
A Model-Based Systems Engineering Approach to the
Design of a Spacecraft Subsystem

Rodrigo Jorge Silva Ramos

Thesis to obtain the Master of Science Degree in

Aerospace Engineering

Supervisors: Prof. Paulo Jorge Soares Gil
Eng. João Paulo Lopes Monteiro

Examination Committee

Chairperson: Prof. Afzal Suleman
Supervisor: Prof. Paulo Jorge Soares Gil

Member of the Committee: Dr. Loris Franchi

December 2021

ii

Acknowledgments

First and foremost, I would like to thank Professor Paulo Gil and João Paulo Monteiro for their ceaseless

support during the development of this thesis, for the guidance provided, and for everything they have

taught me regarding all kinds of subjects.

I would also like to recognize the importance of the ISTSat-1 project for the development of this work.

Even tough this thesis did not directly concern this mission, I was able to gain invaluable knowledge by

participating in this project, which became very useful in the development of this work.

Furthermore, I am grateful to Dassault Systemes for providing me the license to use the Cameo

Systems Modeler, and to Mathworks Inc., for providing a licence of the MATLAB/Simulink software.

To my fellow colleagues from Instituto Superior Técnico, I would like them to know it was an honor to

share this journey with all of them.

Finally, I wish to express my gratitude to my family and friends, for their love and support, in good

and bad times alike. Without them this would not have been possible.

iii

iv

Resumo

A engenharia de sistemas (SE) foi adotada na indústria aeroespacial para ajudar engenheiros a gerir

complexidade. Contudo, à medida que os sistemas se estão a tornar mais distribuı́dos e interconecta-

dos, os mecanismos tradicionais que garantem a manutenção de consistência em SE — documentos

escritos — estão-se a tornar gradualmente inadequados. Engenharia de sistemas baseada em mod-

elos (MBSE) pode mitigar este problema, introduzindo modelação e centralização de informação nas

práticas tradicionais de SE. Investigação tem mostrado que MBSE pode ser aplicado com sucesso em

processos de design conceptual de sistemas. Contudo, quando aplicado a design de subsistemas, de-

safios diferentes são enfrentados relativamente à integração de SE com áreas de conhecimento espe-

cializadas. A integração de MBSE com simulação constitui um exemplo de um desafio à adoção destas

práticas na indústria. Neste trabalho, uma metodologia baseada em OOSEM é proposta para o design

de um subsistema de um veı́culo espacial. Esta inclui uma ferramenta de transformação de modelos

capaz de gerar modelos de Simulink, a partir de especificação em SysML. A metodologia é demon-

strada no design de um sistema de determinação e controlo de atitude de um pequeno satélite, com

simulação sendo utilizada para avaliar performance e comparar designs alternativos. Com o trabalho

desenvolvido, verificamos alguns benefı́cios de MBSE e concluı́mos que este tipo de abordagem pode

ser aplicada ao nı́vel de subsistema, integrando adequadamente engenharia de sistemas com áreas

especializadas. Demonstramos ainda que abordagens de transformação de modelos são capazes de

gerar simuladores completamente funcionais a partir de especificação em SysML.

Palavras-chave: MBSE, SysML, Transformação de modelos, OOSEM, MATLAB/Simulink,

ADCS

v

vi

Abstract

Systems engineering (SE) has been adopted in the aerospace industry to help engineers manage com-

plexity. However, as systems become more distributed and interconnected, the traditional mechanisms

through which SE ensured consistency — written documents — are becoming increasingly inadequate.

Model-based systems engineering (MBSE) can help mitigate this issue, by introducing modelling and

information centralization into traditional SE practices. Some research has been done showing that

MBSE can successfully be applied to system-level conceptual design processes. However, when ap-

plied to subsystem design, MBSE faces the challenge of integrating systems engineering with special-

ized knowledge domains. Specifically, the integration of MBSE with simulation presents itself as a major

challenge to the adoption of MBSE practices in industry settings. In this work, a methodology based

on the OOSEM is proposed for the design of a spacecraft subsystem, including a framework for inte-

grating MBSE with simulation through a model transformation approach. System specification in SysML

is transformed into a simulation model in Simulink, capable of evaluating system performance. The

methodology is demonstrated by being applied to the design of an Attitude Determination and Control

System (ADCS) of a small satellite, where simulation is used to evaluate subsystem performance and

compare alternative designs. Some benefits of MBSE are verified, and we conclude that an MBSE

approach can be applied at the subsystem-level, with a proper integration of systems engineering and

specialized domains. We further demonstrate that model transformation approaches are capable of

successfully generating fully functioning simulators from SysML specification.

Keywords: MBSE, SysML, Model Transformation, OOSEM, MATLAB/Simulink, ADCS

vii

viii

Contents

Acknowledgments . iii

Resumo . v

Abstract . vii

List of Tables . xiii

List of Figures . xv

Nomenclature . xvii

Glossary . xxiii

1 Introduction 1

1.1 Objectives and Motivation . 1

1.2 Space Systems Design and Systems Engineering . 1

1.2.1 Space Systems . 1

1.2.2 Systems Engineering . 2

1.2.3 Motivation for Model-Based Systems Engineering 3

1.2.4 Deployment of Model Based Systems Engineering 5

1.2.5 Integration of MBSE with Simulation Tools . 6

1.3 Literature Review . 7

1.3.1 MBSE Deployment . 8

1.3.2 Integration of MBSE with Simulation Tools . 9

1.4 Research Contributions and Thesis Outline . 10

2 Theoretical Background 11

2.1 MBSE Methodology Review . 11

2.2 SysML . 13

2.2.1 Diagram Notation and Taxonomy . 13

2.2.2 Basic elements of the language . 14

2.3 Object-Oriented Systems Engineering Method (OOSEM) 17

2.4 Tool Selection and Integration . 19

2.5 Design Process Definition . 21

2.6 ADCS Design and technology . 23

2.6.1 Sensors . 24

ix

2.6.2 Attitude Determination . 25

2.6.3 Actuators . 26

2.6.4 Attitude Guidance and Control . 27

3 Approach 28

3.1 Methodology Adaptation . 28

3.1.1 Process Adaptation . 29

3.1.2 Activity Definition . 30

3.1.3 Integrating MBSE with Simulation . 32

3.2 Model Setup . 41

3.3 Methodology Validation . 42

4 Methodology Demonstration 43

4.1 Design Process Inputs . 43

4.1.1 Mission-level inputs . 43

4.1.2 System-level inputs . 44

4.1.3 Subsystem-level inputs . 46

4.2 Subsystem Design . 50

4.2.1 Subsystem State Machine Definition . 51

4.2.2 Functional Architecture Definition . 52

4.2.3 Logical Architecture Design . 56

4.2.4 Synthesis of Candidate Physical Architectures . 63

4.2.5 Management of Requirement Traceability . 67

4.2.6 Evaluation of Alternatives . 68

4.3 Design Process Outputs . 75

4.4 Discussion of Results . 76

5 Conclusions 79

Bibliography 79

A Spacecraft Attitude 91

A.1 Reference Frames . 91

A.1.1 Inertial Reference Frame . 91

A.1.2 Earth-Centred/Earth-Fixed Frame . 91

A.1.3 Topocentric Horizon Coordinate System (NED) . 93

A.1.4 Spacecraft Body Frame . 93

A.2 Attitude Representation . 94

A.2.1 Attitude Matrix . 94

A.2.2 Quaternions . 94

A.3 Spacecraft Attitude Dynamics . 96

x

A.3.1 External disturbance torques . 96

B ADCS Requirements Specification 98

B.1 Specification of Performance Requirements . 98

B.2 Complete List of ADCS Requirements . 100

C Spacecraft Environment and Orbital Dynamics 102

C.1 Expansion in Spherical Harmonics . 102

C.2 Earth Magnetic Field . 103

C.3 Earth Gravity Field . 103

C.4 Earth Albedo . 104

D Mathematical Models of Components 106

D.1 Hardware . 106

D.1.1 Sensors . 106

D.1.2 Actuators . 107

D.2 Software . 107

D.2.1 Estimation Algorithms . 107

D.2.2 Control Algorithms . 110

xi

xii

List of Tables

2.1 Comparison of the reviewed methodologies’ key aspects 12

2.2 Mapping between SysML and Simulink/Stateflow constructs specified by the OMG SysPhS. 20

3.1 Mapping between SysML state machine and Stateflow constructs. 37

4.1 Definition of mission attributes. The entry orbit is the same as for the ISTSat-1: Sun-

Synchronous Orbit (SSO) with LTAN at 22:30. 44

4.2 Definition of relevant system attributes. 46

4.3 Critical properties of the Earth sensor, gyroscope, and magnetometer. 64

4.4 Critical properties of the reaction wheel, magnetic torquer, and photodiode. 64

4.5 Critical properties of the estimators of the magnetic field and spacecraft and Sun positions. 65

4.6 Critical properties of the attitude filter and attitude controller. 66

4.7 Configurations used in GMAT for the determination of the spacecraft orbit. 70

4.8 Schedule of events representing the simulation scenario defined. 72

4.9 Summary of the simulation results (the architecture with reaction wheels is named “A1”,

and the other “A2”). The parameter values obtained with simulation (left) are compared

to maximum values imposed by requirements (right). 73

B.1 ADCS Functional Requirements. 100

B.2 ADCS Operational Requirements. 101

B.3 ADCS Performance Requirements. 101

B.4 ADCS Design Constraints. 101

xiii

xiv

List of Figures

1.1 Example of elements of a system model contained inside a model repository. 4

2.1 (a) Representation of a generic block and its features. (b) Representation of a generaliza-

tion relationship, on the top, and a composite association, on the bottom. (c) Parametric

representation of the internal structure of a block . 15

2.2 Representation of the most common relationships involving requirements. 16

2.3 “Vee” model of the SOI life cycle. 17

2.4 OOSEM process (each node represents an activity). 18

2.5 Functional Engineering Simulator (FES) structure (Figure 6 in [60]). 19

2.6 Definition of target scope using the “Vee” model. 21

2.7 Architecture levels defined in this work. 22

2.8 Black-box representation of the subsystem design process. 23

2.9 Structure of an ADCS based on active control techniques. 24

3.1 Subsystem design methodology process (each node represents an activity or task). . . . 29

3.2 Manage Requirements Traceability process (each node represents a task). 30

3.3 Define Functional Architecture process (each node represents a task). 31

3.4 Define Logical Architecture process (each node represents a task). 31

3.5 Synthesize Candidate Physical Architectures process (each node represents a task). . . 32

3.6 Optimize and Evaluate Alternatives process (each node represents a task). 32

3.7 Model transformation workflow. The large grey arrows represent steps in the transformation. 34

3.8 Example of the mapping between SysML and Simulink representations of a component.

The environment is also divided into components, which are identified with the stereotype

≪analysis≫. 36

3.9 Segment of the table outlining the part properties relevant to the simulation model. 36

3.10 Segment of the table outlining the values defined with instance specifications. 37

3.11 List of state machines relevant to the simulation model (left) and correspondence between

each state machine and the name of the variable that stores its active state (right). 38

3.12 Segment of the table outlining the states contained in the relevant state machines. 38

3.13 Example of a Stateflow block generated from SysML specification. 39

3.14 Segment of the table outlining the transitions contained in the relevant state machines. . . 39

xv

3.15 Model Organization. 42

4.1 Mission architecture. 43

4.2 System decomposition. 44

4.3 Mission- and system-level context of the ADCS. 45

4.4 Spacecraft state machine behaviour specification. 45

4.5 Specification tree (only the part relevant to the ADCS). 47

4.6 Example of traceability between mission-level, system-level, and ADCS requirements. . . 48

4.7 ADCS black box specification. 50

4.8 Representation of the autonomous transitions originated in the detumbling mode. 51

4.9 Representation of the autonomous transitions originated in the pointing modes. 52

4.10 Representation of the forced transitions and state machine initialization. 52

4.11 Functional decomposition of the subsystem. 53

4.12 Interaction between functional components realizing the detumbling operation activity. . . 54

4.13 Interaction between functional components realizing the normal pointing operation activity. 55

4.14 Interaction between functional components realizing the safe pointing operation activity. . 55

4.15 Internal structure of the ADCS functional architecture. 56

4.16 Logical architecture decomposition and allocation of functional to logical components. . . 57

4.17 Interaction between logical components realizing the detumbling operation activity. 59

4.18 Interaction between logical components realizing the normal pointing operation activity. . 59

4.19 Interaction between logical components realizing the safe pointing operation activity. . . . 60

4.20 Internal structure of the ADCS logical architecture. 61

4.21 Redefinition of the external context of the ADCS. 62

4.22 Specification of which elements in the model satisfy and verify each requirement. 68

4.23 Internal structure of the Environment block. 69

4.24 Internal structure of the analysis context and the Monitoring and Control block. 71

4.25 Specification of the simulation scenario with a schedule of signal events. 73

4.26 Absolute attitude knowledge error during the 10 orbits of performance evaluation for the

normal pointing mode. The dashed line is located at the final value of the corresponding

TPM. 74

4.27 Absolute pointing error during the 10 orbits of performance evaluation for the normal point-

ing mode. The dashed line is located at the final value of the corresponding TPM. 75

4.28 Absolute pointing error during the 10 orbits of performance evaluation for the safe pointing

mode. The dashed line is located at the final value of the corresponding TPM. 75

A.1 Spacecraft body frame and nomenclature used to describe faces. 93

xvi

Nomenclature

Roman symbols

P̆n,m Schmidt semi-normalized associated Legendre functions of degree n and order m.

q̃ Attitude quaternion estimation error.

03 Null vector representation.

δq Control error quaternion.

a Spacecraft acceleration vector.

ae Euler axis vector.

B Local Earth magnetic field vector.

b Local Earth magnetic field direction unit vector (always represented in the body frame).

bg Gyroscope measurement bias.

bm Magnetometer measurement bias.

e Basis vectors of an arbitrary reference frame.

F Force vector.

f Representation of the derivative of X relative to time.

F aero Drag force applied in one spacecraft face (always represented in the body frame).

g Acceleration of Earth’s gravity.

H Spacecraft angular moment (always represented in the body frame).

h Angular momentum stored by rotating objects of the spacecraft (always represented in the body

frame).

Iq Identity Quaternion.

mmp Commanded magnetic dipole for magnetic torquer-based pointing.

md Commanded magnetic dipole for detumbling.

xvii

mu Spacecraft undesired magnetic dipole.

n Local nadir direction.

nmtq Direction of the magnetic dipole produced by one magnetic torquer.

npld Vector in the body frame that must be aligned with nadir (payload direction).

nc Outward normal of a grid cell (Earth albedo model).

ns Outward normal unit vector of a face/plate (always represented in the body frame).

nw Reaction wheel axis of rotation.

p Representation of an arbitrary quaternion.

q Attitude quaternion (without subscripts, represents transformation from I to B).

r Position vector of the spacecraft.

rSun Position of the Sun in the ECI frame.

rp Position of the centre of pressure of a spacecraft face (always represented in the body frame).

s Estimation/measurement of a given known vector quantity.

T Sum of external torques applied in the spacecraft (always represented in the body frame).

Tmtq Actuation torque produced by one magnetic torquer.

Tw Actuation torque produced by one reaction wheel.

T aero Aerodynamic disturbance torque (always represented in the body frame).

T gg Gravity-gradient torque (always represented in the body frame).

Tm Magnetic disturbance torque (always represented in the body frame).

u Representation of an arbitrary vector.

uSun Sun vector in the body frame

v Velocity vector of the spacecraft.

vrel Velocity of the spacecraft relative to the air.

X State vector for the equations of motion (see Eq. D.8).

A Attitude matrix (without subscripts, represents transformation from I to B).

a Semi-major axis.

C Representation of an arbitrary rotation matrix.

Cn,m Normalized geopotential coefficients.

xviii

CD Coefficient of drag.

Cq Rotation matrix derived from an unit quaternion.

Cr Coefficient of reflectivity.

D Commanded dutycycle of one magnetic torquer.

Dmax Maximum dutycycle that can be produced by one magnetic torquer.

E Irradiance.

e Orbit eccentricity.

EAM0 Solar irradiance at Earth.

ep Performance requirement error function.

gn,m Gauss coefficients.

hn,m Gauss coefficients.

hw Angular momentum stored by one reaction wheel.

i Orbit inclination.

I(ep) Performance requirement error Index.

Imax Upper bound for the error index.

ITPM TPM value.

ik Current output of photodiode k.

Is Moment of inertia of the spacecraft measured in the body frame.

Iw Reaction wheel moment of inertia.

kmm Reaction wheel off-loading positive scalar gain.

kpd Photodiode conversion factor.

kd Detumbling control positive scalar gain.

kg Bias correction positive scalar gain.

ki Positive scalar gain for the ith sensor correction.

kp Correction factor positive scalar gain.

kr Angular velocity rotation positive scalar gain (magnetic torquer-based pointing).

kϵ Proportional positive scalar gain.

kω Derivative positive scalar gain.

xix

M Mean anomaly.

mmax Maximum magnetic dipole that can be produced by one magnetic torquer.

PC Required probability that the index stays between bounds (concerning a performance require-

ment).

Pc Incident radiant flux for one cell grid.

Pn,m Associated Legendre polynomial of degree n and order m.

R Inverse/transpose of the attitude matrix.

r Magnitude of the position vector of the spacecraft.

R⊕ Earth radius.

S Area of a face/plate.

Sn,m Normalized geopotential coefficients.

Sc Area of a grid cell (Earth albedo model).

Sdrag Drag reference area.

SSRP SRP reference area.

t Representation of time.

T0 Instant of spacecraft separation from launcher.

U Gravitational potential.

V Magnetic Field Scalar Potential.

x, y, z Position cartesian components.

Greek symbols

βg Filter bias correction.

γ Filter static correction factor.

ϵ Desired rotation vector (magnetic torquer-based pointing).

ϵω Desired angular velocity rotation vector (magnetic torquer-based pointing).

µarw White noise process known as Angle Random Walk.

µm Magnetometer noise component.

µrrw White noise process known as Rate Random Walk.

τmp,d Desired control torque for magnetic torquer-based pointing.

xx

τmp Actual control torque for magnetic torquer-based pointing.

τ d Actual control torque in detumbling.

τmm,d Desired torque for reaction wheel off-loading.

τmm Actual torque for reaction wheel off-loading produced by the magnetic torquers.

τ rw Desired control torque for reaction wheel-based stabilization.

ω Angular velocity of the spacecraft (always represented in the body frame).

ωc Commanded angular velocity.

ωw Sum of the angular velocities of the three reaction wheels.

∆T Time passed since separation up to the current instant, expressed in seconds.

ϵes Earth sensor angular error noise process.

θaero Angle between the normal of a spacecraft’s face and the velocity of the spacecraft relative to the

air.

θGMST Greenwich Mean Sidereal Time angle.

λ Longitude.

µ⊕ Standard gravitational parameter of Earth.

ν Euler angle.

Ξ(q) Matrix defined in Eq. A.15.

ρ Air Density.

ρc Reflectivity of a grid cell (Earth albedo model).

ϕ Geodetic latitude.

ϕ′ Geocentric latitude.

Ψ(q) Matrix defined in Eq. A.14.

Ω Right ascension of the ascending node (RAAN).

ωp Argument of perigee.

ωw Angular speed of one reaction wheel.

ω⊕ Earth angular rotation speed.

Subscripts

0 Initial value.

xxi

aero Relative to the calculation of aerodynamic torque.

corr Estimation that results from the correction of a previous estimation/measurement.

B Represented in the body reference frame.

E Represented in the ECEF reference frame.

E′ Represented in the ECEF reference frame realized at T0.

H Represented in the NED reference frame.

I Represented in the ECI reference frame.

xy Projection of a vector onto the Oxy plane.

Superscripts

true True value of a quantity.

* Conjugate.

T Transpose.

xxii

Acronyms

ADCS Attitude Determination and Control System.

AIT Assembly, Integration, and Testing.

AKE Absolute Knowledge Error.

AOCS Attitude and Orbit Control System.

APE Absolute Performance Error.

API Application Programming Interface.

ARCADIA Architecture Analysis & Design Integrated Approach.

ARW Angle Random Walk.

ASR Atmospheric Sample Return.

CDF Concurrent Design Facility.

CMG Control Moment Gyro.

ConOps Concept of Operations.

CPS Cyber-Physical Systems.

CSM Cameo Systems Modeler.

CSS Coarse Sun Sensor.

CVG Coriolis Vibrating Gyros.

DBSE Document-Based Systems Engineering.

DCM Direction Cosine Matrix.

DSS Digital Sun Sensor.

ECEF Earth-Centred/Earth-Fixed.

ECF Explicit Complementary Filter.

ECI Earth-Centred Inertial.

ECSS European Cooperation for Space Standardization.

EGSE Electrical Ground Support Equipment.

ESA European Space Agency.

FES Functional Engineering Simulator.

xxiii

FOV Field of View.

GCRF Geocentric Celestial Reference Frame.

GMST Greenwich Mean Sidereal Time.

IBM International Business Machines Corporation.

ICRF International Celestial Reference Frame.

IEC International Eletroctechnical Commission.

IEEE Institute of Electrical and Electronics Engineers.

ISO International Standardization Organization.

IT Information Technology.

ITRF International Terrestrial Reference Frame.

LEO Low Earth Orbit.

LTAN Local Time of the Ascending Node.

MAF Moving Average Filter.

MBSE Model-Based Systems Engineering.

MBSSE Model-Based methodology to support the Space System Engineering.

MEMS Microelectronic Mechanical Systems.

MOE Measures of Effectiveness.

MOP Measures of Performance.

NASA National Aeronautics and Space Administration.

NED North-East-Down.

OBC On-board Computer.

OMG Object Management Group.

OO Object-oriented.

OOSEM Object-Oriented Systems Engineering Method.

OPM Object-Process Methodology.

PD Proportional-derivative.

PSD Power Spectral Density.

PWM Pulse-Width Modulation.

QVT OMG Query-View-Transform.

RAAN Right Ascension the Ascending Node.

xxiv

ROI Return on Investment.

RRW Rate Random Walk.

RVTM Requirements Verification and Traceability Matrices.

SE Systems Engineering.

SESP Simulation and EGSE for Space Programmes (conference).

SEZ South-East-Zenith.

SOI System of Interest.

SOS System-of-systems.

SRP Solar Radiation Pressure.

SSO Sun-Synchronous Orbit.

SysML OMG Systems Modelling Language.

SysPhS OMG SysML Physical Interaction and Signal Flow Simulation.

TPM Technical Performance Measures.

UTC Universal Time Coordinated.

V&V Verification and Validation.

VSD Virtual Spacecraft Design.

WMM World Magnetic Model.

XMI XML Metadata Interchange.

XML Extensible Markup Language.

xxv

Glossary

(MBSE) Methodology Collection of related processes, methods, and tools used to support the systems

engineering effort [62].

Body attitude The three-dimensional orientation of the body with respect to a specified reference

frame [22].

Co-simulation Integration of multiple simulators to perform a composite simulation, involving weav-

ing the time series behaviour and data exchanges accurately [36].

Complexity Measure of how difficult it is to understand how a system will behave [2].

CubeSat Type of standardized nanosatellite composed of one or more units, with each unit

being shaped as a 10 cm cube with a mass of up to 1.33 kg [83].

Emergent Behaviour “Behaviour of the system that cannot be understood exclusively in terms of the

behaviour of the individual system elements” [3].

Iteration Repeated application and interaction of processes at a given level in a system hier-

archy [3].

Life Cycle ”The evolution with time of a SOI from conception to retirement” [3].

MBSE Modelling Tool Class of tools that comply with the rules of the modelling language and are capable

of creating, maintaining, and displaying the system model [15].

Model Transformation Approach to semantic interoperability which establishes a correspondence between

the constructs in one model and the constructs in another [3].

Pseudostate In the context of SysML, a pseudostate is similar to a state, but in which a state

machine can never rest. “It merely exists to help determine the next active state”

[14].

xxvi

Recursion Repeated application and interaction of processes at successive levels in the sys-

tem hierarchy [3].

Stakeholder “A party having a right, share, or claim in a system or in its possession of charac-

teristics that meet that party’s needs and expectations” [3].

System Model An interconnected set of elements that represent requirements, design elements,

test cases, and design rationale. It includes information relative to specification,

design, analysis, an verification [14].

Validation “Set of activities ensuring that a system is able to accomplish its intended use,

goals, and objectives in the intended operational environment” [3].

Verification “Set of activities that compares a system against the required characteristics” [3].

xxvii

xxviii

Chapter 1

Introduction

1.1 Objectives and Motivation

The last decades have seen an increasing demand for high-performance multidisciplinary systems that

deliver increased functionality with low development budgets and tight schedules. As a result, systems

are becoming more complex, and Systems Engineering (SE) practices are being adopted to help engi-

neers manage this complexity. SE is improving the understanding of stakeholder expectations and the

ability of engineers to develop systems that function according to requirements.

Traditional SE approaches require expensive documentation management, which is an issue that

Model-Based Systems Engineering (MBSE) promises to mitigate. By introducing modelling into SE

practices and centralizing information into a system model, MBSE promises enhanced communication,

improved quality, reduced development risk, and increased productivity.

In this thesis, an MBSE methodology is applied to the design of a spacecraft subsystem, namely an

Attitude Determination and Control System (ADCS). The design must be supported by simulation, and

this is accomplished by integrating an MBSE modelling tool with a simulation environment.

MBSE is still relatively unexplored in research, and it is still not clear how the interaction between

the SE effort and the work developed in specialty domains can be performed. This work provides

some insight into this interaction, specifically regarding the integration of MBSE with simulation, and into

whether MBSE can support the design of a spacecraft subsystem and deliver the promised benefits.

1.2 Space Systems Design and Systems Engineering

1.2.1 Space Systems

In this work, the term “space system” is used as a synonym of “space segment”, such as to refer

to a spacecraft as opposed to ground systems. Space systems are designed to operate in extreme

environments that are commonly difficult to recreate on Earth’s surface, making the complete verification

of the system often impossible. Most times, failure must be avoided at all costs, resulting in high-reliability

1

constraints. These systems must also operate according to high-performance requirements usually due

to tight mass, power, and volume budgets, which are often the main drivers of the mission cost. These

characteristics and the low number of production units make these engineering systems unique [1].

In fact, space systems are in general complex engineering systems. A “complex system” should not

be confused with a “complicated system”, i.e., one composed of a many parts and interfaces. Complexity

is instead a measure of how difficult it is to understand how a system will behave [2]. The complexity of

a system gives rise to the existence of emergent behaviours, i.e., “behaviours of the system that cannot

be understood exclusively in terms of the behaviour of the individual system elements” [3, p. 6]. These

behaviours are usually difficult to detect and understand and are a common source of failure to meet

system requirements.

The high-performance and high-reliability requirements coupled with the need to deliver a variety

of functions naturally results in high complexity. To illustrate the need for a variety of functions, we

may consider an Earth orbiting satellite, which must at least: (i) communicate with the ground; (ii)

generate, store, and distribute electric energy; (iii) control its attitude; (iv) manage its temperature; and

(v) operate a payload (often the most complex subsystem). These are multidisciplinary functions that

must be attributed to different subsystems. Also, the spacecraft and each subsystem usually have

different modes of operation, to deliver the required functions while dealing with a changing environment.

These two factors and the implementation of redundancy in the elements of the system favour the

presence of emergent behaviours.

1.2.2 Systems Engineering

The discipline known as Systems Engineering (SE) has been dominant in the aerospace and defence

industry as an approach to deal with systems complexity, helping engineers to design systems meeting

the requirements effectively and efficiently. In [4, p. 3], SE is defined as “the art and science of developing

an operable system that meets requirements within imposed constraints”. SE aims to define and main-

tain full logical linking between the problem specification, the defined solution, verification and validation

(V&V), and operations of a system of interest (SOI) [5]. It includes the application of both management

and technical processes across the complete life cycle of the SOI and is usually implemented according

to consolidated standards which define and specify a set of processes (e.g., ECSS [6], ISO/IEC 15288

[7]). The standards define what to be done at each stage, the inputs that are required, and the outputs

to be produced. In this work, we focus on the technical processes of SE, which are applied to specify,

design, and verify a SOI, and we discuss SE as applied to the development of space systems.

The adoption of SE practices requires an upfront investment of time and resources, so it is worth

to first evaluate the real value of SE. In the absence of reliable industry benchmarks, the survey pre-

sented in [8] provides quantitative evidence about the effectiveness of SE. For the entire set of projects

considered, the fraction of projects delivering higher performance increased from 15% to 56% as SE

deployment increased from low to high. Project performance was measured by budget, schedule, and

requirements satisfaction. This result is consistent with a previous analysis of the Return on Investment

2

(ROI) of software systems engineering [9], which concludes that there is a benefit of implementing SE

practices up to an ideal degree, and that this degree increases with project size.

The deployment of SE leads to the definition of a process for system development. However, SE

itself should be seen as an engineering discipline and not a process [10]. In literature and in industry,

there is no global “systems engineering process” that is consensual and accepted by all [3, 7, 11]. The

attempt to define one is also not a reasonable endeavour since, as stated in [10], this would constitute

an attempt to develop a general problem-solving process. Instead, a “systems engineering process”

may be defined and tailored for a specific type of problem, making use of concepts that are studied in

the discipline. This will be the approach to SE adopted in this work.

We may, however, discuss some of the more consensual SE activities and their motivation, to paint

a picture of what is SE. The first step in the development of a system is usually the proper definition

of the problem to be solved, an activity that is based on requirements engineering. Requirements

engineering consists of developing, documenting, and managing requirements. It is a continuous activity

that focuses on deriving system requirements from stakeholder expectations, analysing requirements to

derive additional requirements, maintaining traceability, and managing changes [12].

For the definition of a solution to be efficient, system complexity must be managed. The development

of complex systems usually results in the decomposition of the system into multiple subsystems, with

each being developed by a different team of specialists. To support this breakdown of the engineering

effort, SE must enable a clear specification of the system architecture and a consistent definition of inter-

faces. With complexity being effectively managed, different solutions should be evaluated and compared

to achieve one solution that meets the stakeholder needs as effectively and efficiently as possible. SE

can assist this process by introducing methods for system analysis and trade-off analysis.

Verification and validation (V&V) activities are essential to make sure the correct system is produced

and integrated correctly. The verification of a system relates to the evaluation of whether the defined

requirements are met, while the validation of a system consists of determining if the system solution

meets the stakeholder expectations [3]. It is important that the activities related to V&V start in the early

phases of the life cycle (e.g., with the definition of testing procedures or validation criteria) to identify

missing requirements, overlooked assumptions, or incorrect refinement of stakeholder expectations [13].

1.2.3 Motivation for Model-Based Systems Engineering

Traditionally, SE has been implemented according to what modelling practitioners call a document-based

approach [14, p. 15]. With document-based systems engineering (DBSE), the primary artifacts produced

in the life cycle activities are a set of text documents, spreadsheets, diagrams, and presentations, e.g.,

concept of operations (ConOps) documents, requirements specifications, or Requirements Verification

and Traceability Matrices (RVTM). Most of the effort of generating and maintaining these artifacts falls

upon the systems engineers.

The artifacts produced with DBSE are a disjoint set of documents which are exchanged among

clients, suppliers, and developers. With DBSE, the systems engineering effort ends up being centred

3

on the control of documentation, continuously guaranteeing that the documents are valid, complete,

and consistent, and that the developed system complies with the documentation [14, p. 15]. The major

problem with this approach to systems engineering is that it is more expensive than it needs to be

[15]. The maintenance of the disjoint set of documents represents significant costs, and if it is avoided,

documents become inconsistent and obsolete.

Model-Based Systems Engineering (MBSE), if practiced correctly, is the solution to these issues [15].

With this approach, systems engineers perform the same life cycle activities and produce the same set

of deliverables, to enable the interaction with other engineering teams or stakeholders that work with a

document-based approach. However, these deliverables are not the primary artifacts. With an MBSE

approach, the primary artifact of the life cycle activities is a model of the system being developed, which

integrates other discipline specific models and simulations [16] and evolves throughout the life cycle of

the system. This model includes information relative to specification, design, analysis, and verification,

consisting of elements that represent requirements, design elements, test cases, design rationale, and

their interrelationships [14, p. 17]. All other artifacts are automatically generated from the system model.

The system model created with MBSE is developed using a modelling tool and contained in a model

repository that centralizes information (see Figure 1.1). The model is essentially composed of a set

of interconnected elements that can be reused across projects. The most common approach to com-

municate with stakeholders and other engineers is to create diagrams that show views of the system

model, focusing on the aspects of the system that are relevant for a specific interaction. This approach

is intended to replace document-based interaction, even though it often requires partial knowledge of a

modelling language.

y

x

y = f(x) y==1 else

Model Repository

Figure 1.1: Example of elements of a system model contained inside a model repository.

MBSE aims to improve upon DBSE by merging modelling into current SE practices and by introducing

a centralized management of the information across all domains, i.e., create a single source of truth [5].

The systems engineering community has a strong interest in MBSE, but empirical evidence supporting

the benefits of MBSE is still lacking [17]. In fact, a poor implementation of MBSE is found to focus more

on modelling than on SE and it generates unnecessary complexity [18]. For this reason, it can be a risk

for organizations to transition from DBSE to MBSE. However, the same researchers that raise doubts

regarding the adoption of MBSE, also believe that it can be beneficial if implemented correctly [17, 18].

Regarding the observed and perceived benefits of MBSE, the introduction of modelling into SE prac-

4

tices can provide enhanced communication among engineers and stakeholders, improving the shared

understanding of the system. It can further improve the ability to manage complexity by providing mul-

tiple perspectives of the model [14]. The centralization of information provides the ability to evaluate

consistency and correctness and to propagate changes made to the model to all the involved diagrams

and artifacts. A better leveraging of Information Technology (IT) capabilities enables MBSE to ensure the

reuse of existing models, automated generation of documents, easy impact analysis of design changes,

and continuous requirements validation and design verification.

1.2.4 Deployment of Model Based Systems Engineering

MBSE has been a research target ever since its mathematical foundation was introduced in 1993 [19].

In the last 15 years, the interest of researchers in MBSE has increased over time [20], and it was

accompanied by a continuous improvement of the methods, languages, and tools.

The deployment of MBSE practices requires the mastering of what is defined in [15] as the three

pillars of MBSE: a modelling language, a modelling method, and a modelling tool. The modelling lan-

guage defines the kinds of elements that can be part of the model and the kinds of relationships that

can be defined between these elements, providing the grammar that supports modelling. A modelling

method provides guidance to the modelling effort, defining a set of tasks to be performed to create the

model. Finally, the modelling tool, which complies with the rules of the modelling language, provides the

necessary IT functions and the user interface for practicing MBSE. These are not simple diagramming

tools, since they must be able to e.g., store and organize the system model, propagate changes, provide

views of the model, and evaluate modelling correctness [15].

The advancement of MBSE practices depends on the maturity of each of the three pillars and of SE

practices in general. One important enabler of MBSE is the OMG Systems Modelling Language (SysML)

[3], an open-source language that was adopted by the Object Management Group (OMG) in 2006. The

SysML standard has been continuously improved since it was adopted by OMG. In parallel, modelling

tools have improved the support provided for the languages and the efficiency of the modelling process.

The evolution and adoption of MBSE practices relies on the availability of practical guidance and case

studies, both as a way to challenge the methods and tools, but also to help new system engineers learn

the trade. In this context, some important projects have been developed on the application of MBSE to

space systems engineering. The Object-Oriented Systems Engineering Method (OOSEM) was applied

to the development of a preferred system architecture for the FireSat [21], a hypothetical space system

described in [22], while a different project focused on developing a CubeSat Reference Model [16]. The

objective of this model was to be used by teams that are developing CubeSats as a starting point for

their mission-specific models. This project resulted in practical examples regarding the modelling of

behaviours [23] and technical performance measures [24], the development of an enterprise model [25],

and the integration of the system model with simulation [26, 27].

The adoption of MBSE in an industry setting faces new challenges in comparison to research, e.g.,

the lack of engineers with the required skill set, the larger development teams, and the larger upfront

5

investment. However, the adoption of MBSE in the space industry has already started. In the European

space community, different methods based on model-driven engineering are being developed, such

as the Architecture Analysis & Design Integrated Approach (ARCADIA) and the ESA-led methodology

Virtual Spacecraft Design (VSD) [5]. SysML has also been adopted by ESA, starting with the introduction

of modelling practices in the ESA Euclid science mission [5]. This led to the development of an ESA

specific SysML profile that is currently in an ESA SysML Toolbox, compiled together with a modelling

methodology. ESA also developed a pilot study consisting of deploying MBSE to design the e.Deorbit

mission, a project that involved three major industry players implementing three different methodologies

[5]. In NASA, MBSE was also applied to real issues in the context of the MBSE Pathfinder effort in which

four different teams addressed different focus areas using SysML [28].

