
Dense Template Retrieval for Customer Support

Tiago Manuel Reis Mesquita

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Bruno Emanuel da Graça Martins
Dra. Mariana S. C. Almeida

Examination Committee

Chairperson: Prof. José Luı́s Brinquete Borbinha
Supervisor: Prof. Bruno Emanuel da Graça Martins

Member of the Committee: Prof. João Miguel da Costa Magalhães

November 2021

This work was created using LATEX typesetting language
in the Overleaf environment (www.overleaf.com).

Acknowledgments

Firstly, I would like to thank my supervisors, Prof. Bruno Martins and Mariana Almeida, for the valued

guidance they provided throughout the entirety of of my M.Sc. research project. Our meetings and

exchanged messages were an integral part of this thesis, providing the answers to my questions, the

direction to guide my research, the knowledge to tackle the next challenges and the motivation and

confidence to keep working. I’d also like to thank you for the active participation on the elaboration

of this report and the accompanying paper, where you were always available to read and review my

preliminary versions. Without you, this work would not have been possible.

I would also like to express my gratitude to the team at Cleverly, for welcoming me and making this

collaboration possible. In particular, I would like to thank Inês and Lourenço, for their insightful reading

groups, of which I was lucky to attend, and Pedro for providing all the necessary hardware support. I

would like to thank André Godinho, who I had the pleasure to accompany trough most of our theses.

Watching you accomplishing your thesis’ goals was truly inspiring. I would also like to thank everyone at

Zendesk, that was involved in the review and approval of our paper, for submission in such short notice.

I’d also like to thank all of my close friends, for always being there. João Barata and João Daniel,

thank you for reminding me that even though we’re in different journeys, we are in them together.

Last but definitely not least, a special thank you for my family. Thank you for the emotional and

financial support that allowed me to truly immerse myself in this thesis. I hope my work reflects your

effort.

i

Abstract

Templated answers are used extensively in customer support scenarios, providing an efficient way to

cover a plethora of topics, with an easily maintainable small collection of templates. Still, the number

of templates is often too high for an agent to search. Automatically suggesting the correct template for

a given question can improve the service efficiency, reducing costs and leading to a better customer

satisfaction. In this work, we adapt the dense retrieval framework for the customer support scenario,

modifying the commonly used in-batch negatives technique to support unpaired sampling of queries

and templates. We also propose a novel loss that extends the typical query-centric similarity, exploiting

other similarity relations in the training data. Experiments on private and public datasets show that our

approach achieves considerable improvements in terms of performance and training speed.

Keywords

Information Retrieval, Customer Support, Template Retrieval, Dense Retrieval

iii

Resumo

Respostas pré-formatadas são utilizadas extensivamente em cenários de suporte ao cliente, consti-

tuindo um método eficiente de cobrir uma infinidade de tópicos, com uma coleção de modelos de

resposta de fácil manutenção. Ainda assim, o número de modelos é geralmente grande de mais para

um agente pesquisar. A sugestão automática do modelo correto, para uma determinada questão, pode

melhorar a eficiência do serviço, reduzindo custos e levando a uma melhor satisfação do cliente. Neste

trabalho, adaptamos a estrutura de recuperação de informação com representações densas, para o

cenário de suporte ao cliente, modificando a técnica frequentemente usada de in-batch negatives para

suportar a amostragem não pareada de questões e modelos de resposta. Também propomos uma nova

função de custo que estende a tı́pica similaridade centrada nas questões, explorando outras relações

de similaridade nos dados de treino. Experiências em dados privados e públicos mostram que a nossa

abordagem consegue melhorias consideráveis, tanto em desempenho como velocidade de treino.

Palavras Chave

Recuperação de Informação, Suporte ao Cliente, Recuperação de Modelos de Resposta, Recuperação

de Informação com Representações Densas

v

Contents

1 Introduction 1

1.1 Problem Definition . 2

1.2 Objective . 3

1.3 Methodology . 4

1.4 Contributions . 5

1.5 Organization of the Dissertation . 5

2 Fundamental Concepts 7

2.1 Neural Models . 8

2.1.1 Feed-Forward Models . 8

2.1.2 Training with Gradient Descent . 9

2.1.3 Seq2Seq Architectures . 11

2.1.4 The Transformer Architecture . 12

2.1.5 The BERT Transformer Encoder Model . 17

2.1.6 BERT Variants . 20

2.1.7 The T5 Model for Multi-Task Learning . 21

2.2 Text Representation Models . 22

2.2.1 Sparse Models . 22

2.2.2 Dense Models and Word Embeddings . 25

3 Related Work 29

3.1 Ranking Before Transformers . 30

3.1.1 Frequency-Based Indexing and BM25 . 30

3.1.2 Deep Learning-Based Ranking . 30

3.2 Interaction-Based Transformer Architectures . 31

3.2.1 Simple Relevance Classification with MonoBERT 31

3.2.2 MonoBERT Extensions . 33

3.2.3 Document Ranking . 34

3.2.4 Multi-Stage Rerankers . 34

vii

3.2.5 Beyond BERT . 34

3.2.6 Document Preprocessing Techniques . 37

3.3 Representation-Based Transformer Architectures . 40

3.3.1 Simple Comparison Functions for Ranking . 40

3.3.2 Complex Comparison Functions for Ranking . 47

4 Methodology 51

4.1 Simple Dense Template Retrieval . 52

4.1.1 Architecture . 52

4.1.2 Loss Function . 52

4.1.3 In-Batch Negatives . 52

4.2 Improved Dense Template Retrieval . 53

4.2.1 Batch Generation . 53

4.2.2 Batch Exploration . 55

4.3 Summary of Techniques . 58

5 Experiments 59

5.1 Datasets and Metrics . 60

5.1.1 Evaluation Metrics . 61

5.2 Experimental Setup . 62

5.2.1 Baselines . 62

5.2.2 Pre-Trained Language Models . 62

5.2.3 Hyper-Parameters . 62

5.3 Experimental Results . 63

5.3.1 Main Results . 63

5.3.2 Analysis on the Sampling Techniques . 64

5.3.3 Analysis on the Loss Terms . 65

5.3.4 Analysis on Harder Datasets . 66

5.4 Summary of Experiments . 68

6 Conclusions and Future Work 69

6.1 Conclusions . 70

6.2 Future Work . 71

6.2.1 Customer Support . 71

6.2.2 Beyond Customer Support . 72

viii

List of Figures

1.1 Overview of the proposed template suggestion framework. 2

2.1 Common activation functions (g(x)) and their respective 1st derivative (g′(x)) 9

2.2 Graphical representation of a mlti-layer perceptron . 10

2.3 The Transformer - model architecture . 12

2.4 Token encoding and pe-training tasks in BERT . 19

2.5 Architectures of both methods used in the word2vec model. 26

3.1 Graphical representation of a cross-encoder. 33

3.2 Graphical representation of a bi-encoder. 41

3.3 Graphical representation of the poly-encoder. 47

4.1 An illustrative case of applying semi-independent query-template sampling on an example

training dataset . 54

4.2 Illustrative example of the relative positions of 6 query representations and their respective

positive template representations after enforcing different similarity relations. 56

4.3 Diagram of labeled in-batch negatives followed by in-batch top-k negatives sampling. . . . 58

5.1 Comparison between the real and observed distributions obtained with different sampling

techniques, during training, for queries and templates . 65

ix

x

List of Tables

3.1 Comparison of previous work on dense retrieval. 50

5.1 Statistics for the tested datasets . 61

5.2 Experimental results on CS-Twitter and CS-P1. 63

5.3 Ablation study on the components of the loss and in-batch top-k sampling 66

5.4 Experimental results on other private datasets . 67

xi

xii

List of Algorithms

4.1 Semi-independent query-template sampling . 54

xiii

xiv

Acronyms

AI Artificial Intelligence

ADORE Algorithm for Directly Optimizing Ranking pErformance

ANCE Approximate Nearest Neighbor Negative Contrastive Estimation

ANN Approximate Nearest Neighbour

BERT Bidirectional Encoder Representations from Transformers

BM25 Best Match 25

BoW Bag-of-Words

CBoW Continuous Bag-of-Words

DeepCT Deep Contextualized Term Weighting

DPR Dense Passage Retriever

CLEAR Complementing Lexical Retrieval with Semantic Residual Embedding

FF Feed-Forward

FFNN Feed-Forward Neural Network

GD Gradient Descent

IDF Inverse Document Frequency

IR information retrieval

MLM Masked Language Modeling

MTL multi-task learning

MRR Mean Reciprocal Rank

NN Neural Networks

NNS Nearest Neighbours Search

xv

NLL negative log likelihood

NLP Natural Language Processing

NSP Next Sentence Prediction

LTRe Learning To Retrieve

QTR Query Term Recall

PAIR PAssage-centric sImilarity Relations

RepBERT Representation-focused BERT

ReLU Rectified Linear Unit

RNN Recursive Neural Networks

seq2seq sequence-to-sequence

SOTA state of the art

STAR Stable Training Algorithm for dense Retrieval

TF Term Frequency

TF-IDF Term Frequency-Inverse Document Frequency

tanh Hyperbolic Tangent

xvi

1
Introduction

Contents

1.1 Problem Definition . 2

1.2 Objective . 3

1.3 Methodology . 4

1.4 Contributions . 5

1.5 Organization of the Dissertation . 5

1

This thesis was developed in the context of a collaboration between INESC-ID and two companies:

Zendesk1, that provides a platform for digital custommer support, and Cleverly2, that offers an Artificial

Intelligence (AI) layer with features for optimizing customer support processes. Our work explores neural

approaches for document retrieval, in order to support the development of a new feature that leverages

AI to improve customer support.

