type of diagram, is replicated in
the simulation model that will be generated later
in the implementation of this design process. This
is accomplished with the model transformation ap-
proach described in the Section 3.

sw : ADCS Software

sun_p : Sun Pos. Est.

Sun pos est.%

sc_p : SC Pos. Est.

S/C pos. est.
nadir est.

Figure 4: Interaction between components realizing
the detumbling operation.

Actions, represented by rectangles with rounded
edges, are attributted to components of the sub-
system with the use of swimlanes (the table-like
structures shown in Fig. 4). Token exchanges are
modelled to represent the exchange of signals be-
tween the different components. In this case, the
detumbling operation consists of a measurement of
angular velocity being processed by an algorithm
that computes the detumbling actuation, which is

fact [Activity] detumbling operation [ det. op. ] ) h
20w nadi sat. pos. sph.
Lo E spe : )
© .. ; eclipse ,———
218 a4 Estimate Generate
c; T o0 S/C Position Data
el Report
o 0o
§ n
oA O sat. vel
2 A5 - vel.
g é % 3% Compute t
18 £5 Detumbling sat. pos.
2|z <5 Actuation
H I
¥ 00O
o
ang. vel.
Lo
5 g% | | act. torque
L5
S8 pt_mtq : data report
ele=g Produce P
g T w? Torque
P glg MTQ out :Det.
%’ g £ Data
8 Report
o0
2 o
3| g
<|. 8 est. ang. vel.
s[% 8
1S
<l & mav : Measure
g - Angular
g Velocity
>
=)
N

(]
S/Cw corr. S/Catt
S/Cw meas.
L]

gc : Attitude Controller

mag. field meas.
S/C pos. est.
torquers dutycycle

=

Figure 5: Internal structure of the ADCS software
architecture.



As mentioned in Section 3, at the physical level
components are specified with the definition of val-
ues for the components’ attributes. Not all at-
tributes are quantitative, since some of them repre-
sent methods and models used in the definition of
the component.

For each hardware component, a COTS option
was selected and the component attributes were de-
fined according to the corresponding datasheets.

In terms of software, the Explicit Complementary
Filter developed in [16] is used for attitude estima-
tion. Attitude control is based on PD control tech-
niques, except for the detumbling, in which a desired
torque is computed as proportional to the angular
rate and opposite to the angular velocity vector, in
terms of direction. The spacecraft and Earth or-
bits are numerically integrated (from the latter is
derived the Sun vector in the inertial frame). The
magnetic field vector is computed on-board with the
WMM 2020 model [3], and a Sun vector determina-
tion algorithm is used to convert photodiode read-
ings into a Sun vector estimate.

Only two candidate physical architecture are syn-
thesized in this work. These consist of designs with
and without reaction wheels. They are compared in
simulation, and requirement satisfaction is verified
for each.

4.4. Management of Requirement Traceability

In the context of this activity, relationships are de-
fined in the system model between each subsystem
requirement and the elements that satisfy and verify
that requirement. Requirements may be satisfied by
multiple types of elements, such as value properties,
part properties, or subsystem operations.

Some of the subsystem requirements are verified
with simulation (e.g., the detumbling duration). All
performance requirements are verified in this way
(this concern the pointing error in normal pointing
and safe pointing modes, the attitude knowledge
error, and the spacecraft position estimation error).

4.5. Evaluation of Alternatives

Before simulation can be performed, the environ-
ment model must be specified. Its internal structure
is specified in a similar manner to what was shown
in Fig. 5. In Fig. 6, it is shown how the ADCS in-
teracts with the environment. The interactions con-
cern sensor measurements, actuation torques, and
the spacecraft and Earth orbit updates required for
the numerical integrations.