MBSE may be a catalyst to the evolution of the engineering processes that are common today.

Model-based approaches have been for many years the standard in other disciplines, such as electrical

and mechanical engineering, and MBSE may be the key for obtaining “end-to-end support of engineering

processes through models” [29]. This concept aligns itself with some trends in modern engineering such

as “Digital Engineering” [29], “Industry 4.0” [29] , and “Digital Twin” [30]. The integration of MBSE with

concurrent engineering practices is also promising and is currently being developed in the Concurrent

Design Facility (CDF) at ESA [31].

1.2.5 Integration of MBSE with Simulation Tools

The quantitative evaluation of performance is an essential part of the system design process. Complex

system design often makes use of simulation models that are executed with the purpose of assessing

system performance, via the post-processing of simulation results. The development and execution

of simulation models is usually performed by domain specialist engineers. The tools that support this

activity are often either domain-specific simulation tools or general-purpose simulation environments

(e.g., MATLAB/Simulink or Dymola). This type of tools is also the preferred choice for the development

of simulation models in the context of an MBSE approach. This is due to the following reasons:

• Systems modelling languages like SysML still do not adequately support complex mathematical

modelling [32].

• Domain specialist engineers are already routinely using this type of tools for system analysis [33].

• Most organizations work with existing models developed with these tools, and the reuse of these

models is essential for the reduction of project resource expenditure [34].

For these reasons, there is the need to integrate MBSE modelling tools with simulation tools. To

ensure that this tool integration process respects the core tenets of MBSE, all the information relative

to the system design specification must be centralized into a single source of truth, the system model.

This means that mathematical modelling and simulation can and should be performed inside the scope

of the simulation tool, but the system specification information used in the simulation model should be

retrieved from the system model. In this work, we focus on the more general case of integrating MBSE

6

with a general-purpose simulation environment. There are two common approaches to achieve this type

of integration: co-simulation and model transformation [35].

Co-simulation is the integration of various simulators to perform a composite simulation [36]. With

a co-simulation approach, a communication channel is created between the MBSE modelling tool and

an external simulation tool. The simulation process is managed by a simulation engine that is part of

the MBSE modelling tool, because the system specification can be directly accessed by it. The external

simulation tool is used for modelling and execution of mathematical models of higher complexity, either

because it is better suited for the job or because it enables the reuse of previously developed models.

An approach based on model transformation consists of the automatic transformation of the system

models contained inside the model repository into simulation models that can be executed in the sim-

ulation environment. This approach does not require the MBSE modelling tool to include a simulation

engine, since the mathematical modelling and simulation can be performed completely inside the scope

of a dedicated simulation environment. Instead, it requires the support of a standard that maps the

semantics of the modelling language to the semantics used in the simulation environment. The system

specification is exported from the MBSE modelling tool to the simulation environment and it is combined

with the mathematical models to generate a functioning simulation model.

1.3 Literature Review

The implementation of MBSE both in industry and in research is not yet consistent. MBSE is still applied

with “a set of different approaches which vary in scope and purpose” [37]. A taxonomy for MBSE has

been proposed [37], defining three main categories: system specification repositories, system execu-

tion models, and design automation models. The first category consists of the use of formal models

that are purely descriptive and static, while the second category focuses on the definition of parametric

relationships between model elements, with the final purpose of using simulation to estimate system per-

formance in a quantitative way. In this work we look at these categories as steps in the implementation

of MBSE practices, starting with a static specification of the system, transitioning to executable system

models, and finally achieving the development of design automation models. This third category can

be seen as an extension to the system execution models, enabling simulation results to automatically

change the system specification.

MBSE is a recent concept, and it is consequently still relatively unexplored from a research point

of view [20]. However, this is not the only reason for the lack of maturity of MBSE, since there have

been some challenges to the adoption of MBSE in industry. Research has been developed targeting the

identification of these challenges, such as in [20, 38, 39]. From the identified challenges we selected

those that are most relevant in the context of this work, which are:

• C1: Lack of practical guidance, case studies, and examples.

• C2: Lack of maturity of tool set and methods.

• C3: Tool integration limitations.

7

While the application of MBSE at the system-of-systems (SOS) level is a topic of interest in research

[40, 41], it will not be included in this review since it is not relevant for the development of this thesis. The

review of the most important existing related work will be divided into two sections, the first concerning

the application of MBSE in support of space system design, and the second focusing on the specific

issue of integrating simulation models with the system models produced with MBSE.

1.3.1 MBSE Deployment

The CubeSat Reference Model project mentioned earlier propelled relevant contributions related to this

topic. The development of the CubeSat Reference Model, which follows the OOSEM, was first intro-

duced in [42], followed by updates in the last years regarding the global status of the project [16, 43, 44].

These works target the lack of practical guidance in literature (C1), but the developed reference model

is meant to be a reference for other projects and does not represent a real design process.

Some of the works in this topic consist of conceptual design processes, which focus mostly on the

system-level of the architecture. MBSE has been implemented in the context of small satellite conceptual

design, resulting in a decomposition of the system into subsystems and in the execution of mass and

power rollups via the integration of a MBSE modelling tool with MATLAB [45]. This is however a very

simplified case study, both in terms of modelling and system analysis. The MBSSE methodology [46]

has been applied to the conceptual design of the Atmospheric Sample Return (ASR) mission, in the

context of the CDF [47]. This work focuses on the identification of problems in the modelling process

(targeting C2) and in the integration with the concurrent engineering practices, rather than obtaining a

valid design for the system.

Some formal methods have also been proposed. Shortcomings associated with system models de-

veloped with object-oriented (OO) modelling languages (such as SysML or Capella) have been identified

(e.g., lack of semantic accuracy) [48]. The use of an ontology description language is proposed instead.

Formal methods have been integrated with MBSE to develop a framework for small satellite design [49].

The deployment of this formal languages is however very complex and its implementation in real system

definition processes is yet to be demonstrated.

Some works concern the application of MBSE in lower levels of the system architecture, specifically

in support of subsystem design. A satellite communication system architecting framework has been

developed with MBSE [50]. The implemented design scenario is quite simplified, and the subsystem is

not modelled inside the scope of a complete spacecraft model.

Most of the existing work on the application of MBSE in the design of spacecraft subsystems con-

cerns the design of attitude systems [51–54]. The process of deriving subsystem requirements of the

ADCS from customer needs was developed using SysML [51]. Requirement verification using simu-

lation was also performed by reusing an ADCS simulation model. A development process for AOCS

software integrated with code generation has been proposed, using SysML [52]. The reliability analysis

of an ADCS using simulation was developed using a model-based method named RAMSAS [55]. These

works focus on specific aspects of the subsystem design process and are not developed in the context

8

of a spacecraft design process. The design of an ADCS has been developed with the Vitech MBSE

methodology [54]. However, the presented design process is not complete (excluding e.g., simulation or

requirements verification) and the ADCS is modelled outside the context of a spacecraft or a mission.

There is a lack of case studies that present the design process of a subsystem using MBSE (consis-

tent with challenge C1), and subsystem design activities implemented with MBSE are usually presented

outside the context of a complete spacecraft design. These practical examples are important because

MBSE is aimed to support the complete design of systems, allowing different teams to work concurrently

on the design of different subsystems. This type of case study would help to validate MBSE practices.

1.3.2 Integration of MBSE with Simulation Tools

This topic is tightly related to the adoption challenge C3 (tool integration limitations). There are two

common approaches to integrate MBSE with simulation: co-simulation and model transformation [35].

Currently, the most mature approach is co-simulation, which has been shown in literature supporting

space system design. Co-simulation was used to enable the reuse of a previously developed ADCS

simulator in [51]. In the context of the CubeSat Reference Model, a co-simulation approach was de-

veloped to integrate SysML with MATLAB scripts and other more complex simulation workflows which

integrate multiple simulation tools [27]. With these co-simulation approaches, changes made in the sys-

tem model architecture do not propagate automatically to the simulation models. Also, these approaches

are not scalable for more complex projects [35].

A different approach was proposed in which SysML modelling patterns are created to help specify

an analysis context that can be executed [56]. Integrating parametric modelling with the semantics of

behaviour specification, which are more directed for execution, enables execution to be performed solely

by the MBSE tool execution engines. However, these execution engines are not prepared to deal with

complex mathematical models, and so a similar co-simulation framework will also be required.

Model transformation approaches are much less mature, mostly because of the lack of standard

maturity and tool support. Since the application of this approach in space system design is rare, here

we will also consider other types of engineering systems. This type of approach has been applied to the

simulation of a simple electrical circuit, using the SysML2Simulink standard [32]. A model transformation

based on triple graph grammar has been applied to the simulation of the discrete/continuous behaviour

of an inverted pendulum system, integrating SysML with Stateflow and Simscape [57]. A process for

deriving executable simulation models from SysML using QVT has also been developed [58]. The QVT

language [59] enables the formal definition of bidirectional model transformations. These examples

demonstrates that model transformations ensure centralization of information in the system model, which

remains automatically consistent with the simulation models. However, the available examples concern

only very simple systems.

9

1.4 Research Contributions and Thesis Outline

In this thesis we apply an MBSE methodology in support of a design process which targets a subset

of a complete space system design. This process concerns the preliminary design of a spacecraft

subsystem. The system design definition requires the support of the activity of “system modelling and

simulation” as defined by the ECSS in [60]. This standard defines that preliminary design activities are

supported by the use of a Functional Engineering Simulator (FES) to perform system functional design

validation. The development of this simulator is part of this work, and it is the result of the integration

between the MBSE modelling tool and a simulation environment. The design process itself and the

structure of this simulator are formally defined in Chapter 2.

In this work, the first step is to select an adequate MBSE methodology, to provide a base for the

work developed. We must simultaneously select a modelling language, a modelling tool, a simulation

environment, and a method for integrating MBSE with the simulation environment, since all of these are

linked. This selection process and an overview of the various enabling methods, tools, and languages

are presented in Chapter 2.

The proposed MBSE methodology results from the adaptation and extension of an off-the-shelf

methodology which is tailored to the specific design process targeted in this work. A description of

the developed methodology is presented in Chapter 3. The methodology is then applied to the design

of an ADCS of a small satellite.

The context for the ADCS design scenario, as part of the overall definition of system and mission, is

defined as a set of inputs to the design process, which are outlined in Chapter 4.

Also presented in this chapter is the step-by-step application of the methodology to this particular

design scenario. This presentation includes all the details of the ADCS design, which are used to

illustrate the implementation of the methodology. While these will certainly convey the design process

of the ADCS to the reader, the purpose of this work is to present an application of the methodology

generically. The application of the methods developed for the integration of MBSE with simulation is

also presented at the end of the chapter, including a description of the simulation models used and a

summary of the simulation results obtained.

The application of MBSE in a design process of a spacecraft subsystem, inside the scope of a

spacecraft design process, constitutes a case study that is not currently available in literature. This is a

contribution that addresses the challenge C1 (lack of practical guidance). We also identify limitations of

the methods and tools involved, addressing the challenge C2 (lack of maturity of tool set and methods).

Finally, we address the challenge C3 (tool integration limitations), by demonstrating how an MBSE tool

can be integrated with a simulation environment in a way that respects the core tenets of MBSE, har-

nesses all the benefits of MBSE, and is consistent with the skill set of domain specialist engineers. To

this end, a MATLAB program is developed to extend the capabilities of the MBSE tool in the process of

transforming SysML specification into a functioning simulator.

10

Chapter 2

Theoretical Background

2.1 MBSE Methodology Review

In this section we discuss the selection of an MBSE methodology that can be used as a base for the

work developed in this thesis. The selected methodology will then be tailored to the specific design

process implemented in this work (see Chapter 3). When using terms whose meaning is specific to a

certain MBSE methodology, these are shown in italic (e.g., analysis context). Before different MBSE

methodologies can be reviewed, we first present some definitions derived from [61]:

• A Process is a sequence of tasks performed to achieve a specific goal. It specifies what is to be

done, without defining how it must be done.

• A Method specifies how a task must be performed and it is composed of a set of techniques

required to perform it.

• A Tool is an instrument that supports a specific method to improve the efficiency of a task.

• A Methodology is composed of related processes, methods, and tools. It is designed to be applied

to a certain class of problems.

A review of some of the more notable MBSE methodologies has been done in [62], and it is still a

reference for more recent works [45, 50]. The methodologies considered in this work are, from those

discussed in [62], the ones applicable to the development of general (or non-specific) systems. An

evaluation of whether each of the methodologies in [62] meets this requirement was done in [50]. Three

possible methodologies emerge:

INCOSE Object-Oriented Systems Engineering Method (OOSEM) [14] It is a top-down, scenario-

driven approach. It combines object-oriented concepts with more traditional systems engineering meth-

ods, and it is consistent with a recursive “Vee” life cycle process [63]. This methodology defines a

detailed process for the definition of the SOI, starting with an analysis of stakeholder expectations, fol-

lowed by the specification of the system as a black box, and finishing with the definition of the system

architecture in two stages: logical architecture definition and candidate physical architecture synthesis.

11

IBM Telelogic Harmony-SE [64] It uses a service request-driven modelling approach that is consistent

with the “Vee” life cycle process. Functional decomposition is accomplished through decomposition of

activity operational contracts, which describe state/mode changes or operations. The three top-level

process elements are: requirement analysis, system functional analysis, and architectural design. This

methodology is specifically suited for initial system architecture design [50].

Dori Object-Process Methodology (OPM) [65] It combines formal visual models with natural lan-

guage sentences. Every formal model is specified by a semantically equivalent sentence, expressed

using a customized dual-purpose language (i.e., both oriented towards humans and machines). This

methodology regards everything in the universe as one of three elements: an object, a thing that exists

or has the potential to exist; a process, a pattern of transformation that an object undergoes; or a state,

a situation an object can be at [62]. The Dori OPM is based on a holistic systems paradigm, support-

ing very rich modelling semantics that can be used to model all the aspects of a system in one single

view [50]. The system development process is divided into the following sequential steps: requirement

specifying, analysing and designing, implementing, and using and maintaining.

A comparison of the key aspects of the methodologies is shown in Table 2.1. The OOSEM and

Harmony-SE are supported by a widely used modelling language — the SysML — while the OPM uses

its own customized modelling language. For this reason and because the OPM is also based on holistic

semantics, it is more difficult for less experienced system architects to learn and correctly implement

this methodology. In terms of tool support, only the Dori OPM has a dedicated framework tool. The

Harmony-SE and OOSEM are instead tool- and vendor-neutral. The OOSEM emphasizes too much on

a specific type of system, namely Cyber-Physical Systems (CPS), but the detail in the definition of the

OOSEM framework compensates for this issue when compared to Harmony-SE.

Methodology OOSEM Harmony-SE OPM
Emphasis software & hardware general general

Detailed Framework? Yes No No
Widely used language? Yes Yes No

Holistic Semantics ? No No Yes
Tool Support Tool-neutral Tool-neutral Dedicated tool

Table 2.1: Comparison of the reviewed methodologies’ key aspects

Being based on OO concepts, the OOSEM may induce system architects into considering specific

objects as isolated even when that is not possible [18]. However, the methodology is well documented

[14], there is an extensive example on its application in the context of space systems architecting [21],

and many of the reviewed works use this methodology [42, 45, 50, 56].

For the reasons above, we selected the OOSEM methodology, and consequently SysML as the

modelling language. This selection process considered the compatibility with the selected tools and

model transformation standard, which are discussed later in this chapter.

12

2.2 SysML

The Systems Modelling Language (SysML) [66] is a “general-purpose graphical modelling language that

supports the analysis, specification, design, verification, and validation of complex systems” [14, p. 29].

It has grammar and vocabulary like any natural language (e.g., English, Portuguese) but its vocabulary is

composed of graphical notations. MBSE requires a precise and unambiguous language to fully achieve

its purpose. Natural languages are usually ambiguous, containing a lot of words that are synonyms

or have multiple meanings, which is in general not the case for SysML. Additionally, MBSE requires a

language that is graphical, so that elements and their relationships are easy to visualize and understand.

SysML is a standard from the Object Management Group (OMG) that reuses a part of the UML

2 standard (widely used in software engineering), extending it to include elements that are necessary

for the application of SE to general systems development. SysML leverages the OMG XML Metadata

Interchange (XMI) standard, which enables the exchange of model data across different tools from

different tool providers. The SysML version used is 1.6, published in December 2019.

The complete specification of SysML is quite detailed and extensive (available in [66]). Thus, we

focus this overview of SysML on the general diagram notation and taxonomy and on some of the most

used elements of the language. When a word or expression refers to a SysML concept, having a distinct

meaning in this context, it is shown in italic, e.g., value property. Additional clarification regarding SysML

nomenclature will be provided when a diagram contains elements that are not presented in this section.

A detailed review of SysML notation can be found in [14, 15].

2.2.1 Diagram Notation and Taxonomy

SysML diagrams show views of the underlying system model. These are composed by a diagram frame

and a header, and the latter is located on the top of the diagram and contained in a rectangle with a

corner cut off (see Figure 2.2). The header describes the diagram kind, the type and name of a model

element, and the name of the diagram. The model element mentioned in the header can be viewed as

the element represented by the diagram frame. Inside the diagram frame a set of elements are shown,

represented as nodes of different shapes or as lines and arrows connecting two different nodes, which

represent relationships between elements. The elements presented in the diagram represent what is

specified in the system model but reflect only a part of the specification.

SysML includes nine different kinds of diagrams, each with a different function. In this work, the

diagram kind abbreviations are shown in bold (e.g., bdd). The diagram kinds are summarized below

(and the associated abbreviations are shown in parentheses):

• Package Diagram (pkg): It is used to represent the organization of a model in terms of how

model elements are contained in different packages and how the different packages are organized

according to a specific hierarchy.

• Block Definition Diagram (bdd): It represents elements of definition and the structural relation-

ships between these elements, such as composition and classification. Elements of definition

13

serve as types for the model elements represented in other kinds of diagrams,

• Internal Body Diagram (ibd): It specifies the internal structure of a block. Usages of blocks are

displayed in the form of part and reference properties, and a set of connections between these

are represented. This diagram represents how the parts are assembled together to create a valid

instance of a block and how an instance of the block should be connected to external entities.

• Parametric Diagram (par): It displays the internal structure of a block focusing on value properties

and their connections to constraint parameters. This diagram provides support to engineering

analysis by enabling the specification of mathematical relationships between value properties.

• Use Case Diagram (uc): It represents a set of use cases — “the externally visible services that a

system provides” [15, p. 77] — and the actors that invoke or participate in them. This diagram is a

black box representation of system function used to analyse and document stakeholder needs.

• Activity Diagram (act): It is a kind of behaviour diagram. It always represents an activity, which

is used to specify behaviour that, through a controlled sequence of actions, transforms inputs

into outputs. This flow-based representation of behaviour is appropriate for the representation of

algorithms and complex control logic.

• Sequence Diagram (sd): It is a kind of behaviour diagram. It always represents an interaction,

which specifies behaviour in terms of a sequence of message exchanges between structural ele-

ments. This service-based representation of behaviour is appropriate for the representation of how

and in what order elements invoke services and send signals to each other. These are appropriate

for software behavioural modelling or test case specification.

• State Machine Diagram (stm): It is a kind of behaviour diagram. It always represents a state

machine, which specifies behaviour in terms of a block’s states and the transitions between them.

This state-based representation of behaviour is appropriate for the representation of a classifier

behaviour (the main behaviour of the block that starts at the beginning of its lifetime and generally

finishes at the end of it [14, p. 128]). It is specifically suited for blocks which have a set of different

states relevant to their behaviour specification.

• Requirement Diagram (req): It represents text-based requirements and their relationships with

other model elements, including the relationships between requirements.

2.2.2 Basic elements of the language

The block is the basic unit of structure in SysML [15, p. 26] and it is used to model any type of entity.

A block does not represent an instance of an entity, but rather a set of instances that share the same

definition. Instances of blocks can then be created to represent a specific use of the modelled entity. As

described in [14, p. 97], a block can model a physical entity, software, hardware, a data component, a

person, a facility, or an entity that flows through a system. As an example, a block may be created to

represent a wheel of a car, which can be named Wheel. Four instances of Wheel are used in the model

14

of the car, one for each quarter of the vehicle, but not all of these behave equally (e.g., front wheels are

steered while rear wheels are not).

The representation of a block is presented in Figure 2.1(a). Blocks have many different features, such

as part properties, value properties, and ports. Part properties specify the decomposition of a block

into elements, value properties define quantifiable attributes of a block, and ports specify interaction

points with the exterior (both to provide or request services and to exchange matter, energy, or data).

Figure 2.1(a) shows the various types of features in different compartments, except for the ports that

are represented as green-filled squares on the boundaries of the block. Using the same example from

above, the element Wheel may own part properties typed by blocks called Rim and Tire, a value property

named radius, and a port representing the transmission of torque or power to the wheel.

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v4.mdzip Test 26/jul/2021 16:19:18

[Package] Examplesbdd Test][

«activity»behavior1
classifier behavior

reception1()
signal receptions

operation1()
operations

quantifiable attribute
values

subsystem [0..*]
parts

constraint2 : c2
constraint1 : c1

constraints

System

«block»

Whole

«block»

Part

«block»

Subclass

«block»

Superclass

«block»

outputinput

0..*

(a)

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v4.mdzip Test 26/jul/2021 16:19:18

[Package] Examplesbdd Test][

«activity»behavior1
classifier behavior

reception1()
signal receptions

operation1()
operations

quantifiable attribute
values

subsystem [0..*]
parts

constraint2 : c2
constraint1 : c1

constraints

System

«block»

Whole

«block»

Part

«block»

Subclass

«block»

Superclass

«block»

outputinput

0..*

(b)

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v4.mdzip System 26/jul/2021 16:24:09

SystemSystem[Block] par][

quantifiable attribute

constraint1 : c1

«constraint»

outputinput
k

outin

(c)

Figure 2.1: (a) Representation of a generic block and its features. (b) Representation of a generalization
relationship, on the top, and a composite association, on the bottom. (c) Parametric representation of
the internal structure of a block

.

Use cases specify the behaviour of the system, but in terms of what is expected from stakeholders.

Excluding these, the behaviour of a system can be modelled with activities, interactions, and state

machines, each being tailored for a specific behavioural modelling need. Behaviour can be allocated

to structure by defining one of three types of behavioural features: classifier behaviour, operations, and

receptions (see Figure 2.1(a)). A classifier behaviour is usually specified using a state machine, even

though sometimes activities are also used. An operation is a synchronous behaviour that is invoked

when a client calls it. Parameters may be passed in with the service request and also passed out to the

client when the request has been handled. A reception is an asynchronous behaviour that is requested

with a signal (a signal specifies a message with a set of attributes). The details regarding the invocation

and request of operations and receptions may be specified with an interaction, and the behaviour that

they represent may be specified with an activity.

There are two types of relationships between blocks that are especially relevant in SysML: Composite

15

associations and generalizations. Composite associations specify that a block, the whole, is composed

by another block, the part (see Figure 2.1(b)). It also defines what is an acceptable range of multiplicity

for the part block (in Figure 2.1(b) the whole may be composed by any number of parts, including

none, which is specified by a multiplicity represented as “0..∗”). The composite association and the part

property feature of a block represent the same relationship. The generalization defines that a block is

a subtype of another block, called the superclass (see Figure 2.1(b)). If nothing is specified against it,

the features of the superclass are passed to the subclass. For example, a block called Front Wheel is a

subtype of Wheel.

In SysML, equations and inequalities can be modelled with constraint blocks. This is a special type

of block that defines a mathematical expression which involves a set of constraint parameters. Blocks

may have constraint properties, a type of feature that attributes a constraint expression to the block,

imposing a specific mathematical relationship on its value properties. Constraint properties are usually

typed by constraint blocks. A par diagram is then used to show how one or more constraint properties

are connected to the block’s value properties and ports (see Figure 2.1(c)).

SysML enables the definition of text requirements and defines a set of relationships that these can

have with other types of elements and between each other. These relationships are usually represented

with req diagrams, as the one in Figure 2.2. A requirement may contain other requirements, and this

containment relationship is represented with a crosshair notation (which is also valid for packages).

Requirements can also be derived from other higher-level requirements, and this is specified with a

derive requirement relationship. A requirement may be refined by another more concrete requirement

or by a constraint block, which provides an exact mathematical expression to represent the requirement,

enabling automated verification to be performed. The requirements can also be satisfied by the attributes

of blocks and verified by test cases, which are usually specified with interactions.

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v5.mdzip Req. Example 11/out/2021 19:15:30

Req. Example[Package] Examplesreq][

Text = "A specific quantifiable
attribute should be smaller than 1"

Id = "4"

Derived Requirement 1

«requirement»

Subsystem Requirement 1

«requirement»

Subsystem Requirements

«requirement»

quantif iable attribute
values

...
constraint2 : c2

constraints

System

«block»

Verify Der. Req. 1

«testCase»

k
parameters

{k < 1}
constraints

c2

«constraint»

«satisfy»

«refine»

«verify»

«deriveReqt»

Figure 2.2: Representation of the most common relationships involving requirements.

Allocations are a type of cross-cutting relationship which has a few different possible uses. Be-

haviours can be allocated to structural elements, as shown in Figure 2.1(a), software can be allocated

to hardware, and requirements can be allocated to structural elements with a satisfy relationship, as

shown in Figure 2.2. Allocations introduce traceability between different types of elements.

16

2.3 Object-Oriented Systems Engineering Method (OOSEM)

The Object-Oriented Systems Engineering Method (OOSEM) is “a top-down, scenario-driven process

that uses SysML to support the analysis, specification, design, and verification of systems” [14, p. 397].

It is a hybrid approach that combines modelling techniques and a solid systems engineering foundation

with object-oriented concepts (e.g., blocks, encapsulation, and inheritance).

In this work, we implement the OOSEM as described in [14], where it is defined as a part of a higher-

level process. This higher-level process addresses the complete life cycle of the system definition, and

it is applied recursively to all levels of the system hierarchy, being consistent with the “Vee” development

process (see Figure 2.3). The life cycle is defined as “the evolution with time of a SOI from conception

to retirement” [3]. This higher-level process includes four different sub-processes, as shown in Figure

2.3, which are defined in [14] as follows:

• The Manage System Development process consists of project planning and control, including all

the SE management activities. This is a process that starts in the beginning of the life cycle and

ends with the disposal of the system.

• The Specify and Design System process starts with the analysis of system requirements and def-

inition of the system architecture. Then, requirements are derived and allocated to successively

lower-levels of the architecture, while the design definition at these levels is developed. This pro-

cess is the one implemented by OOSEM.

• The Develop Hardware, Software, Database, and Operational Procedures process concerns the

design, implementation, and testing of the lower-level elements of the system.

• The Integrate and Verify System process consists of the successive integration and test of the

elements of the system, from the lower-levels of the architecture up to the system-level.

Subsystem
Realization

System
Realization

Component
Realization

Develop Hardware, Software, Database,
and Operational Procedures

Subsystem
Development

System
Development

Component
Development

Manage System Development

Figure 2.3: “Vee” model of the SOI life cycle.

17

The Specify and Design System process is the focus of this work, and it can be divided into sep-

arate activities as shown in Figure 2.4. The Analyse Stakeholder Needs activity is only applied at the

mission-level, while all the other activities are applied recursively at each level of the system hierarchy.

A description of each of these activities follows:

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v4.mdzip Specify and Design System 30/ago/2021 15:46:12

Specify and Design SystemSpecify and Design System[Activity] act][

Optimize and Evaluate Alternatives

Manage Requirements Traceability

Synthesize
Candidate Physical

Architectures

Analyse
System

Requirements

Define
Logical

Architecture

Analyse
Stakeholder

Needs

Figure 2.4: OOSEM process (each node represents an activity).

Analyse Stakeholder Needs This activity focuses on the elicitation of stakeholder expectations and

derivation of mission-level requirements. When an “as-is” system configuration exists, it is characterized,

and causal analysis is performed to identify potential improvement areas. The mission requirements

are specified, which includes: (i) the definition of the enterprise use cases, to represent each mission

objective; (ii) the definition of a domain model, to establish the context of the system and enterprise; and

(iii) the capture of quantitative attributes that reflect mission-level performance requirements.

Analyse System Requirements The purpose of this activity is to characterize the system (or system

element) in terms of its black box representation. First, for each of the use cases defined before, all

the relevant scenarios are modelled with activities and interactions. Then, the system context is defined

with an ibd and the critical system properties and constraints are captured. Finally, the system black

box representation, requirements, and state machine behaviour are specified.

Define Logical Architecture An intermediate level of abstraction between the black box representa-

tion and the physical architecture is specified. It results in the definition of the logical decomposition

of the system as well as its internal structure. The way the logical components interact to realize the

previously modelled behaviours is defined, and a black box specification of the components is created.

Synthetize Candidate Physical Architectures Alternative physical architectures are synthetized and

defined in terms of physical components distributed across nodes and relationships between these com-

ponents. The physical components may include a combination of hardware, software, data, and opera-

tional procedures. For this reason, software, hardware, and data architectures must also be specified.

The physical components’ black box representation is also defined.

18

Optimize and Evaluate Alternatives This activity is invoked throughout the complete OOSEM pro-

cess, and it includes: the identification of which analyses are required, the specification of an analysis

context for each of these, the use of par diagrams to model constraints, and the execution of engineering

analysis. This activity requires some adaptation as is discussed in Chapter 3.

Manage Requirements Traceability This activity is also invoked throughout the complete OOSEM

process, and it builds upon the definition of a specification tree, which defines an organizational scheme

for the capture of requirements at each level of the system hierarchy. After the text-based requirements

are captured, relationships are defined between them and other elements. A continuous analysis of

traceability gaps and management of requirement updates must also be ensured by systems engineers.

2.4 Tool Selection and Integration

The development of this work requires the selection of an MBSE modelling tool, which supports SysML,

and a general-purpose simulation environment, which will be used to create and execute simulation

models. Regarding the modelling tool, the Cameo Systems Modeler (CSM) from NoMagic was selected.

This was selected because modelling tools from NoMagic are the most commonly used in literature

(e.g., [42, 45, 54, 56]) and the CSM provides all the required functions for this work, including support

of the SysPhS standard, which is discussed later in this section. MATLAB/Simulink was selected as the

simulation environment due to previous experience and because it is supported by the SysPhS standard.

As mentioned in Chapter 1, under an MBSE approach, simulation should be performed by integrating

the MBSE modelling tool with a dedicated simulation tool, which in this case is MATLAB/Simulink. With

this in mind, part of this work is dedicated to the development of a framework that enables the generation

of functional simulation models from SysML specification. This framework is described in Section 3.1.3.

Its purpose is to generate a complete Functional Engineering Simulator (FES), as defined in the ECSS

[60]. The structure of this type of simulator is defined in [60] and shown in Figure 2.5.

ECSS‐E‐TM‐10‐21A

16 April 2010

correlation with performance tests of early bread-boarding activities for the
payload.

Validation with campaign data can be envisaged if similar instrumentation
already exists.

5.3.3.5 109BReuse
The environment models and relevant subsystem models can be reused
from the SCS. The payload model could be reused in phase E, where
performance assessment will be required.

5.4 21BFunctional Engineering Simulator
System modelling and simulation is a support activity to system
requirements consolidation and to system design definition and justification
/ verification.

This includes the validation of critical algorithms of the OBSW (e.g.
GNC/AOCS algorithms) as well as ground based algorithms, if required for
the overall system performance.

The facility set-up to support these activities is called the Functional
Engineering Simulator (FES). It contains all the functional models
needed for the algorithms validation, the functional organisation of the real
system, but not necessarily representative of the real interfaces, of the data
handling subsystem or of the protocols.

In this context, a functional model is a model representative of the
behaviour of the real modelled elements.

Virtual System Model

Simulation Infrastructure

Facility M&C

Environment
Models

Spacecraft
Dynamics
Models

Spacecraft
Equipment Models

Ground System
Models

Application
Algorithms

Application
Algorithms

Figure 6: Functional Engineering Simulator

36

Figure 2.5: Functional Engineering Simulator (FES) structure (Figure 6 in [60]).

19

This simulator is used in support of a preliminary design process, being executed to determine the

values of a set of technical performance measures (TPM), for a specific system configuration. The TPMs

measure quantitative attributes of a system element. These are derived from Measures of Performance

(MOP), which concern the performance of the system as a whole. The MOPs in turn are derived from

Measures of Effectiveness (MOE), which reflect attributes of the mission in the perspective of the stake-

holders. This process ensures traceability between high-level mission attributes and lower-level system

element attributes. The use of the terms TPM, MOP, and MOE and their definition is not consensual in

literature. The terms and definitions above, consistent with [24], will be the ones used in this work.

The framework mentioned above is based on a model transformation approach. This type of ap-

proach is described in more detail in Section 3.1.3 and in Figure 3.7. It is more appropriate than a

co-simulation approach for this work as well as larger-scale applications since:

• More information is centralized in the system model, including simulation parameters and results.

• Domain specialists may develop and execute simulation models using tools they already master.

• The simulation model is automatically consistent with the system specification contained in the

MBSE system model.

• The process of model transformation is not too complex and is not hard to implement or maintain.

The selection of this type of approach is dependent however on the existence of a supporting stan-

dard that is sufficiently mature. The QVT might be the best option for defining model transformations

that are not completely tailored for a specific application, but there is a lack of practical guidance for

the use of this language, and there is also lack of support from the most common MBSE modelling

tools. We selected instead a more recent OMG standard, the SysML Physical Interaction and Signal

Flow Simulation (SysPhS). It concerns the integration of SysML with Simulink, Simscape, and Modelica,

defining a mapping between SysML elements and platform-specific simulation elements. This standard

is extensively documented [67] and is supported by commercial MBSE tools, such as the CSM.

The most relevant part of the element mapping between SysML and Simulink defined by this standard

is presented in Table 2.2. The CSM implements the SysPhS standard with the Simulink Export function,

which transforms any block specified in SysML into a Simulink-based simulation model.

SysML Simulink/Stateflow
Block Subsystem Block

Block with a state machine as classifier behaviour Stateflow Block
Constraint block, typing constraint property S-function

Port Input/Output block
Connector Line

Table 2.2: Mapping between SysML and Simulink/Stateflow constructs specified by the OMG SysPhS.

The SysPhS standard provides comprehensive support to the transformation of SysML structural

modelling, namely the blocks, their ports, and the connections between blocks. The SysML parametric

modelling, specified using par diagrams, is also supported, and is mapped to S-functions in Simulink.

20

However, this standard lacks support for the transformation of behavioural modelling (i.e., the specifica-

tion of how the blocks function), which is essential to specify simulation models.

As mentioned before, in SysML the behaviour is modelled with: (i) activities and interactions, which

are not supported by this standard; and (ii) state machines, which are supported when defined as the

classifier behaviour of a block, being mapped to Stateflow semantics. This lack of support, which results

from lack of maturity of the available standards and the SysML language, poses an obstacle to the

implementation of a model transformation framework. However, in a first approach to the development

of a model transformation, and in the context of preliminary design, this issue may be surpassed.

The CSM also implements two stereotypes defined by the SysPhS standard, the ≪SimulinkBlock≫

and the ≪SimulinkParameter≫. SysML stereotypes are used to extend an existing metaclass to create

a new or modified concept. The first stereotype is applied to a block and the second to a value property

of that same block, with the purpose of defining blocks in the SysML model that are mapped to platform-

specific simulation constructs (i.e., to enable the import of simulation constructs to SysML).

2.5 Design Process Definition

The life cycle management is usually an essential process for the definition of the system. In this

context, graphical representations of the system life cycle are often used, some of which are linear and

sequential. However, iteration and recursion are essential to meet stakeholder needs effectively and

efficiently. Iteration can be defined as the repeated application and interaction of processes at a given

level in a system hierarchy. [3, p. 32] Recursion is instead the repeated application and interaction of

processes at successive levels in the system hierarchy [3, p. 32].

Various life cycle models exist (e.g., Waterfall [68], Spiral [69], Vee [63]), and the selection of a model

is usually closely related to the system definition methodology used. The methodology used in this work

is consistent with the “Vee” life cycle model, which is shown in Figures 2.3 and 2.6. Using this model

as a reference, we define in this section the design process to which the proposed methodology will be

applied, as well as its context and scope (see Figure 2.6).