1.1 Problem Definition

Customer support is an essential complement for any company supplying services or products, guaran-

teeing their intended use. As such, the effectiveness of this interaction has direct impact in customer’s

perception and satisfaction. Ideally, the communication would be fully conducted by an human agent,

(fully automated agents are, for the most part, still unable to compete), offering tailored help for each

customer. However, this is unfeasible in most scenarios, as the sheer amount of requests far outweigh

the human power.

In the case of email support, a common way to increase the efficiency of customer support agents is

with the use of templates, pre-written responses that answer a plethora of known requests, simplifying

the customer support agents’ process of replying to a choice of the most appropriate template, and stan-

dardizing the replies to a reduced set of possible answers. Template answers not only severally improve

the throughput of human agents, they also assure uniformity in the handling of different customers, as

any requests, with the same underlying problem, should be handled with the same template. Although

the use of templates facilitates agents work, finding the right template can still be a cumbersome, par-

ticularly for unexperienced agents since depending on the complexity of the product or service, several

distinct questions may arise, each with its own template. This provides a great opportunity for auto-

mated agents to simplify the process, by providing a pre-selection of the most likely correct templates,

from which a human operator can select the most appropriate, as seen in figure 1.1.

Model Agent
Incoming

Email
Ranked

Templates
Templated

Answer

Figure 1.1: Overview of the proposed template suggestion framework.

1https://www.zendesk.com/
2https://www.cleverly.ai/

2

https://www.zendesk.com/
https://www.cleverly.ai/

If effective, the described framework severely simplifies the choice of the template, facilitating agent’s

work by reducing reply times, accelerating the learning curve of new agents, helping agents to focus on

more added valued tasks, and overall providing a better support at reduced costs.

Despite this, literature on the topic is somewhat scarce, likely due to a unavailability of public data,

with most work being conducted privately, under in-house datasets. Particularly, the described scenario

differs from the ones in the literature, as it features small collections of templates, data that is generally

multilingual, lengthier texts, and an emphasis on efficiency and speed to support real-time utilization.

1.2 Objective

This thesis focuses on Cleverly’s AI feature of suggesting templates of replies to agents. Considering

this application, and the recent advances in large pre-trained language models (Devlin et al., 2019;

Vaswani et al., 2017), together with their successful use in question-answering (Karpukhin et al., 2020;

Qu et al., 2021) and information retrieval (Xiong et al., 2021; Zhan et al., 2021, 2020a), the main goal of

this research was:

to study the feasibility of using state of the art (SOTA) dense retrieval models to retrieve

templates, helping customer support agents answer incoming requests

Motivated by this main objective, the thesis explores the practical differences between template re-

trieval and common information retrieval (IR) scenarios in the literature, and how they affect the efficacy

and efficiency of the prevailing training techniques. In particular, we aim to improve and adapt the exist-

ing techniques, to better address the specific challenges of the problem at hand, such as:

i The relation between queries and templates is strict many-to-one, as opposed to other common

retrieval tasks as discussed by Nguyen et al. (2016);

ii Template collections are relatively small and generally in the order of hundreds, although also

dynamically updated over time;

iii The frequency of use of each template differs considerably, resulting in skewed distributions of

training examples;

iv The length of the queries (e.g., emails from costumers) tends to be relatively long, severely limiting

the available batch space;

v Models must provide template rankings in real-time, maximizing the customer support efficiency;

vi Training speed is highly regarded, as it facilitates quick deployment;

vii Data is generally multilingual, so we need a solution applicable to a vast range of languages.

3

1.3 Methodology

To achieve the objectives defined in the previous section, we started by surveying the recent contribu-

tions in the field of IR with transformer-based models, collecting the techniques and design principles

that guided our implementation and experiments. Given real-time and computation constrains in the

template suggestion problem, research mostly focused on bi-encoder models (Yates et al., 2021), which

at prediction time only need to compute dense representations of queries and make fast comparisons

with pre-computed representations of template candidates, reaching fast retrieval times and reduced

computational costs. We discard cross-encoder models that, despite often achieving higher retrieval

performance (Yates et al., 2021) can have problems processing long queries and/or documents, failing

to take advantage of pre-computed template representations.

Following our research, we proceeded with the implementation and adaptation of the collected tech-

niques for the scenario of customer support with templates. The design of the testing framework fo-

cused heavily on modularity, supporting models that combine different combinations of the surveyed

techniques. Its implementation leveraged PyTorch3, together with pre-trained models from HuggingFace

Transformers4 and Sentence-Transformers5.

Finally, we moved onto the evaluation and experimentation of the produced models, comparing them

across the different methods and datasets. Experiments were mostly conducted on four private datasets,

kindly provided by Cleverly and Zendesk. These datasets featured anonymized real-world customer sup-

port interactions, where answer templates were carefully selected by human operators. They combined

differently sized template collections, number of training examples and languages, providing a repre-

sentative evaluation of model performance, across a range of possible real scenarios. To assure the

reproducibility of the results, and in the absence of a public dataset of customer support that met our

criteria, we also created a new dataset, using the data available in the Twitter Customer Support Cor-

pus, from Kaggle6. To test the models, we split each dataset into training, validation and test splits. The

test split was extracted temporally, corresponding to the most recent interactions, mimicking the real

scenario, where the model is used to suggest templates for future queries. Training and validation were

composed from the remaining examples, in a stratified split.

To evaluate the performance of the tested models, we used metrics that capture the quality of the

produced rankings, namely Mean Reciprocal Rank (MRR) and recall.

3https://pytorch.org/
4https://huggingface.co/transformers/
5https://www.sbert.net/
6https://www.kaggle.com/thoughtvector/customer-support-on-twitter

4

https://pytorch.org/
https://huggingface.co/transformers/
https://www.sbert.net/
https://www.kaggle.com/thoughtvector/customer-support-on-twitter

1.4 Contributions

The main ideas and research contributions of this M.Sc thesis work are the following:

• Proposal of a novel model for semi-automatic selection of answer templates, leveraging dense

retrieval over the template collection;

• Comparison of the proposed model, with classic and recent dense retrieval approaches in the task

of template retrieval for customer support;

• Creation and release 7 of a corpus for template retrieval based on the Customer Support on Twitter

dataset that is available on Kaggle, in order to motivate further research and benchmarking on the

topic of information retrieval for customer support;

• Proposal of a new in-batch sampling strategy, that preserves the distributions of queries and tem-

plates to better select the information within batches, while exploring all possible query-template

pairs in a batch. Experiments showed that this technique was key in combating the skewed dis-

tributions resultant of the strict many-to-one relation between queries and templates, not only

achieving better performance, but also faster training;

• Proposal of a new loss function that exploits not only query-template similarity relations, but also

query-query and template-template relations, yielding better representations for retrieval. Experi-

ments showed that this loss consistently outperformed the former, despite utilizing the same infor-

mation available within the batch;

On a final note, this thesis contributed innovative techniques with positive results, which motivated

the submission of a paper to ECIR 20228, taking place in Stavanger, Norway.

1.5 Organization of the Dissertation

The rest of this dissertation is organized as follows: Chapter 2 recaps basic concepts related to deep

learning with neural networks, along with the basis for understanding the state of the art in NLP. Chapter

3 examines related work on neural ranking and retrieval. Chapter 4 describes the proposed model and

techniques. Chapter 5 reports the evaluation of the proposed techniques. Finally, Chapter 6 discusses

the main conclusions from this work and possible ideas for future developments.

7https://github.com/t-mesq/twitter-apple-cs-hdbscan
8https://ecir2022.org/

5

https://github.com/t-mesq/twitter-apple-cs-hdbscan
https://ecir2022.org/

6

2
Fundamental Concepts

Contents

2.1 Neural Models . 8

2.2 Text Representation Models . 22

7

This section holds the fundamentals for understanding the state of the art (SOTA) in information

retrieval (IR), namely the essentials for BERT (Devlin et al., 2019) based neural models (Section 2.1)

and text representation (Section 2.2).

2.1 Neural Models

IR has seen a vast variety of neural models in the recent past with considerably different approaches.

Recently, however, models based on BERT’s (Devlin et al., 2019) architecture have taken the lead,

generally with no opposition, and as such only this types of models will be considered. The topics

addressed in this section are the absolute fundamentals to understand the BERT model.

Artificial Neural Networks (NN) are models based on their biological counterpart, the connections in

the brain. Likewise, they are able to perform supervised learning, that is, given a set of inputs and their

respective outputs, learn the underlying mapping function. Formally, a input x is a vector of dimension

Nx and the output y is a vector of dimension Ny.

