
Intelligent Funds Assistant

Inês Sáragga Leal Saraiva
ines.saraiva@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

December 2021

Abstract

Currently, Portugal benefits from financial support given by the European Union, however it has
been verified that these funds are not being fully used. One of the main setbacks in the EU funding
application system is the identification of the best call for proposal. This work aims to develop a
funds assistant to match a call from a written text, using Natural Language Processing techniques for
text processing and Machine Learning to facilitate the construction of the models. This problem was
addressed as a hierarchical multi-class text classification, taking advantage of the hierarchical structure
inside the European funds. Four models were chosen to compare the classification performance: Naive
Bayes, Support Vector Machines, Random Forest and k-Nearest Neighbors. In this work, it was
observed that SVM outperforms the rest of the classifiers with a few exceptions. In addition, the results
from calibrated SVM classifiers, considering a second prediction when the models were uncertain about
their first one, achieved even higher performances in all levels of the hierarchy.

Keywords: Machine Learning, Natural Language Processing, Hierarchical Text Classification, Support
Vector Machines, TF-IDF vectorization

1. Introduction

Currently, the European Union has a supporting
economic development plan in place to assist each
country in improving certain areas of their economy.
Portugal benefits from the financial support given
to this plan, a total of 25.9 billion Euros for the
period 2014-2020 [1]. However, in Portugal, only
60% of the budget available per year is actually
spent, making it essential to comprehend why these
funds are not fully used. To approach this problem,
it was decided to use the Portuguese operational
programme (OP), PDR 2020 (Programa de Desen-
volvimento Rural - Rural Development Program)
as a study case, which is the main support of agri-
culture projects in the country. Despite the fact
that the data available is related to the funding of
2014-2020, the same structure of the funds will be
maintained in the following years, with some possi-
ble minor changes.

One of the main setbacks in the current EU fund-
ing application system is the identification of the
best call (or notice) to answer for each applicant.
A call is a funding opportunity that is inserted in
a particular topic and area of action, and given
that different calls have distinct benefits, its iden-
tification can be quite important. The funds as-
sistant is expected to assist beneficiaries by match-
ing a call from a written text, hoping to improve

the overall experience of the community funds sys-
tem. However, on account of the data available,
it was only possible to associate a project with an
operation, which consists of the last level of the
hierarchy in PDR 2020, with specific scopes and
objectives. The identification of the environment
that a project should be implemented is still perti-
nent to this problem and can be later be associated
with the temporary calls that PDR 2020 opens. To
solve problems such as this one, involving text in-
formation, it can be very advantageous to explore
the applications of Natural Language Processing
(NLP), involving machine learning (ML) algorithms
to facilitate the construction of this type of model.
For this work, the use of text classification stood
out, where the input would be a description of the
project that the beneficiary wishes to develop and
the output would be the best fitting position inside
PDR 2020.

For this thesis, it was necessary to implement a
hierarchical multi-class text classification, as seen
in [2], to organize the data and classifiers, taking ad-
vantage of the organization inside PDR 2020. Four
models were chosen to compare the classification
performance: Naive Bayes as a baseline solution, as
seen in [3] and [4], Support Vector Machines im-
plemented in [2] with a hierarchical approach, Ran-
dom Forest and k-Nearest Neighbors. The numeri-

1



cal representation selected was the TF-IDF vector-
ization, also present in [5] that deals with a simi-
lar problem. An analysis of calibrated SVM clas-
sifiers’ outputs and associated probabilities [6] was
accomplished for the consideration of second pre-
dictions. The performance of the twenty-two mod-
els that constitute the whole classification process
was analyzed with accuracy, F1 score and Matthews
Correlation Coefficient (MCC).

Following this introduction, the most important
parts of the theoretical background researched are
explained, such as the steps of text classification
and the hierarchical approach followed. Next, the
proposed framework is detailed, in terms of the
implementation of a hierarchical approach to this
problem, the justification of the models and met-
rics selected to evaluate, and other pertinent infor-
mation. After that, an analysis of the hierarchical
classification and the individual classifiers is pro-
vided, alongside the analysis of probabilities with
second predictions and with the results from those.
Last, a conclusion of this thesis and some ideas for
future work are presented.