Subsystem
Realization

System
Realization

Component
Realization

Develop Hardware, Software, Database,
and Operational Procedures

Subsystem
Development

System
Development

Component
Development

Target Scope

Manage System DevelopmentFigure 2.6: Definition of target scope using the “Vee” model.

21

The design process considered in this work targets the subsystem preliminary design phase. Thus,

it is assumed that previous work has been developed in previous life cycle stages, and that the OOSEM

has been applied at the system-level before it can be recursively applied at the subsystem-level. Con-

sidered to be subsequent work is: (i) the detailed design of the subsystem ; (ii) component development,

procurement, and realization; and (iii) assembly, integration, and testing (AIT). In addition, this work will

also not include tasks related to the preparation of V&V activities, such as the development of verifica-

tion plans and definition of validation criteria, which should be performed as part of the specification and

design of the system. This is because these tasks require a more complete definition of the system and

also because it is not possible to validate them within the scope of this work.

In this work, four architecture levels are defined, as shown in Figure 2.7. A mission is usually com-

posed of more than one system, including at least one spacecraft and one ground station. The system

that is most relevant in this work is the spacecraft. It is decomposed into several subsystems (one of

which is the ADCS), and each subsystem is decomposed into components. These can be hardware

components (e.g., sensors and actuators) or software components (e.g., estimators and controllers).

Mission

. . .

. . .

. . .

Spacecraft

ADCS

Mission

System

Subsystem

ComponentAttitude Filter Gyroscope

Figure 2.7: Architecture levels defined in this work.

Since this work concerns a subsystem design process that is part of a broader system design pro-

cess, it is important to clearly define the scope and context of the former as part of the latter. Because

of that, we specify the subsystem design process as a black box, i.e., in terms of inputs, outputs, and

performed tasks, as it is common in the systems engineering discipline. The process, as shown in Fig-

ure 2.8, includes the tasks that are part of three different processes defined in the ISO/IEC/IEEE 15288:

Architecture Definition, Design Definition, and System Analysis. The inputs and outputs are defined in

accordance with the definition of the OOSEM process presented in [14].

Some of the inputs identified in Figure 2.8 concern the mission- and system-levels. The mission

context specifies the different entities that are involved in the mission as well as the interaction of the

system with the external environment, which is relevant to the design of most subsystems. The system

white-box specification provides the context for the subsystem development. This consists of the de-

composition of the system into subsystems and the definition of interactions between subsystems. Also

relevant to the design of each subsystem is the system behaviour specification, since this behaviour will

be divided into simpler behaviours that are allocated to each subsystem.

The subsystem-level inputs specify what is required for a specific design configuration to be valid.

22

The specification of the subsystem is defined with a black box representation, which includes the identi-

fication of relevant quantitative properties and constraints, the definition of the subsystem interface, and

the identification of services that it must provide. The other input consists of a complete list of subsystem

requirements, which also includes the design constraints defined in previous phases of the project. The

definition of these requirements must include the status of the verification process and the traceability

with higher-level requirements, so that requirement change impact analysis may be performed.

Subsystem Design
Process

Subsystem Requirements

Subsystem Black-box Specification

System White-box Specification

System Behaviour Specification

Component Requirements

Subsystem White-box Specification

Subsystem Behaviour Specification

Component Black-box Specification

• Architecture Definition

• Design Definition

• Subsystem Analysis

Mission Context

Figure 2.8: Black-box representation of the subsystem design process.

The outputs of the design process are similar to the inputs since this design process is part of a

recursive application of the OOSEM at successive levels of the architecture. The design process results

in the specification of the subsystem white box representation and its behaviour. Parts of this behaviour

are allocated to each of the components. As component-level outputs, a black box representation of each

of the components is specified together with a set of requirements, which are compiled in a complete list

of component requirements.

2.6 ADCS Design and technology

Since the methodology developed in this work is applied to the design of an ADCS, we must review

some fundamental concepts of ADCS design and technology. The purpose of an ADCS is to determine

and control a space vehicle’s attitude, i.e., its three-dimensional orientation with respect to a specified

reference frame [22, p. 565]. The concepts reviewed in this section will be centred on the design of an

ADCS based on active control techniques.

An ADCS that implements this type of control technique has a structure as represented in Figure 2.9,

which is consistent with the control system structure defined by the ECSS [70]. The ADCS is composed

of sensors, which draw measurements that are used by an attitude determination algorithm to derive an

estimated state. The attitude guidance translates a reference state defined by the mission into a desired

state which, together with the estimated state, is used by attitude control algorithms to derive control

commands. The actuators receive these commands and actuate on the attitude of the spacecraft.

According to [22], the first step in the design of an attitude system is the definition of the ADCS

control modes and the derivation of requirements for each mode. Some typical modes are [22]: (i)

23

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v5.mdzip Control System Context 11/out/2021 19:06:22

Control System ContextControl System Context[Block] ibd][

 : ADCS

 : Attitude Determination

 : Attitude Control : Actuators

 : Sensors

 : Attitude
Guidance

 : Controlled
Plant

estimated state

control commands

measured state

desired statereference state

measurement

actuation

Figure 2.9: Structure of an ADCS based on active control techniques.

normal mission, used for regular mission operation; (ii) slew, i.e., reorienting the vehicle; (iii) safe mode,

used in emergencies; and (iv) detumbling, i.e., to null all angular velocity components of the spacecraft.

Depending on the mission objectives, the ADCS may be designed to stabilize a spacecraft relative to

an inertial frame or relative to a rotating frame. The former applies to spacecrafts designed to observe

distant stars, for example, while the latter applies to spacecrafts designed for Earth observation.

2.6.1 Sensors

The sensors used for the determination of the spacecraft attitude either measure the angular velocity

of the spacecraft or a known vector quantity, i.e., a vector quantity that can be estimated in the inertial

frame. These two types of measurements can then be integrated to determine attitude with high accu-

racy at a high enough frequency. The measurement of a known vector quantity is always coupled with

the estimation, in the inertial frame, of that same quantity. There are several types of attitude sensors:

Gyroscope Gyroscopes measure either the speed or angle of rotation of the spacecraft relative to an

inertial reference. There are three types of gyroscopes: spinning mass gyros, optical gyros, and Coriolis

vibrating gyros (CVGs) [71]. Spinning-mass gyros rely on the conservation of angular momentum of a

rotating mass relative to an inertial reference, optical gyros are based on the Sagnac effect, and CVGs

rely on vibrational modes being induced in structures by the Coriolis effect. CVGs based on MEMS

technology are commonly used in CubeSats because they are small and have a low cost, mass, and

power consumption. However, they suffer from the problem of drift due to thermal variations [72], which

may be compensated with attitude filtering.

Magnetometer Magnetometers are widely used as spacecraft attitude sensors [73]. These are specif-

ically used as attitude sensors in LEO orbits, since a well-modelled magnetic field is required [71]. They

are reliable and have a low mass and power consumption. The measurements of the magnetometer

are easily disturbed by the magnetic dipole induced by magnetic torquers. Thus, magnetometer mea-

surements must alternate with magnetic torquer actuation intervals. The simplicity and low cost of this

type of sensor contrast with a lower accuracy, when compared with star or horizon sensors, for example.

The accuracy of a magnetometer ranges from 0.5◦ to 3◦ [22] but, since the Earth magnetic field vector

cannot be precisely computed, the actual accuracy is lower. For the computation of the Earth magnetic

24

field vector, a precise estimate or measurement of the spacecraft position is required.

Sun Sensor Sun sensors can be divided into two categories: coarse sun sensors (CSSs) and fine or

digital sun sensors (DSSs) [71]. CSSs are usually photodiodes, which output an electric current directly

proportional to the cosine of the Sun angle. For an accurate Sun vector estimate to be derived, at

least three CSSs must have the Sun in their field-of-view (FOV). DSSs are larger, more expensive, and

heavier, as well as more accurate and reliable. The Sun vector can be estimated using only one DSS if

the Sun is inside its FOV. The determination of the Sun vector in the inertial frame may be accomplished

by on-board propagation of the Earth’s orbit around the Sun. LEO orbits usually include eclipse periods,

and the regular loss of the Sun vector data may compromise the ability to meet pointing requirements.

CSSs have a measurement error of up to 3◦ [22], but the influence of the Earth albedo can severely

degrade their accuracy. In contrast, DSSs can be quite accurate, with measurement errors being as low

as 0.01◦ [22].

Earth Sensor Earth sensors (also called horizon sensors) are infrared devices which can detect the

“contrast between the cold of deep space and the heat of the Earth’s atmosphere” [22]. These detect

points on the Earth’s horizon which are then used to derive a nadir vector. Earth sensors require an

unobstructed FOV and, for complete coverage, two or more sensors are usually required, since the

FOV of the sensor is typically 180 degrees or less. The nadir vector can be determined in the ECI

frame directly from the estimate of the spacecraft position. Earth sensors are specifically appropriate

for Earth-pointing spacecrafts, for which only one sensor may be enough if mounted appropriately. The

accuracy of this type of sensor can range from 0.1◦ to 0.25◦ [22].

Star Tracker Star trackers track one or more stars to derive attitude information. These are basically

digital cameras which allow the light from stars to fall on a CCD (charge-coupled device) or an APS

(active pixel sensor), creating an image of the star field [22]. These sensors are very accurate, with

errors ranging from 0.0003 to 0.01 degrees [22], but they are also usually heavier, larger, and more

expensive than other types of attitude sensors.

2.6.2 Attitude Determination

Determining the attitude of a body requires finding three independent scalar quantities, such as any

minimal parametrization of the attitude matrix [71, p. 183] (e.g., the three Euler angles). The first ever

published attitude determination methods were static [71] (e.g., TRIAD algorithm), i.e., they relied on

two or more vector measurements to algebraically compute an attitude estimate without making explicit

use of knowledge of the spacecraft motion.

Since then, using attitude filters has become the most common approach, with these providing more

accurate attitude estimates than static methods [71]. Vector measurements are combined with a ro-

tational kinematics model, which is propagated using the angular rates that are measured with a gy-

roscope. As mentioned before, gyroscope measurements suffer from drift, which causes the attitude

25

propagation to quickly diverge. The vector measurements are used by the attitude filters to correct the

attitude propagation and estimate the gyroscope drift.

Early applications mostly used extended Kalman filters for determining attitude [74]. Several schemes

using Kalman filters exist, differing on their treatment of the attitude error, some of which are examined in

[75]. Since then, new approaches have been developed, some of which have proven to be superior to the

extended Kalman filter (e.g., filter QUEST, extended QUEST, backwards-smoothing extended Kalman

filter) [74]. The choice of an appropriate attitude determination method depends on many variables,

including the required accuracy, vehicle properties, sensors, and available resources (e.g., processing

power or memory).

2.6.3 Actuators

Attitude actuators can be divided into two categories: momentum-exchange devices, which conserve

angular momentum (e.g., reaction wheels), and external torque actuators, which change the angular

momentum of the spacecraft by producing external torques (e.g., magnetic torquers or thrusters) [22].

Magnetic Torquer Magnetic torquers consist of magnetic coils that create a magnetic dipole which

interacts with the Earth magnetic field, resulting in an applied torque that is orthogonal to both the mag-

netic dipole and the magnetic field vector [73]. These can be used for attitude control but also to unload

angular momentum accumulated by reaction wheels. Magnetic torquers are simple and inexpensive

and they are especially used in LEO, where the Earth magnetic field intensity is higher. Three torquers

mounted orthogonally can create a magnetic dipole with any direction, but at any given moment, no

torque can be provided about the Earth magnetic field vector. As the latitude or altitude vary, the mag-

netic field vector changes its direction, providing new directions for the actuation torque [22]. For the

operation of a magnetic torquer, the Earth magnetic field vector must be known in the body frame, for

example, using magnetometer readings.

Reaction Wheel Reaction wheels are the primary attitude control actuators of most spacecrafts [71].

These are basically torque motors with high-inertia rotors [22]. Each reaction wheel provides one axis of

control, which means three wheels with non-coplanar axes are required for 3-axis control. Sometimes

one extra wheel is also added for redundancy. The two most relevant performance attributes of reaction

wheels are the angular momentum capacity and the maximum actuation torque (which varies with the

wheel angular rate). The angular momentum capacity is usually sized to enable the reaction wheels to

counteract the full cyclic disturbance components without requiring frequent momentum dumping [22].

The momentum accumulated due to secular components of the disturbances can in some cases be

dumped from time to time, using an external torque actuator. The maximum actuation torque is usually

constrained by slew requirements of the ADCS [22]. Reaction wheels provide a more precise attitude

control, when compared to magnetic torquers, but they are heavier, larger, and more expensive [76].

26

Control Moment Gyros Control Moment Gyros (CMG) are “single- or double-gimbaled wheels spin-

ning at constant speed” [22, p. 580]. High output torques can be obtained by turning the gimbal axis

and two CMGs can produce torques about all three axes of the body frame. This type of actuator is

used for high-torque and fine control applications only, because they: (i) are expensive and heavy; (ii)

have short lifetimes and high-power needs; and (iii) require complex control laws and careful momentum

management to avoid wheel saturation [22].

Thruster Thrusters produce a force by “expelling material, called propellant, at high velocity from their

exit nozzles” [22, p. 580]. These can be used for both trajectory control and attitude control, which makes

them a viable option for spacecrafts that both require orbital manoeuvres or corrections and attitude

stabilization. The torque provided by a thruster is proportional to their moment arm, which means that it

is both limited by the available force and the physical dimensions of the spacecraft. The disadvantages

of this type of actuators are the use of expendable propellant and the difficulty of obtaining, for a given

thruster configuration, both high-torque and fine attitude control.

2.6.4 Attitude Guidance and Control

For each mode of an ADCS, different objectives are defined, and distinct guidance and control algorithms

may be required. The ADCS design of a nanosatellite usually includes detumbling algorithms that are

simple and extremely reliable. This way, essential functions of the spacecraft that cannot be performed

under high angular rates are not exposed to failure of the more complex ADCS algorithms or hardware.

Control algorithms for 2-axis or 3-axis attitude stabilization are often more complex. Attitude guidance

is designed according to the specific objectives of the mission, usually translating some reference state

into a desired attitude and angular velocity. These last two are inputs to the attitude control algorithms,

whose design depends on the characteristics of the spacecraft, the mission objectives for each mode of

operation, and the selected actuators.

Algorithms based on proportional-derivative (PD) control are among the simplest algorithms that can

be used for attitude control. This type of algorithm has for a long time been shown to be effective for

attitude control based on unrestricted actuation [77]. In the case of using magnetic torquers, which

are restricted in terms of actuation direction as mentioned above, the accuracy of this type of control

algorithm may be insufficient. Nonetheless, ADCS designs comprising magnetic torquer actuation and

PD attitude control are proposed in literature [78–80]. Multiple methods are used for the definition

of the PD gains, such as linear-quadratic regulation (LQR) [79]. For cases in which stability margin

requirements are easy to meet, but accuracy requirements are difficult, a proportional-integral-derivative

(PID) controller may be used instead, to remove the steady-state attitude error [22].

More complex attitude control algorithms have also been proposed, e.g., based on model predictive

control techniques or sliding-mode control techniques. In addition to the accuracy of the attitude control,

some other performance indicators are also commonly studied, such as stability margins (e.g., gain

margin and phase margin) or the level of robustness (i.e., “the size of the uncertainty domain over which

control objectives are achieved” [81]).

27

Chapter 3

Approach

3.1 Methodology Adaptation

In this work, we propose an MBSE methodology that is tailored for the design of a spacecraft subsystem,

and we apply it to a design process following the definition in Section 2.5. This methodology results from

the adaptation and extension of the OOSEM (discussed in Section 2.3). The modifications made to the

OOSEM aim to adapt it to the design of a subsystem while reducing the overall complexity of the design

process. Also, the OOSEM is extended to include the integration of simulation into the design process,

which is implemented with a model transformation approach that leverages the SysPhS standard. This

approach results in the generation of a complete Functional Engineering Simulator. To this end, a

framework capable of generating simulation models from SysML specification is developed.

The integration between MBSE and simulation constitutes an interaction between systems engineer-

ing and other specialized domains. Systems engineers cannot develop a SysML model that caters to the

needs of the domain specialists and the latter cannot migrate their domain-specific models to SysML.

Instead, the SysML system model can be integrated with the domain-specific models.

With this type of approach, we consider that a set of “subsystem engineers” are required, whom must

have a good understanding of SE practices and master the use of MBSE tools and languages, while

having a proper knowledge of one specialty field. These engineers are responsible for specifying the

design of one subsystem in SysML and implementing the integration between SysML and the simulation

environment. Teams of specialist engineers of the same field may then develop and maintain mathemat-

ical models and execute simulations using a dedicated simulation environment, as well as perform other

activities such as validating the models or developing and testing hardware and software components.

Since the focus of this work is the design of a subsystem, its scope does not include the application of

the Analyse Stakeholder Needs activity and all the other OOSEM activities at the system-level. However,

since we aim to design a subsystem in the context of a complete system design process, the artifacts

that result from the application of these activities are a pre-condition to this work (e.g., the decomposition

of the system into subsystems provides necessary context for the design of each subsystem).

To ensure a reduction in the modelling effort required to generate these artifacts, the model devel-

oped in [21] was used as a basis for the model developed in this work. The model in [21] results from

28

the application of OOSEM to the development of a preferred system architecture of a spacecraft. The

reuse of this model reduces the total modelling effort because the organization of the model and some

of its elements can be reused, including the mission- and system-level specification, as they are equally

valid in the context of this work. Modifications were made to the model organization, due to methodol-

ogy changes, and to the mission- and system-level specification, reflecting the differences between the

design scenario implemented in this work and the one implemented in [21].

3.1.1 Process Adaptation

The OOSEM process, shown in Figure 2.4, was modified to become less complex and better suited for

the design of a subsystem, resulting in the subsystem definition process represented in Figure 3.1. The

modifications applied to the OOSEM process are described in this section.

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v7.mdzip Specify and Design Subsystem 31/out/2021 12:34:23

Specify and Design SubsystemSpecify and Design Subsystem[Activity] act][

Manage Requirements Traceability

Optimize and
Evaluate Alternatives

Synthesize
Candidate Physical

ArchitecturesDefine
Functional

Architecture

Design
Logical

Architecture

Define
Subsystem

 State
Machine

Figure 3.1: Subsystem design methodology process (each node represents an activity or task).

First, in a recursive application of the OOSEM process, the Synthetize Candidate Physical Architec-

tures activity applied at the system-level contains the same tasks as the Analyse System Requirements

activity applied at the subsystem-level (see Figure 2.4), except for the specification of the subsystem

state machine behaviour. To resolve this redundancy, we concentrate at the system-level all the tasks

in common, so that their application becomes a pre-condition to the subsystem design process. The

reason for this is that some of the inputs to the design process defined in Figure 2.8 result from the ap-

plication of these activities. Thus, in the final methodology process, the Analyse System Requirements

activity is replaced by the task of specifying the subsystem state machine behaviour (see Figure 3.1).

Additionally, the OOSEM defines two levels of component abstraction, but we consider that three lev-

els are required for the definition of the subsystem-level of the architecture (an approach also followed in

[47]). The OOSEM defines a logical level, in which components are defined in terms of their functional-

ity, without the imposition of implementation constraints; and a physical level, in which components are

defined as specific implementations of the available technology.

To support the view that three levels are required, we may consider a specific example. In an early

design phase, the need may be identified for including a momentum accumulator device in the ADCS

design (first level of abstraction). Later, the available technology at a specific moment in time is con-

sidered and different types of momentum accumulator devices are compared, resulting in the selection

of one of them, e.g., reaction wheels (second level of abstraction). Many different types, sizes, and

29

manufacturers of reaction wheels are available, so one final level of abstraction is required to represent

the selection of either a particular procured model or a specific in-house design of a reaction wheel.

In this work, we define the three layers as the functional, logical, and physical architectures of the

subsystem. The definitions used are: (i) the functional level consists of the definition of function (equiva-

lent to the logical level defined in [14]); (ii) the logical level consists of a particular implementation of the

available technology (equivalent to the physical level defined in [14]); and (iii) the physical level consists

of the selection of a particular procured or developed component. Since the layer definitions presented

in this work and in [14] are not consistent, hereinafter the definitions used are those presented here.

One final modification to the OOSEM was made, addressing the fact that performing analysis at all

the levels of abstraction is too complex for the scope of this work. The architecture layers are usually

defined sequentially and recursively, and for all these, candidate architectures can be synthesized and

compared using some type of analysis. To reduce the complexity of the design process, architecture

alternatives are only analysed at the physical level of abstraction, where the characteristics of the com-

ponents can be easily determined (e.g., through the specification of COTS solutions). For more abstract

layers, these characteristics can be determined by using pre-existing designs as a reference. For exam-

ple, the precision of a magnetic torquer-based attitude controller may be estimated by evaluating known

ADCS designs that use this type of actuator, before the actual precision is determined with simulation.

3.1.2 Activity Definition

In Figure 3.1, the Define Subsystem State Machine node represents a task, and the remaining nodes

represent activities (which are composed of multiple tasks). This task is applied in this methodology as

defined in [14] and the remaining activities are defined in this section.

In this methodology, the Manage Requirements Traceability activity is defined exactly as in [14] (see

Figure 3.2). The specification tree is defined first, providing an organizational scheme for the definition

of text-based requirements at each level of the architecture. As requirements are captured in the model,

relationships are established between these and other requirements in the specification tree (namely

derive requirement and refine relationships), as well as with other types of elements (namely satisfy

and verify relationships). Examples of these relationships are shown in Figure 2.2. During the complete

design process, as requirements are updated and traceability gaps are identified, iterations will occur to

redefine the requirements or the relationships defined previously.

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v7.mdzip Manage Requirements Traceability 31/out/2021 12:38:40

Manage Requirements TraceabilityManage Requirements Traceability[Activity] act][

Analyse
Traceability

Gaps

Manage
Requirements

 Updates
Establish

Relationships
and Rationale

Capture Text-
based

Requirements
 in Model

Define
Specification

 Tree

Figure 3.2: Manage Requirements Traceability process (each node represents a task).

30

With the scope defined for this work, we are able to demonstrate the definition of the specification

tree and the capture of text-based subsystem requirements. The relationships between the requirements

and the elements that satisfy and verify them are also modelled. Traceability between subsystem re-

quirements and higher-level requirements is demonstrated for a subset of the subsystem requirements.

The definition of the functional architecture of the subsystem, represented in Figure 3.3, is based

on the process defined in [14] for the Define Logical Architecture activity. The subsystem is first de-

composed into functions (or functional components), after which a set of interactions between these are

modelled to realize the previously specified behaviours of the subsystem (which are usually modelled

with activities). The interactions that are defined clarify how the functional components should be con-

nected to each other, facilitating the task that follows, which consists of specifying the internal structure

of the subsystem using an ibd. The final step is the specification of each functional component as a

black box, part of which results directly from the application of the previous two tasks.

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v7.mdzip Define Functional Architecture 31/out/2021 12:54:03

Define Functional ArchitectureDefine Functional Architecture[Activity] act][

Define Interaction
Between Components

to Realize Activity

Define
Functional

Decomposition Specify
Functional

Components

Define
Functional

IBD[next subsystem activity]

[subsystem activities analysed]

Figure 3.3: Define Functional Architecture process (each node represents a task).

The design of the logical architecture follows a process as shown in Figure 3.4, which is based on the

one defined in [14] for the Synthetize Candidate Physical Architectures activity. This activity starts with

the definition of the logical architecture of the subsystem, which follows the process shown in Figure 3.3,

but at the logical level of abstraction. After the definition of the logical architecture, software and hard-

ware architectures of each subsystem are defined and integrated with those of the other subsystems.

This results in software and hardware architectures defined at the subsystem level but extending across

the complete system. Their specification ensures that the design of each subsystem is well integrated

with the other subsystems. The final step in this process is the specification of the requirements for each

logical component, which results from the application of the tasks already mentioned, but also from the

continuous capture of critical component properties during the complete application of this activity.

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v7.mdzip Design Logical Architecture 31/out/2021 13:01:57

Design Logical ArchitectureDesign Logical Architecture[Activity] act][

Capture Critical Component Properties

Define Hardw are
Architecture

Define Software
Architecture

Specify Logical
Component

Requirements

Define
Logical

Architecture

Figure 3.4: Define Logical Architecture process (each node represents a task).

The process used for synthesizing candidate physical architectures is represented in Figure 3.5.

31

According to the needs of the project, a set of candidate physical architecture are defined. These are

then analysed and compared, and a preferred architecture is selected. The physical architectures do

not differ from the logical architecture in terms of structure or behaviour. The definition of the candidate

physical architectures consists solely of attributing values to the value properties of the components

of the subsystem and redefining element multiplicities. In this work, the different candidates will only

differ in terms of element multiplicities, i.e., different options of components are not compared. This is

because comparing architectures that differ in their composition is more interesting to the validation of

the methodology than comparing architectures with different component options. In fact, to compare

different component options, we only change the values of some of the attributes and repeat the exact

same model transformation process (used to generate a simulation model).

Figure 3.5: Synthesize Candidate Physical Architectures process (each node represents a task).

The Optimize and Evaluate Alternatives activity requires the support of simulation which, as men-

tioned in Section 2.4, must be performed inside the scope of a dedicated simulation environment. The

process for this activity, which is shown in Figure 3.6, is based on the one defined in [14]. All the re-

quired analyses are identified, and for each of these an analysis context is defined. An analysis context

is a block that is composed of all the elements relevant to the analysis, including the complete SysML

specification of the simulation model’s internal structure and of the behaviour of all the elements con-

tained in its architecture. While the process for this activity is similar to the one defined in the OOSEM,

the methods used to implement the tasks of defining the analysis context and performing engineering

analysis must be extended to include the integration between the MBSE modelling tool and a simulation

environment. These methods are discussed in Section 3.1.3.

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v5.mdzip Optimize and Evaluate Alternatives 3/out/2021 15:11:38

Optimize and Evaluate AlternativesOptimize and Evaluate Alternatives[Activity] act][

Identify
Analyses to be

Performed

Perform
Engineering

Analysis

Define
Analysis
Context

Figure 3.6: Optimize and Evaluate Alternatives process (each node represents a task).

3.1.3 Integrating MBSE with Simulation

System simulation has many potential uses in support of engineering activities across the system life

cycle, some of which are presented in [60]. In this work, simulation is essential to support the early

verification of requirements, especially performance requirements.

32

The methodology proposed in this chapter addresses the design of a spacecraft subsystem, and

most of its activities focus on the definition of the subsystem architecture and on the specification of

subsystem design configurations. Both of these are developed according to requirements defined for

the subsystem. In this context, analysis must be used to compare the performance of different designs

or to verify if a specific design is valid (i.e., satisfies the requirements), which in the case of complex

dynamic behaviour usually is performed with simulation. In this methodology, all analysis activities are

integrated into the Optimize and Evaluate Alternatives process.

In the context of MBSE, the capability of performing simulation consists of being able to execute the

specification contained in the system model. The integration of the MBSE tool with a simulation environ-

ment is intended to implement this execution of the system specification. In this work, this integration is

implemented with a model transformation approach, which aims to transform SysML specification into a

different type of specification based on executable semantics, essentially generating a simulation model

that can be executed. For the part of the specification that cannot be transformed, due to semantic in-

compatibility, it must be replicated manually using executable semantics, and the latter may then replace

the former in the simulation model.

As mentioned in Section 2.4, the objective of this integration is to generate a Functional Engineering

Simulator that can be executed to generate values for TPMs. In this section we propose a method for

this integration, which applies specifically to the case of generating an individual simulation model from

a single analysis context specified in SysML. The analysis context can be exported to the simulation

environment, in this case MATLAB/Simulink, as a simulation-ready model.

Overall Model Transformation Approach

Before the transformation is performed, the system, the environment, and the analysis context must be

specified in SysML, and the mathematical models must be created in Simulink. To do this, we must:

1. Model the components of the system and environment in SysML and Simulink.

2. Specify the system and environment in SysML using bdd, ibd, stm, and par diagrams.

3. Specify the Monitoring and Control block (see Figure 2.5).

4. Specify the analysis context, which integrates the system with the environment and the Monitoring

and Control block.

5. Define values for the attributes of the system and environment, and for the general simulation

parameters.

6. Create tables outlining key aspects of the SysML specification and synchronise these with Excel

spreadsheets (more details are provided later in this section).

The process of performing engineering analysis consists of applying the model transformation pro-

cess and executing the simulation model. The model transformation process uses the Simulink Export

33

function of CSM, which implements the SysPhS standard, and a MATLAB program that was developed

to extend this CSM function. In the point of view of the user, the following actions are taken:

1. Ensure that the Excel spreadsheet synchronization is up to date.

2. Select the analysis context in the CSM tool and press the Simulink Export button.

3. After the Simulink model is generated by CSM, execute the MATLAB program.

4. Run the Simulink model (the TPM values will be automatically generated and saved).

The model transformation workflow is represented in Figure 3.7. The Simulink Export function ap-

plies to any block in the model, exporting a simulation model which replicates its internal structure. The

internal structure in this case comprises the decomposition of the block into other blocks, the external

interface of the block and its composing elements (i.e., their ports), and the connection between any two

ports owned by composing blocks. The analysis context is exported using this function (identified as

step 1 in Figure 3.7). All the components contained in the analysis context are exported as black boxes,

or empty Simulink blocks, since this is how they are defined in SysML.

SysML

1
Simulink

Parameter Value

param1 1.234

param2 ‘algorithm1’

… …

Mathematical Models

Final Simulation Model

Attribute Values State Machines

3

Stateflow Blocks3

Simulation Model Architecture

2

C1

C2

Figure 3.7: Model transformation workflow. The large grey arrows represent steps in the transformation.

34

The CSM function can generate the “skeleton” of the simulation model, but the rest of the trans-

formation must be performed by the developed MATLAB program. Mathematical models should be

developed inside the scope of the simulation environment, but these can only be created to represent

the behaviour of the lower-level elements, i.e., the components. These mathematical models, which are

created in Simulink as Subsystem blocks, replace the exported empty Simulink blocks in the process of

generating the final simulation model (step 2 in Figure 3.7). Libraries are created both in SysML and

Simulink, containing representations of hardware and software components, which may either be COTS

or developed in-house. These libraries can and should be reused across different projects, contributing

to the reduction of project resource expenditure.

With this model transformation approach, most of the behaviour of the system and all its composing

elements, in specific that which is relevant for simulation, is first decomposed down to the component-

level. At this level, the behaviour of the elements can be specified in SysML, while a mathematical

representation of the behaviour is also created in Simulink to be used in simulation. However, the

behaviour of complex systems in general cannot be completely decomposed into behaviour of the com-

ponents. To address this issue, this approach also enables the transformation of SysML state machines

into Stateflow blocks defined in Simulink (step 3 in Figure 3.7).

SysML state machines specify the behaviour of elements in terms of the states in which they may be.

Multiple states can be specified as well as the behaviour of the element in each of its states. Transitions

between states are also specified in terms of the events that trigger them, the conditions that must be

verified for them to occur, and the effect they have regarding the behaviour of the element. This type of

behaviour specification is essential in a simulation model, since the behaviour of the elements involved

in the simulation may depend on the state in which other elements are in each instant.

Parameter values are transferred from SysML specification into the simulation model, ensuring that

all the quantitative attributes of the elements can be both specified in SysML and accessed directly by

the simulation environment (step 4 in Figure 3.7). In the rest of this section, a closer look is taken into

each specific aspect of the model transformation approach.

Modelling Internal Structure

The internal structure of the analysis context and its composing elements, specified with ibd diagrams,

can be easily replicated into a Simulink model using the CSM Simulink Export function. However,

this standard introduces some constraints into the SysML modelling practices. First, it requires that

ports have only one direction and that they be typed by interface blocks. These are composed of flow

properties, which define the types of entities that flow through the port. Additionally, two blocks may

not interact with each other via a connection between ports, without this connection passing through all

the intermediate levels of the architecture (an example of this is available in Figure 4.3, concerning the

connections between the ADCS and the SC Rotation block).

35

Modelling Components

Components are modelled in SysML as black boxes, and so they only contain a set of ports, value

properties, and allocated behaviours. Since these are modelled both in SysML and Simulink, a mapping

between these two representations is required. As a default, a block in SysML is mapped to a Subsystem

block in Simulink that has the same name, if one exists. However, this default mapping can sometimes

be restrictive, and so the property owned comment of a block can be used to define the name of a

different Subsystem block that models its behaviour, overriding the default mapping.

The ports owned by the block must match the inputs and outputs of the Subsystem block both in their

order and directions. Also, all the time-independent parameters that are used in the Subsystem block,

must be defined in SysML as value properties of the component block (see Figure 3.8). When changes

must be made to a component, these changes are propagated automatically through the model, but

consistency between the SysML and Simulink black box representations must be ensured manually.

Figure 3.8: Example of the mapping between SysML and Simulink representations of a component. The
environment is also divided into components, which are identified with the stereotype ≪analysis≫.

Defining the scope of the simulation model

The MATLAB program connects the raw simulation model exported by the CSM with the mathematical

models stored in a Simulink library. For this, the user must identify all the elements whose Simulink

representation is relevant to the simulation model in question. To this end, a table is generated outlining

each part property defined in the model in terms of: (i) its name, used to uniquely identify any element in

the architecture; (ii) the name of the block that types it, which is necessary to know what mathematical

model represents its behaviour; and (iii) the name of the instance specification that is defined as its

default value, which specifies values for the attributes of the specific element (see Figure 3.9).

Figure 3.9: Segment of the table outlining the part properties relevant to the simulation model.

Defining Parameter Values

With the same simulation model, different simulations for different system configurations may be per-

formed by changing the values of the internal parameters. These internal parameters are specified as

36

value properties of the component blocks, as mentioned above, and they must be completely defined

inside the SysML model, to ensure the centralization of information into a single source of truth.

Some value properties in the model are related to each other, representing the same quantitative

attribute. For example, the Spacecraft Rotation Dynamics block owns a value property that represents

the moment of inertia of the spacecraft, a parameter necessary to compute its attitude and angular

velocity. However, this parameter is also represented by a value property of the Spacecraft block, since

this is a quantitative attribute of the spacecraft as a whole. In these situations, par diagrams are used to

define binding connectors between the two properties, which define a mathematical equality relationship.

The MATLAB program retrieves all the relevant information for the definition of parameter values and

introduces these into the exported Simulink model. To support this process, a table as the one in Figure

3.10 is created to outline all the values defined with instance specifications. The information in this table

relates each instance specification to the value properties defined by it, including the values attributed

to each property. When value properties are connected in par diagrams, a value is attributed to one of

these, while the other is presented in the table without a specified value. By processing the specification

of the binding connectors mentioned above, the MATLAB program fills in the gaps automatically.

Figure 3.10: Segment of the table outlining the values defined with instance specifications.

Transformation of SysML State Machines into Stateflow blocks

The semantics of SysML state machines are very extensive [14], so the transformation of state machines

into Stateflow blocks that is developed here supports only the most relevant parts of these semantics.

The mapping used between SysML and Stateflow constructs is presented in Table 3.1, and it is based

on the mapping defined by the SysPhS. The MATLAB program that implements this transformation uses

the Stateflow API [82] to create and specify the Stateflow blocks inside the Simulink model.

SysML Stateflow
State State

Transition Transition
Junction Pseudostate Junction

Transition from initial pseudostate Default Transition
Guard Condition

Relative TimeEvent after() statement
SignalEvent Message

Table 3.1: Mapping between SysML state machine and Stateflow constructs.

Some SysML constructs are not supported by this model transformation approach, such as multiple

37

regions inside a state machine, composite states, absolute time events, and call events. An alternative

to modelling composite states that is compatible with this model transformation method is to specify the

behaviour of a state with its own state machine.

The process of transforming state machines into Stateflow blocks starts with the identification of all

the state machines in the model that may be relevant for the simulation. These are listed in a table, such

as the one shown in Figure 3.11 (left), where the name of the state machine is matched to an owner

block and to an owned comment. The MATLAB program adds a Stateflow block to every Simulink block

representing an element whose behaviour is specified by one of the state machines that are listed.