The environment is decomposed into four part
properties: (i) Orbital Dynamics, which includes
the orbits of the spacecraft and the Earth; (ii)
Earth, which includes the Earth magnetic field and
albedo; (iii) Spacecraft Rotation, which contains the
rotation dynamics and torque disturbances; and
(iv) Spacecraft Interface, which outputs the exact

quantities that are measured by the sensors.

me : Mission Enterprise ‘ I env : Environment

Earth pos-

gs :Ground [ - |l 1<"] od:Orbital
Station Earth vel, Dynamics
<« <—He—H< I'I'I
S/C pos.
<« <—| le—H<
—oCvel (B e nadir ECI
l g R y
) 1 earthOrbit_upd ea: Earth
SC :[Spacecraft
th field ECI }
p mag. fiel
satOrbit_u
=PV VHI
A : ADCS - Logical si : Spacecraft
h Interface

nadir body |[< < < <
pd_intensities [« HeHeHeHe

mag. field body [ e o1 e—

sr : SC Rotation

th

SICw [HH<H<H<

v

total act. torque [=>H—H—=H—
storedAngMom

—Ha>H—>H—=H—

Figure 6: External context of the ADCS (simplified
version).

Following the process outlined in five steps in Sec-
tion 3, the specification of the analysis context and
the Monitoring and Control block follows. Fig 7
shows the internal structure of the analysis context
(it element can be seen as represented by the di-
agram frame). Some time-dependent parameters
are sent from the mission context, where are they
computed in the simulation model, and these are
used by the internal components of the Monitoring
and Control block to compute error indices. Each
of these indices corresponds to one performance re-
quirement. The obtained instantaneous values of
these indices are processed after the simulation to
obtain the value of each TPM.

ibd [Block] ADCS_Sim[ analysis context ] )
cont : Mission l mc : Monitoring and Control
Context Sim =
: Absolute Attitude
S/C att. est. Knowledge Error
SC att. : Absolute Pointing
Error Normal
: Absolute
S/C pos. ECI Pointing Error Safe
eclipse
: Spacecraft Position
Estimation Error
S/C pos. est.

Figure 7: Internal structure of the analysis context.



Both candidate architectures defined above are
simulated in the same scenario. This scenario starts
with launcher separation, after which the detum-
bling is executed and the detumbling duration is
evaluated. After the detumbling is done, the ADCS
transitions to safe pointing mode, and it has two
orbital periods to converge its stabilization, after
which the performance of the ADCS in this mode
is evaluated (regarding both pointing error and at-
titude knowledge error). This evaluation is per-
formed during 10 orbital periods. The same pro-
cess applies for the normal pointing mode, which
is activated after the performance in safe pointing
mode is evaluated. Each orbital period corresponds
to 5668 seconds and the simulated scenario has a
duration of 150000 seconds (around 1.7 days).

The scenario defined above is specified in SysML
with the definition of signal events sent by the Mon-
itoring and Control block. These signal events and
the instants in which they are sent are specified with
a SysML interaction.

The analysis of the simulation results is done
here only regarding those that concern the normal
pointing mode. In specific we consider the abso-
lute pointing performance (APP) and the absolute
attitude knowledge performance (AAKP). Both of
these are TPMs of the ADCS. The values obtained
for each of the architectures are shown in Table
1 (the architecture with reaction wheels will be
named A1, and the other A2).

Parameter Value Max.
Al: APP (deg) 0.50 1

A2: APP (deg) 0.96 1

Al: AAKP (deg) 1.81 2.5
A2: AAKP (deg) 2.74 2.5

Table 1: Summary of the simulation results. The
parameter values obtained with simulation (left) are
compared to maximum values imposed by require-
ments (right).

We can conclude that both designs satisfy the
required APP, even though the architecture A1
shows a considerably better performance, as ex-
pected. The same does not apply to the required
AAKP which is not satisfied by the architecture A2.
This means that the magnitude of the pointing er-
ror has an influence on the magnitude of the atti-
tude knowledge error, since the attitude filters are
identical in each architecture. In this case, a trade-
off between requirements may be done. While the
architecture A2 does not satisfy the AAKP require-
ment by a short margin, the architecture A7 does
not satisfy the defined mass requirement by a large
margin. In this case we may update one of the
requirements or consider different component con-

figurations and designs.

With this approach, specialist engineers may also
analyse any simulation result they deem relevant.
In Fig. 8 the absolute pointing error is plotted
against time, in the interval of 10 orbital periods
in which normal pointing performance is evaluated.
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Figure 8: Absolute pointing error in normal point-
ing. The dashed line represents the TPM value.