2. Text Classification

As stated above, the goal of this work is to cor-
rectly predict an operation for a description made
by a beneficiary. In short, the data used for the
text classification model is a text description of the
project (text input i) and a corresponding position
inside the OP (class j of input i).

Figure 1: Steps of Text Classification.

It’s crucial to understand the pipeline for text
classification to be able to construct the best clas-
sification model possible. The main steps for a text
classification problem are shown in Figure 1 and
described as follows.

1. Pre-processing is the phase where the text is
clean of unnecessary information, with a set of
labeled texts or documents.

2. Feature extraction consists of transforming the
text into a numerical representation that can
be used as input for a classification model.

3. Training of a classification model where con-
nections are created between the vector repre-
sentation of the text and the associated labels
of the input.

4. Evaluation of the model is the last phase,
where the predictions made are verified. If
the predictions are correct, it can be concluded
that the model was able to learn distinct fea-
tures for each label.

2.1. Hierarchical Classification
In [2], a hierarchical structure is explored for clas-
sifying a large collection of web content. The ap-
proach followed in this paper considers that a hier-
archical structure is built on models that learn to
distinguish a second-level class from other classes
with the same top level. In the non-hierarchical
approach, the model would learn to distinguish a
second-level class from all other second-level classes
and usually, the model built would be a binary clas-
sifier, which means that a certain input may be pre-
dicted into none, one or more than one class. In this
article, it was concluded that the hierarchical mod-
els had some advantages over the non-hierarchical
ones, in terms of accuracy and F1 score, and pro-
vided large efficiency gains. However, it was also
noted that the sequential decision model may create
an issue of error cascading down the levels of the hi-
erarchy, which can be solved through improved clas-
sifiers and appropriate decision thresholds to guar-
antee the best results. Another approach would be
to use interactive interfaces where the user could
help make critical decisions.

To better understand the flow of the classifica-
tion, in a generic form, Figure 2 shows the nomen-
clature that is going to be used for the classifiers and
the type of division done. Each classifier is identi-
fied as Ch

c , with two indexes: the superior one (h)
indicates the level of the hierarchy where the clas-
sification is taking place, and the inferior one (c)
refers to a specific classifier at a certain level.

2.2. Other information
As it was explained previously, text classification
requires choosing pre-processing and feature extrac-
tion techniques, models to build and metrics to eval-
uate them with. All of these elements were studied
and can be consulted in the original document if
necessary.

3. Proposed Framework
For the operational programme that was used as a
study case, PDR 2020, there is a hierarchical divi-
sion in terms of projects’ scopes. In total, there are

2



Figure 2: Generic classifier tree.

four levels of hierarchy, starting with 5 classes,
in the first level, called areas; 10 classes in the sec-
ond level, referred to as measures; 22 classes, in
the third level, called actions; and 46 classes, in
the last level, named operations. Relating this hi-
erarchy with the literature found [2], the nomencla-
ture shown in Figure 2 translates to the classifiers
in Figures 3 and 4, with the following levels:

• The classifier in level 1 classifies areas;

• The classifiers in level 2 are inserted into a
certain area and classify measures;

• The classifiers in level 3 are inserted into a
measure and classify actions;

• The classifiers in level 4 are inserted into an
action and classify operations.

Figure 3: Classifier tree used for PDR2020 - Part 1.

Although there is a large number of classes in
this dataset, by dividing it into these four levels,
several classes don’t require classification. For ex-
ample, Area 4 and Area AT have only one mea-
sure so there’s no need to classify into those areas.
However, inside measures 10 (Area 4) and 20 (Area
AT), there are different actions to be classified so a

Figure 4: Classifier tree used for PDR2020 - Part 2.

model is required for those two measures although
the level above did not require it, as shown in Figure
4. Out of 10 existing measures, Measure 1, 4 and
6 have only one action and therefore don’t need to
be classified in terms of actions. While the actions
inside measures 4 and 6 both need to be classified in
terms of operations, for measure 1, no further clas-
sification is necessary since it has only one action
and one operation. In terms of actions, 11 out of
22 were excluded from classification given that they
have only one operation.