In SysML, a block owns the state machine that represents its classifier behaviour as well as all

the state machines that specify states of this behaviour. To create a distinction, the owned comment

property is used to specify if the state machine represents a classifier behaviour or the behaviour of a

state. The string “CB” indicates that the state machine represents a classifier behaviour (see Figure

3.11). Each state machine contains only one active state at a time, which is held in a variable that is

matched to each state machine and outlined in a table, as shown in Figure 3.11 (right).

Figure 3.11: List of state machines relevant to the simulation model (left) and correspondence between
each state machine and the name of the variable that stores its active state (right).

For each Stateflow block added to the simulation model, the MATLAB program first creates all the

states contained in the state machine. All the states contained in the relevant state machines are outlined

in a table, as shown in Figure 3.12. The entry, do, and exit behaviours specified in SysML, and outlined

in this table, are attributed to the state in Stateflow if they are typed by an opaque behaviour (a behaviour

expressed as a set of language-specific statements). An additional entry action is added to each state

in a Stateflow block defining the value of the variable which holds the active state information.

Figure 3.12: Segment of the table outlining the states contained in the relevant state machines.

The integer value attributed to each state is outlined in the table shown in Figure 3.12. As an example,

in the Stateflow block representing the behaviour of the spacecraft, when the on state is entered, the

value of the variable scMode is changed to 1. Also, the active state of a Stateflow block must be

accessible externally. To ensure this, an output data object is created for the variable that specifies the

active state. This output is connected to a goto flag with the name of the variable, making it globally

accessible in the simulation model. Figure 3.13 shows a sample Stateflow block that is used here to

38

exemplify some of the relevant aspects of this transformation. In this example, the variable that identifies

the active state of the state machine STM1 is called activeState STM1. As mentioned above, an output

of the Stateflow block is created for this variable, and it is connected to a goto flag.

The table in Figure 3.12 also identifies the states that are specified with a submachine, so that the

MATLAB program can identify the states that are specified with a state machine. This program is capable

of specifying the internal elements of this state exactly as if it were a new Stateflow block.

Figure 3.13: Example of a Stateflow block generated from SysML specification.

A different table is used to summarize all the pseudostates used in each state machine. Initial

pseudostates are defined in Stateflow as default transitions, junction pseudostates are replaced by

junctions, and forks and joins are supressed when the Stateflow block is generated. This is done by

redefining either the source of the incoming transitions or target of the outgoing transitions, respectively.

After the states and pseudostates have been created inside the Stateflow block, transitions can be

created according to the transition specification outlined in a table as the one shown in Figure 3.14.

Figure 3.14: Segment of the table outlining the transitions contained in the relevant state machines.

The transitions are added to the Stateflow block (or state), matching the source and target states

or pseudostates identified in the table. The guard of a transition is defined as the condition of that

same transition in Stateflow, and an effect is added to the transition if it is specified in SysML with an

opaque behaviour. Two types of transition events are supported by the transformation: relative time

events, which trigger after a specified time interval; or signal events, which are mapped to messages in

Stateflow. These messages are defined as inputs of the Stateflow block and they can only be sent by the

Monitoring and Control block (this topic is further discussed later in this section). In the example shown

in Figure 3.13, the Stateflow block STM1 has an input that corresponds to the message SignalEvent1,

which is used in the definition of one or more internal transitions.

Relative time events, guards, and effects of transitions may all be specified using time-independent

parameters that are defined as value properties in the model. An example of this is available in Figure

4.8, in which the parameter PointThresh is used in the definition of two transitions. In this case, the

MATLAB program can identify the use of these parameters and replace them with the value that is

39

defined in the table shown in Figure 3.10.

Another possibility is that the guard or effect of a transition uses a parameter that specifies the active

state of another state machine. An example of this is available in Figure 4.8, in which the variable scMode

is used in the definition of two transitions. In this case, the MATLAB program creates an additional input

data object in the Stateflow block, which is connected to a from flag that accesses the corresponding

globally accessible variable. Figure 3.13 shows an example in which a transition in STM1 uses the

variable activeState STM2, which holds the active state of a state machine named STM2.

Finally, the guard and effect of a transition may also use a time-dependent parameter that is defined

as a value property of the block that owns the state machine in question. This value property must be

connected to a port of one of the block’s composing elements. An example of this is available in Figure

4.8, in which the parameter angRate, representing the instantaneous angular rate of the spacecraft, is

used in the definition of two transitions. An input data object is defined for this parameter and the same

connection modelled in SysML is replicated in the Simulink model by the MATLAB program. In Figure

3.13, the parameter timeVariantParameter1, which is associated to an output of a composing element,

is used in the specification of one or more transitions in STM1.

Using Simulink Semantics in SysML

In some cases, the SysML semantics are not able to precisely represent some aspects of the system that

are algebraic in nature. To solve this problem, Simulink semantics may be imported into SysML using the

stereotypes discussed in Section 2.4, ≪SimulinkBlock≫ and ≪SimulinkParameter≫. In this work, there

was the need to represent the sum of vectors and scalars in an ibd, and this was accomplished using

a Sum block from Simulink. Also, the multiplexing of three scalar components into a single vector and

the inverse demultiplexing were easily represented using the Simulink native blocks Mux and Demux.

When a Simulink model is generated with the Simulink Export function, these blocks that were imported

to SysML are automatically replaced by the corresponding native Simulink blocks.

Specifying the Monitoring and Control block

The Monitoring and Control block, part of the FES structure as shown in Figure 2.5, is defined in [60]

as consisting of scenario definition functions and post-processing functions. With this approach, this

element of the analysis context owns ports that are connected to the Mission Context block. These

ports are internally connected to blocks that represent the processing of time-dependent parameters.

This processing results in the generation of error indices that are necessary for posterior derivation

of TPM values. This process is discussed in Appendix B. The elements that process time-dependent

parameters are defined as components in SysML and are specified mathematically with Subsystem

blocks in Simulink.

The Monitoring and Control block in Simulink also sends messages that correspond to signal events

in SysML. These messages are necessary to trigger transitions in the Stateflow blocks at specific in-

stants, according to the defined simulation scenario. The instants in which the messages are sent are

40

specified in SysML with an interaction, which defines the specific scenario that is simulated in Simulink.

Configuring and Executing the Simulation Model

The properties of the Simulink model, such as Stop Time, Start Time, or Step Size, can also be specified

in SysML. For each of these, a value property is created and attributed to the analysis context. The

values for these parameters are defined in the table shown in Figure 3.10, and they are attributed to the

corresponding Simulink model properties by the MATLAB program.

There are two properties of the simulation model that are specifically relevant in this approach: the

StartFCN property, specifying MATLAB functions that are run before the simulation; and the StopFCN

property, specifying MATLAB functions that are run after the simulation. The first is needed to specify the

MATLAB functions required for the setup of the various mathematical models. The second is needed to

specify the MATLAB functions that are executed to derive TPM values from the generated error indices.

These function calls are specified in SysML, including their input parameters, which may use value

properties specified in the model in their definition. The MATLAB program processes these function

calls, replacing value property names with the corresponding values defined in SysML.

The MATLAB functions that derive TPM values from the simulation results are simple and tailored

to each specific TPM. In addition to deriving these values, these functions write the values in an Excel

spreadsheet that is synchronised with a table in SysML. This way, the MATLAB functions can overwrite

the values defined for the TPMs inside the SysML model.

3.2 Model Setup

Model organization impacts keys aspects of the development process such as reuse, access control,

and model navigation [14]. The model developed in this work is organized in a similar way to the model

developed in [21] (see Figure 3.15). The model hierarchy replicates the system hierarchy, and at each

architecture level, a set of packages are created to store different types of elements (e.g., requirements,

structural modelling, and behavioural modelling are stored in distinct packages at each level).

While a certain SOI is being designed, different levels of abstraction of the system are specified,

namely the functional, logical, and physical architectures. The specification of each of these is stored

in different packages, as shown in Figure 3.15. In this work, this only applies at the subsystem-level,

since the system-level has already achieved a stable configuration. Inside each of these packages, the

division into element types is also implemented.

Some packages and element types are only present at the mission-level of the model structure, such

as analysis elements, and supporting elements. The Analysis package contains the model elements

that are created to support the Optimize and Evaluate Alternatives activity, and the supporting elements

include definitions of general value types, port types, and signals. There are also different packages for

the spacecraft and ground station, since these are defined separately.

41

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v4.mdzip Model Organization 30/ago/2021 22:00:07

Spacecraft Mission Context Model Organization[Package] pkg][

6 - Spacecraft

4 - Subsystems

ADCS (SOI)

4 - Alternative
Physical

Architectures

3 - Logical
Architecture

2 - Functional
Architecture

1 - Black-Box
Specification

1 - Requirements

3 - Behavior

2 - Structure

Spacecraft Mission Context

8 - Supporting Elements7 - Ground Station
1 - Requirements

5 - Analysis

4 - Behaviors

3 - Use Cases

2 - Structure

Figure 3.15: Model Organization.

3.3 Methodology Validation

The methodology discussed in this chapter is validated by being applied to the design of an ADCS of a

1U CubeSat (composed of one unit). A CubeSat is a type of standardized nanosatellite composed of one

or more units, which are shaped as a 10 cm cube with a mass of up to 1.33 kg [83]. This design scenario

follows the subsystem design process definition presented in Figure 2.8. The ADCS is an appropriate

subsystem for the validation of an MBSE design approach because its design is multidisciplinary and

requires the use of simulation in early phases of the design, for performance evaluation.

The mission objective for this CubeSat concerns the observation of the Earth. The system is

equipped with a payload that must be oriented with nadir to perform its sensing activities. This sub-

system design scenario is not developed in the context of a real CubeSat mission, and for that reason

both the mission and the spacecraft are not fully specified. Instead, these have been specified in terms

of the aspects that are most relevant for the design of the ADCS. The ISTSat-1 CubeSat mission [84],

currently being developed in Instituto Superior Técnico under ESA Education’s Fly Your Satellite! pro-

gram, is used in this work as a basis for defining realistic characteristics of the system and mission.

The main objective of applying the developed MBSE methodology to this design scenario is not the

definition of the best design for the ADCS of this CubeSat. Instead, we wish to validate the methodology

with a design scenario that has an adequate level of complexity. If the complexity level is too low, the

methodology validation is undermined, and if it is too high, the scope of the work increases unnecessarily

and the proper understanding of the methodology is compromised. The ISTSat-1 ADCS design [85] will

be used as a reference for the definition of an adequate level of complexity.

In the next chapter, the design inputs are first defined and then the methodology is applied to this

design scenario. The purpose of this methodology application is both to provide a more detailed de-

scription and demonstration of the methodology and to validate the methodology as a whole. Apart from

being a demonstration of the specific MBSE methodology proposed in this work, this can also be seen

as a demonstration of the capabilities of an MBSE approach in general.

42

Chapter 4

Methodology Demonstration

4.1 Design Process Inputs

In this section we specify the design process inputs for the specific design scenario implemented in this

work, namely the design of an ADCS of a 1U CubeSat. The specification of these inputs, which are

identified in Figure 2.8, provides the necessary context for the design of the subsystem in question.

4.1.1 Mission-level inputs

The definition of the mission architecture, shown in Figure 4.1, is essential to provide context for the de-

sign of the system. The block named Mission Context specifies the integration of the mission enterprise

with other external entities relevant to the mission, such as the environment. The mission enterprise is

composed of the systems which comprise the solution to the mission objectives and whose definition is

under the control of the development team, which in this case are the spacecraft and the ground station.

The CubeSat is intended to be launched as a secondary payload, and for that reason, the launcher is

not under the control of the development team, hence not being considered as a part of the mission

enterprise. In this work, we define the spacecraft environment (or just environment) to be composed

of the spacecraft translational and rotational dynamics, the interactions between the spacecraft and

other astronomical bodies, and the orbits of relevant astronomical bodies. The environment is modelled

alongside the systems so that the interactions with it may be better understood and specified.

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v5_env_model.mdzip Mission Context Structure 11/out/2021 19:31:37

Mission Context Structure2 - Structure[Package] bdd][

Mission Enterprise

«block»

Mission Context

«block»

si : Spacecraft Interface
od : Orbital Dynamics
scRot : SC Rotation
earth : Earth

parts

Environment

«block»

Launch Vehicle

«block»

Ground Station

«block»

Spacecraft

«block»

Figure 4.1: Mission architecture.

43

Some parameters relevant to the simulation of the ADCS performance are attributes of the mission

as a whole, and these are consequently defined as value properties of the Mission Enterprise block.

Two of these, the orientation of the angular velocity and the initial attitude at the instant of launcher

separation, are assumed to be unpredictable. In simulation, a worst-case scenario must be defined for

these, as discussed in Appendix B. The other relevant parameters, namely the instant of separation, the

maximum expected angular rate at separation, and the entry orbit, are considered to have been defined

in a previous design phase, and their definition is shown in Table 4.1. The instant of separation was

defined arbitrarily and the other two parameters were defined as equal to those of the ISTSat-1 mission.

Attribute Value

Instant of launcher separation 1 January 2022, 12:00:00 UTC

Maximum angular rate at separation 100 deg/s

Entry orbit

semi-major axis (a) 6871 km

eccentricity (e) 0

inclination (i) 97.86 deg

RAAN (Ω) 79.1815 deg

Argument at perigee (ωp) 0 deg

Mean anomaly (M) 0 deg

Table 4.1: Definition of mission attributes. The entry orbit is the same as for the ISTSat-1: Sun-
Synchronous Orbit (SSO) with LTAN at 22:30.

4.1.2 System-level inputs

The system white box specification provides context for the design of all the subsystems. It consists of

the identification of all the subsystems and the interactions between these. A bdd is shown in Figure 4.2

representing the decomposition of the system into subsystems (based on the one developed in [21]).

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v5_env_model.mdzip S/C Decomposition 11/out/2021 19:38:40

S/C Decomposition2 - Structure[Package] bdd][

Spacecraft

«block»

ADCS

«system of interest»

Communications

«subsystem»

Pow er

«subsystem»

Payload

«subsystem»

Thermal

«subsystem»

Structure

«subsystem»

Avionics

«subsystem»

Figure 4.2: System decomposition.

The part of the mission and system context that is relevant for the ADCS design is shown in Figure

4.3. The ADCS interacts with the environment by measuring the angular velocity of the spacecraft and a

set of known vector quantities, while also producing external torques and using momentum accumulator

devices to control the spacecraft attitude. An ADCS in general interacts with many of the other subsys-

tems [22], both physically and in terms of design definition. However, modelling all these interactions

would result in unnecessary modelling effort. Therefore, only the interaction with the avionics subsystem

44

is modelled in this work, so that the methodology is properly validated in terms of the definition of inter-

faces between subsystems. In Figure 4.3, we can see that the avionics subsystem provides an electrical

supply to all the hardware components used in the ADCS, while also receiving a periodic data report.

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v5_env_model.mdzip ADCS Context 11/out/2021 19:45:29

Mission Context ADCS Context[Block] ibd][

me : Mission Enterprise

SC : Spacecraft

ADCS : ADCS

av : Avionics

env : Environment

scRot : SC Rotation

storedAngMomsensor supply [3..*]

actuator supply [1..*]

data_report

act. torque

S/C wknow n vec. quant. [2..*]

data_report

storedAngMom

act. torque

sc ang. vel.

know n vector quantity [2..*]

Figure 4.3: Mission- and system-level context of the ADCS.

Another of the inputs to the design process is the specification of the system behaviour, which was

modelled with a state machine, as shown in Figure 4.4 (based on the model in [21]). Regarding SysML

nomenclature, the yellow-filled boxes represent states, the arrows represent transitions, and the black-

filled circles represent initial pseudostates (where the execution starts when the state machine or state

becomes active). Some transitions are triggered by the reception of signals from a third-party (e.g., the

reception of a Reboot Cmd signal triggers a transition from the on state to the rebooting state).

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v7.mdzip Spacecraft State Machine 16/out/2021 11:42:12

Spacecraft State MachineSpacecraft State Machine[State Machine] stm][

on

normal_mode_opdo /

NORMAL

safe_mode_opdo /

SAFE

init_mode_opdo /

INIT

off rebooting

separating

launching

Ground Cmd Normal

Ground Cmd Safe

Autonomous Cmd Safe

after (90 min)

Pow er OnPow er Off Reboot Sequence CompleteReboot Cmd

Launch

Separation Start

Figure 4.4: Spacecraft state machine behaviour specification.

In Figure 4.4, the composite state on contains a set of substates representing the operational modes

of the spacecraft, which are the same as the ones defined in the ISTSat-1 design. After separation,

the spacecraft enters in the init mode, in which the communications subsystem is disabled as a safety

measure. The normal mode represents the normal operation of the system, and the safe mode repre-

sents a safe state of the system, in which all non-essential functions are shut down. The state machine

is only shown with a composite state to facilitate the understanding of the reader, given that this is not

45

supported by the model transformation approach described in Section 3.1.3. In the developed model,

the composite state is instead defined with a second state machine that specifies its behaviour.

Each of the substates of the state on owns a do behaviour, i.e., a behaviour that executes contin-

uously until it terminates on its own or an event like a transition interrupts it. These behaviours are

specified with activities, and they are a part of the classifier behaviour of the Spacecraft block.

With the decomposition of the system into subsystems, parts of the system behaviour are allocated

to each subsystem. Regarding the part that is allocated to the ADCS: (i) in init mode, the ADCS must

detumble the spacecraft, reducing its angular speed below a certain threshold; (ii) in normal mode, it

must align the payload with the nadir using all the available algorithms and hardware; and (iii) in safe

mode, it must align the payload with the nadir but while consuming a much lower average power (at the

cost of decreased accuracy). More details are included in the definition of the subsystem requirements.

There are also some attributes of the system that are relevant for the simulation of ADCS perfor-

mance. These were modelled as value properties of the Spacecraft block, and their values are shown

in Table 4.2. All these values are based on the specification of the ISTSat-1.

Attribute Value
Mass (m) 1.33 kg

Coefficient of drag (CD) 2.2

Coefficient of reflectivity (Cr) 1.8

Drag reference area (Sdrag) 0.01 m2

SRP reference area (SSRP) 0.01 m2

Moment of inertia (Is)

 1.6195 −0.0174 0.0113

−0.0174 1.7603 0.0036

0.0113 0.0036 1.8415

× 10−3 kg m2

Undesired magnetic dipole magnitude (mu) 0.01 A m2

Table 4.2: Definition of relevant system attributes.

4.1.3 Subsystem-level inputs

The subsystem requirements are the major driver of the complete design process. Their definition is part

of the Manage Requirements Traceability activity, which is applied across all the levels of the system

architecture. The part of the specification tree that is relevant to the ADCS is shown in Figure 4.5,

in which the three requirements represent containers for other requirements, at different levels of the

architecture. The ADCS requirements are stored in the lower-level container, and they are derived from

higher-level requirements or identified during the system- and subsystem-level design definition.

The ADCS Requirements container is decomposed into four other containers, representing: (i) func-

tional requirements, which describe the subsystem functions qualitatively; (ii) operational requirements,

which define conditions or properties required during system operation; (iii) performance requirements,

which define quantitatively how well a function is to be performed; and (iv) design constraints, which

consist of design decisions made in previous phases of the project. The division of the requirements

into categories helps keep the model organized.

46

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v4.mdzip Specification Tree 5/set/2021 15:38:28

Specification Tree1 - Requirements[Package] req][

ADCS Requirements

«requirement»

Spacecraft Requirements

«requirement»

Mission Requirements

«requirement»
«trace» «trace»

Figure 4.5: Specification tree (only the part relevant to the ADCS).

The definition of the ADCS requirements was based on the ECSS [86], so that these are similar to

what would be defined in a real design scenario developed in an industry setting. The defined ADCS

requirements are summarized below (a complete list can be consulted in Appendix B):

Functional Requirements A mapping between ADCS modes and spacecraft modes must be clearly

defined (Req. 7.1.1.3) and mode transitions shall be triggered both by ground request and autonomously

(Req. 7.1.1.2). A special Safe Pointing mode must be activated when the spacecraft is in safe mode.

In this mode, magnetic torquers are the only actuator that can be used (Req. 7.1.1.1), because these

consume a low average power and have been proven to be reliable. In addition, the safe transition

from the initial conditions after launcher separation to the final mission pointing must be ensured by the

ADCS, using a detumbling algorithm (Req. 7.1.2). The ADCS shall also deliver attitude and orbit related

information to the OBC software, in the form of a data report (Req. 7.1.3).

Operational Requirements In-flight updates of ADCS design parameters must be provided (Req.

7.2.1) and all the parameter update periods must be greater than the maximum period without contact

with the ground station (Req. 7.2.2). The ADCS shall also ensure continuous reaction wheel off-loading

(Req. 7.2.6). Other operational requirements define conditions relative to the detumbling (Req. 7.2.3

and Req. 7.2.4) and minimum ADCS coverage (Req. 7.2.5).

Performance Requirements The nomenclature and mathematics used in the definition and verifica-

tion of performance requirements are reviewed in Appendix B. Performance requirements were defined

concerning the absolute pointing performance, both in safe mode and normal mode (Req. 7.3.1 and

Req. 7.3.2, respectively). Another requirement concerns the absolute attitude knowledge performance,

which relates to the accuracy of the attitude determination (Req. 7.3.3). The accuracy of the on-board

spacecraft position estimation is addressed by another performance requirement (Req. 7.3.4).

The development of budgets at the system-level (e.g., mass or power) usually results in the definition

of subsystem requirements. These budgets are divided across the multiple subsystems according to es-

timates that are developed, and then they are updated at each step of the system development process.

In this design scenario, mass and average power consumption are constrained as part of budgets that

are defined at the system-level (Req. 7.1.4 and Req. 7.2.7, respectively).

As mentioned above, some subsystem requirements are derived from other higher-level require-

ments. Representative examples of this practice were modelled to show how MBSE supports the task

47

of deriving requirements at successive levels of the architecture. This process is illustrated in Figure 4.6

(the yellow note-shaped boxes outline the rationale of a certain requirement relationship).

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v7.mdzip Spacecraft Requirements Traceability 16/out/2021 12:41:50

Spacecraft Requirements Traceability1 - Requirements[Package] req][

Text = "The ADCS shall
ensure during the

operational mission phase
an absolute pointing
performance of 1 degree,

at 95% confidence level,
in normal mode (temporal

statistical interpretation)."

Id = "7.3.1"

Absolute attitude normal
pointing

«requirement»

Text = "The mission shall ensure
complete coverage starting from 2

orbits after launch, and ensure the
required pointing accuracy for 10
consecutive orbits, at a time."

Id = "5.2"

Coverage

«requirement»

Text = "The spacecraft
shall ensure that the

mission is successful for
the worst case launch

condition of separating
with a total angular rate

of 100 degrees/second,
around any given axis"

Id = "6.3"

Launcher Conditions

«requirement»

Text = "The spacecraft shall

ensure the required
pointing accuracy for at

least 10 consecutive orbits,
at a time, and be able to
communicate with the

ground station 2 orbits after
launch."

Id = "6.2"

Spacecraft Coverage

«requirement»

Text = "The ADCS

shall provide the
required mission

pointing performance
for at least 10

consecutive orbits, at
a time."

Id = "7.2.5"

ADCS Coverage

«requirement»

Text = "Once the

launcher separation
occurs, the ADCS

shall ensure that the
rate is below 5 deg/s

after 2 complete
orbits."

Id = "7.2.3"

Detumbling

«requirement»

Text = "The spacecraft
shall ensure an orientation

accuracy of the payload of
at least 2 degrees"

Id = "6.1"

Spacecraft Pointing
Accuracy

«requirement»

Text = "The ADCS shall
be able to detumble the

spacecraft given the
worst case launcher

separation rate
conditions of 100 deg/s."

Id = "7.2.4"

Launcher Separation Rate

«requirement»

Text = "The mission
shall be designed to

meet requirements
when considering the
worst case conditions of

the launch"

Id = "5.3"

Launcher

«requirement»

Text = "The mission
shall ensure 17.5 km of

geo-location accuracy"

Id = "5.1"

Geo-location accuracy

«requirement»

For altitude of 500 km

100 deg/s
indicated as
the w orst
case
scenario by
the launch
team

1 degree of error
budget for the
ADCS, 1 degree for
the rest

5 deg/s w as
defined as the
maximum rate for
successful
communications

«deriveReqt»

«deriveReqt»

«deriveReqt»
«deriveReqt»

«deriveReqt»

«deriveReqt»

«deriveReqt»

Figure 4.6: Example of traceability between mission-level, system-level, and ADCS requirements.

The requirement concerning absolute attitude performance in normal mode was derived from a

system-level requirement regarding the accuracy of the payload orientation, which in turn was derived

from a mission requirement concerning geo-location accuracy. The geo-location error was translated

into an angular orientation error by considering the altitude of the orbit. Then, the payload orientation

error was divided into a budget for the ADCS and a budget for the other subsystems (e.g., the structure).

The same type of process was applied to derive both an ADCS coverage requirement and a de-

tumbling requirement from a mission-level coverage requirement. The maximum expected launcher

separation angular rate was defined in a previous design phase, taking into consideration the launching

conditions. This resulted in the definition of requirements for every subsystem that may be influenced by

this mission attribute, such as the ADCS.

When a requirement is changed at any level of the architecture, or the verification of a lower-level

requirements fails, automatic impact analysis may be performed, enabled by the traceability introduced

by these requirement relationships. This process is important to ensure that the verification of lower-level

requirements leads to the verification of higher-level requirements, but more importantly, to the validation

48

of the system design against stakeholder needs.

A few design constraints have also been defined for this design scenario, representing design deci-

sions which took place in the conceptual design phase. These enable a progressive reduction of scope

of the design activities, as the subsystem becomes better defined. In this case, the constraints help limit

the scope of the design to an appropriate degree for the application of the proposed methodology.

The first constraint imposes that the ADCS software be allocated to the OBC hardware (Req. 7.4.1),

such that the ADCS does not include a dedicated processing unit. Also, the ADCS design shall: (i) be

based on active control techniques (Req. 7.4.2); (ii) include an attitude filtering algorithm (Req. 7.4.3),

and (iii) ensure on-board estimation of the spacecraft position in the ECI frame (Req. 7.4.5). Finally, the

design space of the ADCS was also constrained in terms of hardware selection (Req. 7.4.4).

All the hardware used in the ADCS of the ISTSat-1 is also used in this design. The ISTSat-1 is

equipped with one gyroscope, one magnetometer, one CSS in each face of the spacecraft (except Z−),

and three magnetic torquers mounted orthogonally. The CSSs and magnetic torquers are integrated

into the solar panels. These components constitute the initial design configuration of the ADCS. The

magnetometer is inexpensive, reliable, and small, and it is required for the computation of the magnetic

torquers’ commanded dipole. The gyroscope is essential to the attitude filtering and the CSSs are

already integrated into the solar panels placed in each face of the spacecraft (except Z−).

Aside from these, only two other types of components may be used. The CSSs provide Sun vector

estimates only out of the eclipse, and which can be quite inaccurate due to the influence of the Earth

albedo. To address this limitation, the addition of one Earth sensor mounted on the face Z− is con-

sidered. Also, if a better attitude control performance is required at any point, three reaction wheels

mounted orthogonally are added to the ADCS design. All of these constraints to the hardware selection

are reflected in Req. 7.4.4.

The final input to the design process is the black box specification of the subsystem, which is shown in

Figure 4.7. The interface of the subsystem is defined by a set of ports of different types and with different

multiplicities. This interface definition is consistent with what is represented in Figure 4.3. A set of

quantitative attributes of the system are modelled as value properties, whose definition is mostly based

on the analysis of the subsystem requirements. The ≪tpm≫ stereotype identifies the value properties

that represent TPMs, which are attributes that are directly targeted by performance requirements. The

mathematical definition of a TPM is presented in Appendix B. A set of operations and receptions are

also defined, which are identified throughout the process of defining the behaviour of the system and

other subsystems.

Each of the TPMs identified in Figure 4.7 is associated to exactly one performance requirement.

The value properties named stmPeriod, DetThresh, and PointThresh are time-independent parameters

that are used in the definition of the ADCS state machine (presented in Section 4.2.1). Also used in

the definition of this behaviour are the value properties angRate, autoTransEnabled, and adcsMode,

which represent time-dependent parameters. The rest of the value properties all represent quantitative

attributes of the subsystem that are constrained by either functional or operational requirements.

In terms of operations, the forceModeTransitions() ensures that mode transitions in the ADCS can be

49

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v7.mdzip ADCS 16/out/2021 13:10:04

2 - Structure[Package] ADCSbdd][

forceModeTransition(new Mode)
disableAutonomousModeTransitions()
enableAutonomousModeTransitions()
setParam(paramID, value)
getParam(paramID)

operations

«tpm» absPointingSafePerf : plane angle[degree]
«tpm» absAttitudeKnow ledgePerf : plane angle[degree]
«tpm» absPointingNormalPerf : plane angle[degree]
«tpm» orbitKnow ledgePerf : distance[metre]
adcsMode : Integer
autoTransEnabled : Boolean
angRate : angular velocity[radian per second]
PointThresh : angular velocity[radian per second]
DetThresh : angular velocity[radian per second]
stmPeriod : time[second]
maxStoredAngMom : angular momentum
ADCSCoverage : time[second]
parameterUpdatePeriod : time[second]
detumblingDuration : time[second]
avrgPow er_ADCS : pow er[w att]
mass_ADCS : mass[kilogram]

values

ADCS

«system of interest»

storedAngMom

sensor supply [3..*]

actuator supply [1..*]

data_report

total act. torque
S/C w

know n vec. quant. [2..*]

Figure 4.7: ADCS black box specification.

externally forced (Req. 7.1.1.2). The operations that enable and disable autonomous mode transitions

are defined to satisfy Req. 7.1.1.4, and getParam() and setParam() represent common functions of

software components, which also satisfy Req. 7.2.1.

4.2 Subsystem Design

This section concerns the design definition of the ADCS, which is developed according to the method-

ology described in Chapter 3. First, its behaviour is defined with a state machine, then the functional

and logical architectures are developed. After this, the physical layer is specified, in which two candidate

architectures are defined: (i) an ADCS design including reaction wheels and magnetic torquers; and (ii)

an ADCS design including only magnetic torquers.

All the activities above concern the specification of the subsystem design. After this specification is

completed, simulation must be performed, for requirements verification and to support the comparison

between the two alternative designs mentioned above. Before simulation can be executed, the environ-

ment must be specified in SysML, in terms of its internal structure and the black box representations of

its components. Then the simulation itself can be specified through the definition of the analysis context

and the Monitoring and Control block, as discussed in Chapter 3.

The generated simulation model is not shown in any figures, since its structure does not differ from

what is shown in the ibd diagrams across this section. Instead, simulation results are presented, includ-

ing the values obtained for the TPMs and plots of some of the error indices computed. The simulation

scenario presented in this section was defined with the purpose of enabling the verification of all the

requirements it concerns (see Figure 4.22).

50

4.2.1 Subsystem State Machine Definition

The definition of the subsystem design begins with the specification of its behaviour, using a state

machine (see Figure 3.1). This behaviour specification requires making design decisions, even though

a considerable part of it is derived directly from the design process inputs. A state machine representing

a subsystem’s behaviour may become too complicated to represent in one single diagram. Instead, we

created a set of simpler diagrams, which show different views of the same behaviour. Changes to the

behaviour specification may be applied by editing any of these and consistency is automatically ensured.

The ADCS has three modes of operation: (i) normal pointing, representing the regular operation of

the subsystem; (ii) safe pointing, to satisfy Req. 7.1.1.1; and (iii) detumbling, to satisfy Req. 7.1.2. The

transitions between the three ADCS modes are shown in Figures 4.8 to 4.10. In these, angRate is a

value property that represents the instantaneous angular rate of the spacecraft, while scMode is the

variable that holds the active substate of the composite state on, shown in Figure 4.4. Regarding SysML

nomenclature, expressions inside square brackets represent the guard of a transition, i.e., the condition

that must be verified for the transition to occur. The small black-filled circles are junction pseudostates,

which specify compound transitions. For each junction pseudostate, exactly one exit transition must be

valid at a time (the guard “else” may be used to ensure this).

While in any mode, a possible transition is periodically evaluated (with a period of stmPeriod), which

may only occur if the autonomous transitions are enabled (or autoTransEnabled == true), satisfying Req.

7.1.1.4. If this condition is met, the logic of the transitions originated in the detumbling mode is the fol-

lowing (see Figure 4.8): in the spacecraft mode normal, if the angular rate is above a certain threshold —

PointThresh — the detumbling mode remains active, otherwise a transition to normal pointing occurs; in

the spacecraft mode safe, the exact same logic applies but with safe pointing replacing normal pointing;

in init mode, the detumbling state must be active. With this logic, in the case of a failure occurring in the

pointing modes, the angular rate is kept below an acceptable threshold for communications.

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v5.mdzip ADCS From Detumbling 9/out/2021 16:49:31

ADCS From DetumblingADCS Main Behavior[State Machine] stm][

normal pointing operationdo /

Normal_Pointing

safe pointing operationdo /

Safe_Pointing

detumbling operationdo /

Detumbling

 [scMode == SAFE]

 [scMode == NORMAL]

 [angRate > PointThresh]
 [angRate > PointThresh]

 [else]
 [else]

 [autoTransEnabled]

 [else]
after (stmPeriod)

 [else]

Figure 4.8: Representation of the autonomous transitions originated in the detumbling mode.

Regarding, the transitions originated in the other modes, the logic is very similar. The differences

reside in the fact that the spacecraft mode init must not be active (see Figure 4.4) and that the angular

rate threshold is different (DetThresh). The angular rate threshold defined for transitions originated in

the detumbling mode is lower than the threshold applicable for transitions from the other modes, in order

to avoid rapid sequences of back-and-forth transitions.

51

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v7.mdzip ADCS From Normal and Safe 15/out/2021 15:45:54

ADCS From Normal and SafeADCS Main Behavior[State Machine] stm][

normal pointing operationdo /

Normal_Pointing

safe pointing operationdo /

Safe_Pointing

detumbling operationdo /

Detumbling

 [scMode == SAFE]

 [scMode == NORMAL]

 [else] [else]

 [angRate > DetThresh] [angRate > DetThresh]

 [else]

 [scMode == NORMAL]

 [else]

 [autoTransEnabled]

 [scMode == SAFE]

 [autoTransEnabled]

 [else] [else]

after (stmPeriod)after (stmPeriod)

Figure 4.9: Representation of the autonomous transitions originated in the pointing modes.

The final stm diagram, shown in Figure 4.10, represents mode transitions forced by ground request,

which satisfy Req. 7.1.1.2. These can be triggered at any moment, by invoking the operation forceMod-

eTransition(), which receives as an input the mode that should be activated. This input parameter —

newMode — can be equal to NP, SP, or DET which correspond to normal pointing, safe pointing, and

detumbling, respectively. If the operator wants the forced mode to remain active, the autonomous tran-

sitions may be disabled. Also represented in the stm diagram is the initialization of the state machine,

which always starts in the detumbling mode.

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v7.mdzip ADCS Forced Transitions 16/out/2021 13:44:22

ADCS Forced TransitionsADCS Main Behavior[State Machine] stm][

normal pointing operationdo /

Normal_Pointing

safe pointing operationdo /

Safe_Pointing

detumbling operationdo /

Detumbling
forceModeTransition(new Mode)

forceModeTransition(new Mode) forceModeTransition(new Mode)

 [new Mode == NP] [new Mode == SP]

 [else]

Figure 4.10: Representation of the forced transitions and state machine initialization.

In a simulation of the ADCS performance, this state machine must be included in the simulation

model, because the behaviour of the ADCS and its components depends completely on the ADCS

mode that is active in each instant. This can be accomplished with the model transformation framework

described in Section 3.1.3, as it is capable of transforming SysML state machines into Stateflow blocks.

4.2.2 Functional Architecture Definition

The functional architecture definition, which follows the process shown in Figure 3.3, starts with the

decomposition of the subsystem into components. In this work, architecture decompositions introduce

two levels in the hierarchy, one used to divide software and hardware into different blocks, and the other

used to define the decomposition of the software and hardware. Yet, these two levels are equivalent to

only one architecture level (both hierarchy levels represent the system definition at the component-level).

52

The functional decomposition of the subsystem is shown in Figure 4.11. Following the ADCS struc-

ture represented in Figure 2.9, different entities are defined for the attitude determination and attitude

guidance and control (these last two are joined together, as mentioned in Section 2.6). The ADCS

technology review presented in Section 2.6 divides sensors and actuators into types according to their

function, and this type of decomposition is replicated in the definition of this functional architecture.