2.1.1 Feed-Forward Models

The simplest case for a NN maps the input x into the output y with an affine transformation:

y = xW + b, (2.1)

where W is a weights matrix, of dimensions Nx×Ny and b is the bias vector, of dimension Ny. The

biological intuition behind this formula is that each output dimension has a corresponding neuron, that

receives x as an input. The weight wi,j characterizes how much the dimension xi stimulates the neuron

responsible for yj and the bias bj is then the predisposition for stimulus of said neuron. From the formula

alone, it is immediate that it can only learn linear functions. For more complex problems however, one

could consider composing several of this layers, where a layer ln is given as input to the layer ln+1.

However, this formally corresponds to the same affine model of Equation 2.1:

y = (xW1 + b1)W2 + b2

= x(W1W2) + (b1W2 + b2))

= xW + b,

(2.2)

with Wn and bn, representing the weight matrix and bias vector of layer ln, respectively. Thankfully the

solutions to this problem is also found in nature. A biological neuron only activates after the stimulus

surpasses a certain threshold. This functionality can be achieved by passing the output of the layer to

a specialized function that attenuates values below a certain threshold (usually 0 or 0.5) and augments

8

−10 −5 5 10

−2

−1

1

2

g(x)

g′(x)

(a) ReLU activation (max(0, x))

−10 −5 5 10

−2

−1

1

2

g(x)

g′(x)

(b) tanh activation (tanh(x))

−10 −5 5 10

−2

−1

1

2

g(x)

g′(x)

(c) sigmoid activation
(

1
e−x+1

)
Figure 2.1: Common activation functions (g(x)) and their respective 1st derivative (g′(x))

values above it. Some examples that fit this properties are sigmoid, Rectified Linear Unit (ReLU) and

Hyperbolic Tangent (tanh), and their plots and formulas can be seen in Figure 2.1.

Finally, the revised Equation (2.1) becomes:

y = g(xW + b), (2.3)

where g(z) is the activation function. This entire process can be easily visualized as a network like

the one in Figure 2.2, where each layer n corresponds to the output vector at each intermediate step,

composed of nodes correspondent with each of its features. The connections between each layer cor-

respond to each individual weight in the matrix Wn, representing the influence of each feature, in the

next layer. The weights in the bias vector bn, also influence the next layer and can be thought of as an

hidden node with its own set of weighs (this is usually implicit but represented here to aid visualization).

The output of each layer is implicitly activated as in accordance with Equation 2.3.

We now have a model that can theoretically reproduce any complex function within a small error

(Hornik, 1991), however, we still need a way to find the weights and biases needed to reproduce it, that

is, some algorithm that can learn those parameters from a training set.

2.1.2 Training with Gradient Descent

Gradient Descent (GD) is a first-order iterative optimization algorithm for finding a local minimum of a

differentiable function. In other words, it uses the derivative of the function in a given point, to get a

new point, closer to a minimum of the function. This process is repeated for the new point and so

on, until it converges, in a local or possibly global minimum. By considering a differentiable function that

represents the the dissimilarity between the distribution predicted by the NN, and the true distribution, we

can effectively train the model’s parameters (weights and bias) over GD, since minimizing said function,

9

x1

x2

b1

h1

h2

b2

y1

y2

y3

w1
1,1

w1
1,2

w1
2,1

w1
2,2

b11

b12

w2
1,1

w2
1,2

w2
1,3

w2
2,1

w2
2,2

w2
2,3

b21

b22

b23

Hidden
layer

Input
layer

Output
layer

Figure 2.2: Graphical representation of a multi-layer perceptron (feed-forward), with an input layer of dimension 2,
an hidden layer of dimension 2 and an output layer of dimension 3

approximates the distributions. Such a function is called a loss function and different variants exist,

according to the needs of the problem to approximate. For instance, Mean Squared Error (MSE) can be

used for regression problems, and the Cross Entropy (Log Loss) can be used for classification.

Since the loss function only applies to the output layer of the NN, the one that outputs the actual pre-

dictions, we need a way to propagate the error to the weights and bias prior to it, which is accomplished

through the back-propagation algorithm (Rumelhart et al., 1986). The algorithm starts by performing

a forward pass, where the NN takes the input and processes it across all layers until the output is

produced. The output is fed to the loss function, comparing it to the ground truth, and outputting the

prediction error. The error is then propagated back through the NN, updating the parameters of each

node. The update is given by the partial derivatives of the loss function relative to the parameters of the

previous layers. In order to minimize the loss, this gradient is subtracted to the parameters, as gradient

descent update, formally:

θ = θ − η∇θL(θ), (2.4)

where θ are the parameters of the model {W,b}, L(·) is the loss function and η is the learning rate,

an hyper-parameter responsible for the size of the learning step. If this hyper-parameter is too small, it

will lead to a really slow convergence, since each update is very small, whilst values too big will lead to

oscillations, since the model will constantly over estimate θ which could cost convergence.

10

There are 3 main variants of GD, differing in the amount of data required to compute the gradient of

the loss function:

A – Batch Gradient Descent Batch gradient descent is the default model where in each step, the

gradient of the loss function is calculated over the entire training set and the parameters are adjusted

accordingly. In general this is the smoothest, but its costly updates, requiring the full dataset to be loaded

into memory, make it prohibitive for large datasets.

B – Stochastic Gradient Descent Stochastic gradient descent is the most commonly used, as it is

computationally cheapest. In each step, a single training example is used to estimate the gradient and

update the parameters accordingly. This makes each update considerably more irregular, as training

examples may vary tremendously, making careful consideration regarding the learning rate crucial for

achieving convergence.

C – Mini-Batch Gradient Descent Mini-batch gradient descent tries to join the best of both previous

methods. The data set is first divided into smaller batches of size k � N . Then, in each step, the loss is

calculated for every example in a batch and the update is performed similarly to the batch variant. This

is then repeated for each batch. This way the batch computations can be performed efficiently trough

matrix operations, leading to much stabler gradients than the stochastic variant. The hyper-parameter k

can be adjusted according to the data set size, making it easily adaptable to the data and the hardware.

2.1.3 Seq2Seq Architectures

A sequence-to-sequence (seq2seq) model takes an input sequence of items (words, letters, features of

an images. . . etc) and outputs another sequence of items. In the case of NLP problems, they effectively

solve the problem of texts having arbitrary length, as they’re treated as sequences of words or subwords.

In order to process sequences, seq2seq models have an encoder-decoder architecture, where in

general terms, a Encoder model processes a sequence, generating a fixed representation of it, com-

monly a vector or a set of vectors known as context. Then a Decoder model, usually very similar in

architecture, albeit in reverse order, produces the output sequence, from said context. In order for this to

work, both (encoder and decoder) models are trained at the same time, with the decoder trying to pre-

dict what the encoder encoded. Although encoder-decoder’s history is deeply intertwined with Recursive

Neural Networks (RNN) models1, other approaches have surfaced, namely by using fixed length input

sequences, with padding for the unused positions. Such a model will be addressed in the next section.

1RNN models will not be addressed on this thesis, but the survey from Sherstinsky (2020) is recommended for interested
readers.

11

Input Embedding Output Embedding

Add & Norm

Multi-Head Attention

Add & Norm

Multi-Head Attention

Add & Norm

Masked Multi-Head Attention

Add & Norm

Feed Forward

Add & Norm

Feed Forward

Linear

Encoder 1

Encoder 2

Encoder 3

Encoder 4

Encoder 5

Decoder 1

Decoder 2

Decoder 3

Decoder 4

Decoder 5

Softmax

Inputs Outputs (shifted right)

Output Probabilities

E
nc

od
er

0
D

ecoder
0

Positional
Encoding

Positional
Encoding

Figure 2.3: The Transformer - model architecture

2.1.4 The Transformer Architecture

The Transformer (Vaswani et al., 2017) is a neural model based on the encoder-decoder (i.e., sequence-

to-sequence) architecture . As such it contains an encoder part followed by a decoder.

Like many Natural Language Processing (NLP) models, the Transformer processes words (note that

for simplicity, we will consider words, however, although the inputs can be of any granularity, including

subwords) as embeddings, that is, vectors of size N that represent them. When receiving a sentence,

the model converts all words to embeddings, ending up with a vector of embeddings, each of size dmodel.

The full architecture can be seen in Figure 2.3 and each of its components, namely encoder and decoder

layers, each composed of attention and Feed-Forwards (FFs) blocks. Each of these will be addressed

in detail on the following sections.