In short, 1 classifier is required for the first level
of classification into different areas, then 3 classi-
fiers for areas 1, 2 and 3, after which 7 models are
needed for the classification into actions. In the last
level, operation classification, only 11 classifiers are
necessary out of 22 actions. In total, 22 models
need to be trained and tested for a full classification.

3.1. Model Selection

To have the best performance possible for the funds
assistant being developed, four classifiers were cho-
sen to be tested and compared against each other.
The Naive Bayes (NB) classifier is one of the
classical algorithms used for classification, which
has proven, over the years, to give reliable results
without requiring much training data and compu-
tational power. The results from the Naive Bayes
classifier are usually used as a baseline for many
works, such as in [3] and [4].

Support Vector Machine (SVM) are one
of the most widely used classification algorithms
nowadays, known for their high performance, es-
pecially in text classification. In [2], a hierarchical
approach was developed to deal with the problem
of classifying web content, similar to the approach
followed in this thesis, and the classifiers used were
SVM models, which have very good overall results.
Given the similarity between the classification in
the article and the one that was constructed here,
the choice of testing an SVM algorithm is obvious.

Another basic classifier mentioned frequently in
the literature is the Decision Tree (DT) model.
Compared to the NB classifier, the Decision Tree

3



algorithm usually shows a worse performance, as it
can be seen in [3]. Despite the poor performance of
DT algorithms for this type of problem, the Ran-
dom Forest (RF) classifier, an ensemble model
that uses decision trees as base classifiers, can over-
come the limitations of the DT classifier and pro-
duce accurate results. An advantage of this algo-
rithm, over SVM, is that it can be used directly in
multi-class classification problems.
Finally, the k-Nearest Neighbors (KNN) clas-

sifier is a non-parametric classification method, first
introduced in 1951, and still commonly used, given
the improvements that continue to be made in re-
cent studies. The KNN classifier is composed of a
known optimization problem, the nearest neighbors
search. This optimization problem has other vari-
ants, such as the approximate nearest neighbors,
which is used in a novel model, Annoy, developed
by Spotify, for music recommendations. One of the
reasons for testing the KNN algorithm is the possi-
bility of using text similarity as a solution for this
problem and implementing Annoy as a text similar-
ity search algorithm.

3.2. Metric Selection
The models chosen are going to be compared with
3 metrics: accuracy, F1 measure and Mathews Cor-
relation Coefficient. Accuracy is one of the most
used measures of performance and simply expresses
the number of correct predictions in all predictions
made. F1 measure is a combination of recall and
precision and is once again a widely used to measure
the success of a classification problem. However,
precision, recall and F1 score are binary metrics
and require an averaging for multi-class problems.
Due to the unbalanced dataset for this problem,
it was decided to choose a weighted approach that
calculates a weight for each class depending on its
presence in the dataset. The final metric that was
chosen to analyze is Mathews Correlation Co-
efficient (MCC). Although not as popular as accu-
racy and F1 measure, the MCC has the advantage
of considering all the entries of a confusion matrix
and also of dealing with uneven class sizes.

3.3. Implementation of 2nd Predictions
To improve the performance of the classification, it
was decided to explore how to add decision thresh-
olds to the SVM models. A decision threshold is
a probability below which it is possible to infer
that the classifier loses confidence in its prediction
and is therefore prompted to consider a second one,
as shown in Figure 5. For the classifiers where a
threshold wasn’t implemented, the output is the
class with the highest probability. For the classi-
fiers with a decision threshold defined, the second
prediction is considered only if the probability of the
first prediction is lower than the threshold. When

the model is evaluated, it’s also verified if the second
prediction is correct or not, deciding which predic-
tion to consider based on that.

Figure 5: Evaluation pipeline for classifiers with 2nd

prediction.