Actuators are divided into momentum accumulators and torque actuators, while sensors are divided

according to what they measure, namely the spacecraft angular velocity or a known vector quantity.

Attitude determination based on filtering (as imposed by the design constraint 7.4.3) requires both

types of sensors as well as the estimation of the known vector quantities represented in the inertial

frame. The knowledge of the spacecraft position in the inertial frame is also required, both as an input

for some of the algorithms and to satisfy a set of different requirements (e.g., Req. 7.1.3). It must result

from the execution of an estimation algorithm, as stated in the design constraint 7.4.5.

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v4.mdzip ADCS Functional Architecture 6/set/2021 20:38:33

ADCS Functional Architecture2 - Structure[Package] bdd][

ADCS Sensing & Actuation

«functional»

Angular Velocity
Measurement
(Body Frame)

«functional»

Known Vector
Measurement
(Body Frame)

«functional»

ADCS

«system of interest»

ADCS - Functional

«system of interest»

ADCS Algorithms

«functional»

Known Vector
Estimation

(Inertial Frame)

«functional»

Attitude
Determination

«functional»

Momentum
Accumulator

«functional»

Torque
Actuator

«functional»

Attitude
Guidance

and Control

«functional»

Spacecraft
Position

Estimation

«functional»

2..*

0..*

2..*

1..*

Figure 4.11: Functional decomposition of the subsystem.

In SysML, this type of decomposition may also specify multiplicities for the components. In this

case, the specified multiplicities define that: (i) two or more vector quantities must be measured in the

body frame and estimated in the inertial frame (to enable complete attitude determination); (ii) torque

actuators must be included in the design and more than one may be used; and (iii) the inclusion of

momentum accumulators is not mandatory, and their quantity is unrestricted.

After the decomposition is defined, interactions between the components must be modelled to realize

each of the activities attributed to the subsystem. We focus on the activities attributed to each mode,

identified as do behaviours of the states represented in Figures 4.8 to 4.10. For each activity, an act

diagram is created. This type of diagram shows the definition of the activity in terms of a sequence of

actions, and the tokens that are exchanged between the actions (in this case, signals). The actions are

represented in the diagram as boxes with rounded corners, token exchanges are represented as arrows,

and parameter nodes, which represent inputs and outputs of an activity, are represented as rectangular

boxes placed over the limits of the diagram frame. The allocation of each of the actions to a specific

component is also specified in act diagrams, with the use of swimlanes (structures similar to a table with

53

multiple columns), which are structured according to the hierarchy of the subsystem architecture.

The subsystem behaviour in the detumbling mode is represented in Figure 4.12. It consists of an

algorithm that uses the measurement of angular velocity to compute an actuation torque to be produced

by the torque actuator. Also, a data report is generated, containing information relative to the measure-

ment of angular velocity, position and velocity estimation, and eclipse status, as specified in Req. 7.1.3

(only the attitude is not included, since it is not estimated in this mode).

The behaviour of the subsystem in the normal pointing mode is represented in Figure 4.13. In this

case, the swimlanes are both horizontal and vertical to ensure that the diagram fits in an A4 page. As

we can see, the attitude determination algorithm uses both the measurement of angular velocity and the

measurement and estimation of known vector quantities in the body and inertial frames, respectively. In

some cases, the estimation of these vector quantities requires the knowledge of the spacecraft position.

In turn, the attitude guidance and control algorithm computes the commanded torque, relying on the

estimation of attitude and on the knowledge of the spacecraft position (for guidance). It also uses an

estimate of the angular velocity corrected by the filter (with the estimated bias removed). If momentum

accumulators are included in the design, these are used in this mode, otherwise torque actuators are

used. Since these two options are both possible at this architecture-level, both are represented in the

diagram. Finally, a data report conforming to Req. 7.1.3 is also generated as an output of the activity.

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v5_act_func.mdzip detumbling operation 11/out/2021 20:02:04

detumbling operationdetumbling operation[Activity] act][

out : Detumbling
Data Report

ADCS - Functional

«allocate»

alg : ADCS Algorithms

«allocate»

spe : Spacecraft
Position Estimation

«allocate»

ac : Attitude
Guidance and Control

«allocate»

s&a : ADCS Sensing & Actuation

«allocate»

wm : Angular Velocity
Measurement (Body Frame)

«allocate»

ta : Torque
Actuator

«allocate»

spe :
Estimate

S/C
Position

mav : Measure
Angular
Velocity Compute

Detumbling
Actuation

pt_ta :
Produce
Actuation
Torque TA

Generate
Data Report

S/C vel. est.

ang. vel. meas.

act. torque

eclipse

S/C pos. est.

data report

Figure 4.12: Interaction between functional components realizing the detumbling operation activity.

The behaviour of the subsystem in the safe pointing mode, represented in Figure 4.14, is very similar

to the behaviour in the normal pointing mode. The main constraint is that the power consumption must

be lower, which impedes the use of momentum accumulators and sensors with a high operating power.

Because of this, different algorithms must be used for attitude determination and guidance/control.

As defined in the process shown in Figure 3.3, the specification of the subsystem’s internal structure

follows. This specification is based on the activities shown in Figures 4.12 to 4.14 and on the definition

of the subsystem external interface. For this, an ibd is used, as shown in Figure 4.15. Connectors be-

54

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v5_act_func.mdzip normal pointing operation 16/out/2021 16:08:54

normal pointing operationnormal pointing operation[Activity] act][

out : Pointing
Data Report

s
&

a
 :
 A

D
C

S
 S

e
n

s
in

g

&
 A

c
tu

a
ti

o
n

«
a

llo
c
a
te

»

ta
 :
 T

o
rq

u
e

A

c
tu

a
to

r

«
a
llo

c
a
te

»

m
a
 :
 M

o
m

e
n

tu
m

A

c
c
u

m
u

la
to

r

«
a
llo

c
a
te

»

w
m

 :
 A

n
g

u
la

r
V

e
lo

c
it

y

M
e

a
s

u
re

m
e

n
t

(B
o

d
y
 F

ra
m

e
)

«
a
llo

c
a

te
»

k
v
m

 :
 K

n
o

w
n

 V
e

c
to

r
M

e
a
s

u
re

m
e

n
t

(B
o

d
y
 F

ra
m

e
)

«
a

llo
c
a
te

»

mav :
Measure
Angular
Velocity

mkv :
Measure
Know n
Vector

Quantities

pt_ma :
Produce
Actuation
Torque MA

pt_ta :
Produce
Actuation
 Torque

TA

alg : ADCS
Algorithms

«allocate»

kve : Known Vector
Estimation

(Inertial Frame)

«allocate»

spe : Spacecraft
Position

Estimation

«allocate»

ac : Attitude
Guidance

and Control

«allocate»

ad : Attitude
Determination

«allocate»

ekv : Estimate
Known Vector

Quantity

spe :
Estimate S/C

Position
Estimate

S/C
Attitude
(Normal)

Compute
Normal

Pointing
Actuation

Generate Data Report

vec. quant. body

ta torque cmd

vec. quant. ECI

S/C vel. est.

S/C att.

est. ang. vel.

ma torque cmd
ang. vel. corr.

S/C pos. est.

S/C att.

data report

eclipse

Figure 4.13: Interaction between functional components realizing the normal pointing operation activity.

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v5_act_func.mdzip safe pointing operation 11/out/2021 20:33:34

safe pointing operationsafe pointing operation[Activity] act][

out : Pointing
Data Report

alg : ADCS Algorithms

«allocate»

kve : Known Vector
Estimation

(Inertial Frame)

«allocate»

spe : Spacecraft
Position

Estimation

«allocate»

ac : Attitude
Guidance

and Control

«allocate»

ad : Attitude
Determination

«allocate»

Estimate
S/C

Attitude
(Safe)

Compute
Safe

Pointing
Actuation

ekv : Estimate
Known Vector

Quantity

spe :
Estimate S/C

Position

s
&

a
 :
 A

D
C

S
 S

e
n

s
in

g
 &

 A
c
tu

a
ti

o
n

«
a
llo

c
a
te

»

ta
 :
 T

o
rq

u
e

A

c
tu

a
to

r

«
a
llo

c
a
te

»

w
m

 :
 A

n
g

u
la

r
V

e
lo

c
it

y

M
e

a
s

u
re

m
e

n
t

(B
o

d
y

 F
ra

m
e

)

«
a
llo

c
a
te

»

k
v

m
 :
 K

n
o

w
n

 V
e

c
to

r
M

e
a
s

u
re

m
e

n
t

(B
o

d
y

 F
ra

m
e

)

«
a
llo

c
a
te

»

mav :
Measure
Angular
Velocity

mkv :
Measure
Known
Vector

Quantities

pt_ta :
Produce
Actuation
Torque TA

Generate Data Report

ang. vel. est.

ta cmd torque

ang. vel. corr.

S/C pos. est.

S/C att.

vec. quant. ECI

S/C vel. est.

S/C pos. est.

vec. quant. body

data report

eclipse

Figure 4.14: Interaction between functional components realizing the safe pointing operation activity.

55

tween any two components are defined to create communication channels for all the tokens exchanges

specified in these activities. As explained in Section 3.1.3, these connectors must be routed through

every level of the architecture, which results in an increase in the complexity of the diagrams and model.

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v5.mdzip ADCS - Functional 12/out/2021 13:17:04

ADCS - FunctionalADCS - Functional[Block] ibd][

alg : ADCS Algorithms

kve : Know n Vector
Estimation

(Inertial Frame) [2..*]

ac : Attitude
Guidance

and Control

ad : Attitude
Determination

spe : Spacecraft
Position

Estimation

s&a : ADCS Sensing
 & Actuation

kvm : Known Vector
Measurement

(Body Frame) [2..*]

wm : Angular Velocity
Measurement
(Body Frame)

ta : Torque
Actuator [1..*]

ma : Momentum
Accumulator [0..*]

s_t : SumS/C w

know n vec. quant. [2..*]

S/C pos. est. [0..1]

vec. est. E

S/C w corr.

S/C pos. est.

torquer cmd [1..*]

w heel cmd [0..*]

S/C att.

S/C w meas.vec. est. E [2..*]

data_report
vec. meas. B [2..*]

sensor supply

vec. meas. B

sensor supply

S/C w meas.

S/C w

actuator supply

act. torque

torquer cmd

actuator supply

storedAngMom

act. torque
sensor supply [3..*]

total act. torque

Figure 4.15: Internal structure of the ADCS functional architecture.

Special care must be taken to correctly define the multiplicities of the ports, and this correctness may

be evaluated with the MBSE tool. For example, a Momentum Accumulator block always owns exactly

one input port corresponding to a torque command (named “wheel cmd” in the diagram). However,

the same is not true for the associated output port owned by the Attitude Guidance and Control block,

which must have an unconstrained multiplicity (represented as “0..∗”), since this is the multiplicity of the

Momentum Accumulator block.

The definition of the internal structure of the subsystem must also take into consideration how the

external interface of the subsystem is connected to its composing elements. In Figure 4.15, the supply of

each sensor and actuator is connected to the external interface, being further connected to the Avionics

subsystem as shown in Figure 4.3. The same principle applies to the interface with the environment,

e.g., the actuation torque produced by each actuator is connected to the external subsystem interface

using an imported Simulink block that specifies a vectorial sum of the two torques.

4.2.3 Logical Architecture Design

The design of the logical architecture introduces the consideration of how the available technology may

realize the functions defined for each functional component. It follows the process shown in Figure 3.4,

in which the first step is the definition of the logical architecture of the subsystem. This is shown in the

56

bdd in Figure 4.16, together with the allocation of the functional components to logical components.

Each of the logical components represented in the diagram is associated to a mathematical model that

was developed inside the simulation environment, and which will be used in simulation.

Some functional components are allocated to more than one logical component because, at the

logical level, components that were previously identical may become distinct. For example, the mea-

surements of known vector quantities are realized at the logical level by three different types of sensors:

a magnetometer, a set of five CSSs, and an Earth sensor.

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v5_act_func.mdzip ADCS Logical Architecture 18/out/2021 19:41:13

ADCS Logical Architecture2 - Structure[Package] bdd][

Magnetic Torquer Set 3

«logical»

Reaction Wheel Set 3

«logical»

ADCS - Functional

«system of interest»

ADCS - Logical

«system of interest»

Photodiode Set 5

«logical»

Angular Velocity
Measurement
(Body Frame)

«functional»

SC Pos. Est.

«logical»

Attitude Filter

«logical»

ADCS Hardware

«logical»
«hardw are»

Known Vector
Estimation

(Inertial Frame)

«functional»

Attitude
Controller

«logical»

Earth Sensor

«logical»

Magnetometer

«logical»

Gyroscope

«logical»

ADCS Software

«logical»
«softw are»

«functional»

Known Vector
Measurement
(Body Frame)

ADCS Sensing
& Actuation

«functional»

Attitude
Determination

«functional»
Mag. Field Est.

«logical»

Sun Vec. Det.

«logical»

Sun Pos. Est.

«logical»

Attitude
Guidance

and Control

«functional»

Momentum
Accumulator

«functional»

ADCS
Algorithms

«functional»

Spacecraft
Position

Estimation

«functional»

Torque
Actuator

«functional»

0..*0..1

1..*

2..* 2..*

«allocate»

«allocate»

«allocate»

«allocate»

«allocate»

«allocate»

«allocate»

«allocate»

«allocate»

«allocate»

«allocate»

«allocate»

«allocate»

«allocate»

Figure 4.16: Logical architecture decomposition and allocation of functional to logical components.

Other hardware components include a gyroscope, three orthogonally mounted magnetic torquers,

and three orthogonally mounted reaction wheels (which may or not be included in the design). The

selection of these hardware components follows what is defined in the design constraint 7.4.4.

Some of the software components are also identified according to the selection of the hardware.

Associated to each of the three sensors, estimates in the inertial frame of the local Earth magnetic field

vector, the Sun position, and the spacecraft position are required (the nadir is derived from the last).

Also, the need for a Sun vector determination algorithm is directly derived from the fact that photodiode

readings must be combined and processed to obtain a Sun vector estimate. Two logical components

representing an attitude filter and an attitude controller are also required, and their definition results from

the direct refinement of the corresponding functional components.

The logical abstractions of all the components must be clearly defined at this point, so that these are

clearly differentiated from their physical counterparts. At this layer, each hardware block represents a

class of similar components, and not a specific procured or developed component. Also, the set of three

57

reaction wheels has a multiplicity between 0 and 1 (represented as “0..1”), since these will only be part

of the design if the satisfaction of performance requirements depends on their inclusion. At the physical

level, candidate architectures will be defined, and this multiplicity will be resolved to 0 or 1. The Earth

sensor has an unspecified multiplicity (equivalent to 1) because at this point its inclusion in the design

is decided. This is because the absolute pointing performance in normal pointing mode defined in Req.

7.3.1 is also required during the eclipse, and the Sun vector can only be determined out of eclipse.

In terms of software components, the blocks SC Pos. Est. and Sun Pos. Est. represent the estimation

of the spacecraft and Sun positions, which are obtained via the numerical propagation of the orbit of the

spacecraft and Earth, respectively. At this level, neither the specific integration method used nor the orbit

perturbations that are considered in each case are defined. The algorithm used for the determination of

the Sun vector is also not defined at this level, and the same applies to the selection of a specific model

of the Earth magnetic field to be used in the Mag. Field Est. component. The attitude determination

is performed with an attitude filter, but the specific algorithm used is only defined at the physical level.

The Attitude Controller block encompasses all the control algorithms used in each mode, which are not

fully specified at this level. However, it is defined that the pointing controllers are based on PD control

techniques, since these are simple and have been shown to be effective in the design of the ISTSat-1.

The activities modelled at functional level are also modelled at this level, but in terms of an interaction

between logical components. Apart from the difference in the level of abstraction, the process is identical.

The behaviour of the subsystem in the detumbling mode, represented in Figure 4.17, is different

from the one defined at the functional level, and most of the actions may also be internally different. The

estimation of the spacecraft position produces additional outputs and requires an additional input. The

estimation algorithm is based on the numerical integration of the equations of motion, which accumulates

error and so requires a periodical update of the orbit (position and velocity vectors). Also, magnetic

torquers create magnetic dipoles and so their actuation commands must be expressed as dipoles and

not torques. For this reason, algorithms that compute magnetic torquer actuation must receive as an

input the measurement of the magnetic field vector in the body frame, to transform a desired torque into

a command dipole (using Eq. D.27).

The specification of the normal pointing operation becomes more complete at the logical level (see

Figure 4.18). With the components becoming less abstract, new actions are identified, revealing new

interactions between the components (e.g., management of wheel saturation). In this mode, the attitude

filter combines the measurement of angular velocity with those of the local magnetic field vector and

the nadir. If reaction wheels are used, the attitude controller manages wheel saturation with torques

applied by the magnetic torquers, which must therefore be counteracted by the reaction wheels. Both

the actuation with and without reactions wheels is considered in the diagram as it was done at the

functional level. The data report generation is identical to the one defined at the functional level.

The operation of the subsystem in the safe pointing mode, represented in Figure 4.19, differs from

the operation in the normal pointing mode in two aspects. First, due to the high-power consumption of

an Earth sensor, the estimation of the Sun vector replaces the measurement of the nadir. This means

that the attitude filter must have a second configuration for this mode, in which the Sun vector and

58

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v5_1.mdzip detumbling operation 12/out/2021 14:22:58

detumbling operationdetumbling operation[Activity] act][

in sat_upd : Orbit Cart.
out : Detumbling

Data
Report

ADCS - Logical

«allocate»

hw : ADCS Hardware

«allocate»

mag : Magnetometer

«allocate»

gyro : Gyroscope

«allocate»

mtqs : Magnetic
Torquer Set 3

«allocate»

sw : ADCS Software

«allocate»

gc : Attitude
Controller

«allocate»

sc_p : SC
Pos. Est.

«allocate»

Compute
Detumbling
 Actuation

mmf :
Measure
Magnetic

Field mav :
Measure
Angular
Velocity

pt_mtq :
Produce

Torque MTQ

spe :
Estimate

S/C
Position

Generate Data Report

mag. f ield meas.

ang. vel. meas.

mtq cmd

satOrbit_upd

sat. vel.

S/C pos. sph.

nadir

S/C pos.

data report
eclipse

Figure 4.17: Interaction between logical components realizing the detumbling operation activity.

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v5_1.mdzip normal pointing operation 16/out/2021 18:39:50

normal pointing operationnormal pointing operation[Activity] act][

in sat_upd : Orbit Cart.
out : Pointing

Data
Report

h
w

 :
 A

D
C

S
 H

a
rd

w
a

re

«
a
llo

c
a
te

»

e
s

 :
 E

a
rt

h

S
e

n
s

o
r

«
a
llo

c
a
te

»

m
a

g
 :
 M

a
g

n
.

«
a
llo

c
a
te

»

g
y

ro
 :
 G

y
ro

.

«
a
llo

c
a
te

»

rw
s

 :
 R

e
a
c

ti
o

n

W
h

e
e

l
S

e
t

3

«
a
llo

c
a
te

»

m
tq

s
 :
 M

a
g

n
e

ti
c

T
o

rq
u

e
r

S
e

t
3

«
a
llo

c
a
te

»

pt_mtq :
Produce
Torque

MTQ

pt_rw :
Operate

RW

mn :
Measure

Nadir

mav :
Measure
Angular
Velocity

mmf :
Measure
Magnetic

Field

sw : ADCS Software

«allocate»

gc : Attitude
Controller

«allocate»

sc_p : SC
Pos. Est.

«allocate»

mfe : Mag.
Field Est.

«allocate»

af : Attitude
Filter

«allocate»

emf :
Estimate

Mag.
Field ECI

spe :
Estimate

S/C
Position

Compute
Normal
Pointing
Actuation

Manage
RW

Saturation

caf :
Compute
Attitude

Filter
(Normal)

Generate Data Report

nadir meas.

ang. vel. meas.

mag. f ield meas.

mag. f ield ECI

satOrbit_upd

S/C pos. sph.

nadir ECI

S/C pos. est.

ang. vel. corr.
S/C att.

rw cmd

mtq cmd

rw ang. vel.

data report

eclipse

S/C vel.

S/C pos.

Figure 4.18: Interaction between logical components realizing the normal pointing operation activity.

59

the estimation of the Sun position in the ECI frame are used. The Sun position is estimated with a

numerical integration of the Earth’s orbit around the Sun, which also requires periodic updates. The

second difference is that the actuation is only produced by the magnetic torquers (see Req. 7.1.1.1).

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v5_1.mdzip safe pointing operation 12/out/2021 15:39:34

safe pointing operationsafe pointing operation[Activity] act][
in earth_upd : Orbit Cart.

in sat_upd : Orbit Cart.
out : Pointing

Data
Report

sw : ADCS Software

«allocate»

gc : Attitude
Controller

«allocate»

mfe : Mag.
Field Est.

«allocate»

sc_p : SC
Pos. Est.

«allocate»

sun_p : Sun
Pos. Est.

«allocate»

af : Attitude
Filter

«allocate»

svd : Sun
Vec. Det.

«allocate»

esp :
Estimate

Sun
Position

esv :
Estimate

Sun
Vector
(Body)

Compute
Safe

Pointing
Actuation

af :
Compute
Attitude

Filter
(Safe)

emf :
Estimate

Mag.
Field ECI

spe :
Estimate

S/C
Position

h
w

 :
 A

D
C

S
 H

a
rd

w
a

re

«
a
llo

c
a
te

»

p
d

s
 :
 P

h
o

to
d

io
d

e

S
e

t
5

«
a
llo

c
a
te

»

m
a
g

 :
 M

a
g

n
e

to
m

e
te

r

«
a
llo

c
a
te

»

g
y
ro

 :
 G

y
ro

s
c

o
p

e

«
a
llo

c
a
te

»

m
tq

s
 :
 M

a
g

n
e

ti
c

T

o
rq

u
e

r
S

e
t

3

«
a
llo

c
a
te

»

mmf :
Measure
Magnetic

Field

mi :
Measure
Intensities

pt_mtq :
Produce
Torque

MTQ

mav :
Measure
Angular
Velocity

Generate Data Report

earthOrbit_upd

sun vec. body

ang. vel. corr.

S/C att.

mtq cmd

sun vec. ECI

mag. field ECI

satOrbit_upd

eclipse_status

S/C pos. sph.

nadir

mag. field meas.

pd intens. meas.

ang vel meas.

data report

S/C att.

eclipse

S/C vel.

S/C pos.

ang. vel.

Figure 4.19: Interaction between logical components realizing the safe pointing operation activity.

As it was done the functional level, the internal structure of the logical architecture can be derived

from the interactions shown above, while also considering the external interface of the subsystem. This

internal structure is represented in an ibd diagram (see Figure 4.20). Each of the sensors interacts

with the environment regarding the quantity that it measures (e.g., the Magnetometer block has an input

representing the actual magnetic field vector in the body frame, and an output representing its measure-

ment). Additionally, each sensor and actuator has an input port representing its electrical supply. As

described in the process shown in Figure 3.4, software and hardware architectures are defined for the

subsystem, which may then be integrated with those of the other subsystems.

In comparison with what was defined at the functional level, four ports were added to the ADCS. Two

of these are inputs, which are related to the reception of spacecraft and Earth orbit updates, and the

other two are outputs of the spacecraft position and attitude estimates. Since there are performance

requirements imposing constraints on the errors of these two estimates, the two time-dependent param-

eters must be inputs of the Monitoring and Control block, and these connections must be routed through

60

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v7.mdzip ADCS - Logical 1/nov/2021 15:56:23

ADCS - LogicalADCS - Logical[Block] ibd][

sw : ADCS Software

sun_p : Sun Pos. Est.

gc : Attitude Controller

af : Attitude Filter

sc_p : SC Pos. Est.

mfe : Mag. Field Est.

svd : Sun Vec. Det.

hw : ADCS Hardware

rws : Reaction Wheel Set 3 [0..1]

pds : Photodiode Set 5

mtqs : Magnetic
Torquer Set 3

mag : Magnetometer

gyro : Gyroscope

es : Earth Sensor

trq_sum : Sum
data_report

satOrbit_upd

earthOrbit_upd

total act. torque

Sun pos est.

S/C w meas.

w heels ang. vel.

w heels cmd torque

torquers dutycycle

S/C pos. est.

mag. field meas.

nadir meas.

S/C w corr.
S/C att.

S/C w meas.

mag. field meas.

nadir est.

S/C pos. sph.

S/C pos. est.

mag. field est.

Sun vec. body

S/C w magn.

storedAngMom

rw supply

w heels cmd torque

w heels act. torque

pd supply [0..1] pd currents

pd intensities

torquers act. torque

torquers dutycycle

mag. field meas.

mag. field body

S/C w meas.
S/C w

es supply
nadir meas.

nadir body

gyro supply

mag supply

mtq supply

w heels ang. vel.

Figure 4.20: Internal structure of the ADCS logical architecture.

all the architecture levels (this is explained in Section 3.1.3 and shown in Figure 4.24).

Also as it was done at the functional level, each of the token exchanges specified in the diagrams in

Figures 4.17 to 4.19 are assigned to a single connector represented in the ibd shown in Figure 4.20.

This is done both as a good methodological practice and to enable proper integration with simulation.

In fact, this ibd represents the exact structure of the ADCS in the simulation model, and the semantics

used in its definition are very similar to those used in Simulink.

As the subsystem definition becomes less abstract, its external context may have to be redefined.

In this case, this was required at the logical level. It represents a design iteration that is essential for

the correct definition of the system, but which falls outside the linear and sequential representation of

the system definition process. This type of iteration can occur, and it should take place whenever it

contributes to the improvement of the design process effectiveness and efficiency. In this context, the

61

internal structure of the Mission Context block was redefined, as shown in Figure 4.21.

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v7.mdzip Mission Context 16/out/2021 18:53:04

Mission ContextMission Context[Block] ibd][
env : Environment

si : Spacecraft
Interface

od : Orbital Dynamics

earth : Earth

scRot : SC Rotation

me : Mission Enterprise

SC : Spacecraft

^ADCS_log : ADCS - Logical

^av : Avionics

^com : Communications

gs : Ground Station

S/C pos. ECI

mag. field ECI

mag. field body

pd intensities

nadir ECI

eclipse S/C att.

nadir body

storedAngMom

S/C w

actuation torque

S/C pos. est. S/C att. est.

satOrbit_upd

earthOrbit_upd

pd_intensities

mag. field body

nadir body

storedAngMom

data_report

total act. torque

S/C w

pd supply [0..1]

es supply [0..1]

gyro supply

mag supply

mtq supply

rw supply [0..1]

satOrbit_upd earthOrbit_upd

satOrbit_upd

earthOrbit_upd S/C vel. ECI

S/C pos. ECI

Earth vel. SS

Earth pos. SS

Figure 4.21: Redefinition of the external context of the ADCS.

The major change to the subsystem context regards the introduction of the spacecraft and Earth orbit

updates. These represent a complex interaction which starts with the introduction of a new connection

between the Environment and Ground Station blocks (the latter includes the ground station systems

and the mission operations). Models of the orbits are used by an operator to generate orbit updates,

which are then sent by the ground station to the spacecraft. The communications subsystem receives

the updates and sends them to ADCS (with a relay in the avionics subsystem). The other change to

the ADCS context concerns the breakdown of the electrical supplies. Output ports were also added

to the Mission Context block, representing the time-dependent parameters that are required for ADCS

performance evaluation, implemented through simulation (this becomes clear in Figure 4.24).

In Figure 4.21, the interactions between the system and the environment are also routed inside the

Environment block. In this work, the environment is decomposed and modelled just like the subsystem.

62

This is done to ensure that the specification of the environment models is contained inside the SysML

model repository. The internal structure of the Environment block is defined in detailed in Section 4.2.6.

The internal structure of the Mission Context block shown in Figure 4.21 is replicated in the simulation

model that will be generated. This however does not mean that all the interactions modelled are relevant

in simulation. In fact, the electrical supplies of the hardware components are irrelevant in the simulation

process, but their presence in the model does not affect the results of the model transformation.

The capture of critical component properties, which are defined as value properties of the component

blocks, is part of this activity (see Figure 3.4). However, this will only be presented in the next section,

together with the definition of values for each attribute, facilitating reader understanding. Additionally,

the logical component requirements, which are specified as part of this activity, will only be discussed in

Section 4.3, since these are in practice design process outputs.

4.2.4 Synthesis of Candidate Physical Architectures

As discussed in Section 3.1.2, the activity of synthesizing candidate physical architectures consists

solely of defining values for each attribute and redefining component multiplicities. Not all these attributes

are quantitative since some of them represent the name of specific models or methods that are used as

part of the definition of the component. This modelling practice was adopted to enable a real difference

in the definition of component abstraction between the logical and physical levels, while also avoiding

the additional work of redefining all the components between these two levels.

Not redefining the components is however just a simplification, which would not be possible in the

context of a real project. For example, the quantitative attributes of an attitude filter cannot all be iden-

tified without an algorithm being selected. Nevertheless, this simplification contributes to an important

reduction of scope, and it does not affect the validity of the methodology or MBSE in general, since there

are notable methodologies that only define two component abstraction levels (like the original OOSEM).

Only two candidate architectures are defined at this level, exploring the two possible multiplicities of

the set of reaction wheels. These two architectures consist of designs without and with one set of three

reaction wheels. More candidates could also be defined by using different component options, but this

is not as interesting for the validation of the methodology (as discussed in Section 3.1.2).

Three attributes of the subsystem are defined at this level. Concerning the angular rate thresholds

described in Section 4.2.1, PointThresh is defined as 1 deg/s, and DetThresh is defined as 5 deg/s. The

period of the state machine — stmPeriod — is defined as 10 seconds. These values were iterated in

simulation. The duration of the detumbling, and the maximum stored angular momentum, also specified

as value properties of the subsystem, will be later obtained with the help of simulation (in Section 4.2.6).

The critical properties of the hardware components are presented in Tables 4.3 and 4.4. Each col-

umn represents one component, for which a COTS component was selected, and whose name is shown

in the first line of the table. For each value property a default value is defined, according to what is speci-

fied in the COTS component’s datasheet. The attributes are divided into two table segments, the top one

concerning properties that are relevant inside the SysML model, and the bottom one concerning prop-

63

erties used in the mathematical model of the component. These mathematical models are described

in Appendix D.1, where the meaning of each parameter becomes clear. The direction of the actuation

produced by each actuator is not defined in the tables, since it also not directly specified in the model.

These are not properties of the COTS components, since they depend on the way these are installed

in the spacecraft. They are however required for the corresponding mathematical models, and so these

are connected to other value properties in the model, as explained in Section 3.1.3. Despite this, the ac-

tuators are considered to be aligned with each axis of the body frame, for simplicity. No information has

been obtained regarding the measurement model of the photodiode, in specific regarding its accuracy.

As a result, it was modelled as ideal in Simulink, since its real accuracy is not relevant for the validation

of the methodology (a very large measurement error is already introduced by the Earth albedo).

Earth Sensor:
CubeSense [87]

Gyroscope:
MPU9250 [88]

Magnetometer:
HMC5983 [89]

Attribute Value Attribute Value Attribute Value
Mass (g) 30 Mass (g) 1 Mass (g) 1

Avrg. Power (mW) 100 Avrg. Power (mW) 10 Avrg. Power (mW) 0.5

Supply Voltage (V) 3.3 Supply Voltage (V) 2.5 Supply Voltage (V) 2.5

Frequency (Hz) 1 Frequency (Hz) 40 Frequency (Hz) 40

FOV (deg) 130 RRW Bias (deg/s) 6× 10−3 Noise Variance (nT2) 4.0× 104

Accuracy 1-σ (deg) 0.2 RRW PSD ((deg/s2)2/Hz) 2× 10−8 Linearity 0.1%

ARW PSD ((deg/s)2/Hz) 1× 10−4 Bias (nT) 100

Linearity 0.1% No. Bits 12

Saturation (rad/s) 4.36 Saturation (nT) 1.0× 105

No. Samples MAF 10 No. Samples MAF 10

Table 4.3: Critical properties of the Earth sensor, gyroscope, and magnetometer.

Reaction Wheel:
CubeWheel [90]

Magnetic Torquer:
EnduroSat [91]

Photodiode:
EnduroSat [91]

Attribute Value Attribute Value Attribute Value
Mass (g) 60 Mass (g) 9

Avrg. Power (mW) 150 Arvg. Power (mW) 40

Max. Power (mW) 650 Max. Power (mW) 230

Supply Voltage (V) 3.3 Supply Voltage (V) 3.3

Wheel Inertia (kgm2) 2.1× 10−6 Max. dipole (Am2) 0.131 Frequency (Hz) 1

Max. Ang. Rate (rad/s) 837.76 Dipole Direction — Conv. Factor (V−1m2) 4× 10−8

Max. Torque (Nm) 2.3× 10−4

Actuation Direction —

Table 4.4: Critical properties of the reaction wheel, magnetic torquer, and photodiode.

The mass and average power consumption of each component must be specified, in order to perform

roll-ups of these properties and check if the associated subsystem requirements are satisfied. The

photodiodes are an exception to this, because these do not consume power and their inclusion in the

solar panels is not optional (the inclusion of a magnetic torquer is optional). The supply voltage of each

component and the maximum power of each actuator are also specified, since these are necessary for

64

the design of the avionics subsystem. The frequencies shown in Table 4.3 represent the values that

were selected for this specific design, and not the maximum frequencies specified in the datasheets.

Both the gyroscope and the magnetometer are implemented with moving average filters (MAF), which

output values averaged over a number of samples, at the low frequency of the attitude filter.

At this point we can conclude that the total mass of the ADCS with the inclusion of reaction wheels

is 239 grams, and 59 grams otherwise. Since the mass limit imposed by Req. 7.1.4 is 100 grams, the

architecture with reaction wheels does not satisfy this requirement by a large difference. If the inclusion

of reaction wheels is necessary to satisfy the performance requirements, either a smaller COTS option

is selected, or a trade-off must be made (or both). This is however outside the scope of this work.

Regarding the total average power consumption, it can be estimated by summing the average power

of every component presented in Tables 4.3 and 4.4. This results in an average power of 680 mW

for the configuration with reaction wheels, and 230 mW for the other configuration. The same exact

scenario applies to the average power, but in this case, a better estimate of this parameter should first be

computed in simulation (e.g., the power drawn by the reaction wheels depends heavily on their operating

angular speed, which depends on the characteristics of the system and operational scenarios).

Since the software components are developed, and not procured, their specification is different from

that of the hardware components. The critical properties of the software components are presented in

Tables 4.5 and 4.6. The mathematical models of the software components are described in Appendix

D.2, where the meaning of each parameter becomes clear.

The magnetic field estimation in the inertial frame is performed using the WMM 2020 (see Appendix

C.2), while the numerical integration of the spacecraft and Earth orbits uses the fourth-order Runge-

Kutta method (see Appendix D.2.1). The order of the magnetic field model and the orbit perturbations

considered for each numerical integration were iterated in simulation to limit the estimation error to a

desired value. The initial Julian date and frequency of these three estimators are not defined in the table

for the reason discussed above concerning Table 4.4. They are instead respectively defined in Table 4.1

and in Table 4.6 (the frequency of the estimators is equal to the frequency of the attitude filter).

Magnetic Field Estimator Spacecraft Position Estimator Sun Position Estimator
Attribute Value Attribute Value Attribute Value
Initial Julian Date — Initial Julian Date — Initial Julian Date —
Frequency (Hz) — Frequency (Hz) — Frequency (Hz) —
Model WMM 2020 Integration Method RK4 Integration Method RK4
Model Order 10 Orbit Perturbations J8,8 Orbit Perturbations None

Step Size (s) 10 Step Size (s) 50

Update Period (s) 1× 104 Update Period (s) 1× 105

Table 4.5: Critical properties of the estimators of the magnetic field and spacecraft and Sun positions.

The blocks representing the attitude filter and attitude controller have multiple actions allocated to

them, as shown in Figures 4.17 to 4.19. Also, some of these actions are executed in different subsystem

modes, which means that these components must have different configurations for different modes. As

a consequence, the mathematical models for these components, specified in Simulink, use the ADCS

65

mode that is active in each instant in their definition. This is why the state machine described in Section

4.2.1 must be included in the definition of the simulation model, as a Stateflow block. The access to a

state machine’s active state inside another mathematical model is described in Section 3.1.3.

The Sun vector determination is not shown in any table because the algorithm used is very simple

and does not have any identifiable critical property (see the algorithm definition in Appendix D.2.1).