2.1.4.A Encoder

A transformer’s encoder is composed of 6 sequential smaller encoder layers, with exactly the same

structure (but different parameters), meaning their outputs and inputs have the exact same format (vec-

tors of embeddings of size dmodel). The structure of each encoder layer has a Attention layer followed by

12

a common position wise Feed-Forward Neural Network (FFNN) layer (the same FF network is applied

to each embedding), with both layers sharing the exact same input and output formats. There are also

residual connections (He et al., 2016) in both the Attention and FFNN layers, where the input is poste-

riorly summed to the output, being then normalized. Joining all of this, for each encoder receiving the

vector of embeddings x1:

x2 = LayerNorm(x1 + MultiHeadAttention(x1))

x3 = LayerNorm(x2 + FFNN(x2)),
(2.5)

where x3 is the output of the encoder, MultiHeadAttention(·) will be addressed in the following section

(2.1.4.B) and LayerNorm(·) (Ba et al., 2016) is applied to each embedding v according, formulated as:

LayerNorm(v) = γ
v − µ
σ

+ β µ =
1

d

d∑
k=1

vk σ2 =
1

d

d∑
k=1

(vk − µ)
2 (2.6)

with µ, σ corresponding to the mean and standard deviation of the elements in v, d = dmodel and γ and

β are hyperparameters correspondent to the scale and bias vector, respectively.

2.1.4.B Attention

Let us now focus on the attention mechanism which tries to mimic the humans ability of the same name.

When reading a sentence, for instance, we tend to focus on a limited group of words, in order to get

the full meaning of each word. This way we can tackle the ambiguity of the words themselves, inferring

their meaning, through their context. In order to achieve this programmatically, a model needs to learn

to combine words in the sentence, in order to generate contextualized embeddings. Note that attention

is by no means exclusive to text processing, as it can be applied to any situation where a model may

benefit from learning to dynamically extract relevant information, from specific points along a sequence

of data, for instance a sequence of pixels in an image (computer vision). For the purposes of this thesis,

however, we will be solely focusing on its application over sequences of tokens (words or subwords).

Scaled dot-product attention is the attention mechanism used in transformers. To understand the

process, let us consider a simplified version of it, where for an embedding x1 we perform the dot-product

wit all embeddings (self included) and get a vector of scores, one per embedding. In passing this vector

through a softmax activation layer, we obtain a normalized (L1 norm) vector of weights. These can

then be used to weight each embedding, when combining them. The softmax operation normalizes the

weights, guaranteeing that they’re all positive and add up to 1, formally:

softmax(z)i =
ezi∑K
j=1 e

zj
, (2.7)

for i = 1, . . . ,K, where z is a vector with K dimensions.

13

The described process appears to capture the essence of attention, however as you probably real-

ized, it has no learnable parameters, defeating the entire purpose. Rather than using the embeddings

directly, a more correct approach would be to multiply them with a trainable matrix of weights that would

generate vectors of size dk. This way, the model is able to learn interesting relations between embed-

dings, the so called attention. Furthermore, we can have different matrices for computing the attention

layer for the embedding xi: matrix WQ that generates the query vector qi from xi; a matrix WK to be

applied to all embeddings to be scored X, generating K, a matrix of key vectors; finally a WV, to be

applied to X, generating the vectors to be combined according to the weights, V, a matrix composed of

value vectors. In practice, we can compute the attention of the entire input X simultaneously, computing

the dot-product with WQ, generating Q, a matrix where each row is the vector qi correspondent with

the embedding xi. In essence we can describe this process as:

Q = XWQ,

K = XWK,

V = XWV,

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V,

(2.8)

which neatly condenses the described process. The only addition here is the division by
√
dk needed for

scaling purposes, since the dot-product may lead to high variance for larger values of dk, pushing the

softmax function into regions where it has extremely small gradients.

So far we’ve assumed Q, K and V with the same sizes as the original embeddings, dmodel. This

assumption, however, is not fundamental and WQ, WK and WV can act as projection matrices, gen-

erating vectors of reduced dimensionality, reducing the computational cost of the attention mechanism.

Multi-head Attention makes use of this idea, by performing, in parallel, multiple attention functions,

each with its own projection matrices. Each function generates a V matrix, with dv dimensional vectors.

These can then be concatenated and once again projected, with a forth matrix, WO, producing the final

values, of embedding size. Intuitively, multi-head attention allows the model to learn different represen-

tation subspaces, exploring different interactions and contexts, something which single attention fails to

achieve. We can formally define this process as:

MultiHeadAttention(Q,K,V) = Concat (head1, . . . ,headh)WO, (2.9)

where

headi = Attention (WQi,WKi,WVi) , (2.10)

and h is the number of attention heads and the projections are parameter matrices WQi ∈ Rdmodel×dk ,

WKi ∈ Rdmodel×dk , WVi ∈ Rdmodel×dv and WOi ∈ Rhdv×dmodel .

14

Following the multi-head attention layer, a fully-connected feed-forward network is applied to each

embedding independently, although with the exact same model (and parameters), changing parameters

only for each encoder or decoder layer. This model is pretty straightforward, consisting in only 2 linear

transformations, with a ReLU activation in between. Formally:

FFN(x) = max
(
0,xW1 + b1

)
W2 + b2, (2.11)

where Wn and bn are the weight matrix and bias vector of the FF layer n, respectively. The input

and output layers have dimensionality of dmodel = 512 whilst the inner layer has higher dimensionality,

dff = 2048, for the proposed model.

This completes the architecture of the inner encoders and subsequently of the entire encoder block.

Contrarily to other encoder-decoder models, like the aforementioned RNNs, the transformer architecture,

as it was defined so far, lacks any awareness of the order of the input sequence (like recursion), a

property that is undoubtedly essential in most NLP tasks. As such, a need to introduce some sort of

information relative to the position of the tokens in the sequence emerges.

Positional Encoding solves the aforementioned problem with position aware vectors that can be

added to the embeddings. This way, embeddings corresponding to the same token in a sequence, have

slight differences, corresponding with the absolute position they occupy. Many function can generate

this positional representations, although sine and cosine are chosen, given their periodicity, guarantee-

ing nice variation throughout the entire distribution of dimensions:

PE(pos,2i) = sin
(
pos/100002i/dmodel

)
,

PE(pos,2i+1) = cos
(
pos/100002i/dmodel

)
,

(2.12)

where pos is the token’s position in the sequence and i corresponds to the ith vector dimension, so that

odd and even dimensions get considerably different positional encodings. These encodings can also be

learned by the model, although with no noticeable improvements, as well as poorer generalization for

unseen cases as Vaswani et al. (2017) noted.

2.1.4.C Decoder

The decoder architecture follows the encoder for the most part, with few variations. Like other encoder-

decoder models, the output sequence prediction is iterative, meaning the sequence is generated token

by token. As tokens are generated, they are turned into embeddings and are fed into the decoder

architecture, along with their positional encoding. Like the encoder, each of the sub-layers is followed by

a residual connection , followed by a layer normalization. First it performs multi-head attention, although

with the particularity that only embeddings prior to the token being predicted are considered. This is

15

achieved through a ”mask” in the softmax step of the attention, that nullifies all posterior positions.

After this step, contrarily to the encoder, we have another layer of attention, this time however, we

have ”encoder-decoder” attention, where the queries matrix Q is obtained from the encoder’s output

embeddings, whilst the keys and values matrices, K and V respectively, are obtained by the output

embeddings. Besides the previous variations, the attention function remains the same. Like in the

encoder, the output is then passed to a FFNN with the exact same structure (different parameters).

Formally, for a vector of embeddings x1 we have:

x2 = LayerNorm(x1 + MaskedMultiHeadAttention(x1)),

x3 = LayerNorm(x2 + EncoderDecoderMultiHeadAttention(x2)),

x4 = LayerNorm(x3 + FFNN(x3)).

(2.13)

Finally the output embedding (current position being predicted) is passed to a simple linear layer,

with output dimension equal to the size of the vocabulary. This is followed by a softmax function which

computes the predicted probabilities for each word in the vocabulary, corresponding to each of the

dimensions. Here the most probable token is picked (or tokens for e.g. beam search), and the process

is repeated with the new token, appending it to the current output sequence, until a special, end-of-

sequence token is returned.

Training the transformer, and any seq2seq model for that matter, requires specific training to predict

the output sequence, since at each decoding step, the transformer must correctly predict each individual

token correctly. To achieve this, the model is trained for the following loss:

L =

M∑
i=1

logP (yi | y<i, x) , (2.14)

where x is an input text and y, an expected output text, both as sequences of tokens (x0, . . . , xM) and

(y0 . . . , yM), respectively, and P (yi|x) is the probability assigned by the model at the i-th decoding step

to a token yi, given the input x. At training time, even if the model predicts the wrong token at the (i− 1)-

th decoding step, the correct token sequence q<i is provided as input to the decoder, in the next step.

This training scheme is called teacher forcing or maximum likelihood learning, being quite common in

text generation tasks.

The transformer architecture brought a change of paradigm, exposing attention as a full-fledged

neural model, along with state of the art results. It also vastly improved computational and time efficiency,

by encoding the input sequence in a single iteration, whilst remaining mostly paralellizable, since the

feed-forward networks are parallel, running concurrently for each sequence position, along with each

attention head. The great results suggest excellent sentence comprehension, proving that attention can

effectively capture the context of each embedding. Such results could be useful to other NLP tasks

16

that generally2 don’t follow the encoder-decoder architecture, such as classification tasks or IR. Looking

back at the encoder-decoder architecture, along with the transformer model, the transformer’s encoder

shows great promise, effectively encoding the sequence’s meaning into the returned representations.