At this point, to add decision thresholds to SVM
models, it is necessary to analyse the confidence
that the classifiers have in their outputs. Given that
SVM models have a decision function that works
with the signed distances to the hyperplane, it be-
comes quite complicated to interpret those results.
Following the strategies implemented in [6], it was
chosen to build calibrated SVM models. Calibrated
models are used to obtain a probability of a predic-
tion when such is not possible given the model used
(as is the case of SVM). This solution consists of
fitting a regressor that maps the output of the clas-
sification to a calibrated probability in a range of 0
to 1, such as Platt’s scaling or Isotonic Regression.

After setting up calibrated SVM models, it’s now
possible to analyse the outputs and the probabilities
associated with it. All models will certainly improve
by considering second predictions, however, in prac-
ticality, it’s not acceptable for a person to analyse
every option in the predictions. The goal here is
to improve the performance enough without over-
loading the user with different options. To decide
the best threshold of probabilities for each model,
four scores were retrieved: accuracy, MCC, the per-
centage of second predictions considered out of all
predictions made, R, and the percentage of correct
second predictions out of all the second predictions
made, T .
To choose the best threshold possible considering

4



all these factors, a heuristic technique was used con-
sidering an objective function, shown in (1). The
best threshold, t, for a certain model is chosen by
trying to find the highest value possible of F (t).
Besides that, to make it easier to analyse if the
model is considering second predictions or not, F (t)
is forced to be zero if no second predictions are made
(R = 0).

F (t) = ωτ · τ(t) + ωρ · ρ(t) + ωϕ · ϕ(t) (1)

Regarding the variables shown in (1), they are
defined as follows:

• τ(t) corresponds to the percentage of correct
second predictions for a threshold t, Tt, divided
by the sum of all the percentages of correct sec-
ond predictions retrieved, as seen in (2). This
variable has a weight of ωτ to be defined.

τ(t) =
Tt∑
i Ti

(2)

• ρ(t) corresponds to the percentage of second
predictions made for a threshold t, Rt, divided
by the sum of all percentages of second predic-
tions made, as seen in (3). This variable has a
weight of ωρ to be defined.

ρ(t) =
Rt∑
i Ri

(3)

• ϕ(t) corresponds to the sum of two parcels: ac-
curacy for a certain threshold t, divided by the
sum of all accuracies, and MCC for a threshold
t, divided by sum of all MCC scores, as seen
in (4). This variable has a weight of ωϕ to be
defined.

ϕ(t) =
Acct∑
i Acci

+
MCCt∑
i MCCi

(4)

3.4. Text Processing
The first step of any text related algorithm is text
cleaning and pre-processing. First, for the text pro-
vided, all the numbers contained in the text were re-
moved. Besides that, punctuation was removed and
all letters were lowered. Given that the Portuguese
language has accents, also known as diacritics, such
as ´, ‘, ˆ , ˜ and ç, it’s important to understand
its influence in the results to decide whether they
should be kept or normalized (removed). By re-
moving accentuation from all the text, it’s possible
that the algorithm could learn better representa-
tions discarding spelling errors. It was concluded
that, by normalizing the text, the accuracy and the
MCC score increase and the running time of the
model diminishes.
After cleaning the text, tokens are created by

splitting the text into different words. Stopwords

are words that bring no important information to
a text such as propositions and determinants and
those were promptly removed. After finding all
the tokens in a text, each word is evaluated with
a stemming algorithm and replaced with its stem
form. For the stemming algorithm, two options
were considered: Snowball stemming algorithm [7]
and RSLP stemmer [8]. The Snowball stemmer was
chosen for this work given the higher accuracy and
quicker processing time that it showed.

The following step of text processing is vector-
ization to create features for the models. The cho-
sen method for this work was the TF-IDF weight-
ing scheme. An example of the use of TF-IDF for
a similar problem can be seen in [5], that tackles
document clustering with a hierarchical approach
(hierarchical agglomerative clustering). Given the
fact that the results achieved in [5] show the effi-
ciency of this vectorization method, it was decided
to test this representation in this problem, hoping
to also obtain high performance. As for the defi-
nition of TF-IDF, it stands for Term Frequency -
Inverse Document Frequency, and it’s a technique
for the representation of words where each word is
weighed in regard to its importance to a document
(title and description of a project) contained in a
corpus (the texts available from all the projects).
The result of this vectorization is a matrix with f
columns, f being the number of words considered in
all the corpus available, and n rows that correspond
to each project considered.