The attitude filter is executed in normal pointing and safe pointing only, and it uses the Explicit

Complementary Filter (ECF) defined in Appendix D.2.1 (also used in the ISTSat-1). The values used for

the gains in each configuration, whose meaning is described in Appendix D.2.1, are shown in Table 4.6

(these have been iterated in simulation). Also, different filter formulations are used in each mode since

the accuracy of the Sun vector measurement is very poor. The formulation used in normal pointing is

defined in Eq. D.16, and in safe pointing Eq. D.17 is used (the magnetometer is sensor a).

Attitude Filter Attitude Controller
Attribute Value Attribute Value
Frequency (Hz) 1 Frequency (Hz) 1

Algorithm ECF Detumbling Gain 2× 10−5

Magnetometer Gain [normal] 0.3 Proportional Gain [normal] (Nm) 2× 10−5

Earth Sensor Gain [normal] 0.7 Derivative Gain [normal] (Nm s/deg) 1× 10−6

Total Gain [normal] (rad/s) 1 Off-loading Gain [normal] (Nm/rpm) 1× 10−8

Bias Gain [normal] (rad/s2) 0.1 Proportional Gain [safe] (Nm) 1× 10−6

Magnetometer Gain [safe] 1 Derivative Gain [safe] (Nm s/deg) 1× 10−6

Sun Vector Gain [safe] 0.1 Rotation Gain [safe] (Nm) 1× 10−6

Total Gain [safe] (rad/s) 1 Max. dutycycle 0.75

Bias Gain [safe] (rad/s2) 0.1 Max. Torquer Dipole (Am2) —
Max. Wheel Torque (Nm) —

Table 4.6: Critical properties of the attitude filter and attitude controller.

Regarding the attitude controller, its operation is different for each of the candidate architectures.

Since the difference resides in whether reaction wheels are included, the attitude controller’s operation

is only different in what concerns the normal pointing mode. This difference is modelled by creating a

value property owned by the Attitude Controller block of type boolean, which is true if reaction wheels are

used or false otherwise. This parameter is used in the definition of the attitude controller mathematical

model to enable the execution of the correct configuration, according to the SysML specification.

The attitude controller has three different configurations for the three different modes. In all con-

figurations, the period of control, defined as 1 second, matches the frequency of the attitude filter. In

detumbling mode, the simple algorithm defined in Eq. D.20 is used, where kd is the detumbling gain

shown in Table 4.6. In safe pointing mode, the pointing algorithm used in the ISTSat-1 is adopted, which

is based on magnetic torquer actuation (formulated in Eq. D.24). The gains kr, kϵ, and kω correspond

to the rotation, proportional, and derivative gains shown in the table, respectively.

In normal pointing mode, if reaction wheels are used, the basic PD control formulation defined in Eq.

D.22 is used. In parallel, a magnetic torquer commanded dipole is calculated, being proportional to the

angular momentum stored by the wheels (using Eq. D.28). The gain value used for this calculation is

66

also in Table 4.6. The torque produced by this dipole must be counteracted by an additional compo-

nent of reaction wheel commanded torque. If reaction wheels are not used, the exact same controller

formulation and gain values used in safe pointing mode are also used in this mode.

As mentioned in Section 2.6, the magnetometer measurements are affected by the magnetic torquer

dipole, and because of that, these measurements and torquer actuation must be alternated. While

the maximum dutycycle the torquers may produce is 1, a lower maximum is defined to represent that

actuation is produced only in one part of the control period. In Table 4.6 this parameter is defined as

0.75, representing that 75% of the total period of 1 second is dedicated to magnetic torquer actuation.

All the controller gain values used in the different modes were iterated in simulation up-to the point

that the performance requirements were met. Since these were not optimized in simulation, the com-

parison between the two different candidates is not completely accurate. But again, the purpose of this

work is not to obtain an ideal ADCS design, but to apply the proposed methodology. In fact, the simulator

that is generated in this work can be used in support of a gain optimization just like any other simulator.

4.2.5 Management of Requirement Traceability

As discussed in Section 3.1.2, only part of the Management of Requirement Traceability activity can be

meaningfully demonstrated in this work, namely the specification of which elements in the model satisfy

and verify each requirement. These relationships were modelled and are summarized in Figure 4.22.

Requirements can be satisfied by a value property of an element (e.g., the requirements targeting

the mass and average power consumption of the ADCS). A special case of this are the performance

requirements, which are satisfied by value properties that represent TPMs. Each TPM is a scalar pa-

rameter that is constrained by a requirement, and whose definition should be clear in the description of

the requirement, e.g., by defining confidence intervals and statistical interpretations of errors (this topic

is further discussed in Appendix B). Other requirements are satisfied by part properties, specifically by

the design description of the element in question. For example, the design constraint 7.4.2, which de-

fines that the ADCS shall use active control techniques, is satisfied by the description of the component

that represents the attitude controller, as shown in Figure 4.22.

Requirements may also be satisfied by behaviours attributed to elements, such as operations and

classifier behaviours (or one of the state machines and activities that compose them). Some of the

requirements are satisfied by the ADCS operations, while others are satisfied by the activities defined

as do behaviours of the states (see Figure 4.22).

In this work, some requirements are verified through simulation. Performance requirements are di-

rectly verified through the determination of TPM values, following the process explained in Section 3.1.3,

and other requirements are verified indirectly, by manual analysis of simulation results (e.g., the require-

ment concerning detumbling duration). The verification through simulation is modelled by assigning the

analysis context block to the “verified by” property of the requirement. The requirements that are not

verified through simulation may be verified with design reviews, for example. For these, the “verified by”

property of the requirement is not specified in the model.

67

Figure 4.22: Specification of which elements in the model satisfy and verify each requirement.

4.2.6 Evaluation of Alternatives

This activity concerns system analysis, and in specific performance simulation, which is needed for

requirement verification and comparison of physical architectures. The first step in the process used

for this activity, shown in Figure 3.6, is to identify the analyses to be performed. In this work, one

analysis is considered: the simulation of the ADCS performance. The scenario used in this simulation

starts with launcher separation, after which the spacecraft is init mode and the ADCS in detumbling

mode. The spacecraft will later transition to safe mode and then to normal mode. In each of these, the

corresponding pointing performance is evaluated. With this scenario, all the ADCS modes are evaluated.

More details on the simulation scenario are provided later in this section.

Before performing engineering analysis, the system, the environment, and the analysis context must

be specified, following the six steps discussed in Section 3.1.3. Up to this point, the system has been

specified and attribute values have been defined for the mission- and system-levels in Section 4.1, and

for the subsystem- and component-levels in Section 4.2.4. The ADCS component mathematical models

are described in Appendix D. The next step concerns the specification of the environment.

68

Environment Model

The architecture of the environment is specified according to the specific simulation in question. For the

simulation of ADCS performance, this is defined as shown in the ibd in Figure 4.23. Value properties

are attributed to the components to represent model parameters and system or mission attributes that

are used in their mathematical models.

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v5_env_model.mdzip Environment 12/out/2021 13:52:51

EnvironmentEnvironment[Block] ibd][

scRot : SC Rotation

distT : Torque Disturbances

aeroT : Aerodynamic
Torque

dt_sum : Sum 3

mdT : Magnetic
Disturbance Torque

ggT : Gravity
Gradient Torque

rotDyn : Spacecraft Rotation Dynamics

si : Spacecraft Interface

pi : Photodiodes
Interface

mi : Magnetometer
Interface

esi : Earth
Sensor Interface

od : Orbital Dynamics

eo : Earth Orbit

so : Spacecraft
Orbit

earth : Earth

magFld : Earth
Magnetic Field

alb : Earth
Albedo

S/C att.

S/C vel. ECIS/C pos. ECI

S/C att.
S/C vel.S/C pos.

aero. torque

S/C att.

mag. dist. torque

mag. field ECI

S/C att.

S/C pos.

grav. grad. torque

total dist. torque

S/C att.
storedAngMom

mag. field ECI

total act. torque

S/C w

albedo

S/C att.

mag. field ECI

S/C att.

nadir ECI

nadir body

mag. field body

pd intensities

S/C pos.

Sun pos.

S/C pos. ECI

nadir ECI

Earth pos. SS

Earth vel. SS

eclipse

Sun pos. ECI

S/C vel. ECI

S/C pos.
albedo

Sun pos.

Figure 4.23: Internal structure of the Environment block.

The environment is decomposed into four part properties: (i) Orbital Dynamics, which includes both

the orbit of the spacecraft and the Earth; (ii) Earth, which includes the Earth magnetic field and albedo;

(iii) Spacecraft Rotation, which encompasses the rotation dynamics and torque disturbances; and (iv)

Spacecraft Interface, which outputs the exact quantities that are measured by the sensors.

Three torque disturbances are considered in simulation, namely the aerodynamic torque, gravity

gradient torque, and magnetic disturbance torque (caused by undesired magnetic dipoles on-board).

69

These are the main sources of undesired torques in LEO [71], with slosh not being a problem since

the spacecraft does not contain any fluids. The equations used to model the torque disturbances and

rotation dynamics are presented in Appendix A.3. All the components related to the spacecraft rotation

are executed in simulation with the smallest step-size, except for the computation of the aerodynamic

torque, which is performed with a sampling period of 1 second.

The Earth magnetic field is modelled with the WMM 2020, using Gauss coefficients of up to degree

and order 12 (highest available in [92]). The detailed formulation of this model can be consulted in

Appendix C.2. In turn, the computation of the Earth albedo is based on the work developed in [93], and

it is separated into two parts, as explained in Appendix C.4. The first part of the albedo computation is

represented by the block Earth Albedo, and it is executed with a sampling period of 10 seconds. The

second part of the computation, which requires the knowledge of the spacecraft attitude, is represented

by the block Photodiodes Interface, and it is executed at the frequency of the attitude filter. This block

outputs the exact quantity that is measured by the photodiodes, i.e., total irradiance. The two other

blocks contained in the Spacecraft Interface only apply a coordinate transformation to the magnetic field

vector and the nadir, since the sensors measure these quantities in the body frame.

Instead of developing a program for the precise determination of the spacecraft orbit, we opted to

use the GMAT [94] software to this effect (version R2016a). This software was also used to compute the

intervals of eclipse. All these computations are encompassed in the Spacecraft Orbit block. Regarding

the propagation of the spacecraft orbit, the configurations used are listed in Table 4.7. To evaluate the

order of magnitude of the various orbital perturbations, Figure 3.1 in [95] was used as a reference. All

the perturbations that represent accelerations greater than 10−10 km/s were considered, except for the

dynamic solid tide, which is not modelled in the used version of GMAT. The Solar Radiation Pressure

(SRP) perturbation was also considered because its effect increases with the decrease in spacecraft

size, and the spacecrafts considered in [95] are much larger than a CubeSat.

Orbit Perturbations Considered Moon, Sun, SRP, Drag, J18,18 (up to)
Model of the Earth Gravity Field EGM-96

Atmosphere Model MSISE90
Integrator Type Runge-Kutta 8/9

Step Size 5 seconds

Table 4.7: Configurations used in GMAT for the determination of the spacecraft orbit.

Some spacecraft properties are required to specify the GMAT model: mass, drag coefficient, reflec-

tivity coefficient, drag area, and SRP area. The values used for these parameters are those presented

in Table 4.2. The entry orbit and associated epoch used in this model are defined in Table 4.1.

Finally, the orbit of the Earth around the Sun is propagated with a numerical integration of the equa-

tions of motion, considering only the gravity of the Sun and Moon (as point masses). The orbit of the

Moon is also propagated in this process. The integration method used is a fourth-order Runge-Kutta (see

formulation in Appendix D.2.1), and the step size used is 50 seconds. The initial position and velocity

were generated using the MATLAB function planetEphemeris(), which uses the Chebyshev coefficients

that the NASA JPL provides (in specific the DE405 ephemerides [96]).

70

Analysis Context

After both the system and environment are modelled in SysML, the analysis context and the Monitoring

and Control block are defined to specify the simulator, as discussed in Section 3.1.3. As shown in Figure

4.24, the analysis context is composed of the mission context and a Monitoring and Control block, like

the simulator structure shown in Figure 2.5.

The Monitoring and Control block contains elements that compute specific error indices (defined in

Appendix B), which are targeted by each of the performance requirements . These indices, which are

later processed to generate TPM values, are: (i) the spacecraft position estimation error, computed as

the magnitude of the difference between real and estimated positions; (ii) the absolute attitude knowl-

edge error, computed with Eq. B.3; and (iii) the absolute pointing error, computed with Eq. B.4. Two

different absolute pointing errors are calculated, one concerning the error in safe pointing mode and out

of the eclipse, and the other concerning the error in normal pointing mode.

Cameo Systems Modeler, 1-1 G:\O meu disco\Documentos\Faculdade\Tese Mestrado\Implementation\SysML\Thesis_v7_ac.mdzip Analysis Context Structure 17/out/2021 22:40:47

Analysis Context StructureADCS_Pointing_Simulation[Block] ibd][

mc : Monitoring and Control

spee_save : Save To
Workspace Scalar

pes_save : Save To
Workspace Scalar

pen_save : Save To
Workspace Scalar

aee_save : Save To
Workspace Scalar

spee : Spacecraft
Position

Estimation Error

aee : Absolute
Attitude

Knowledge Error

pes : Absolute
Pointing
Error Safe

pen : Absolute
Pointing

Error Normal

missCont : Mission
Context Sim

pos. error

att. error

point. error

point. error

S/C pos. est.

S/C att. est.

SC att.

eclipse

S/C pos. ECI

Figure 4.24: Internal structure of the analysis context and the Monitoring and Control block.

In simulation, all error indices are computed at every instant and saved (with a frequency of 1 Hertz).

The four blocks that compute these indices all have a value property that specifies the interval of time in

which the index values are relevant for the calculation of the final TPM.

As shown in Figure 4.24, the Monitoring and Control block is also composed of blocks that save the

index values to the workspace in MATLAB, in structures fields whose names are specified in SysML.

These save index values are later post-processed by functions that are called after the simulation, using

with the StopFCN property of the Simulink model, as discussed in Section 3.1.3. Each function trans-

forms a set of instantaneous values into one single scalar parameter, the TPM, which is computed using

the definition in Eq. B.5. Only instantaneous values inside the specified interval of time are considered

for this calculation. The final TPM value is saved in an Excel spreadsheet that is synchronised with a

table in SysML, being automatically transferred to the SysML model.

As mentioned in Section 3.1.3 and defined in [60], the specification of the Monitoring and Control

71

block includes the definition of the simulation scenarios. These are modelled in SysML as a schedule

of signal events, which are mapped to Simulink as messages. The messages are received by Stateflow

blocks, guiding the state transitions according to the system operations scenario defined by the user.

One single simulation is run for each candidate architecture, starting with launcher separation and

finishing with normal mission pointing. This simulation must verify all the requirements mentioned in

Section 4.2.5, and to do this, the events shown in Table 4.8 must take place in the defined order. After

separation, which takes place in the instant t = 0 sec, the init mode is active for 90 minutes, after which

a transition to safe mode occurs. The limit duration of the detumbling (i.e., ensuring the angular rate

is below 5 deg/s) is however 2 complete orbital periods (the orbital period is 5668 seconds). As the

detumbling time limit is reached, the ADCS has 2 complete orbital periods to converge the spacecraft

stabilization, after which the pointing performance in safe pointing mode is evaluated. According to Req.

7.2.5, this evaluation must be performed during 10 complete orbits. After this is finished, a transition

to normal state is triggered by ground command, and the same process is applied but now in normal

pointing mode (2 orbital periods for convergence and 10 orbital periods for performance evaluation).

Event Instant
(seconds) Rationale

Launcher Separation 0 —

Transition to SAFE 5400 90 minutes after separation

Detumbling Time Limit 11336 2 orbits after separation (Req. 7.2.3)

Safe Pointing: Start of Performance Eval. 22672 2 orbits for stabilization

Safe Pointing: End of Performance Eval. 79352 10 orbits of coverage (Req. 7.2.5)

Transition to NORMAL 80000 —

Normal Pointing: Start of Performance Eval. 91336 2 orbits for stabilization

Normal Pointing: End of Performance Eval. 148016 10 orbits of coverage (Req. 7.2.5)

End of Simulation Scenario 150000 —

Table 4.8: Schedule of events representing the simulation scenario defined.

For this schedule of events to be put into practice, three signal events must be modelled in SysML,

as shown in Figure 4.25. The signals Separation Start and Separation Complete are required to arrive

at the spacecraft state on (see Figure 4.4). In turn, the signal Ground Cmd Normal defines the ground

command that triggers a transition to normal in the exact instant specified in the table (t = 80000 sec).

Simulation Results

With system, environment, and analysis context completely specified, the simulator can be generated,

following the process described in Section 3.1.3, and executed. One simulation was run for each candi-

date architecture, and the results of these are summarized in Table 4.9 (the step size used was 25 ms).

The detumbling duration and absolute pointing performance in safe pointing are equal for the two

architectures, because they do not concern the normal pointing mode. The two requirements addressing

these attributes are both satisfied by a large margin (see Table 4.9). The spacecraft position estimation

72

Figure 4.25: Specification of the simulation scenario with a schedule of signal events.

Parameter Value Required Max.
[A1]: Absolute Pointing Performance – normal pointing (deg) 0.50 1
[A2]: Absolute Pointing Performance – normal pointing (deg) 0.96 1
[A1]: Absolute Attitude Knowledge Performance – normal pointing (deg) 1.81 2.5
[A2]: Absolute Attitude Knowledge Performance – normal pointing (deg) 2.74 2.5
Absolute Pointing Performance – safe pointing (deg) 6.63 10
Spacecraft Position Estimation Accuracy (m) 208 250
Detumbling Duration (sec) 5680 11336
Maximum Wheel Angular Rate (rpm) 259 6000

Table 4.9: Summary of the simulation results (the architecture with reaction wheels is named “A1”, and
the other “A2”). The parameter values obtained with simulation (left) are compared to maximum values
imposed by requirements (right).

accuracy is also equal for the two architectures since changes in attitude determination and control do

not affect this estimation. The associated requirement is also satisfied for both architectures (note that

the performance of the spacecraft position estimation is evaluted during the entire simulation).

The absolute pointing performance in normal pointing is different in the two cases because different

actuators are used. Even though the use of reaction wheels ensures a much lower pointing error, both

architectures meet the imposed requirement (see Table 4.9). The absolute attitude knowledge perfor-

mance in normal pointing is also different for the two architectures, not because of the attitude filters,

which are exactly equal, but because the absolute pointing error has an effect on the attitude estimation

accuracy. The corresponding requirement is only satisfied by the architecture with reaction wheels, but

this requirement may be redefined if a trade-off with another requirement meets the stakeholder expec-

tations better (e.g., with the mass requirement). When reaction wheels are used, the wheel angular rate

is kept at very low levels, when compared with the maximum angular speed required (the requirement

concerns the stored angular momentum, but this is proportional to the angular speed).

The TPM values shown in Table 4.9, in the first six lines, are the only relevant parameters for de-

termining if the associated requirements are verified. However, simulation results should be analysed

in detail by the specialist engineers to understand if the design of the subsystem may be improved. To

73

enable this, some time-dependent parameters are saved after the simulation to be analysed later.

In Figure 4.26 the absolute attitude knowledge error is plotted against time, for both simulations.

We can observe that the associated TPM value (represented by a dashed line) is increased due to

the presence of error spikes, which occur when the nadir and the magnetic field vector are close to

aligned. The nadir is always close to aligned with the z axis of the body frame, and the estimation error

accumulates around this direction, which means these error spikes have a very low influence on the

absolute pointing error.

Figure 4.26: Absolute attitude knowledge error during the 10 orbits of performance evaluation for the
normal pointing mode. The dashed line is located at the final value of the corresponding TPM.

This very low influence is demonstrated on the plots of absolute pointing error against time in normal

pointing mode, shown in Figure 4.27. The architecture that includes reaction wheels has an absolute

pointing error that never passes the limit of 0.8 degrees, because the reaction wheels can produce

high torques in any direction. Contrarily, the other architecture shows spikes of pointing error up to a

maximum of 2.5 degrees, which result from the fact that magnetic torquers can only produce torques

perpendicular to the magnetic field, and also from the increased attitude estimation error.

Finally, in Figure 4.28 we show a plot of the absolute pointing error against time in safe pointing

mode. The orange line represents the pointing error out of the eclipse and the blue line in eclipse.

The pointing error is much higher in eclipse because only the magnetic field vector measurement is

used by the attitude filter to correct the integration of the gyroscope measurements, which results in an

accumulation of estimation error around the direction of the magnetic field vector measurement. When

comparing the results shown in this figure with the ones shown in Figure 4.27, we may conclude that the

difference in the magnitude of the pointing error is a consequence of the less precise attitude estimation,

which is a result of the use of a Sun vector measurement in the place of the nadir measurement.

74

Figure 4.27: Absolute pointing error during the 10 orbits of performance evaluation for the normal point-
ing mode. The dashed line is located at the final value of the corresponding TPM.

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

Time [sec] 104

0

5

10

15

20

A
b

s.
 P

o
in

ti
n

g
 E

rr
o

r
[d

eg
]

Figure 4.28: Absolute pointing error during the 10 orbits of performance evaluation for the safe pointing
mode. The dashed line is located at the final value of the corresponding TPM.

4.3 Design Process Outputs

Most of the outputs of the design process specified in Figure 2.8 have already been defined in Section

4.2, specifically: (i) the subsystem white box specification, specified with the subsystem decomposition

shown in Figure 4.16 and with the ibd shown in Figure 4.20; (ii) the subsystem behaviour specification,

specified with the state machine shown in Figures 4.8 to 4.10 and with the activities shown in Figures

4.17 to 4.19; and (iii) the component black box specification, which can be directly derived from the

diagram in Figure 4.20, which shows the external interface of each component, and from Tables 4.3 to

4.6, which specify the quantitative attributes of each component. The final output of this design process

concerns the component requirements, whose derivation we discuss in this section.

75

Some component-level requirements are directly derived from subsystem-level requirements. The

performance requirement that defines the accuracy of the orbit estimation (Req. 7.3.4) results directly

into a component requirement, since only one component is involved in this estimation, the spacecraft

position estimator. This component also requires periodic orbit updates, as does the sun position esti-

mator. A requirement for each of these components is directly derived from Req. 7.2.2, imposing that

the period of the orbit updates be greater than the maximum period without ground station contact.

Other component-level requirements are indirectly derived from subsystem-level requirements. As

an example, we may consider that for the detumbling to be completed before the defined time limit given

the worst-case launcher separation rate of 100 deg/s, there is a maximum frequency for the attitude

controllers which can be defined with simulation. Thus, a requirement concerning the frequency of the

attitude controllers may be derived from the requirements concerning the detumbling operation (Reqs.

7.2.3 and 7.2.4). This requirement is only relevant when considering that the frequency of the attitude

controllers may have to be redefined in a later phase due to implementation constraints.

Additionally, budgets of certain parameters can be defined at the component-level as it was done

at the subsystem-level. If the hardware components were developed in-house or if the selection of

COTS options was not complete, the mass and average power budgets could be further broken down

at the component-level. Other budgets may be defined concerning the software components, namely of

processing time or memory. As part of the design of the ADCS, a control period of 1 second was defined,

and this time must be enough to compute the spacecraft position, the sun position, the magnetic field

vector, the spacecraft attitude, and the controller outputs. Since some of these computations are more

complex than others, different maximum processing times may be defined for each.

Finally, requirements may also be identified during the design definition process. As an example,

we may consider the fact that the magnetometer should not draw measurements while the magnetic

torquers produce a magnetic dipole, since these will be affected by the dipole. As mentioned in Section

4.2.4, the maximum dutycycle represents the percentage of the control cycle dedicated for torquer ac-

tuation. From this interaction, it is identified that the attitude controller should ensure that the magnetic

torquers only produce a dipole during the part of the control period assigned for that purpose. Addition-

ally, the magnetometer frequency and the number of samples over which is applied an average must be

constrained to ensure that measurements taken during the torquer actuation are not considered.

During the design definition process, other more detailed requirements may also be defined for the

components, e.g., concerning the specification of the units for each sensor measurement, regarding

the capability of the attitude filter to detect sensor failures, or imposing the configurability of specific

parameters used in the software components algorithms.

4.4 Discussion of Results

Some of the benefits of MBSE mentioned in Section 1.2.3 were perceived through the development of

this work. The improved ability to manage complexity is observed in the breakdown of the subsystem

behaviour. The ADCS state machine is represented with three different automatically consistent stm dia-

76

grams (Figures 4.8 to 4.10), and the subsystem behaviour in each of its operating modes is represented

in separate act diagrams (Figures 4.17 to 4.19). While DBSE methodologies may ensure the capability

to produce this type of breakdown, they usually do not ensure automatic maintenance of consistency.

Also, the automatic propagation of changes through the model and the evaluation of model correct-

ness helped to improve the quality of the specification and to reduce the time required to produce it. For

example, the ports owned by every element contained in the analysis context sum up to more than 300.

All of these are typed by an interface block that specifies the type of quantity that flows through it and

the units of that quantity. The ability of MBSE to ensure automated correctness verification guarantees

that all the pairs of ports that are connected in the model share the same definition in terms of quantity

and units. In addition, if the user wants all the ports representing an angular quantity to change their

units from radians to degrees, for example, this can be achieved by changing the specification of one

interface block, and this singular change is propagated across the complete model.

MBSE also enables the reuse of existing models, something that is made clear by the reuse of the

model developed in [21], which served as a basis for the model developed in this work. The model or-

ganization was adopted almost completely, and many other elements were reused, namely stereotypes,

value types and signal definitions. With the reuse of this model, the total modelling effort was reduced,

and the arduous task of setting up the model from scratch was avoided.

Regarding the methodology modifications proposed in this work, the introduction of a third level of

component abstraction offers clear benefits. At the physical layer, the main focus of the design is on the

use of simulation to compare different options of components and different algorithm configurations, with

the purpose of selecting a final subsystem design. Before reaching this layer, it is important to separate

into two different steps the definition of functionality and the selection of specific technology implemen-

tations. This way, we can ensure that: (i) systems engineers completely identify and decompose the

subsystems functions, which helps ensuring minimum design scope and avoid rework; (ii) early design

decisions that inadvertently remove a part of the design space are avoided; and (iii) the integration is-

sues that emerge from the decrease in the abstraction level do not have to be resolved all at once, since

there are instead two instances of abstraction reduction (between consecutive layers).

The framework developed for the integration of MBSE with simulation was successfully applied to

the generation of a Functional Engineering Simulator. In fact, the model repository remained the single

source of truth of all the specification used in the simulation model, except for the components internal

modelling. When changes were made to the specification in SysML, these were always promptly propa-

gated to the simulation model. Also, all the mathematical models used in the simulation were completely

developed in Simulink, a tool designed for this purpose. It was also demonstrated how an external

simulation tool, the GMAT, can be integrated into the simulation model indirectly via MATLAB/Simulink.

Model transformation approaches are currently capable of mapping the structural decomposition

and connections between elements, specified in SysML, into simulation platform-specific semantics.

This part of the developed framework is quite mature, mostly because the semantics used to define

these type of specification are very similar between the SysML and Simulink. The transfer of parameter

values from SysML to Simulink can also be implemented robustly as long as the parameters used in the

77

definition of the mathematical models are all identified and modelled in SysML.

The least mature aspect of the model transformation approach is the capability of transforming be-

haviour specification defined in SysML into Simulink semantics. SysML activities are used, for example,

to model algorithms and interactions between components that realize functions of the subsystem. Their

semantics are quite different from Simulink semantics and, because of that, a mapping between the two

is still not available. Because of this, the behaviour of the components is specified in SysML and si-

multaneously modelled mathematically in Simulink. Consequently, the component specification is not

truly contained in a single source of truth since consistency between SysML and Simulink representa-

tions is ensured manually. However, if the existence of multiple sources of truth can be limited to the

component-level of the architecture, model transformation approaches may still be advantageous. This

is because, at this level, only the behaviour and black box representations of the components in SysML

and Simulink must remain consistent, and because these components are usually reused from previous

projects, in which they were already modelled consistently.

The behaviour modelled with activities can in general be decomposed down to the lowest level of the

architecture. On the contrary, state-based and service-based behaviours, modelled respectively with

state machines and interactions (see Section 2.2), are more difficult to decompose. Because of this,

the capability of the model transformation framework to transform SysML state machines into Stateflow

blocks in Simulink is essential to ensure that it is mature enough for use in an industry setting. This

mapping is already defined by the SysPhS standard, and it can be robustly implemented, because the

SysML state machine and Stateflow semantics are also very similar. Currently, SysML service-based

behaviour specification is not as well mapped to Simulink as state-based behaviour. However, in this

work, we showed that message exchanges specified in SysML can also be transformed into Stateflow

semantics (the signal events in Figure 4.25 are mapped to Stateflow messages in the final simulator).

The model transformation framework was also capable of generating a simulator that complies with

the definition shown in Figure 2.5. Specifically, it ensures that the Monitoring and Control block can be

fully specified in SysML. In fact, all the relevant TPM specification is contained in a single source of truth,

including confidence intervals, statistical interpretation, and evaluation intervals. Also, the simulation

scenario used for requirement verification was completely specified with signal events in SysML.

Model transformation approaches must become more mature for application in the development of

space systems in an industry setting. This maturity can be increased with a continuous improvement

of the model transformation standards, such as the SysPhS, and by modifying the SysML standard,

making it more suitable for the specification of execution semantics.

In the point of view of an user of this MBSE methodology, the use of the methods, tools, and lan-

guages mentioned in this work has a steep learning curve. Additionally, developing a system model

takes a lot of time, and requires the systems engineer to be very thorough. However, these issues

are compensated by: (i) the clear guidance to the process of system design provided by the MBSE

methodology; (ii) the help provided by the MBSE tool to avoid making mistakes in the specification of

the system; and (iii) the time saved in later stages of the system definition, due to the improved quality

of the specification produced in earlier stages.

78

Chapter 5

Conclusions

Model-based systems engineering has the potential to further improve the effectiveness of SE practices,

by introducing modelling and centralization of information into these. However, a few challenges must

be first overcome, before MBSE may fulfil its promise. Some of these challenges are the lack of practical

guidance on the application of MBSE, the lack of maturity of tools and methods, and the limitations on

tool integration, specifically concerning the integration of MBSE with simulation.

In this thesis, an MBSE methodology based on the OOSEM is proposed for the design of a subsys-

tem, which includes a framework for integrating MBSE with simulation, through a model transformation

approach. This type of approach consists of the automatic transformation of system models contained

inside the model repository into simulation models that can be executed in a simulation environment. The

developed framework is capable of generating a complete simulator from SysML specification, reusing

component mathematical models developed in Simulink. The methodology is demonstrated by being

successfully applied to the design of an ADCS of a small satellite, where simulation is used to evaluate

subsystem performance and compare alternative designs. A preliminary iteration of the develop model

transformation framework was proposed and demonstrated in a paper presented in the 2021 Simulation

and EGSE for Space Programmes (SESP) workshop, organized by the ESA Conference Bureau.

Some of the benefits of MBSE identified across literature were verified in the implementation of the

methodology, namely: (i) the improved ability to manage complexity; (ii) the improvement in quality ob-

tained with automatic propagation of changes and model correctness evaluation; and (iii) the reduction

in the SE effort introduced by the ability to reuse models. Also, we conclude that an MBSE approach can

be applied at the subsystem-level, ensuring a proper integration of systems engineering with specialty

domain activities. A “subsystem engineer” is required, to integrate the two domains, but both the sys-

tems engineers and domain specialist engineers may still work with the types of models and methods

to which they are accustomed. Model transformation approaches ensure information centralization and

allow domain specialist engineers to perform mathematical modelling and simulation inside the scope

of simulation environments. With this approach, the risk of a simulator infrastructure having to be re-

configured to be applied in the design of a system with unusual characteristics is avoided. As these

infrastructures increase in complexity, reconfiguring them becomes harder and more time-consuming.

79

Bibliography

[1] Tamaskar, S., Neema, K., and DeLaurentis, D., “Framework for Measuring Complexity of

Aerospace Systems,” Research in Engineering Design, Vol. 25, No. 2, 2014, pp. 125–137. doi:

10.1007/s00163-014-0169-5.

[2] Flood, R. L., and Carson, E., Dealing with Complexity: An Introduction to the Theory and Applica-

tion of Systems Science, Springer US, New York, NY, USA, 1993. ISBN: 978-1-4419-3227-3.

[3] Walden, D. D., Roedler, G. J., Forsberg, K. J., Hamelin, R. D., and Shortell, T. M. (eds.), INCOSE

Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities, 4th ed.,

John Wiley & Sons Inc., Hoboken, NJ, USA, 2015. ISBN: 978-1-11-899940-0.

[4] Larson, W. J., Kirkpatrick, D., Sellers, J. J., Thomas, L. D., and Verma, D. (eds.), Applied Space

Systems Engineering, McGraw-Hill Companies Inc., Boston, MA, USA, 2009. ISBN: 978-0-07-

340886-6.

[5] Alvarez, J. L., de Koning, H., Fischer, D., Wallum, M., Metselaar, H., and Kretzenbacher, M.,

“Best Practices for Model Based Systems Engineering in ESA Projects,” 2018 AIAA SPACE and

Astronautics Forum and Exposition (17-19 September 2018, Orlando, FL, USA), 2018. doi:10.

2514/6.2018-5327.

[6] ECSS Secretariat, “Space Engineering - System Engineering General Requirements,” Tech. Rep.

ECSS-E-ST-10C, ESA-ESTEC Requirements and Standards Division, Noordwijk, The Nether-

lands, 2017.

[7] ISO/IEC/IEEE, “Systems and Software Engineering — System Life Cycle Processes,” Tech. Rep.

15288:2015, International Organization for Standardization, Geneva, Switzerland, 2015.

[8] Elm, J. P., and Goldenson, D. R., “Quantifying the Effectiveness of Systems Engineering,” 2013

IEEE International Systems Conference (SysCon) (15-18 April 2013, Orlando, FL, USA), 2013,

pp. 6–13. doi:10.1109/SysCon.2013.6549850.

[9] Boehm, B., Valerdi, R., and Honour, E., “The ROI of Systems Engineering: Some Quantitative

Results for Software-Intensive Systems,” Systems Engineering, Vol. 11, No. 3, 2008, pp. 221–

234. doi:10.1002/sys.20096.

80

[10] Kasser, J., and Hitchins, D., “Yes Systems Engineering, You Are a Discipline,” INCOSE Interna-

tional Symposium, Vol. 22, No. 1, 2012, pp. 416–431. doi:https://doi.org/10.1002/j.2334-5837.

2012.tb01346.x.

[11] Hitchins, D. K., Systems Engineering: A 21st Century Systems Methodology, John Wiley and

Sons Ltd., Chichester, UK, 2007. ISBN: 978-0-470-05856-5.

[12] Dick, J., Hull, E., and Jackson, K., Requirements Engineering, 4th ed., Springer International

Publishing, Cham, Switzerland, 2017. ISBN: 978-3319-61072-6.

[13] Ponsard, C., Massonet, P., Rifaut, A., Molderez, J. F., van Lamsweerde, A., and Tran Van, H.,

“Early Verification and Validation of Mission Critical Systems,” Electronic Notes in Theoretical

Computer Science, Vol. 133, 2005, pp. 237–254. doi:10.1016/j.entcs.2004.08.067.

[14] Friedenthal, S., Moore, A., and Steiner, R., A Practical Guide to SysML: The Systems Modeling

Language, 1st ed., Morgan Kaufmann Publishers Inc., New York, NY, USA, 2008. ISBN: 978-0-

12-374379-4.

[15] Delligatti, L., SysML Distilled: A Brief Guide to the Systems Modeling Language, Addison-Wesley,

2013. ISBN: 978-0-321-92786-6.

[16] Kaslow, D., Anderson, L., Asundi, S., Ayres, B., Iwata, C., Shiotani, B., and Thompson, R.,

“Developing a CubeSat Model-Based System Engineering (MBSE) Reference Model - Interim

Status,” 2015 IEEE Aerospace Conference (7-14 March 2015, Big Sky, MT, USA), 2015. doi:

10.1109/AERO.2015.7118965.

[17] Henderson, K., and Salado, A., “Value and Benefits of Model-Based Systems Engineering

(MBSE): Evidence From the Literature,” Systems Engineering, Vol. 24, No. 1, 2021, pp. 51–66.

doi:10.1002/sys.21566.