Furthermore, seeing as it maintains the embeddings structure, retrieving outputs consistent with the

input embeddings, although deeply contextualized, hence able to be used by other models. In the next

section we will discuss a model that uses the encoder architecture effectively, achieving state of the art

performance in several NLP tasks.

2.1.5 The BERT Transformer Encoder Model

Bidirectional Encoder Representations from Transformers (BERT) is based on the Transformer, closely

matching its encoder architecture, albeit with considerable scaling, doubling the number of inner encoder

layers (dmodel) to 12 (for the base version). This comes from Devlin et al. (2019)’s realization that the

attention mechanism in a Transformer’s encoder holds the potential for a truly bidirectional representation

model. Note that up to then most representation models were unidirectional, analyzing term interactions

either forwards or backwards. Even models that claimed bidirectionally, like ELMo (Peters et al., 2018),

are in actuality a fusion of unidirectional models, arguably a less elegant solution.

Another key feature of the encoder design, is that it maintains the words representations throughout

the whole architecture, implying that throughout the model, the representations are being ”enriched”

so that upper layers can leverage new knowledge, culminating in outputted representations that are

extremely rich and contextualized. Such contextualized representations can be useful to other models,

namely for tasks that don’t follow the structure of seq2seq models.

2.1.5.A Transfer Learning

The notion of leveraging knowledge from other tasks, is called transfer learning, and is based around

the idea that most NLP tasks share a common background, a general purpose knowledge. The training

designed around the idea of capturing this general purpose knowledge is called pretraining, and the

subsequent training on a specific task, is referred to as fine-tuning.

One of the keys for transfer learning lies on the vocabulary itself. A model relies on the knowledge

gathered during pretraining, to approach the fine-tuning task. If vocabularies mismatch, this transfer

is obviously affected. One of the limitations of the common approaches lies on the need to generate

the vocabulary, after the training dataset, which limits the known vocabulary, to the words present in

the data. If new words appear in the fine-tuning dataset, there’s no elegant solution to approach them,

usually resulting on the use of a special embedding, unk , reserved for all infrequent words. Even word

2this used to be the case, but recent studies like T5 (Raffel et al., 2020), challenged this notion, achieving comparable results
in these tasks.

17

embedding models designed around the idea of supporting unseen terms, like FastText (Bojanowski

et al., 2017), do not guarantee that the model is able to generalize the word formation process during

pretraining, which injures its capacity for fine-tuning. The solution to achieve this, is to provide support

for unseen words on a model basis, and not on a vocabulary basis. This is the reasoning behind the

WordPiece method that BERT uses, (Wu et al., 2016), seeking to balance vocabulary size and ability

to handle out-of-vocabulary words by splitting longer words into subwords (e.g., playing becomes play

and ##ing, where ## indicates that the subword is part of another word). This way, BERT develops

knowledge behind these wordpieces, being effectively capable of handling unseen cases.

Achieving bidirectional representations goes beyond the architectural design, as the common pre-

training task, of predicting the following text (Language modeling prediction), given the current sequence,

assumes unidirectionality. The unidirectionality guarantees that during training, the model can only rely

exclusively on the known tokens, in order to make predictions. A bidirectional model, however, has ac-

cess to all tokens when making a prediction, making such a task, trivial, and therefore, unfit for training.

2.1.5.B Pretraining Tasks

To counter the model’s bidirectionally, the authors opted to apply a Masked Language Modeling (MLM)

training objective, inspired on the Cloze task (Taylor, 1953). Specifically, for a given sequence of tokens

from unlabeled text, 15% of the input tokens are selected at random, to be masked, that is, replaced

with a special [MASK] token. During training, the model is tasked with predicting the original tokens,

having to rely on the right and left contexts. Token prediction is performed as in the transformer model,

by processing the corresponding embedding with a linear layer with softmax activation, outputting a

distribution over the vocabulary space. Although MLM achieves the desired bidirectionally, the authors

fear that [MASK] tokens create a mismatch, as they do not appear in the fine-tuning scenario. To mitigate

the mismatch, out of the original 15%, 80% are masked, 10% are replaced with a random token and

10% remain unchanged. This way, BERT is able to transfer knowledge gained from the mask [MASK]

token, to virtually any other.

To further improve performance on question answering and natural language inference tasks, BERT

is also trained for Next Sentence Prediction (NSP). This objective takes as input two sequences of

tokens, A and B, separated by a special [SEP] token, that can be composed of more than one natural

sentences. Then given A and B, with B following A 50% of the time, BERT must predict whether B

follows A or not. The positive cases are obtained by extracting consecutive sentences from a text while

the negative examples are collected by pairing segments from different documents. The prediction is

done by appending a special token, [CLS], to the input sequence and applying a simple linear layer with

softmax activation to the corresponding output embedding, performing classification over two classes,

”IsNext” and ”NotNext”, correspondent to the assessment over the precedence of the 2 sentences.

18

[CLS] my [MASK] is cute [SEP] he likes play ##ing [SEP]

E[CLS] Emy E[MASK] Eis Ecute E[SEP] Ehe Elikes Eplay E##ing E[SEP]

EA EA EA EA EA EA EB EB EB EB EB

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

BERT

T[CLS] Tmy Tcat Tis Tcute T[SEP] The Tlikes Tplay T##ing T[SEP]

Linear

Softmax

IsNext NotNext Tcat

IsNext NotNext Tdog

Text to
encode

Word
Embeddings

Segment
Encoding

Positional
Encoding

Output
Embeddings

Pre-training

Expected
Output

Next Sentence
Prediction Masked Language Modeling

Figure 2.4: Token encoding and pe-training tasks in BERT

Both objectives, MLM and NLP can be seen in the upper portion of Figure 2.4, and constitute the

pre-training process of BERT, performed on a large corpus, specifically on a collection of texts from

Wikipedia and the Toronto Book Corpus (TBC).

2.1.5.C Input Processing

To accommodate these tasks, along with the fine-tuning’s, BERT’s input needs to undergo some pre-

processing steps, before being used by the model, as seen in the lower portion of Figure 2.4. The first

step consists on tokenizing the input segments with the WordPiece method, followed by adding a special

token, [CLS], to the start of every input sequence, that can later be used in classification tasks, includ-

ing theNSP objective, paired with special [SEP] tokens, used to separate the segments. The resulting

tokens have to pass through three different layers, consistent with the transformer’s preprocessing, in

order to produce the final input: The first, the word embedding layer, transforms tokens into vector repre-

sentations, according to the WordPiece method; The second encodes information pertaining to theNSP

task, indicating to which segment of the input segment pair every token belongs; Finally, the last adds

position embeddings akin to Vaswani et al. (2017). Each layer creates a vector of dimension 768 for

each token and the final result is the sum of the representations provided by each layer, generating a

matrix E = [e1, . . . , eN] ∈ RN×768, where N is the length of the input sequence with all the special

tokens added.

2.1.5.D Finetuning Tasks

Finally, let us address how BERT leverages the word representations for classification. BERT deeply

contextualizes any tokens of the input sequence, meaning that an input token, that appears in 2 different

19

sequences, will be outputted with 2 considerably different representations. The contextualization sug-

gests that BERT ”injects” information referring to the sequence , on a token level, making each token

representative of its original sequence. Such a property can be extremely useful for a simple classifica-

tion model (with input equal to the embedding size, of 768), that classifies the sequence, based on token

information, leaving 2 problems: it isn’t clear which tokens can be used, since a sequence is composed

of several tokens and all of them contain information regarding the sequence; there’s no clear way to ad-

dress classification problems that include more than one sequence. To address these problems, Devlin

et al. (2019) include the aforementioned special token, [CLS], that is included in the beginning of any

input. The model is than trained, so that any classification problem, including ones with multiple input

sequences, separated by [SEP] tokens, are performed on the output of this token, specifically trough a

linear layer, followed by softmax activation, similar to the one used for the NSP objective.

2.1.6 BERT Variants

Similarly to transformer, BERT struck massive interest int the NLP community, originating several mod-

els inspired in its architecture and training schemes. Here we will lightly describe a few examples,

representative of the range of approaches.

2.1.6.A RoBERTa

RoBERTa (Liu et al., 2019b) aimed at improving BERT’s pre-training, specifically with further tuning

of the hyperparameters and the training set size. In this study, Liu et al. (2019b) found that BERT was

considerably undertrained and propose some modifications: longer training with bigger batches, to make

use of multiple GPUs and consequently, more training data, to accommodate the considerable increase

of training steps; removal of theNSP objective, found to offer less improvements than further training with

the revised MLM objective; pre-training over bigger sequences, to better match the fine-tuning scenarios.

With these changes, RoBERTa is able to improve on BERT’s results in a vast amount of tasks, namely

on GLUE (Wang et al., 2018) and SQuAD (Rajpurkar et al., 2018, 2016).