The architecture A1 (plotted above) has an ab-
solute pointing error that never passes the limit of
0.8 degrees, because the reaction wheels can pro-
duce high torques in any direction. Contrarily, the
other architecture (plotted below) shows spikes of
pointing error up to a maximum of 2.5 degrees,
which result from the fact that magnetic torquers
can only produce torques perpendicular to the mag-
netic field, and also from the increased attitude es-
timation error.

In Fig. 9 the absolute attitude knowledge error
is plotted against time, for both architectures (in
the same interval as above). We can observe that
the associated TPM value (represented by a dashed
line) is increased due to the presence of error spikes,
which occur when the nadir and the magnetic field
vector are close to aligned. In fact, the estimation
error always accumulates around the nadir, which
means these error spikes have a very low influence
on the absolute pointing error.

4.6. Discussion of Results

Some of the benefits of MBSE mentioned in lit-
erature were perceived in this work. The im-
proved ability to manage complexity is observed in
the breakdown of the subsystem behaviour. Also,
the automatic propagation of changes through the
model and the evaluation of model correctness
helped to improve the quality of the specification
and to reduce the time required to produce it.
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Figure 9: Absolute attitude knowledge error in nor-
mal pointing. The dashed line represents the TPM.

MBSE also enables the reuse of existing models,
something that is made clear by the reuse of the
model developed in [9], which served as a basis for
the model developed in this work.

The framework developed for the integration of
MBSE with simulation was successfully applied to
the generation of a Functional Engineering Simu-
lator. In fact, the model repository remained the
single source of truth of all the specification used
in the simulation model, except for the components
internal modelling.

Model transformation approaches are currently
capable of mapping the structural decomposition
and connections between elements, specified in
SysML, into simulation platform-specific semantics.
The transfer of parameter values from SysML to
Simulink can also be implemented robustly as long
as the parameters used in the definition of the math-
ematical models are all modelled in SysML.

The least mature aspect of the model transfor-
mation approach is the capability of transform-
ing behaviour specification defined in SysML into
Simulink semantics. The behaviour modelled with
activities can in general be decomposed down to the
lowest level of the architecture. On the contrary,
state-based and service-based behaviours, modelled
respectively with state machines and interactions,
are more difficult to decompose. Because of this,
the capability of the model transformation frame-
work to transform SysML state machines into State-
flow blocks in Simulink is essential to ensure that it
is mature enough for use in an industry setting.

In the point of view of an user of this MBSE
methodology, the use of the methods, tools, and
languages mentioned in this work has a steep learn-
ing curve. Additionally, developing a system model
takes a lot of time, and requires the systems en-

gineer to be very thorough. However, these issues
are compensated by: (i) the clear guidance to the
process of system design provided by the MBSE
methodology; (ii) the help provided by the MBSE
tool to avoid making mistakes in the specification of
the system; and (iii) the time saved in later stages of
the system definition, due to the improved quality
of the specification produced in earlier stages.

5. Conclusions

Model-based systems engineering has the potential
to further improve the effectiveness of SE prac-
tices, by introducing modelling and information
centralization into these. However, a few challenges
must be first overcome, before MBSE may fulfil its
promise. T'wo of these are the lack of practical guid-
ance on the application of MBSE and the limita-
tions on the integration of MBSE with simulation.

In this thesis, an MBSE methodology based on
the OOSEM is proposed for the design of a sub-
system, which includes a framework for integrat-
ing MBSE with simulation, through a model trans-
formation approach. The methodology is demon-
strated by being successfully applied to the design
of an ADCS of a small satellite, where simulation is
used to evaluate subsystem performance and com-
pare alternative designs.

We conclude that an MBSE approach can be
applied at the subsystem-level, ensuring a proper
integration of systems engineering with specialty
domain activities. A “subsystem engineer” is re-
quired, to integrate the two domains, but both the
systems engineers and domain specialist engineers
may still work with the types of models and meth-
ods to which they are accustomed. Model transfor-
mation approaches ensure information centraliza-
tion and allow domain specialist engineers to per-
form mathematical modelling and simulation inside
the scope of simulation environments. With this ap-
proach, the risk of a simulator infrastructure hav-
ing to be reconfigured to be applied in the design
of a system with unusual characteristics is avoided.
As these infrastructures increase in complexity, re-
configuring them becomes harder and more time-
consuming.
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