3.5. Data Analysis

In regards to the data used, all public information
was retrieved to have the most complete database
possible. Overall, it was possible to gather infor-
mation regarding 159 363 projects from 15 different
Operational Programmes, having 29 005 projects
from PDR 2020. In a brief analysis of the title and
description of the data available, 91 projects that
didn’t provide text information in the title or de-
scription were found. It was also noted that some
projects had text in English and some had informa-
tion with no significance (for example, ”aaa” and
”cccçççç”). For PDR 2020, 10 projects that had
text with no significance were identified and re-
moved. Concluding, the dataset used had a total
of 28 904 samples.

Regarding the hierarchical information needed
for the classification, it was observed that the in-
formation available shows only the operation of a
project, such as ”3.2.1 - Investimento na exploração
agŕıcola”. Nonetheless, the operation is identified
with a code (”3.2.1”) which showcases three levels
of the hierarchy: the first number (”3”) is related to
the measure; the first and second number together
(”3.2”) identify an action; and all the numbers to-

5



gether (”3.2.1”) symbolize a specific operation. The
first level of the hierarchy is not identifiable with
this code, but that information is available on PDR
2020’s website [9], making it possible to manually
associate the measures with the five existent areas.

4. Classification Results
For the results retrieved, the data used was sep-
arated 80%-15%-5%. 80% of the dataset was de-
signed for training and 15% was for the validation
of each separate model (shown in section 4.3). The
last 5% was used for the sequential testing phase
(shown in section 4.2) that require a dataset that
wasn’t used for training or testing in any of the
previous models. As for the training and valida-
tion dataset, the division done considers that an
input used for training a certain model may belong
to the validation data of a different model. It was
preferred to ensure that the training and validation
data were divided equally, at the expense of not
guaranteeing that training and validation data was
the same throughout all the models. However, the
5% testing set is independent of all models and can
be used to test the sequential modelling without
having to worry about biased results.

4.1. Parameter Tuning
For the parameter tuning of the models, each one
was optimized with regard to the accuracy and used
part of the training data for the first level of the
hierarchy with a total of 2000 samples. In Table
1, the best parameters found are shown. For more
details about this section, please consult the original
document.

Model Parameters

NB α 0.2

SVM C 1.5

Penalty l2

Loss squared hinge

RF Criterion gini-index

Max Depth 150

Max Leaf Nodes 500

Min Impurity Decrease 0

Min Samples Leaf 1

Nº estimators 75

KNN Algorithm Ball-Tree

Leaf Size 20

Metric Euclidean

Nº neighbors 2

Table 1: Parameters for NB, SVM, RF and KNN
classifiers.

4.2. Analysis of Hierarchical Classification
A sequential process of classification was tested,
using previous predictions to choose which model
to use and retrieve the next prediction with. The
data used to test in this phase was a 5% testing

set, meaning that the results from this classifica-
tion were not biased in any way.

The performance of each level, in terms of the
four models considered, is shown in Table 4.2. The
first level shows high accuracies, with the maximum
of 0.992, and an MCC score of 0.980, obtained with
an SVM algorithm. However, these results have
an alteration made to the data to realistically clas-
sify the projects. In short, 2 different classes had
projects with the same objective, only with a re-
striction in location, so it was decided to change
the label of these similar projects, to reflect this
situation. These projects were identified as a differ-
ent class for the first level and then restored their
original labels for the rest of the classification.

SVM RF KNN NB

Level 1 Accuracy 0.992 0.966 0.979 0.974

F1 Score 0.992 0.964 0.979 0.973

MCC 0.980 0.909 0.945 0.930

Level 2 Accuracy 0.988 0.954 0.970 0.959

F1 Score 0.988 0.953 0.969 0.958

MCC 0.982 0.931 0.945 0.938

Level 3 Accuracy 0.803 0.758 0.768 0.798

F1 Score 0.805 0.748 0.777 0.794

MCC 0.756 0.697 0.729 0.746

Level 4 Accuracy 0.717 0.666 0.678 0.689

F1 Score 0.716 0.660 0.677 0.678

MCC 0.682 0.624 0.648 0.649

Table 2: Comparison of classification models using
sequential results.