2.1.6.B ELECTRA

ELECTRA (Clark et al., 2020) also improved on BERT’s pre-training. Contrarily to RoBERTa, that com-

pensates BERT’s undertraining with more training, ELECTRA aims at maintaining the same steps, but

improving the quality of the pretraining task. To achieve this, Clark et al. (2020) proposed a new task,

replaced token detection, where rather than trying to predict the masked token, based on its surround-

ings, the model is tasked with distinguishing real input tokens from plausible but synthetically generated

replacements, produced by a smaller MLM model (like BERT). This way, all input tokens train the model,

20

rather than just the masked token, explaining the efficiency of ELECTRA. This approach is so effective,

that it performs comparably to RoBERTa, in the GLUE benchmark, at less than ¼of the computational

cost. For the smaller version of the model, the authors trained on the same pretraining data as BERT,

however, for the bigger models, the authors used the dataset used for XLNet (Yang et al., 2020), which

extends BERT pretraining dataset, with text from the web.

2.1.6.C ALBERT

ALBERT (Lan et al., 2019) aimed to improve the scalability of BERT, by considerably reducing the num-

ber of parameters. In order to accomplish this, Lan et al. (2019) propose two techniques: factorizing em-

bedding parameterization, specifically in 2 smaller matrices, effectively separating the embedding size

from the transformer hidden size, allowing to scale the model without scaling the embeddings; enforcing

cross-layer parameter sharing, where both the attention and FFN’s parameters, are shared across every

layer. The combinations of these techniques results in a reduction of 18× the number of parameters of

the comparable BERT-large, whilst resulting on a roughly 1.7× faster training. Another contribution of

this work was the introduction of a new task, sentence order prediction (SOP), similar to BERT’sNSP,

but the negative examples are picked just like the positive ones, but with the order swapped. This way,

the model is forced to learn sentence coherence, whereas inNSP, topic prediction is a conflicting signal,

originated from random picking. ALBERT was able to achieve new SOTA performance at the time, in

GLUE, SQUAD and RACE (Lai et al., 2017).

2.1.6.D mBERT

mBERT (Devlin, 2018) simply aims to adapt BERT to languages other than English. BERT’s pretraining

consisted exclusively of English text, making the model ineffective at leveraging this knowledge, for

finetuning tasks on other idioms. One possibility would be to pretrain it on language specific data, this

however is unpractical, given the sheer amount of idioms, and the costs associated with pretraining. A

more general solution is to produce a multilingual BERT that has been pre-trained on a mixture of many

languages, learning knowledge shared between idioms and leveraging it for finetuning on tasks of any

language contained in the mixture. The multilingual approach has also been used for RoBERTa, yielding

XLM-RoBERTa (Conneau et al., 2020).

2.1.7 The T5 Model for Multi-Task Learning

T5 (Raffel et al., 2020) is a variant of the original Transformer, that aims to unify every NLP task in a

text-to-text framework. In practice, this means that for any task, the model receives an input sequence of

tokens, and must output a specific sequence of tokens in return. The text-to-text adaptation is trivial for

21

naturally seq2seq tasks, like translation or summarization tasks, but for tasks like classification, there’s

no clear approach. For these cases , the authors suggested training the model, to predict specific tokens,

correspondent with each class. For example, for a task of sentiment analysis, where a model is trained to

predict whether a sentence reveals a positive or negative sentiment, the model outputs either the token

”positive” or ”negative”, accordingly. Note that the model is free to predict any other token, unlike typical

approaches for classification, where the architectural design enforces a one-to-one correspondence with

the output classes (e.g., BERT). Despite this, the authors find that implicit enforcing through training is

sufficient, and the model never outputted unexpected tokens during testing.

The text-to-text framework also adds a task-dependent prefix to the input sequence. This is meant

to ”signal” the model, of the task being performed. For example, a translation task, from English to

German, originally simply composed of an input text to be translated, [input], becomes:

translate English to German: [input], (2.15)

with ”translate English to German:” being the literal string. This formulation enables the model to be

trained on a multitude of tasks, simultaneously, a training technique known as multi-task learning (MTL)

(Caruana, 1997), firstly adopted to NLP by Collobert and Weston (2008). MTL is meant to to teach the

model general-purpose knowledge, shared by most tasks, similarly to a weak supervision objective, in

pre-training. Despite this, the authors also use a weak-supervision pre-training objective, specifically an

adaptation of BERT’s MLM to seq2seq, trained alongside the other tasks.

T5 was able to achieve state of the art (SOTA) (at the time) performance in a multitude of tasks,

including classification tasks, beating its BERT counterparts. This, alongside the release of the pre-

trained models, by the authors, motivated lots of research, namely in expanding this unified approach,

to untested NLP problems. These includes ranking, cases that will be discussed further in Chapter 3.

Similarly to BERT, T5 has also explored multilingual training, yielding mT5 (Xue et al., 2020).

2.2 Text Representation Models

Raw text format is often unfit for NLP approaches, with most machine learning models requiring gener-

alized data formats, namely vectors of features. The process of representing text as a vector is in itself

an open problem. In this section we will cover different approaches to create text representations.

2.2.1 Sparse Models

When presented with the task of vectorizing a passage of text, perhaps the most intuitive approach is to

consider features at a word level. In essence, each word in a vocabulary Γ, with size n, is a dimension

22

and every piece of text can be represented by such a vector, a representation also known as Bag-of-

Words (BoW), since any order or positional information in the text is lost. This is what confers the sparsity

of the representation, as most documents lack the majority of words in the vocabulary, corresponding to

values of zero. Formally, a document di belonging to a collection D, can be represented by a vector vi =

{w1,i, w2,i, ..., wn,i} where wi,j corresponds to the feature weight for word wi from Γ, for a document dj .

Intuitively, the weight of a feature should represent it’s relevance in a document, with a higher weights

corresponding to higher relevance. Judging a word’s semantic relevance can be challenging, even

for a human, so an appropriate estimator is preferred. Statistical relevance can be a cheap, decent

approximation, where a word’s importance is based purely on how frequently it is used throughout

the collection. The simplest case we may consider is a binary valued vector, correspondent to word

incidences. Here, the weight wi,j is 1 if the word wi is present in dj , else 0. It’s easy to see why this

approach is an insufficient representation for most use cases. Not only it assumes every word has the

same relevance, it completely neglects word frequency in a document, so a word appearing 10 times

will have the same importance as a word with a single presence.

2.2.1.A TF

Term Frequency (TF) roughly solves some of the aforementioned problems, measuring relevance based

on how frequent a term is inside a document. The weight wi,j is simply the number of occurrences of

the term wi in document dj , although in practice this value is still passed to a scaling function, usually

the logarithm function, in order to gradually reduce the importance of further repetitions. Formally:

TF(w, d) = log(fw,d + 1), (2.16)

where w and d correspond to a word and a document respectively, and fw,d the number of occurrences

(frequency) of w in d. Although a definitive improvement over the previous binary approach, it still

suffers from some problems, most noticeably frequent irrelevant words, such as sentence connectors,

that appear frequently in most documents, whilst posing no contribution to a documents relevance.

This problem could be tackled with the removal of stop-words, a common NLP approach that aims to

remove irrelevant, overly frequent words from the documents in the collection. Such a solution has

its own problems however, as these lists of words are often domain specific and expensive to generate.

Removing stop-words might also lead to overcompensation, by removing terms that can have an impact,

even if minimal.

23

2.2.1.B IDF

Inverse Document Frequency (IDF) presents itself as an alternative to removing stop-words, by scoring

terms based on how frequent they are throughout the collection. The bigger the set of documents in

which a term appears, the lesser its importance, hence the ”inverse”. The intuition here it that if a word

appears in most documents, it’s presence does not add much information. By contrast, a term that

appears in a very specific group of documents, is likely to be extremely relevant in that context. To

achieve this behavior for a word wi we can simply divide the total number of documents —D— by the

number of documents containing the term. The logarithm function is applied to properly scale the score.

Formally:

IDF(w,D) = log
|D|

|{d ∈ D : w ∈ d}|
, (2.17)

where w and D correspond to a word and the set of documents in a corpus respectively.

2.2.1.C TF-IDF

Term Frequency-Inverse Document Frequency (TF-IDF) (Equation 2.18) applies both previous notions,

in order to achieve a better relevance score. This way, the more frequent and exclusive a document’s

terms are, the more relevant they are to a query containing them. The TF-IDF score for a word wi,j in a

document dj is then simply the product of both frequency scores. Formally:

TFIDF(w, d) = TF(w, d)IDF(w,D), (2.18)

where w and d correspond to a word and a document respectively. Some variations may apply de-

pending on the collection’s properties. The most common approach is to include some sort of docu-

ment length normalization. The original TF-IDF does not consider a document’s length, despite longer

documents having a natural tendency to having higher term frequencies. By applying normalization,

differently lengthened documents can be compared more equally, generally leading to better results.