[18] Lerat, J.-P., “Three Reasons Why Document-Based SE (Usually) Works Better Than (Most of)

MBSE,” INCOSE International Symposium, Vol. 20, No. 1, 2010, pp. 723–738. doi:https://doi.org/

10.1002/j.2334-5837.2010.tb01100.x.

[19] Wymore, A. W., Model-Based Systems Engineering, CRC Press, Boca Raton, FL, USA, 1993.

[20] Huldt, T., and Stenius, I., “State-of-Practice Survey of Model-Based Systems Engineering,” Sys-

tems Engineering, Vol. 22, No. 2, 2019, pp. 134–145. doi:10.1002/sys.21466.

[21] Friedenthal, S., and Oster, C., Architecting Spacecraft with SysML: A Model-Based Systems Engi-

neering Approach, CreateSpace Independent Publishing Platform, 2017. ISBN: 978-1-54-428806-

2.

[22] Wertz, J. R., Everett, D. F., and Puschell, J. J. (eds.), Space Mission Engineering: The New SMAD,

2nd ed., Microcosm Press, Hawthorne, CA, USA, 2015. ISBN: 978-1-881-883-15-9.

81

[23] Kaslow, D., Ayres, B., Cahill, P. T., Hart, L., and Yntema, R., “A Model-Based Systems Engineering

(MBSE) Approach for Defining the Behaviors of CubeSats,” 2017 IEEE Aerospace Conference (4-

11 March 2017, Big Sky, MT, USA), 2017. doi:10.1109/AERO.2017.7943865.

[24] Kaslow, D., Ayres, B., Cahill, P. T., and Hart, L., “A Model-Based Systems Engineering Approach

for Technical Measurement with Application to a CubeSat,” 2018 IEEE Aerospace Conference

(3-10 March 2018, Big Sky, MT, USA), 2018. doi:10.1109/AERO.2018.8396443.

[25] Anderson, L., Cole, B., Yntema, R., Bajaj, M., Spangelo, S., Kaslow, D., Lowe, C., Sudano, E.,

Boghosian, M., Reil, R., Asundi, S., and Friedenthal, S., “Enterprise Modeling for CubeSats,” 2014

IEEE Aerospace Conference (1-8 March 2014, Big Sky, MT, USA), 2014. doi:10.1109/AERO.2014.

6836343.

[26] Spangelo, S. C., Cutler, J., Anderson, L., Fosse, E., Leo Cheng, Yntema, R., Bajaj, M., Delp, C.,

Cole, B., Soremekum, G., and Kaslow, D., “Model Based Systems Engineering (MBSE) Applied

to Radio Aurora Explorer (RAX) CubeSat Mission Operational Scenarios,” 2013 IEEE Aerospace

Conference (2-9 March 2013, Big Sky, MT, USA), 2013. doi:10.1109/AERO.2013.6496894.

[27] Kaslow, D., Soremekun, G., Kim, H., and Spangelo, S., “Integrated Model-Based Systems Engi-

neering (MBSE) Applied to the Simulation of a CubeSat Mission,” 2014 IEEE Aerospace Confer-

ence (1-8 March 2014, Big Sky, MT, USA), 2014. doi:10.1109/AERO.2014.6836317.

[28] Phojanamongkolkij, N., Lee, K., Miller, S. T., Vorndran, K. A., Vaden, K. R., Ross, E. P., Powell,

R. C., and Moses, R., “Modeling to Mars: a NASA Model Based Systems Engineering Pathfinder

Effort,” AIAA SPACE and Astronautics Forum and Exposition (12-14 September 2017, Orlando,

FL, USA), 2017. doi:10.2514/6.2017-5235.

[29] Eisenmann, H., “MBSE Has a Good Start; Requires More Work for Sufficient Support of Systems

Engineering Activities Through Models,” INSIGHT, Vol. 18, No. 2, 2015, pp. 14–18. doi:10.1002/

inst.12014.

[30] Schluse, M., Atorf, L., and Rossmann, J., “Experimentable Digital Twins for Model-Based Sys-

tems Engineering and Simulation-Based Development,” 2017 Annual IEEE International Sys-

tems Conference (SysCon) (24-27 April 2017, Montreal, QC, Canada), 2017, pp. 1–8. doi:

10.1109/SYSCON.2017.7934796.

[31] European Space Agency (ESA), “OCDT - Open Concurrent Design Tool,” , 2021. URL https:

//ocdt.esa.int/, [Online; accessed 16-Jun-2021].

[32] Chabibi, B., Anwar, A., and Nassar, M., “Towards a Model Integration from SysML to MAT-

LAB/Simulink,” Journal of Software, Vol. 13, No. 12, 2018, pp. 630–645. doi:10.17706/jsw.13.

12.630-645.

[33] Kim, H., Fried, D., and Menegay, P., “Connecting SysML Models with Engineering Analyses to

Support Multidisciplinary System Development,” 12th AIAA Aviation Technology, Integration, and

82

https://ocdt.esa.int/
https://ocdt.esa.int/

Operations (ATIO) Conference (17-19 September 2012, Indianapolis, IN, USA), 2012. doi:10.

2514/6.2012-5632.

[34] Johnson, T., Paredis, C., and Burkhart, R., “Integrating Models and Simulations of Continuous

Dynamics Into SysML,” Journal of Computing and Information Science in Engineering, Vol. 12,

No. 1, 2012. doi:10.1115/1.4005452.

[35] Nigischer, C., Bougain, S., Riegler, R., Stanek, H. P., and Grafinger, M., “Multi-Domain Simulation

Utilizing SysML: State of the Art and Future Perspectives,” Procedia CIRP, Vol. 100, 2021, pp.

319–324. doi:10.1016/j.procir.2021.05.073.

[36] Zeigler, B. P., Mittal, S., and Traore, M. K., “MBSE with/out Simulation: State of the Art and Way

Forward,” Systems, Vol. 6, No. 4, 2018. doi:10.3390/systems6040040.

[37] Monteiro, J. P., Gil, P. J. S., and Rocha, R. M., “A Taxonomy for Model-Based Systems Engi-

neering,” paper presented at ASME 2021 International Design Engineering Technical Conference,

17–19 August (Online), 2021.

[38] Madni, A. M., and Sievers, M., “Model-Based Systems Engineering: Motivation, Current Status,

and Research Opportunities,” Systems Engineering, Vol. 21, No. 3, 2018, pp. 172–190. doi:

10.1002/sys.21438.

[39] Chami, M., and Bruel, J., “A Survey on MBSE Adoption Challenges,” Proceedings of the

EMEASEC 2018 (5-7 November 2018, Berlin, Germany), 2018.

[40] Nelson, T., Borky, J. M., and Sega, R. M., “System-of-Systems Quality Attribute-Based Ar-

chitectural Alternatives,” IEEE Systems Journal, Vol. 14, No. 3, 2020, pp. 3844–3854. doi:

10.1109/JSYST.2019.2935984.

[41] LaSorda, M., Borky, J., and Sega, R., “Model-Based Architecture and Programmatic Optimization

for Satellite System-of-Systems Architectures,” Systems Engineering, Vol. 21, No. 4, 2018, pp.

372–387.

[42] Spangelo, S. C., Kaslow, D., Delp, C., Cole, B., Anderson, L., Fosse, E., Gilbert, B. S., Hartman,

L., Kahn, T., and Cutler, J., “Applying Model Based Systems Engineering (MBSE) to a Standard

CubeSat,” 2012 IEEE Aerospace Conference (3-10 March 2012, Big Sky, MT, USA), 2012. doi:

10.1109/AERO.2012.6187339.

[43] Kaslow, D., Hart, L., Ayres, B., Massa, C., Chonoles, M. J., Yntema, R., Gasster, S. D., and

Shiotani, B., “Developing a CubeSat Model-Based System Engineering (MBSE) Reference Model

— Interim Status #2,” 2016 IEEE Aerospace Conference (5-12 March 2016, Big Sky, MT, USA),

2016. doi:10.1109/AERO.2016.7500592.

[44] Kaslow, D., Ayres, B., Cahill, P. T., Hart, L., and Yntema, R., “Developing a CubeSat Model-

Based System Engineering (MBSE) Reference Model — Interim Status #3,” 2017 IEEE Aerospace

Conference (4-11 March 2017, Big Sky, MT, USA), 2017. doi:10.1109/AERO.2017.7943691.

83

[45] Waseem, M., and Sadiq, M. U., “Application of Model-Based Systems Engineering in Small Satel-

lite Conceptual Design – A SysML Approach,” IEEE Aerospace and Electronic Systems Magazine,

Vol. 33, No. 4, 2018, pp. 24–34. doi:10.1109/MAES.2017.180230.

[46] Mazzini, S., Tronci, E., Paccagnini, C., and Olive, X., “A Model-Based Methodology to Support

the Space System Engineering (MBSSE),” paper presented at the Embedded Real Time Software

and Systems (ERTS2) 2010 Congress, 19-21 April, Toulouse, France, 2010.

[47] Jakob, F., Mazzini, S., and Jung, A., “A SysML-Based Methodology in a Concurrent Satellite

Design Process,” Tech. Rep. 2011-01-2713, Society of Automotive Engineers, 2011. doi:10.4271/

2011-01-2713.

[48] Hennig, C., Viehl, A., Kämpgen, B., and Eisenmann, H., “Ontology-Based Design of Space Sys-

tems,” The Semantic Web – ISWC 2016 (17–21 October 2016, Kobe, Japan), Springer Interna-

tional Publishing, 2016, pp. 308–324.

[49] Edmonson, W., Chenou, J., Neogi, N., and Herencia-Zapana, H., “Small Satellite Systems Design

Methodology: A Formal and Agile Design Process,” 2014 IEEE International Systems Conference

Proceedings (31 March-3 April 2014, Ottawa, ON, Canada), 2014, pp. 518–524. doi:10.1109/

SysCon.2014.6819305.

[50] Gao, S., Cao, W., Fan, L., and Liu, J., “MBSE for Satellite Communication System Architecting,”

IEEE Access, Vol. 7, 2019, pp. 51–67. doi:10.1109/ACCESS.2019.2952889.

[51] Guo, J., Gill, E., and Figari, S., “Model Based Systems Engineering to Support the Development of

Nano-Satellites,” paper presented at the 65th International Astronautical Congress, 29 September

- 3 October, Toronto, Canada, 2014.

[52] Romero, A. G., and Ferreira, M., “Modeling an attitude and orbit control system using SysML,”

paper presented at the 2nd Workshop in Space Technology and Engineering, 3-4 May, São Paulo,

Brazil, 2011.

[53] Garro, A., Groß, J., Riestenpatt gen. Richter, M., and Tundis, A., “Reliability Analysis of an Attitude

Determination and Control System (ADCS) Through the RAMSAS Method,” Journal of Computa-

tional Science, Vol. 5, No. 3, 2014, pp. 439–449. doi:10.1016/j.jocs.2013.06.003.

[54] Hiep, C., and Ioki, M., “A Model-Based Systems Engineering (MBSE) Approach to Development

of Attitude Determination and Control Subsystem for First Micro-Satellite in Vietnam,” Master’s

thesis, Graduate School of Design and Management, Keio University, Vietnam, 2016.

[55] Garro, A., and Tundis, A., “A Model-Based Method for System Reliability Analysis,” Proceedings of

the 2012 Symposium on Theory of Modeling and Simulation - DEVS Integrative M&S Symposium

(26-30 March 2012, Orlando, FL, USA), 2012.

84

[56] Karban, R., Jankevičius, N., and Elaasar, M., “ESEM: Automated Systems Analysis Using Exe-

cutable SysML Modeling Patterns,” INCOSE International Symposium, Vol. 26, No. 1, 2016, pp.

1–24. doi:10.1002/j.2334-5837.2016.00142.x.

[57] Cao, Y., Liu, Y., and Paredis, C. J., “System-Level Model Integration of Design and Simulation

for Mechatronic Systems Based on SysML,” Mechatronics, Vol. 21, No. 6, 2011, pp. 1063–1075.

doi:10.1016/j.mechatronics.2011.05.003.

[58] Kapos, G., Dalakas, V., Tsadimas, A., Nikolaidou, M., and Anagnostopoulos, D., “Model-Based

System Engineering Using SysML: Deriving Executable Simulation Models with QVT,” 2014 IEEE

International Systems Conference Proceedings (31 March-3 April 2014, Ottawa, ON, Canada),

2014, pp. 531–538. doi:10.1109/SysCon.2014.6819307.

[59] Object Management Group (OMG), “MOF Query/View/Transformation Specification, version 1.3,”

, 2016. URL https://www.omg.org/spec/QVT/About-QVT, [Online; accessed 12-Abr-2021].

[60] ECSS Secretariat, “Space Engineering - System Modelling and Simulation,” Tech. Rep. ECSS-

E-TM-10-21A, ESA-ESTEC Requirements and Standards Division, Noordwijk, The Netherlands,

2010.

[61] Martin, J. N., Systems Engineering Guidebook: A Process for Developing Systems and Products,

CRC Press, Boca Raton, FL, USA, 1996. ISBN: 978-0-84-937837-9.

[62] Estefan, J., “Survey of Model-Based Systems Engineering (MBSE) Methodologies, Rev. B,” Tech.

rep., NASA Jet Propulsion Lab, 2008.

[63] Forsberg, K., and Mooz, H., “The Relationship of System Engineering to the Project Cycle,” IN-

COSE International Symposium, Vol. 1, No. 1, 1991, pp. 57–65. doi:10.1002/j.2334-5837.1991.

tb01484.x.

[64] Douglass, B. P., ”The Harmony Process”, Real-Time UML Workshop for Embedded Systems, 2nd

ed., Elsevier Inc, 2014, pp. 33–66. ISBN: 978-0-12-407781-2.

[65] Dori, D., Object-Process Methodology: A Holistic Systems Paradigm, Springer-Verlag, Berlin,

Germany, 2002. ISBN: 978-3-642-62989-1.

[66] Object Management Group (OMG), “OMG Systems Modeling Language Specification, version

1.6,” , 2019. URL https://www.omg.org/spec/SysML/1.6/About-SysML/, [Online; accessed 12-

Abr-2021].

[67] Object Management Group (OMG), “SysML Extension for Physical Interaction and Signal Flow

Simulation, version 1.1,” , 2018. URL https://www.omg.org/spec/SysPhS/About-SysPhS/, [On-

line; accessed 12-Abr-2021].

[68] Royce, W. W., “Managing the Development of Large Software Systems: Concepts and Tech-

niques,” Proceedings of the 9th International Conference on Software Engineering (March 1987,

Monterey, CA, USA), 1987, p. 328–338.

85

https://www.omg.org/spec/QVT/About-QVT
https://www.omg.org/spec/SysML/1.6/About-SysML/
https://www.omg.org/spec/SysPhS/About-SysPhS/

[69] Boehm, B. W., “A Spiral Model of Software Development and Enhancement,” Computer, Vol. 21,

No. 5, 1988, p. 61–72. doi:10.1109/2.59.

[70] ECSS Secretariat, “Space Engineering - Control Engineering Handbook,” Tech. Rep. ECSS-E-

HB-60A, ESA-ESTEC Requirements and Standards Division, Noordwijk, The Netherlands, 2010.

[71] Markley, F. L., and Crassidis, J. L., Fundamentals of Spacecraft Attitude Determination and Con-

trol, 1st ed., Springer, New York, NY, USA, 2014. ISBN: 978-1-4939-0801-1.

[72] Gaber, K., Nagy, S., and Zaki, A., “MEMS Gyroscope for Attitude Propagation and Determination

for Nanosatellites,” 2017 Intl Conf on Advanced Control Circuits Systems (ACCS) Systems and

2017 Intl Conf on New Paradigms in Electronics and Information Technology (PEIT) (5-8 Novem-

ber 2017, Alexandria, Egypt), 2017. doi:10.1109/ACCS-PEIT.2017.8303036.

[73] Xia, X., Sun, G., Zhang, K., Wu, S., Wang, T., Xia, L., and Liu, S., “NanoSats/CubeSats ADCS Sur-

vey,” 2017 29th Chinese Control And Decision Conference (CCDC) (28-30 May 2017, Chongqing,

China), 2017. doi:10.1109/CCDC.2017.7979410.

[74] Crassidis, J. L., Markley, F. L., and Cheng, Y., “Survey of Nonlinear Attitude Estimation Methods,”

Journal of Guidance, Control, and Dynamics, Vol. 30, No. 1, 2007, pp. 12–28. doi:10.2514/1.

22452.

[75] Lefferts, E. J., Markley, F. L., and Shuster, M. D., “Kalman Filtering for Spacecraft Attitude Es-

timation,” Journal of Guidance, Control, and Dynamics, Vol. 5, No. 5, 1982, pp. 417–429. doi:

10.2514/3.56190.

[76] Raymond, K., Egeland, O., and Nicklasson, P., “A Comparative Study of Actuator Configurations

for Satellite Attitude Control,” Modeling, Identification and Control, Vol. 26, No. 4, 2005, pp. 201–

220. doi:10.4173/mic.2005.4.2.

[77] Wen, J.-Y., and Kreutz-Delgado, K., “The Attitude Control Problem,” IEEE Transactions on Auto-

matic Control, Vol. 36, No. [97] , 1991, pp. 1148–1162. doi:10.1109/9.90228.

[78] Tassano, M., Monzon, P., and Pechiar, J., “Attitude Determination and Control System of the

Uruguayan Cubesat, AntelSat,” 2013 16th International Conference on Advanced Robotics (ICAR)

(25-29 November 2013, Montevideo, Uruguay), 2014. doi:10.1109/ICAR.2013.6766523.

[79] Brum, A., Baroni, L., da Silva, A., Coelho, F., Ferreira, E., Zanardi, M., and Spengler, A., “Attitude

Control System Proposed for SERPENS-2 Space Mission,” Computational and Applied Mathe-

matics, Vol. 37, 2018, pp. 1–14. doi:10.1007/s40314-018-0574-x.

[80] Ran, D., Sheng, T., Cao, L., Chen, X., and Zhao, Y., “Attitude Control System Design and On-Orbit

Performance Analysis of Nano-Satellite – “Tian Tuo 1”,” Chinese Journal of Aeronautics, Vol. 27,

No. 3, 2014, pp. 593–601. doi:10.1016/j.cja.2013.11.001.

86

[81] ECSS Secretariat, “Space Engineering - Control Performance Guidelines,” Tech. Rep. ECSS-

E-HB-60-10A, ESA-ESTEC Requirements and Standards Division, Noordwijk, The Netherlands,

2010.

[82] The MathWorks Inc., “Stateflow API,” , 2021. URL https://www.mathworks.com/help/pdf_doc/

stateflow/stateflow_api.pdf, [Online; accessed 12-Abr-2021].

[83] The CubeSat Program, Cal Poly SLO, “CubeSat Design Specification, rev 13,” , Febru-

ary 2014. URL https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/

56e9b62337013b6c063a655a/1458157095454/cds_rev13_final2.pdf.

[84] Monteiro, J. P., Rocha, R. M., Silva, A., Afonso, R., and Ramos, N., “Integration and Verification Ap-

proach of ISTSat-1 CubeSat,” Aerospace, Vol. 6, No. 12, 2019. doi:10.3390/aerospace6120131.

[85] Neves, D., “Control Algorithm for ISTSat-1,” Master’s thesis, Instituto Superior Técnico, University

of Lisbon, Portugal, 2019.

[86] ECSS Secretariat, “Space Engineering - Satellite Attitude and Orbit Control System (AOCS) Re-

quirements,” Tech. Rep. ECSS-E-ST-60-30C, ESA-ESTEC Requirements and Standards Division,

Noordwijk, The Netherlands, 2013.

[87] CubeSpace, “CubeSense V3 - Interface Control Document, version 1.3,” , 2021. URL

https://drive.google.com/uc?export=download&id=1KXZOGk_GKfY-Irtgx3fAJLdsIHjFTzUG,

[Online; accessed 12-Oct-2021].

[88] InvenSense, “MPU-9250 Product Specification, Revision 1.1,” , 2016. URL https://invensense.

tdk.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf, [Online; accessed 12-

Oct-2021].

[89] Honeywell, “3-Axis Digital Compass IC HMC5983,” , 2011. URL http://www.farnell.

com/datasheets/1509871.pdf?_ga=2.219060057.1318745487.1555987311-293789508.

1555987311, [Online; accessed 12-Oct-2021].

[90] CubeSpace, “CubeWheel - Interface Control Document, version 1.17,” , 2021. URL https:

//drive.google.com/uc?export=download&id=13ZzUQH0uUlpjZ8691OC3_PQYGsO3g0I1, [Online;

accessed 12-Oct-2021].

[91] EnduroSat, “1U Solar Panel – Specification,” , 2021. URL https://www.endurosat.

com/cubesat-store/cubesat-solar-panels/1u-solar-panel-x-y/, [Online; accessed 12-Oct-

2021].

[92] Chulliat, A., Brown, W., Alken, P., Beggan, C., Nair, M., Cox, G., Woods, A., Macmillan, S., Meyer,

B., and Paniccia, M., “The US/UK World Magnetic Model for 2020-2025,” Tech. rep., National

Centers for Environmental Information, NOAA, 2020. doi:10.25923/ytk1-yx35.

87

https://www.mathworks.com/help/pdf_doc/stateflow/stateflow_api.pdf
https://www.mathworks.com/help/pdf_doc/stateflow/stateflow_api.pdf
https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/56e9b62337013b6c063a655a/1458157095454/cds_rev13_final2.pdf
https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/56e9b62337013b6c063a655a/1458157095454/cds_rev13_final2.pdf
https://drive.google.com/uc?export=download&id=1KXZOGk_GKfY-Irtgx3fAJLdsIHjFTzUG
https://invensense.tdk.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
http://www.farnell.com/datasheets/1509871.pdf?_ga=2.219060057.1318745487.1555987311-293789508.1555987311
http://www.farnell.com/datasheets/1509871.pdf?_ga=2.219060057.1318745487.1555987311-293789508.1555987311
http://www.farnell.com/datasheets/1509871.pdf?_ga=2.219060057.1318745487.1555987311-293789508.1555987311
https://drive.google.com/uc?export=download&id=13ZzUQH0uUlpjZ8691OC3_PQYGsO3g0I1
https://drive.google.com/uc?export=download&id=13ZzUQH0uUlpjZ8691OC3_PQYGsO3g0I1
https://www.endurosat.com/cubesat-store/cubesat-solar-panels/1u-solar-panel-x-y/
https://www.endurosat.com/cubesat-store/cubesat-solar-panels/1u-solar-panel-x-y/

[93] Bhanderi, D., and Bak, T., “Modeling Earth Albedo for Satellites in Earth Orbit,” Proceedings of

AIAA Conference on Guidance, Navigation and Control (15-18 August 2005, San Francisco, CA,

USA), 2005. doi:10.2514/6.2005-6465.

[94] GMAT Development Team, “General Mission Analysis Tool (GMAT) [Computer software],” Tech.

rep., NASA Goddard Space Flight Center, 2017. URL http://sourceforge.net/projects/gmat.

[95] Montenbruck, O., and Gill, E., Satellite Orbits: Models, Methods and Applications, Springer-

Verlag, Berlin, Germany, 2000. ISBN: 978-3-540-62780-7.

[96] Standish, E. M., “JPL Planetary and Lunar Ephemerides, DE405/LE405,” , 1998. JPL Interoffice

Memorandum 312.F-98-048.

[97] Dekker, L., “Simulation Environments,” Systems Analysis and Simulation II (12–16 September

1988, Berlin, Germany), Springer US, 1988, pp. 344–350. doi:10.1007/978-1-4613-8936-1 74.

[98] Vallado, D. A., Fundamentals of Astrodynamics and Applications, 4th ed., Microcosm Press,

Hawthorne, CA, USA, 2013. ISBN: 978-1881883180.

[99] Petit, G., and Luzum, B. (eds.), IERS Conventions (2010), Technical Note No. 36, International

Earth Rotation and Reference Systems Service (IERS), 2010. URL https://www.iers.org/

SharedDocs/Publikationen/EN/IERS/Publications/tn/TechnNote36/tn36.html.

[100] Wie, B., Space Vehicle Dynamics and Control, 2nd ed., American Institute of Aeronautics and

Astronautics Inc.., Reston, VA, USA, 2008. ISBN: 978-1-56347-953-3.

[101] ECSS Secretariat, “Space Engineering - Control Performance,” Tech. Rep. ECSS-E-ST-60-10C,

ESA-ESTEC Requirements and Standards Division, Noordwijk, The Netherlands, 2008.

[102] Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K., “The Development and Evaluation of

the Earth Gravitational Model 2008 (EGM2008),” Journal of Geophysical Research: Solid Earth,

Vol. 117, No. B4, 2012. doi:10.1029/2011JB008916.

[103] Bhanderi, D. D. V., “Earth Albedo Toolbox v1.0,” , 2021. URL https://bhanderi.dk/, [Online;

accessed 05-Jul-2021].

[104] Lam, Q., Stamatakos, N., Woodruff, C., and Ashton, S., “Gyro Modeling and Estimation of Its

Random Noise Sources,” AIAA Guidance, Navigation, and Control Conference and Exhibit (11-14

August 2003, Austin, TX, USA), 2003. doi:10.2514/6.2003-5562.

[105] Mahony, R., Hamel, T., and Pflimlin, J.-M., “Nonlinear Complementary Filters on the Special Or-

thogonal Group,” IEEE Transactions on Automatic Control, Vol. 53, No. 5, 2008, pp. 1203–1218.

doi:10.1109/TAC.2008.923738.

[106] Utstumo, T., and Gravdahl, J. T., “Implementation and Comparison of Attitude Estimation Methods

for Agricultural Robotics,” IFAC Proceedings Volumes, Vol. 46, No. 18, 2013, pp. 52–57. doi:

10.3182/20130828-2-SF-3019.00051.

88

http://sourceforge.net/projects/gmat
https://www.iers.org/SharedDocs/Publikationen/EN/IERS/Publications/tn/TechnNote36/tn36.html
https://www.iers.org/SharedDocs/Publikationen/EN/IERS/Publications/tn/TechnNote36/tn36.html
https://bhanderi.dk/

[107] Avanzini, G., and Giulietti, F., “Magnetic Detumbling of a Rigid Spacecraft,” Journal of Guidance,

Control, and Dynamics, Vol. 35, No. 4, 2012, pp. 1326–1334. doi:10.2514/1.53074.

89

90

Appendix A

Spacecraft Attitude

A.1 Reference Frames

In this section, different reference frames are discussed with support from literature [71, 98], all of which

are right-handed and orthogonal.

A.1.1 Inertial Reference Frame

Reference frames fixed relative to distant stars are currently the best realizations of inertial frames [71].

The standard at this moment is the International Celestial Reference Frame (ICRF), which is fixed with

respect to distant extragalactic sources of radio waves. The origin of the ICRF is the centre of mass of

the solar system, the x axis is aligned with the vernal equinox, and the z axis is aligned with the Earth’s

North pole. In turn, the vernal equinox is aligned with the intersection of the Earth’s equatorial plane

with the ecliptic plane, and it is in the direction of the Sun’s position relative to Earth at the moment of

the vernal equinox (start of spring). Since the Earth’s polar axis and the ecliptic plane are not inertially

fixed, the x and z axes of the ICRF are actually aligned with the mean orientations of the vernal equinox

and the Earth’s North pole, respectively, at some fixed epoch time.

The Geocentric Celestial Reference Frame (GCRF) is the geocentric counterpart of the ICRF [98].

This coordinate frame is not inertial relative to the ICRF because it has a linear acceleration that results

from the Earth’s orbit around the Sun. However, in the context of attitude analysis, it can be assumed to

be approximately inertial [71]. In this work, the reference frame used for the integration of the spacecraft

position is the Earth-Centred Inertial (ECI) frame, which in this work is defined to be equal to the real-

ization of the GCRF at J2000. The ECI frame is denoted by the letter I such that the representation of

a vector u in this frame is shown as uI .

A.1.2 Earth-Centred/Earth-Fixed Frame

The International Terrestrial Reference Frame (ITRF) is a geocentric coordinate system fixed to the

rotating Earth. Its origin is located at the centre of mass of Earth, the z axis is aligned with Earth’s North

91

pole, and the x axis is aligned with the Earth’s prime meridian. To compute vector quantities that are fixed

relative to Earth, we use the Earth-Centred/Earth-Fixed (ECEF) frame, which in this work corresponds

to the ITRF realized by the IAU2000/2006 reduction from the ICRF. The ECEF frame is denoted by the

letter E such that the representation of a vector u in this frame is shown as uE .

The transformation between ECI and ECEF using the IAU2000/2006 reduction is quite complex and

can be consulted in [99]. Applying this transformation at the defined time of separation T0 (1 January

2022, 12:00:00 UTC), the transformation of a position vector r from its representation in the ECI frame

rI to its representation in the ECEF frame realized at the time of separation rE′ is as follows:

rE′ = CEI(t = T0) rI =


0.19239280 −0.98131792 −3.8507196× 10−4

0.98131593 0.19239318 −1.9722281× 10−3

2.00946808× 10−3 1.56525356× 10−6 0.9999979

 rI . (A.1)

Performing a coordinate transformation from ECI to ECEF with the IAU2000/2006 reduction is too

complex for the estimation algorithms. Therefore, a simpler approach is taken, which consists of using

two separate transformations, the first from the ECI frame to the ECEF frame realized at T0, and the

second from the ECEF frame realized at T0 to the ECEF realized at the instant relevant to the algorithm.

The difference between these two instants in seconds is denoted as ∆T . The same type of process is

applied to transformations from ECEF to ECI.

The first transformation is independent of time and is expressed in Eq. A.1. The second transforma-

tion is simpler, and it considers that the ECEF frame rotates relative to the ECI frame around its z axis,

with a constant angular speed. The rotation angle of the ECEF frame relative to the ECI frame is known

as the Greenwich Mean Sidereal Time (GMST) angle and it is denoted as θGMST. The time derivative of

this angle θ̇GMST is defined as

θ̇GMST = ω⊕, (A.2)

where ω⊕ = 2π/86164 rad s−1 is the Earth’s angular rotation speed. The second transformation is then

given by

rE = CEE′(∆T) rE′ =


cos(ω⊕∆T) sin(ω⊕∆T) 0

− sin(ω⊕∆T) cos(ω⊕∆T) 0

0 0 1

 rE′ . (A.3)

The ECEF position is also represented in geocentric spherical coordinates, specified by its magni-

tude r ≡ ||rE || and two angles, longitude λ and geocentric latitude ϕ′, which relate to ECEF cartesian

coordinates (rE ≡ {xE , yE , zE}) as follows:

λ = tan−1

(
xE

yE

)
, (A.4a)

ϕ′ = sin−1(zE/r). (A.4b)

The geodetic spherical coordinates are not used in this work. These differ from the previous in terms of

the latitude definition (geodetic latitude is denoted as ϕ).

92

A.1.3 Topocentric Horizon Coordinate System (NED)

In this work we use the North-East-Down (NED) coordinate system for the estimation of the Earth local

magnetic field vector and acceleration of gravity. This system is consistent with the Topocentric Horizon

Coordinate System defined in [98], also called South-East-Zenith (SEZ). It corresponds to the SEZ frame

rotated 180 degrees around the E axis. The origin of the frame is located at the centre of mass of the

spacecraft, the x axis points due north, the y axis points due east, and the z axis points radially inward

towards the centre of Earth. The NED frame is denoted by the letter H such that the representation of a

vector u in this frame is shown as uH .

If the position of the spacecraft is known in geocentric spherical coordinates, the transformation of a

vector u represented in this frame into the ECEF frame representation is given by

uE = CEH uH =


− cos(λ) sin(ϕ′) − sin(λ) − cos(λ) cos(ϕ′)

− sin(λ) sin(ϕ′) cos(λ) − sin(λ) cos(ϕ′)

cos(ϕ′) 0 − sin(ϕ′)

uH . (A.5)

A.1.4 Spacecraft Body Frame

The spacecraft body frame is fixed relative to the spacecraft and the orientation of its axes is usually

defined by the engineers that design the system. For CubeSats, the origin of the frame is usually located

at the spacecraft’s centre of mass and the axes are usually orthogonal to the faces of the satellite, as

shown in Figure A.1. Also shown in this figure is the nomenclature used to describe each face of the

spacecraft (e.g., X+ or Z−). The nomenclature corresponds to a letter representing the orthogonal axis

followed by a sign representing on which side of the axis the face is located.

Sensor measurements and control torques are expressed in this frame. For simplicity, we consider

that all the sensors and actuators are correctly aligned with the axes of the frame. We denote the body

frame by the letter B so that the representation of a vector u in this frame is shown as uB .

𝑥

𝑍+

𝑦

𝑧

𝑍−

𝑋+

𝑌+

𝑌− 𝑋−

Figure A.1: Spacecraft body frame and nomenclature used to describe faces.

93

A.2 Attitude Representation

A.2.1 Attitude Matrix

Let us consider two reference frames F and F ′ with right-handed orthogonal bases {e1, e2, e3} and

{e′1, e′2, e′3}, respectively, represented in the same frame. To transform the representation of the vector

u in frame F ′ into the representation in frame F we use the equation [100]

uF = CFF ′ uF ′ , (A.6)

where CFF ′ ≡ [Cij] is called the direction cosine matrix (DCM) or rotation matrix and Cij ≡ ei · e′j .

Determining the spacecraft attitude consists of estimating a rotation matrix that transforms vectors from

a fixed reference frame, in this case the ECI frame, to a frame fixed relative to the spacecraft body [71,

p. 40]. This rotation matrix is usually called an attitude matrix and is denoted by the letter A, such that,

for any given vector u,

uB = ABI uI . (A.7)

The attitude of a body can also be represented by the rotation around a fixed axis. Euler’s Theorem

states that every rotation is a rotation about a fixed axis called the Euler axis (represented in this work

by the vector ae), with a certain angle of rotation, the Euler angle (denoted here by ν). Different methods

for attitude representation are reviewed in literature [71], and for this thesis the quaternion was selected.

A.2.2 Quaternions

A quaternion is a mathematical concept that was first introduced by William Rowan Hamilton in 1844. In

this work we adopted the convention from [71], which differs from the originally introduced by Hamilton.

A quaternion q may be represented as a vector, which is composed by a three-dimensional vector

q1:3 = {q1, q2, q3} and a scalar q4, so that

q =

q1:3

q4

 . (A.8)

Along with this representation, there are a set of definitions regarding the conjugate, norm, and inverse,

which are respectively given by:

q∗ =

−q1:3

q4

 ; (A.9a)

||q|| =
√

q21 + q22 + q23 + q24 ; (A.9b)

q−1 =
q∗

||q||2
. (A.9c)

There are also two quaternion product operations important in this context. For two arbitrary quater-

94

nions q and p, these are defined as

q ⊗ p =

p4q1:3 + q4p1:3 − q1:3 × p1:3

q4p4 − q1:3 · p1:3

 = p⊙ q (A.10)

q ⊙ p =

q4p1:3 + p4q1:3 − p1:3 × q1:3

p4q4 − p1:3 · q1:3

 (A.11)

These products are associative and distributive but in general not commutative. The quaternion products

may be represented by matrix multiplication such that

q ⊗ p = [q⊗]p (A.12)

and

q ⊙ p = [q⊙]p, (A.13)

where

[q⊗] =

q4I3 − [q1:3×] q1:3

−qT
1:3 q4

 =
[
Ψ(q) q

]
(A.14)

and

[q⊙] =

q4I3 + [q1:3×] q1:3

−qT
1:3 q4

 =
[
Ξ(q) q

]
, (A.15)

with [u×] representing the cross product matrix for a given vector u = {u1, u2, u3}, which is defined as

[u×] =


0 −u3 u2

u3 0 −u1

−u2 u1 0

 . (A.16)

The quaternion representation of attitude uses unit quaternions to parameterize rotations (||q|| = 1).

When the quaternion q and attitude matrix A are used to represent the attitude of the spacecraft in this

work, the default definitions used are q ≡ qBI and A ≡ ABI . The attitude quaternion is defined as

q(ae, ν) =

ae sin(ν/2)

cos(ν/2)

 , (A.17)

where ae is represented in the ECI frame and q represents the rotation of the ECI frame around ae.