In Table 4.2, it can be seen that the
SVM classifier outperforms the rest of the classifiers
from the first level to the last one, starting with a
0.992 accuracy and ending with a 0.717 accuracy.
The Random Forest Ensemble classifier showed the
worst results in all the classifiers. While, in the first
two levels, the k-Nearest Neighbors showed better
accuracies and MCC scores than the Naive Bayes
classifier, in the last two levels, the NB models were
able to overpass the KNN, having the second-best
overall performance with a 0.689 accuracy and a
0.649 MCC score.

4.3. Analysis of Individual Classifiers
For the 22 classifications tested and analysed, the
best results are shown in Tables 3 and 4. These
results were found with the following models:

• Support Vector Machine had the best results
in 18 classifications;

• k-Nearest Neighbors had the best performance
in 2 classifications;

• Naive Bayes classifier had the best performance
in 1 classification;

6



Area Areas Measures

Classifier 1 2 3 KNN 2 3 5 7 8 10 20

Accuracy 0.992 0.991 0.992 0.995 1.0 0.664 1.0 1.0 1.0 0.996 1.0

F1 Score 0.991 0.991 0.992 0.995 1.0 0.665 1.0 1.0 1.0 0.996 1.0

MCC 0.977 0.979 0.971 0.986 1.0 0.314 0.0 1.0 1.0 0.955 1.0

Table 3: Results of Individual Classifiers - Part 1.

Actions

2.2 3.1 NB 3.2 RF 3.3 KNN 3.4 4.0 6.2 7.8 8.1 10.2 20.2

Accuracy 0.941 0.826 0.859 0.893 0.957 1.0 1.0 0.947 0.958 0.976 0.984

F1 Score 0.932 0.750 0.857 0.885 0.935 1.0 1.0 0.934 0.958 0.976 0.984

MCC 0.864 -0.022 0.715 0.302 0.000 1.0 1.0 0.840 0.945 0.950 0.974

Table 4: Results of Individual Classifiers - Part 2.

• Random Forest model had the best perfor-
mance in 1 classification;

The classifiers, that are not SVM, are identifiable
with a footnote, which states the model used for the
results shown, in Tables 3 and 4.
Even though the SVM models obtained some-

times the best results with a significant difference
from other classifiers, 5 classifications had equal re-
sults between the SVM model and the RF or KNN
model. Overall, it was possible to obtain accuracies
above 0.95 and MCC scores above 0.70 for a total
of 17 models:

- Area classifier;

- Classifiers in areas 1, 2 and 3;

- Classifiers in measures 2, 7, 8, 10 and 20;

- Classifiers in actions 2.2, 3.2, 4.0, 6.2, 7.8, 8.1,
10.2 and 20.2.

Three of those classifiers (in actions 2.2, 3.2 and
7.8) obtained very good results also, while not as
high as the rest of the classifications mentioned.
Given that two of those models have a class with
very few samples to train and test and the other has
the problem related to the investment size accepted
(normal vs small investments), some misclassifica-
tions can be expected in the evaluation. However,
given both those issues, these classifiers obtained
better results than expected.
The last classifiers to mention are the ones that

had the worst performance (an MCC lower than
0.5), which sum up to a total of 5 models:

- Classifiers in measures 3 and 5;

- Classifiers in actions 3.1, 3.3 and 3.4;

Although the accuracy results in these models
were relatively high, from 0.65 to 0.90, the MCC
score reveals that the classification is actually not
viable, given that an MCC score close to zero shows

that the predictions made by the model are com-
pletely random. The low scores in these classifica-
tions are due to one of the following issues:

• Classes that are difficult to distinguish given
the input provided;

• Small number of training samples;

• Unbalanced dataset combined with few data
available to train and test.