2.2.1.D BM25

Best Match 25th iteration (BM25) (Crestani et al., 1998; Robertson et al., 1995; Robertson and Zaragoza,

2009), could be considered a lengthy variation of previous model, although it proposes enough changes

to be considered its own model, with its own variations. The origin behind this model is deeply rooted

in probabilistic IR, offering concrete statistical significance behind each element of the scoring function,

contrasting with the more intuitive nature behind TF-IDF. Like the previous model, BM25 can also be

split into an IDF part, paired with a TF part. The IDF section is a common variation on the original,

24

where 1 is added to prevent negative log values, consistent with a probabilistic approach (no negative

probabilities). The TF part is where we find most of the new functionality, which can be condensed into 2

main ideas: the original TF score grows infinitely, which isn’t really in accordance with reality, where after

a few repetitions, the statistical value added by another one is negligible, and also that the variance in

document length plays a big role in the performance of the model and therefore need further adjusting.

For these, 2 hyper-parameters are introduced: k1 responsible for the first, controls the term frequency at

which the score function stabilizes, producing the same scores for higher frequencies and b, responsible

for the second, that controls the weight of the normalization with the average document size, avgdl,

where 0 corresponds to no normalization and 1 to a full length normalization. Formally:

BM25(w, d) = IDF(w, d)
fw,d(k1 + 1)

fw,d + k1

(
1− b+ b |D|avgdl

) ,
IDF(w, d) = log

(
|D| − nw + 0.5

nw + 0.5
+ 1

)
,

nw = |{d ∈ D : w ∈ d}|.

(2.19)

where w and d correspond to a word and a document respectively, and fw,d the number of occurrences

(frequency) of w in d. The BM25 procedure marks the peak of frequency-based indexing approaches,

still seeing much use in the current scene, given its unmatched efficiency and reliable performance.

Interestingly, one of its most prevalent uses, is its use as a filtering step, considerably reducing the

search space for costlier and more powerful methods, namely transformer-based. This interaction will

be addressed in Chapter 3.

2.2.2 Dense Models and Word Embeddings

So far we’ve looked at text representation models. Although effective in less demanding problems,

harder cases often require finer granularity: Rather than representing a full text trough a vector, represent

each word as a vector, and a text as a sequence of said vectors. This way models can capture relations

on a word level, allowing interpretations at a semantic and syntactic level, relying on the words positions

and contexts.

When translating words into vectors, a naı̈ve approach, perhaps motivated by the sparse models,

would be to use one-hot encoding: binary vectors of size V , for a vocabulary with V words, where each

position corresponds to a word in the vocabulary, and is set to 0, with the exception of the position cor-

respondent with the represented word, which is set to 1. The inadequacy of this approach is immediate:

not only is the the high dimensionality mostly unnecessary, it fails to exploit the properties of the vector

space in any meaningful way, since proper vectorial word representation should capture a word’s mean-

ing. This would imply that related words are packed closely in the vector space whilst unrelated words

are distant. Furthermore, this condition guarantees that each vector dimension corresponds to a certain

25

x−C,1
. . .

x−C,V

x−1,1
. . .

x−1,V

x1,1
. . .

x1,V

xC,1
. . .

xC,V

h1
. . .

hN

y1
. . .

yV

x1
. . .

xV

h1
. . .

hN

y−C,1
. . .

y−C,V

y−1,1
. . .

y−1,V

y1,1
. . .

y1,V

yC,1
. . .

yC,V

w(t-C)

w(t-1)

w(t+1)

w(t+C)

w(t)

Continuous bag-
of-words model

Skip-gram model

w(t-C)

w(t-1)

w(t+1)

w(t+C)

w(t)

Input
Layer

Hidden
Layer

Output
Layer

Input
Layer

Hidden
Layer

Output
Layer

WV×N

WV×N

WV×N

WV×N

W′
N×V

W′
N×V

W′
N×V

W′
N×V

W′
N×V

WV×N

· · ·

· · ·

· · ·

· · ·

Figure 2.5: Architectures of both methods used in the word2vec model.

word property or context, and that words may closely relate in some dimensions whilst differing in others.

An intuitive way to think of this is to consider a specific example: Given the vector representations for

the word king, eking, man, eman, and woman, ewoman, we’d have that eking − eman + ewoman = equeen,

where equeen is the vector representation of queen. While it is hard for us to define the set of contexts

that man and king share, it is intuitive that if we remove them from king and add the the context of the

word woman, we obtain queen. In this example it’s clear how the vectors capture the notion of gender,

although they can capture more complex and less intuitive notions. A vectorial word representation is

also often called a word embedding and will be term used from now on.

The contexts of a word are hard to define, however we can deduce them from it’s neighbouring words,

as they share their contexts (Harris, 1954). By extracting words that occur together in vast amounts of

text, we can feed this information into a neural model, capable of extracting word embeddings from it.

Different models have been proposed for this task:

2.2.2.A Word2Vec

Word2Vec (Mikolov et al., 2013) is perhaps the most well known and motivated massive improvements

in neural approaches for NLP problems, proving to be an effective way to translate words into vectors.

Mikolov et al. (2013) proposed 2 methods to generate embeddings, namely the Continuous Bag-of-

Words (CBoW) and the Skip-Gram approaches.

The CBoW model, as seen on the left portion of Figure 2.5, is composed of a simple feed-forward

network with a single hidden layer. The input and output layers share their format, vectors x and y

respectively, of size V , where V is the number of words in the vocabulary. The hidden layer, h, has size

26

N , with N correspondent to the desired number of embedding dimensions. This way, the model inputs

and outputs one-hot encoded vectors and, ideally, the hidden layer corresponds to the embedding of

the outputted word. To achieve this, the model is trained to predict a word w(t), given its context

[w(t− C), . . . ,w(t+ C)]. The prediction is repeated for every word in the surroundings, C antecedent

words and C subsequent words, producing 2 × C vectors: x−C, . . . ,xC. This can be optimized by

performing the first computation (up to the hidden layer) for each word, averaging the hidden layer output

and finally resuming the last part of the model for this vector, h. The output vector is then activated trough

a softmax, outputting a distribution of probabilities over the vocabulary and the loss is calculated over the

one-hot encoded vector correspondent with the expected word. After training, we have a model capable

of condensing the information from multiple contexts in a vector (h), and predict the word that shares

them from it. A calculated consequence of using one-hot encoded vectors is that when calculating hc,

from xc, the one-hot encoded vector for a word c, we get:

hc = xcW = Wc, (2.20)

where W corresponds to weight matrix used from the input layer to the hidden layer, with dimensions

V×N and Wc, the row of W matching the position of c, corresponding to a vector of sizeN . Similarly, the

same is true for the output side, since the predicted word is also one-hot encoded, but for the columns of

W′, the weight matrix from the hidden layer to the output layer. This essentially means that both matrices

contain embeddings for the entire vocabulary, with the ones present in the input matrix being referred

to as input vectors and the ones from the output matrix, as output vectors (not to be mistaken with the

actual inputs and outputs of the model). In the first one, words that appear in the same context (of a

target word) are closer, whilst in the output vector, word distances reflect the similarity between their

contexts (note that the distances considered here are based on the cosine similarity). Although both

definitions appear very similar, in practice the difference between them can be impactful, depending

heavily on the use case.

The skip-gram model shares most of the previous features, but with the inverse model: rather then

predicting words based on their context, predicting context based on the word. The structure is pretty

much the inverse, with the notable exception of the handling of multiple contexts. Whilst CBOW com-

putes a vector for each context and averages them, the skip-gram model computes the same context

output vector, but calculates the loss over all the expected context words (in a sense averaging the loss).

The properties mentioned above still apply but the roles of the embedding vectors (input and output) are

reversed. In the Figure 2.5 we can see both architectures, along with the formats of each layer.

27

28

3
Related Work

Contents

3.1 Ranking Before Transformers . 30

3.2 Interaction-Based Transformer Architectures . 31

3.3 Representation-Based Transformer Architectures . 40

29

This section explores some of the different approaches that have been used for solving information

retrieval problems. In particular, Section 3.1 starts with an historical overview over information retrieval,

then Sections 3.2 and 3.3 deepens related work with transformer based retrieval.

3.1 Ranking Before Transformers

Before discussing related work exploring transformer models, we will lightly discuss the historical ap-

proaches that motivated them, namely improvements on the BoW models and the generalized deep-

learning ranking architectures.

3.1.1 Frequency-Based Indexing and BM25

Although many approaches for IR (Harman, 2019) precede BM25, none have continuously stand the

test of time quite like it, as it is still used as a starting point for many text ranking approaches (see

Section 3.2). The reason for this lies in its simplicity, maintaining relatively decent performance in most

use cases, and the fastest inference times. But BM25’s effectiveness is often insufficient for most IR

tasks, given its reliance on exact matching, requiring that the terms used in a query, to match those of

the relevant documents.

That vocabulary mismatch problem (Furnas et al., 1987) is the biggest limitation of BM25 and one

of the biggest challenges in IR in general. Some approaches have surfaced, attempting to combat this

problem trough query expansion, enriching the queries representations trough lexical-semantic relations

(Voorhees, 1994) or co-occurring relevant terms (Xu and Croft, 2000). Other approaches use document

expansion, with similar strategies, but adapted towards documents representations (Salton and Buckley,

1988). Although these approaches achieved some performance gains, they still rely on exact matching,

which fails to capture semantic or context level similarities.