Since this is a unit quaternion, the inverse and conjugate quaternions are equal and represent the

inverse rotation. The attitude matrix can be obtained from the attitude quaternion with

A ≡ Cq(q) =


q21 − q22 − q23 + q24 2(q1q2 + q3q4) 2(q1q3 − q2q4)

2(q2q1 − q3q4) −q21 + q22 − q23 + q24 2(q2q3 + q1q4)

2(q3q1 + q2q4) 2(q3q2 − q1q4) −q21 − q22 + q23 + q24

 . (A.18)

95

To compute the inverse transformation, the attitude matrix AIB ≡ Cq(q
∗) is used. The identity quaternion

Iq represents a null rotation and is defined as

Iq ≡

03

1

 . (A.19)

A.3 Spacecraft Attitude Dynamics

The fundamental equations of motion for rotational dynamics are called the Euler equations and they

define how the spacecraft attitude changes over time. These equations, represented in vector form and

in the spacecraft body frame, can be defined as

Ḣ = T − ω ×H, (A.20)

where H is the angular momentum, T is the sum of the external torques, and ω is the spacecraft angular

velocity. We may relate the angular velocity with the angular momentum using the equation

H = Isω + h, (A.21)

where Is is the moment of inertia and h is the angular momentum stored by rotating objects, such as

momentum wheels. Combining the two previous equations and rearranging the terms we obtain

Isω̇ = T − ḣ− İsω − ω × Isω. (A.22)

In this work the moment of inertia of the spacecraft is assumed to be constant for simplicity (İs = 0).

Using the quaternion representation, the attitude kinematics is given by [71]

q̇ =
1

2

ω
0

⊗ q =
1

2

[
Ξ(q) q

]ω
0

 =
1

2
Ξ(q) ω =

1

2

q4I3 + [q1:3×]

−qT
1:3

ω, (A.23)

and the spacecraft attitude may then be integrated using the equation

q = q0 +

∫
q̇ dt. (A.24)

A.3.1 External disturbance torques

External torques include both undesirable disturbance torques and torques applied for control. In this

section we discuss the sources of the disturbance torques that were considered. The Solar Radiation

Pressure (SRP) torque was considered to be dominated by the aerodynamic torque in LEO [71].

Gravity-Gradient Torque Any nonsymmetrical rigid body in a gravity field is subject to a gravity-

gradient torque. We assume that the gravity field is spherically symmetric, for simplicity, which results in

96

the following expression for the calculation of the gravity-gradient torque around the centre of mass [71]

T gg =
3µ⊕

r3
n× (Isn), (A.25)

where n ≡ nB is the body frame representation of a nadir-pointing unit vector.

Magnetic Torque In LEO, the Earth’s magnetic field intensity is high enough for undesired magnetic

dipoles on-board to result into disturbance torques that can be calculated as

Tm = mu ×BB , (A.26)

where mu is the undesired magnetic dipole and BB is the local magnetic field vector, both in the body

frame.

Aerodynamic Torque The aerodynamic torque can be computed by modelling the spacecraft as a

collection of N plates of area Si, each with an outward normal unit vector ni
s and a centre of pressure

located in rip. For CubeSats, these plates correspond to the six faces of the cube-shaped structure.

Considering the position and velocity of the spacecraft in the ECI frame to be rI ≡ {x, y, x} and vI ≡

{ẋ, ẏ, ẋ}, respectively, the velocity of the spacecraft relative to the air in the body frame is given by [71]

vrel B = A


ẋ+ ω⊕y

ẏ − ω⊕x

ż

 , (A.27)

where ω⊕ represents the angular speed of the atmosphere. Each of the plate’s normal vectors makes

an angle θiaero with the relative velocity, such that cos θiaero = ni
s ·vrelB/||vrel|| < 0 means that the plate is

on the trailing side of the spacecraft. Considering this and using a drag coefficient CD that is empirically

determined, the aerodynamic force applied in the ith plate is given by [71]

F i
aero = −1

2
ρ CD||vrel||vrel B Si max(cos θiaero, 0), (A.28)

where ρ is the atmospheric density at the height in question. The total aerodynamic torque is given by

T aero =

N∑
i=1

rip × F i
aero. (A.29)

97

Appendix B

ADCS Requirements Specification

B.1 Specification of Performance Requirements

In this section, we present a set of definitions that support the specification of ADCS performance

requirements. These definitions are based on what is defined by the ECSS, specifically in [81, 101].

First, a distinction between extrinsic and intrinsic performance properties must be defined. The

extrinsic performance properties are those that depend on the interaction between the system and the

external environment, such as the pointing error of the ADCS. To assess these performance properties,

the system environment must be modelled or at least characterized (e.g., disturbance magnitudes). The

intrinsic performance properties do not depend on the interaction of the system with the exterior (e.g.,

stability margins). In this work we consider only the extrinsic performance properties of the SOI since

the existence of an interaction between the system and the environment makes these more relevant in

the context of integrating MBSE with simulation.

The extrinsic performance requirements may concern the actual performance of a system or the

knowledge of that performance. The first type concerns the performance error, the difference between

the target (desired) output of the system and the actual output of the system, and the second type

concerns the knowledge error, the difference between the known (estimated) output of the system and

the actual output of the system [101]. A performance requirement, whichever the type, is expressed

mathematically by [81]

P(I(ep) < Imax) ≥ PC , (B.1)

where an upper bound Imax is defined for the error index I(ep), together with a probability PC that the

error index stays below that bound. This mathematical definition of a performance requirement aids in

the identification of the elements that compose the performance requirement, which are the following:

1. An error function, ep.

2. An index to be applied to the function, I(ep).

3. An upper bound for the index, Imax.

98

4. The required probability that the index stays below the upper bound, PC .

5. A statistical interpretation for the probability PC .

These elements consist of the following:

Error function The error function defines a mathematical expression for the calculation of the error,

for given values of the target/estimated output and the actual output. For the ADCS attitude knowledge

error, we first define an error quaternion q̃ such that

qtrue = q̃ ⊗ q̂, (B.2)

and then, following the Euler’s theorem, we define the error function to be the rotation angle ν between

the body frame and the estimated body frame such that

ep = ν = cos−1(q̃4). (B.3)

For the ADCS pointing performance error, because the goal is to orientate a vector npld with the local

nadir, the error function consists of calculating the angle between these two unit vectors as follows

ep = cos−1(npld · nB). (B.4)

Error index and Probability As defined in [101], the error index is a parameter that isolates a partic-

ular aspect of the time variation of the error. A few different error indices are presented in [81], and we

use one of this for both the performance and knowledge errors. The indices are named absolute per-

formance error (APE) and absolute knowledge error (AKE) and they are defined as the instantaneous

value of the error function. For a specified interval of time, the instantaneous error is evaluated at each

moment in time (separated by a small step size), and the probability PC of meeting the requirement is

equal to the fraction of instances in which the error was below an upper bound that is defined in the

requirement description. This probability is defined in percentage as a confidence level.

Statistical Interpretation Another important aspect relative to the definition of the probability PC is its

statistical interpretation. Let us consider a probability of meeting a requirement expressed by confidence

level of x% and a set of possible system configurations represented by different combinations of time-

independent parameter values. A temporal interpretation of a requirement is that the error must be below

bounds for x% of the time, in any possible system configuration. Instead, an ensemble interpretation

is that the error must be below bounds at all times, for x% of the possible system configurations [81].

Other possible interpretations exist, some of which are outlined in [81], and for this work we selected the

temporal interpretation for all the requirements.

99

The selection of one statistical interpretation of the probability also influences the definition of an

appropriate simulation campaign that supports the verification of the defined requirements. The temporal

interpretation of a requirement requires that engineers be able to ensure compliance for all the different

system configurations. When, for a set of time-independent parameters, a worst case can be clearly

defined and justified, the verification of the requirement for the worst case will result in the verification for

all cases. The alternative is time-consuming and requires the exploration of the design space. This can

be achieved with a complete sweep of the design space, or with smarter techniques like Monte Carlo

simulation campaigns. Sometimes these two alternatives can also be mixed, with some parameters

being defined for a worst-case scenario and the other parameters being part of a design space that

is explored. Since the focus of this work is not the simulation techniques used, for simplicity, we will

consider that a worst-case scenario can be defined for all the time-independent parameters.

In this work, a Technical Performance Measures (TPM) consists of a scalar parameter that is directly

constrained by a performance requirement. In general, the value of this parameter can be computed by

processing simulation results in accordance with the definition of the performance requirement. Using

the mathematical definition in B.1, a TPM is mathematically defined with the expression

P(I(ep) < ITPM) = PC , (B.5)

where ITPM represents the TPM. The constraint defined by a performance requirement is ITPM < Imax.

B.2 Complete List of ADCS Requirements

Id Functional Req. Requirement Description

7.1.1 ADCS Modes

7.1.1.1 Safe Pointing
In case the spacecraft transitions to safe mode, the ADCS shall
transition to a safe pointing mode, in which only the magnetic
torquers may be used as actuators.

7.1.1.2 Mode Transition
Triggering

Mode transitions shall be triggered by ground request or
autonomously on-board, after checking a transition condition.

7.1.1.3 Mode Mapping
A mapping of ADCS modes into satellite modes shall be described,
to clarify all the possible configurations in which the satellite
can be in relation with the ADCS.

7.1.1.4 Autonomous
Mode Transition

The capability shall be provided to inhibit or to force autonomous
mode transitions by ground request.

7.1.2 Transition to
Pointing

The ADCS shall provide the capability to transition from the initial
attitude and rate after launcher separation to the final mission
pointing, in a safe manner, using a detumbling algorithm.

7.1.3 Ancillary Data
The ADCS shall process and deliver, at the frequency specified by
the mission, the attitude, angular velocity, and orbit related
information to other on-board functions (including eclipse status).

7.1.4 ADCS Mass The ADCS shall have a total mass below 100 grams.

Table B.1: ADCS Functional Requirements.

100

Id Operational Req. Requirement Description

7.2.1 Design Parameter
Update

Upon ground request, the flight software shall provide the capability
for in-flight update of the ADCS design parameters.

7.2.2 Periodic Parameter
Updates

The parameters requiring periodical update shall be identified and
maximum update periods shall be defined and shall be greater than
the maximum period of no contact with the ground station.

7.2.3 Detumbling Once the launcher separation occurs, the ADCS shall ensure that
the rate is below 5 deg/s after 2 complete orbits.

7.2.4 Launcher
Separation Rate

The ADCS shall be able to detumble the spacecraft given the worst
case launcher separation rate conditions of 100 deg/s.

7.2.5 ADCS Coverage The ADCS shall provide the required mission pointing performance
for at least 10 consecutive orbits, at a time.

7.2.6 Wheel off-loading
The ADCS shall ensure continuous wheel off-loading, not requiring
any mission interruption for this purpose, while also keeping the
stored angular momentum below 75% of the rated maximum.

7.2.7 Average power
consumption The ADCS shall ensure a average power consumption below 0.4 Watts.

Table B.2: ADCS Operational Requirements.

Id Performance Req. Requirement Description

7.3.1 Absolute attitude
normal pointing

The ADCS shall ensure during the operational mission phase an
absolute pointing performance of 1 degree, at 95% confidence level,
in normal mode (temporal statistical interpretation).

7.3.2 Absolute attitude
safe pointing

The ADCS shall ensure during the operational mission phase an
absolute pointing performance of 10 degree, at 95% confidence level,
in safe mode and out of eclipse (temporal statistical interpretation).

7.3.3 Absolute attitude
knowledge

The ADCS shall ensure during the operational mission phase an
on-board absolute attitude knowledge performance of 2.5 degree,
at 95% confidence level (temporal statistical interpretation).

7.3.4 Orbit Knowledge
The ADCS shall ensure during the operational mission phase an
on-board orbit estimation with an accuracy of 250 meters, in the ECI
frame, at 95% confidence level (temporal statistical interpretation).

Table B.3: ADCS Performance Requirements.

Id Design Const. Constraint Description

7.4.1 OBC Interaction The ADCS software shall be executed in the OBC hardware.

7.4.2 Control Scheme The ADCS shall use active control techniques.

7.4.3 Attitude
Determination The ADCS shall include on-board attitude filtering.

7.4.4 ADCS
Design Space

The ADCS shall include a gyroscope, a magnetometer, one CSS in each
face (except Z-), and three magnetic torquers mounted orthogonally.
It may only additionally include an earth sensor mounted in the
face Z- and three reaction-wheels mounted orthogonally.

7.4.5 Spacecraft
Position Estimation

The ADCS shall include on-board estimation of the spacecraft position
represented in the ECI frame.

Table B.4: ADCS Design Constraints.

101

Appendix C

Spacecraft Environment and Orbital

Dynamics

C.1 Expansion in Spherical Harmonics

The determination of the Earth’s local magnetic field vector and acceleration of gravity relies on the

expansion in spherical harmonics. This expansion uses a term Pn,m called the associated Legendre

polynomial (of degree n and order m). For any real number µ, this term is defined as [95]

Pn,m(µ) =
1

2nn!
(1− µ2)m/2 dn+m

dµn+m
(µ2 − 1)n. (C.1)

The associated Legendre polynomial can be calculated recursively [95]. Starting with P0,0 = 1, all the

polynomials Pm,m are computed with

Pm,m(µ) = (2m− 1)
√
µ2 − 1Pm−1,m−1(µ). (C.2)

Using the values defined with the previous equation, the polynomials Pm+1,m are computed with

Pm+1,m(µ) = (2m+ 1)µPm,m(µ), (C.3)

and the rest of the polynomials, for n > m+ 1, are given by

Pn,m(µ) =
1

n−m
((2n− 1)µPn−1,m(µ)− (n+m− 1)Pn−2,m(µ)). (C.4)

For any real number µ, P̆n,m(µ) are the Schmidt semi-normalized associated Legendre functions, which

are defined as

P̆n,m(µ) =

√
2
(n−m)!

(n+m)!
Pn,m(µ) if m > 0,

P̆n,m(µ) = Pn,m(µ) if m = 0.

(C.5)

102

C.2 Earth Magnetic Field

The Earth magnetic field was modelled using the World Magnetic Model (WMM) 2020, which is de-

scribed in [92]. The magnetic field is a potential field such that the magnetic field vector B can be

written as the negative spatial gradient of a scalar potential. Using geocentric spherical coordinates we

define the magnetic field in the NED frame BH = {BHx , BHy , BHz} as:

BH(λ, ϕ′, r, t) = −∇V (λ, ϕ′, r, t) =

{
−1

r

∂V

∂ϕ′ ,−
1

r cosϕ′
∂V

∂λ
,
∂V

∂r

}
, (C.6)

where t represents time. The scalar potential V can be expanded in terms of spherical harmonics as

[92]

V (λ, ϕ′, r, t) = R⊕

N∑
n=1

(
R⊕

r

)n+1 n∑
m=0

(gn,m(t) cos(mλ) + hn,m(t) sin(mλ)) P̆n,m(sinϕ
′), (C.7)

where N is the degree of the expansion of the WMM, and gn,m(t) and hn,m(t) are the time-dependent

Gauss coefficients of degree n and order m describing the Earth’s main magnetic field (values for these

coefficients are specified in [92] for n,m ≤ 12). These coefficients vary linearly with time, and in this

work we use the coefficient values correspondent to the instant of launcher separation. The degree of

the expansion N is a design parameter of the magnetic field vector estimator, which introduces a trade-

off between the on-board computational effort and memory usage, and the accuracy of the estimation.

The components of the magnetic field vector along each axis of the NED frame are given by

BHx
= −1

r

∂V

∂ϕ′ = −
N∑

n=1

(
R⊕

r

)n+2 n∑
m=0

[gn,m(t) cos(mλ) + hn,m(t) sin(mλ)]
dP̆n,m(sinϕ

′)

dϕ′ ,

BHy = − 1

r cosϕ′
∂V

∂λ
=

1

cosϕ′

N∑
n=1

(
R⊕

r

)n+2 n∑
m=0

m[gn,m(t) sin(mλ)− hn,m(t) cos(mλ)]P̆n,m(sinϕ
′),

BHz
=

∂V

∂r
= −

N∑
n=1

(n+ 1)

(
R⊕

r

)n+2 n∑
m=0

[gn,m(t) cos(mλ) + hn,m(t) sin(mλ)]P̆n,m(sinϕ
′).

(C.8)

where dP̆n,m(sinϕ
′)/dϕ′ is defined as

dP̆n,m(sinϕ
′)

dϕ′ = (n+ 1)(tanϕ′)P̆n,m(sinϕ
′)−

√
(n+ 1)2 −m2(secϕ′)P̆n+1,m(sinϕ

′). (C.9)

C.3 Earth Gravity Field

The Earth’s acceleration of gravity g can also be computed as the spatial gradient of a scalar potential,

the gravitational potential U . The acceleration of gravity in the NED frame gH = {gHx
, gHy

, gHz
} is given

by

gH(λ, ϕ′, r, t) = ∇U(λ, ϕ′, r, t) =

{
1

r

∂U

∂ϕ′ ,
1

r cosϕ′
∂U

∂λ
,−∂U

∂r

}
, (C.10)

103

where t represent time. If we consider that the total mass of Earth (or any other central body) is concen-

trated in the centre of the coordinate system, the gravitational potential is given by

U =
µ⊕

r
. (C.11)

A more accurate estimate of the gravitational potential can be derived by applying an expansion in

spherical harmonics, resulting in the equation [98]

U =
µ⊕

r

(
1 +

N∑
n=2

(
R⊕

r

)n n∑
m=0

(Cn,m cos(mλ) + Sn,m sin(mλ))P̆n,m(sinϕ
′)

)
, (C.12)

where N is the degree of the expansion, and Cn,m(t) and Sn,m(t) are the geopotential coefficients

of degree n and order m describing the Earth gravity field (values for these coefficients are specified

in [102] for n,m ≤ 2159). The coefficients must be used in these equations with the same type of

normalization as the Legendre polynomials. The degree of the expansion N is a design parameter

of the spacecraft position estimator, which introduces a trade-off between the on-board computational

effort and memory usage, and the accuracy of the estimation. The components of the acceleration of

gravity along each axis of the NED frame are given by

gHx
=

1

r

∂U

∂ϕ′ =
µ⊕

r2

N∑
n=2

(
R⊕

r

)n n∑
m=0

[Cn,m cos(mλ) + Sn,m sin(mλ)][P̆n,m+1(sinϕ
′)−m tan(λ)P̆n,m(sinϕ

′)],

gHy
=

1

r cosϕ′
∂U

∂λ
=

µ⊕

cosϕ′r2

N∑
n=2

(
R⊕

r

)n n∑
m=0

m[Sn,m cos(mλ)− Cn,m sin(mλ)]P̆n,m(sinϕ
′),

gHz
= −∂U

∂r
= −µ⊕

r2

N∑
n=2

(
R⊕

r

)n

(n+ 1)

n∑
m=0

[Cn,m cos(mλ) + Sn,m sin(mλ)]P̆n,m(sinϕ
′).

(C.13)

C.4 Earth Albedo

The model of the Earth albedo developed in [93] has been used in this work with some modifications.

The major modification concerns the division of the albedo computation into two parts, one that does not

depend on the knowledge of the spacecraft attitude and another that does. The benefit of this approach

is that the part of the equations that do not depend on the attitude can be executed at a slower frequency,

saving processing power. This model is based on reflectivity data measured by the Earth Probe Satellite

for the TOMS project (data available in [103]). The data used in this work was the average of the years

of 2001 through 2005. The ECEF frame is the only frame used in the formulation of this model, and so

the subscript E is omitted to facilitate the understanding of the equations. The surface of the Earth is

divided into a grid of size N ×M composed of data points Φ× Λ , where

Φ = [∆ϕg/2, 3∆ϕg/2, 5∆ϕg/2, ..., π −∆ϕg/2],

Λ = [∆λg/2, 3∆λg/2, 5∆λg/2, ..., 2π −∆λg/2].
(C.14)

104

Each data point is denoted here as (ϕi
g,λj

g) and the grid resolution used is such that ∆ϕg = 2 deg and

∆λg = 2.5 deg. This model considers that the solar irradiance EAM0 reaches each cell at the data point

(ϕi
g,λj

g), and at an incident angle of αi,j
Sun with the outward normal of the cell in question ni,j

c . The area

of the grid cells is given by

Sc(ϕ
i
g, λ

j
g) = λj

gR⊕

(
cos

(
ϕi
g −

∆ϕg

2

)
− cos

(
ϕi
g +

∆ϕg

2

))
, (C.15)

and the solar irradiance at Earth is defined as EAM0 = 1366.5W m−2 (refer to [93] for a mathematical

demonstration). The incident radiant flux on a single cell is then given by

Pc(ϕ
i
g, λ

j
g) = EAM0Sc(ϕ

i
g, λ

j
g)
{
ni,j

c · rSun/||rSun||
}∞
0

, (C.16)

where the notation {·}∞0 denotes a lower saturation of zero, so that the incident radiant flux is set to zero

for all the cells that are not illuminated by the Sun. Assuming Lambertian reflectivity, the irradiance from

a single cell at the satellite is given by

Ec(ϕ
i
g, λ

j
g) =

ρc(ϕ
i
g, λ

j
g)Pc(ϕ

i
g, λ

j
g)
{
ni,j

c · rsat/||rsat||
}∞
0

π||rsat||2
, (C.17)

where ρc(ϕ
i
g, λ

j
g) denotes the reflectivity of the cell in question. This equation accounts for the depen-

dence of the irradiance on the visible area of the cell surface seen from the spacecraft location. The

saturation in this equation reflects that a cell that is not visible from the spacecraft cannot contribute

to the albedo irradiance. Up to the calculation of Ec(ϕ
i
g, λ

j
g) for each cell, the spacecraft attitude is not

used. This part of the albedo model is represented in this work by the block named Earth Albedo (see

Section 4.2.6).

The second part of the albedo model consists of the calculation of the total irradiance at each of

the CSSs. The irradiance of the Sun is added to the irradiance of the Earth albedo, each at a specific

incident angle. Denoting the normal of a specific face k of the spacecraft as nk
s , the total irradiance at

each CSS is given by

Ek =

N∑
i

M∑
j

(
Ec(ϕ

i
g, λ

j
g)

{
nk

s · ri,jc − rsat

||ri,jc − rsat||

}∞

0

)
+ EAM0

{
nk

s · rSun − rsat
||rSun − rsat||

}∞

0

(C.18)

where ri,jc denotes the position of the data point (ϕi
g,λj

g) in the ECEF frame. This part of the albedo

model is represented in this work by the block named Photodiodes Interface (see Section 4.2.6).

105

Appendix D

Mathematical Models of Components

D.1 Hardware

D.1.1 Sensors

In this section the sensor measurement models are presented. Discretization of the signals with a

defined frequency, linearity errors, and saturations on the final measured values are added to these

models, when applicable, resulting in the final mathematical model.

Gyroscope The measurement model used for the gyroscope is given by [104]

ω̂ = ω + bg + µarw, (D.1)

ḃg = µrrw, (D.2)

where ω̂ is the measured angular velocity, ω is the true angular velocity, bg is the gyro drift bias driven

by the RRW process µrrw, and µarw is white noise that corresponds to an ARW process. The processes

µarw and µrrw are both defined with power spectral densities (PSD), which are defined in Table 4.3.

Magnetometer The measurement model used for the magnetometer is given by

B̂B = BB + bm + µm, (D.3)

where bm represents a bias and µm represents a noise component. This noise is modelled as Gaussian

white noise with a variance which is defined in Table 4.3.

Photodiode The model used for the photodiode is ideal, as no information was available in the datasheet

to support the selection of a different model. For each photodiode k, its current output ik is given by

ik = kpdEk, (D.4)

106

where kpd is a conversion factor, and Ek is the total irradiance defined in Eq. C.18.

Earth Sensor The measurement model used for the Earth sensor is given by

n̂B = nB cos(ϵes) +
nB × eBx

||nB × eBx
||
sin(ϵes), (D.5)

where nB is the nadir in the body frame, (eBx
= {1, 0, 0}), and ϵes is an angular error noise process,

with a standard deviation as defined in Table 4.3. For simplicity, the angular error is applied around eBx
,

which does not have a significant influence on the attitude knowledge error since the rotation around the

z axis of the body frame is not controlled. In the mathematical model of the Earth sensor, no reading of

the nadir is available when the Earth is not fully contained inside its FOV, defined in Table 4.3.

D.1.2 Actuators

Magnetic Torquer The OBC controls the magnetic torquers by providing a PWM signal with a specific

dutycycle. The dutycycle of one magnetic torquer is defined as the ratio between the desired dipole and

the maximum dipole that can be produced by the torquer. The mathematical model of this actuator does

not include the PWM signal, for simplicity. The actuation produced by one torquer is computed as:

Tmtq = mmax D nmtq ×BB , (D.6)

where mmax is the maximum dipole (defined in Table 4.4), D ≤ Dmax is the dutycycle computed by the

controllers (Dmax is defined in Table 4.4), and nmtq is the direction of the magnetic dipole produced.

Reaction Wheel An ideal model is used for the reaction wheels, for simplicity. For each wheel

Tw = ḣw nw = Iw ω̇w nw, (D.7)

where hw is the angular momentum stored by the reaction wheel, nw represents the axis of rotation of

the wheel, ωw is its angular speed (limited to the value defined in Table 4.4), and Iw is its moment of

inertia (defined in Table 4.4). The maximum torque that can be produced by a reaction wheel is defined

in Table 4.4, and it is implemented in this model as a saturation.

D.2 Software

D.2.1 Estimation Algorithms

Spacecraft and Earth Orbit Propagation

The numerical integration of the spacecraft and Earth orbits is based on the fourth-order Runge-Kutta

(RK4) method. For a vector X = [r v]T = [x y z ẋ ẏ ż]T , the numerical integration of the equations of

107

motion is designed to solve the equation given by

Ẋ = f(t,X). (D.8)

The formulation of the RK4 integration method is such that

Xi+1 = Xi + h(
1

6
f̂1 +

1

3
f̂2 +

1

3
f̂3 +

1

6
f̂4), (D.9)

where h represents the step size of the integration, and f̂1, f̂2, f̂3, and f̂4 are given by

f̂1 = f̂(ti,Xi),

f̂2 = f̂(ti +
1

2
h,Xi +

1

2
hf̂1),

f̂3 = f̂(ti +
1

2
h,Xi +

1

2
hf̂2),

f̂4 = f̂(ti + h,Xi + hf̂3).

(D.10)

The estimate f̂(ti,Xi) is given by

f̂(ti,Xi) = [v̂i âi] = [(Xi)4:6 âi], (D.11)

where âi is the estimate of the acceleration at the instant i. For the Earth orbit propagation, only the point

mass gravity exerted by the Sun and Moon are considered for the estimation of this acceleration. For the

spacecraft orbit propagation, only the Earth’s acceleration of gravity is considered, and it is estimated

using the expansion in spherical harmonics discussed in Section C.3 (the order of the expansion is

defined in Table 4.5). All the other orbital perturbations are too small to affect the satisfaction of Req.

7.3.4. The nadir is estimated in the inertial frame as the normalized vector parallel and opposite to the

spacecraft position vector estimate. In this work, we use the geocentric nadir in simulation for simplicity.

Sun Vector Determination

The Sun vector estimate in the body frame is derived from the photodiode currents using the following

equations:

ûSun =
1√

i2x + i2y + i2z


ix

iy

iz

 , (D.12)



ix = iX+ if iX+ > iX− ,

ix = −iX− if iX+ ≤ iX− ,

iy = iY + if iY + > iY − ,

iy = −iY − if iY + ≤ iY − ,

iz = iZ+ .

(D.13)

108

where iX+ represents the current of the photodiode installed in the face X+, which is always positive or

null (the same applies to all the other faces). The three currents ix, iy, and iz are intermediate variables

used to derive a Sun vector estimate ûSun.

Attitude Filtering

The attitude filter used in this work is the Explicit Complementary Filter for attitude determination, which

was developed in [105]. The formulation of this filter is expressed here in the body frame and in quater-

nion form (attitude representation and quaternion mathematics are discussed in Appendix A.2). We may

define the true quaternion qtrue in terms of an estimated quaternion q̂ as

qtrue = q̃ ⊗ q̂, (D.14)

where q̃ is the error quaternion. The goal of the filter design is to find kinematics for q̂(t) such that

q̃(t) → Iq, where Iq is the identity quaternion. Considering the gyroscope measurement model defined

in Eq. D.1 and using the quaternion representation of the attitude kinematics described in Eq. A.23, the

kinematics of q̂(t) can be defined as

˙̂q =
1

2
Ξ(q̂)(ω̂ + βg + kpγ), (D.15)

where βg is the estimate of the measurement bias, kp is a positive scalar gain, and γ is a correction

factor based on the estimation of the current attitude error. The correction factor γ is determined using

the measurements of known vector quantities and is given by

γ =
∑
i

ki(s
i
B × ÂsiI), (D.16)

where Â ≡ Cq(q̂) is the estimated attitude matrix, ki is a positive scalar gain relative to the ith measured

vector quantity, siB is the ith vector measurement in the frame B, and siI is the estimation of the ith

vector quantity in the frame I.

A given vector measurement provides no attitude information regarding the rotation around that vec-

tor. For that reason, even with very accurate sensors, at least two measurements of known non-colinear

vectors are required. In the case of two vector measurements with different accuracies being used, we

can limit the effect of the less accurate measurement (sensor b) to the rotation around the more accurate

measurement (sensor a) such that γ is given by [106]

γ = ka(s
a
B × ÂsaI) + kb((s

b
B × ÂsbI) · saB)saB . (D.17)

The estimation of the gyroscope bias βg is integrated at each step and the time derivative β̇g is given by

β̇g = −kgγ. (D.18)

109

Finally, a corrected estimate of the angular velocity may be derived with the equation

ω̂corr = ω̂ + βg. (D.19)

D.2.2 Control Algorithms

Detumbling

In this work, a detumbling algorithm based on magnetic torquers is used. The algorithm and mathemat-

ical proof of global asymptotic convergence were developed in [107]. The commanded magnetic dipole

moment is given by

md =
kd

||B̂B ||2
ω̂ × B̂B , (D.20)

where kd is a positive scalar gain and B̂B is the magnetic field vector measurement in the body frame.

With this control law, assuming perfect sensing, the control torque is given by (where b = BB/||BB ||):

τ d = md ×BB =
kd

||BB ||2
(ω ×BB)×BB = kd (ω × b)× b = −kd(I3×3 − bbT) ω. (D.21)

The control torque’s direction is as aligned as possible with the direction opposite to the angular

velocity vector, and its magnitude is proportional to the cosine of the angle between the former and

latter directions. This algorithm uses the gyroscope measurements because these are considered to be

reliable. Otherwise, the B-dot algorithm can be used, which is based on magnetometer measurements.

Pointing

The algorithms used for pointing are based on PD control, which is also used in the ISTSat-1. The

objective of these algorithms is to keep the outward normal of the face Z− aligned with the nadir (face

nomenclature is defined in Appendix A.1.4). Thus, the rotation about the z axis of the body frame is not

completely stabilized. In this work, this type of algorithm is seen as a black-box and we assumed that it

has been validated in terms of its performance and stability. The formulation for the basic PD controller

is such that the desired control torque is defined as

τ rw = kϵϵ− kωω̂corr, (D.22)

where kϵ and kω are positive scalar gains. The desired rotation vector ϵ is given by

ϵ = npld × n̂B = npld ×A n̂I = A
r̂I

||r̂I ||
× npld, (D.23)

where npld = {0, 0,−1} denotes the orientation, in the body frame, that must be aligned with the local

nadir. This basic PD control formulation is used for reaction wheel-based pointing, since this type of

actuator can produce torques in any desired direction. For magnetic torquer-based pointing, a modifi-

cation is made to the basic formulation, following the design of the ADCS of the ISTSat-1. During the

110

development of the ISTSat-1, simulations run for the basic PD control formulation showed that the con-

trol component of the pointing error was too high (the angular difference between the estimated nadir in

the body frame and the actual direction of npld). This was due to the fact that magnetic torquers cannot

produce torque in every direction. To solve this issue, an additional term was added to Eq. D.22, intro-

ducing a torque component that rotates the angular velocity of the spacecraft towards ϵ. The desired

torque is instead defined as

τmp,d = kϵϵ− kωω̂corr + krϵω, (D.24)

where kr is a positive scalar gain. The angular velocity rotation vector ϵω is given by

ϵω =

(
ϵ× ω̂xy

||ω̂xy||

)
× ω̂xy

||ω̂xy||
, (D.25)

where ω̂xy is the projection of the angular velocity measurement onto the Oxy plane of the body frame,

being given by

ω̂xy =
ω̂corr

||ω̂corr||
−
(

ω̂corr

||ω̂corr||
· n̂B

)
n̂B . (D.26)

The component of the desired control torque that is parallel to the local magnetic field vector cannot

be produced. Also, the commanded magnetic dipole is defined to be orthogonal to the magnetic field

vector, otherwise electric energy would be wasted. The derivation of the commanded magnetic dipole

mmp from τmp,d is as follows:

BB × τmp,d

||BB ||2
=

BB × τmp

||BB ||2
= b× (mmp × b) = (b · b)mmp − (b ·mmp)b = mmp, (D.27)

where the actual control torque τmp is the projection of τmp,d onto a plane that is orthogonal to the

magnetic field vector.

Reaction Wheel Momentum Management

The desired torque to be used for reaction wheel off-loading is computed with a linear relation to the

angular velocity of the reaction wheels, and it is given by

τmm,d = −kmmωw (D.28)

where kmm is a positive scalar gain and ωw is the sum of the angular velocities of the three reaction

wheels. The commanded magnetic dipole mmm is computed from τmm,d using the relation defined in

Eq. D.27. An estimate of the actual torque produced is derived as

τmm = mmm × B̂B . (D.29)

A torque component −τmm is added to the reaction wheel control actuation defined in Eq. D.22.

111

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	Glossary
	1 Introduction
	1.1 Objectives and Motivation
	1.2 Space Systems Design and Systems Engineering
	1.2.1 Space Systems
	1.2.2 Systems Engineering
	1.2.3 Motivation for Model-Based Systems Engineering
	1.2.4 Deployment of Model Based Systems Engineering
	1.2.5 Integration of MBSE with Simulation Tools

	1.3 Literature Review
	1.3.1 MBSE Deployment
	1.3.2 Integration of MBSE with Simulation Tools

	1.4 Research Contributions and Thesis Outline

	2 Theoretical Background
	2.1 MBSE Methodology Review
	2.2 SysML
	2.2.1 Diagram Notation and Taxonomy
	2.2.2 Basic elements of the language

	2.3 Object-Oriented Systems Engineering Method (OOSEM)
	2.4 Tool Selection and Integration
	2.5 Design Process Definition
	2.6 ADCS Design and technology
	2.6.1 Sensors
	2.6.2 Attitude Determination
	2.6.3 Actuators
	2.6.4 Attitude Guidance and Control

	3 Approach
	3.1 Methodology Adaptation
	3.1.1 Process Adaptation
	3.1.2 Activity Definition
	3.1.3 Integrating MBSE with Simulation

	3.2 Model Setup
	3.3 Methodology Validation

	4 Methodology Demonstration
	4.1 Design Process Inputs
	4.1.1 Mission-level inputs
	4.1.2 System-level inputs
	4.1.3 Subsystem-level inputs

	4.2 Subsystem Design
	4.2.1 Subsystem State Machine Definition
	4.2.2 Functional Architecture Definition
	4.2.3 Logical Architecture Design
	4.2.4 Synthesis of Candidate Physical Architectures
	4.2.5 Management of Requirement Traceability
	4.2.6 Evaluation of Alternatives

	4.3 Design Process Outputs
	4.4 Discussion of Results

	5 Conclusions
	Bibliography
	A Spacecraft Attitude
	A.1 Reference Frames
	A.1.1 Inertial Reference Frame
	A.1.2 Earth-Centred/Earth-Fixed Frame
	A.1.3 Topocentric Horizon Coordinate System (NED)
	A.1.4 Spacecraft Body Frame

	A.2 Attitude Representation
	A.2.1 Attitude Matrix
	A.2.2 Quaternions

	A.3 Spacecraft Attitude Dynamics
	A.3.1 External disturbance torques

	B ADCS Requirements Specification
	B.1 Specification of Performance Requirements
	B.2 Complete List of ADCS Requirements

	C Spacecraft Environment and Orbital Dynamics
	C.1 Expansion in Spherical Harmonics
	C.2 Earth Magnetic Field
	C.3 Earth Gravity Field
	C.4 Earth Albedo

	D Mathematical Models of Components
	D.1 Hardware
	D.1.1 Sensors
	D.1.2 Actuators

	D.2 Software
	D.2.1 Estimation Algorithms
	D.2.2 Control Algorithms