Six of the classifiers mentioned (in actions 2.2, 3.3,
3.4, 4.0, 6.2 and 7.8) have a common characteris-
tic: one or more classes of the classification do not
have much data to test, leaving just one class be-
ing tested. The class being tested can be correctly
predicted, which justifies the high metrics found in
some models (such as in actions 4.0 and 6.2), or it
can misclassify some of the samples, lowering the
evaluation metrics (actions 3.3 and 3.4).

4.4. Analysis of 2nd Predictions

To improve the results described previously, it was
decided to add decision thresholds to the SVMmod-
els. However, SVM models don’t deal with proba-
bilities, making it necessary to build new calibrated
SVM models, used to obtain probabilities of pre-
dictions. Two regressors were tested for building
calibrated models: Platt’s Scaling and Isotonic Re-
gression. Testing the two of them for the area clas-
sifier and evaluating the accuracy results, it was
chosen to use the Isotonic Regression, which is the
best method for larger datasets.

Previously, a heuristic strategy was defined for
finding the best threshold in each classifier. The
objective function F (t), defined in (1), had some
weights to be defined that rewarded and penalized
certain behaviours. Using the partial knowledge ac-
quired from the system developed, these weights
were defined as follows: ωτ was given a positive
value of +1, considering that the goal is to opti-
mize the correct predictions; ωρ was also attributed

7



a weight of −1, penalizing large values in this vari-
able; and ωϕ was defined as +5, to stress the im-
portance of improving the evaluation metrics. With
those weights defined, the objective function imple-
mented is shown in (5).

F (t) = τ(t)− ρ(t) + 5× ϕ(t) (5)

Regarding the thresholds examined, all the mod-
els were tested with seventeen values starting in 0.3
and ending in 0.7. It was considered that a pre-
dicted class with a probability higher than 0.7 was
very likely to be correct, so thresholds above 0.7
were not tested. Out of 22 SVM calibrated classi-
fiers tested, only 8 models showed improvements
with the consideration of a second prediction:

- Area classifier.

- Classifiers in areas 2 and 3.

- Classifiers in measure 3.

- Classifiers in actions 3.2, 3.3, 8.1 and 10.2.

The classifiers in actions 3.1, 3.4, and measure
5, which had the worst results, were unable to im-
prove. The rest of the models had already very
high performance, which implies that the probabil-
ities in those predictions were above 0.7 and there-
fore, didn’t consider a second prediction in the tests
made.
For the eight classifiers chosen to analyse, the

different parcels of the objective function and the
value of F (t) for the defined thresholds were calcu-
lated. With these values, it was possible to create
a graphic representation of this problem, as the one
shown in Figure 6 for the area classifier, and verify
which threshold brings the highest value of F (t).
In conclusion, the chosen thresholds for the eight
classifiers analysed are shown in Table 5.

Figure 6: Example of the threshold evaluation
(Area Classifier).

After defining the thresholds, the hierarchical
classification is tested once again, comparing the
results considering just one prediction and consid-
ering a second one. The metrics evaluated in all
four levels of the hierarchy can be seen in Table 6.

Classifier Threshold

Level 1 0.38

Level 2 Area 2 0.53

Area 3 0.53

Level 3 Measure 3 0.6

Level 4 Action 3.2 0.53

Action 3.3 0.60

Action 8.1 0.48

Action 10.2 0.48

Table 5: Chosen threshold for each classifier.

1st Prediction 2nd Prediction

Level 1 Accuracy 0.992 0.994

F1 Score 0.992 0.994

MCC 0.980 0.984

Level 2 Accuracy 0.989 0.990

F1 Score 0.989 0.990

MCC 0.983 0.985

Level 3 Accuracy 0.826 0.952

F1 Score 0.808 0.951

MCC 0.788 0.941

Level 4 Accuracy 0.756 0.878

F1 Score 0.738 0.867

MCC 0.729 0.864

Table 6: Comparison between sequential results
with 1st and 2nd prediction.

Regarding the first two levels, classification of
areas and measures, the results are very similar,
showing a slight increase in the evaluated metrics.
However, level 3 (classification into actions) shows
a significant improvement with an accuracy of 0.952
and 0.941 MCC score, compared to the previous re-
sults of 0.826 and 0.788, respectively. Given that
this level had the more severe drop in performance,
around 0.16 of accuracy, it’s possible to verify that
considering a second prediction, the performance
decrease becomes much smaller (only 0.04). As for
the last level, there is a decrease in performance,
going from 0.952 to 0.878 of accuracy (a decline of
0.07, similar to the previous results), which leads
to the conclusion that the classification into opera-
tions cannot be improved any further. Overall, the
classification, considering second predictions, had a
final performance of 0.878 in accuracy and 0.864
in MCC, a considerable enhancement from the first
results.

5. Conclusions

The goal of this thesis consisted in developing an in-
telligent assistant to find the best call for a project
with a written description of it, through the iden-
tification of the most fitting environment that the
project should be inserted into.

By approaching this problem as a hierarchical

8



classification, the very first results proved to be
quite satisfactory, in terms of the evaluated metrics.
The following step of improving the results with
the consideration of second predictions was truly
useful in some classifiers and managed to improve
the overall hierarchical classification. A downfall
of these models is the vocabulary used. The TF-
IDF weighting scheme implemented meant that the
models have limited knowledge in terms of words,
semantic and syntax. Other approaches could po-
tentially provide a more robust solution for real-life
applications.

In terms of the classification results, out of the
four models tested, a classification built only with
SVM classifiers obtained the best performance,
starting in the first level with high accuracy of
0.992 and ending with a 0.717 accuracy in the last
level.

By analysing each individual classifier defined, it
was again verified that the SVM algorithm outper-
forms all others in a large majority of cases. Overall,
out of 22 classifiers, only 5 of them had an MCC
score lower than 0.5, while still showing high ac-
curacies. The rest of the classifiers obtained high
accuracies, ranging from 0.8 to 1.0, and also high
MCC scores above 0.7.

To enhance the SVM models, which showed the
most promising performance, a second prediction
was considered when the model was uncertain about
its first one. With this strategy, 8 classifiers imple-
mented a second prediction and were able to im-
prove their performance. The hierarchical classifi-
cation also showed a great improvement in the last
level of the hierarchy, obtaining 0.878 accuracy.
The rest of the levels also showed slight increases,
maintaining a 0.952 accuracy until the last level.

6. Future work

A lot of neural networks have been developed for
text related tasks, such as BERT, Glove, FastText,
among others. These could be explored as a vec-
torization process, taking advantage of the larger
vocabulary corpus that the models have been pre-
trained on, or used with the existent models for
text or sequence classification, such as ”Bert For
Sequence Classification”.

References

[1] Open data portal for the european structural
investment funds - european commission: Data:
European structural and investment funds.
https://cohesiondata.ec.europa.eu/countries/PT.

[2] Susan Dumais and Hao Chen. Hierarchical clas-
sification of web content. In Proceedings of the
23rd annual international ACM SIGIR confer-
ence on Research and development in informa-
tion retrieval, pages 256–263, 2000.

[3] Eui-Hong Han and George Karypis. Centroid-
based document classification: Analysis and ex-
perimental results. Principles of Data Mining
and Knowledge Discovery, page 424–431, 2000.

[4] Yong H Li and Anil K Jain. Classification of text
documents. The Computer Journal, 41(8):537–
546, 1998.

[5] Prafulla Bafna, Dhanya Pramod, and Anagha
Vaidya. Document clustering: Tf-idf approach.
In 2016 International Conference on Electri-
cal, Electronics, and Optimization Techniques
(ICEEOT), pages 61–66. IEEE, 2016.

[6] Ashish Anand, Ganesan Pugalenthi, and
PN Suganthan. Predicting protein structural
class by svm with class-wise optimized features
and decision probabilities. Journal of theoretical
biology, 253(2):375–380, 2008.

[7] Martin F Porter. Snowball: A language for
stemming algorithms, 2001.

[8] Viviane Moreira Orengo and Christian R
Huyck. A stemming algorithmm for the por-
tuguese language. In spire, volume 8, pages 186–
193, 2001.

[9] Pdr 2020 - arquitetura. http://www.pdr-
2020.pt/O-PDR2020/Arquitetura.

9