3.1.2 Deep Learning-Based Ranking

The unsupervised approaches discussed above had clear limits, so deep-learning models were the

obvious next step, in order to achieve greater effectiveness. Here we’ll be taking a brief overview on

models that serve as precursors for architectural details that will be later explored in transformer based

models, on the next section. For a more comprehensive analysis we suggest the surveys of Onal et al.

(2018), Mitra and Craswell (2018) and Xu et al. (2020).

Most pre-BERT neural ranking models generally follow one of 2 designs. On the one hand, repre-

sentation-based models replicate the ideas of inverted indexes, by independently learning semantic

vector representations of queries and documents, later compared trough similarity functions, such as

30

cosine relevance, in order to assess relevance. On the other hand, interaction-based models compare

query and document representations directly, usually trough a similarity matrix, learning to generate a

relevance score from this interaction. In the next sections, we will see how these 2 designs were adapted

in order to leverage transformer-based models.

3.2 Interaction-Based Transformer Architectures

Perhaps the simplest and most straightforward way to leverage transformers for ranking, is to turn ranking

into a relevance classification problem. This relevance classification task is simply judging whether

a document is relevant for a given query, or not, and its probability can then be used as a score, to

rank each document. Leveraging classification for ranking is not immediate and has practical limitations.

However, it has been thoroughly studied under the Probability Ranking Principle since Robertson (1977),

and it has been successfully implemented in transformer based models, as we’ll see in this section.

3.2.1 Simple Relevance Classification with MonoBERT

Relevance classification is formally described as:

P (Relevant = 1|di, q), (3.1)

where di corresponds to the a candidate text i and q, to a query. Given this formulation, ranking with

BERT is seemingly trivial, sharing the same conditions as other tested use cases, like some of the

proposed on Devlin et al. (2019). Unlike those cases, however, relevance classification for the pur-

poses of ranking involves considerably more computations, since each query is classified over the entire

collection of documents, in multiple inferences. This makes a brute-force approach unviable, as the

inference time grows linearly with the collection size. Nogueira and Cho (2019) addresses this problem

by proposing a multi-stage architecture, that starts with the full set of text candidates (the full data set),

and iteratively filters this set with different models, culminating in a final ranking, composed of the top-k

documents. Specifically, in their work, they propose the simplest of this architectures: the first stage is

performed using keyword search, namely with BM25, retrieving a ranked top-k (k = 1000), an approach

often called candidate generation, initial retrieval or first-stage retrieval; followed by the earlier described

ranking with relevance classification, performed only over this top-k, essentially reranking them. The

described approach is consistent with retrieval-and-rerank, a concept that can be traced back all the

way to Simmons (1965) and has been widely used.

31

Nogueira and Cho (2019)’s use of BERT is very consistent with one of the tested approaches for

classification in Devlin et al. (2019) (specifically for 2 inputs), with the input as follows:

[[CLS], q, [SEP], di, [SEP]], (3.2)

for a query q and a candidate text di, both tokenized as a sequence of BERT tokens. Finally, The

outputted [CLS] token is fed to a fully connected FFNN, that outputs the relevance score si. Formally,

this corresponds to:

P (Relevant = 1|di, q) = si , softmax (T[CLS]W + b)1 , (3.3)

with T[CLS] ∈ RD as the output embedding of the [CLS] token, W ∈ RD×2 as the FFN’s weight matrix,

b ∈ R2 as the FFNN’s bias and softmax(·)i as the i-th element of the softmax output, for D as the model

embedding dimension. Note that the two dimensions of the output, correspond to the classes ”relevant”

and ”non-relevant”, with the score of the first, corresponding with the actual document relevance score.

Although unnamed at first, the authors adopted the name monoBERT for this approach, in a later publi-

cation (Nogueira et al., 2019b), with mono alleging to the inference of candidate documents with BERT,

one at a time. Humeau et al. (2019) generalized this kind of approach as a ”cross-encoder”, alleging to

the cross-attention between query and document (see Section 3.3.1.A), being the common nomencla-

ture, in most literature. The model’s architecture can be viewed on Figure 3.1, for an input sequence

of tokens composed of a query (Inq 1, . . . , Inq Nq), and a document (Ind 1, . . . , Ind Nd), with Nq and

Nd tokens, respectively. This sequence is fed to a transformer model, whose outputs pass trough an

agreggator function to extract a representative embedding, usually correspondent with the [CLS] token,

in the case of BERT. The representative embedding then passes through a dimensionality reduction

function, such as a simple linear layer, outputting the ranking score.

In the case of MonoBERT, it is fine-tuned for the task of relevance classification, using the standart

cross-entropy loss function:

L = −
∑
j∈Jpos

log(sj)−
∑

j∈Jneg

log(1− sj), (3.4)

with Jpos and Jneg correspondent to the sets of relevant and irrelevant indexes, respectively, retrieved

in the initial stage. The reasoning behind picking the training examples from the early retrieval, instead

of random picking, for instance, is that the first stage has subtle bias. This affects the distribution of

the retrieved documents, differing from a normal distribution, and this way, BERT is introduced to it right

from the training. The loss further proves the slight inadequacy of this approach for ranking, as each

document is considered independently. This means that improvements of the model over this metric,

32

Inq 1 Inq 2 Inq Nq Ind 1 Ind 2 Ind Nd

Encoder

Outq 1 Outq 2 Outq Nq Outd 1 Outd 2 Outd Nd

Aggregator (e.g. [CLS] pooling)

Score Embbeding

Dim Reduction

Scoreq,d

· · · · · ·

· · · · · ·

Figure 3.1: Graphical representation of a cross-encoder.

don’t necessarily translate into improvements over ranking metrics, a phenomenon first reported by

Morgan et al. (2004), under the name ”metric divergence”. Despite this, monoBERT was not only able

to effectively rank passages, it did so by beating the previous SOTA by a considerable margin.

3.2.2 MonoBERT Extensions

MonoBERT is arguably one of the simplest approaches for ranking with BERT, prompting research on

possible extensions. Most of them, focus on improving the training, as the divergences between the train

and testing cases, seem to limit ranking performance. One of the keys for improving it, lies precisely on

the selection of the negative training examples, having a direct impact in monoBERT’s ability to rank.

As per the formulation, this is in fact the score si, that ranks the documents, and as such, has a direct

impact in the ranking performance, hence the interest. An obvious method for selecting these pairs,

is to consider the choice itself as a learning problem. In Zhang et al. (2020), this is achieved trough

Reinforcement Learning1, guided by a weaker model, directly trained for ranking. With a similar idea,

MacAvaney et al. (2020) proposed Curriculum learning (Bengio et al., 2009) for BERT, where training

is guided with progressively more difficult examples, similarly to how humans learn. The difficulty of

the examples is assessed based on weaker model’s ability to properly rank the example, specifically

BM25, in this case. Both prior models achieved significant improvements over the original proposition

by Nogueira and Cho (2019), proving proper training guidance is crucial for this approach.

Recently, the introduction of TF-Ranking, by Pasumarthi et al. (2019), allowed the training of most ML

models for ranking, with ranking-specific loss functions, that consider inferences on multiple documents,

unlike Equation 3.4. This is precisely one of the drawbacks in the original monoBERT approach (metric

1Reinforcement learning extends past the reach of this thesis, although I can refer interested readers to a survey on the matter
by Kaelbling et al. (1996).

33

divergence), motivating Han et al. (2020) to propose TFR-BERT, a monoBERT implementation that uses

listwise softmax loss, over a list of 12 documents, with a single relevant one. In their work, they also train

other 2 models, from the same training examples, one under the original loss (Equation 3.4), and a sec-

ond with pairwise logistic loss (a loss that takes into consideration inferences on 2 different documents,

simultaneously). This allows them to conclude that any performance gains are directly attributed to the

listwise loss, proving that metric divergence does play a rule in monoBERT’s performance.

3.2.3 Document Ranking

So far we’ve been purposefully avoiding an obvious limitation in the cross-encoder architecture: trans-

formers are bag-of-words models, having clear limits on the number of tokens an input sequence has.

More importantly, BERT’s all-to-all attention introduces spacial and temporal quadratic complexity, both

in space and time (Kitaev et al., 2020), severely harming attempts to extend the standard limit of 512

tokens. Although manageable in most NLP tasks, for ranking this can become a problem, since there

are several applications that require ranking larger documents, far beyond BERT’s limit. In the cases

reported in the last section this wasn’t a problem, as the use cases were ”handpicked” around this

limitation (e.g. passage ranking)

Several approaches have surfaced attempting to address this problem, not only ranking-specific but

also on a architectural level, with noticeable success. For the purposes of this thesis, however, passage

ranking is sufficient and as such, document ranking approaches fall outside of the scope. If the reader

has interest in this theme, I suggest Yates et al. (2021)’ survey, offering an insightful overview on the

range of techniques used to tackle this problem. Note that in the next sections, unless specifically

mentioned, we will address passages as documents, with respect to the common IR nomenclature,

even thought all models addressed suffer from this limitation.

3.2.4 Multi-Stage Rerankers

In Section 3.2.1 we have looked at the simplest approach for BERT-based multistage-ranking, a retrieve-

and-rerank setup. However, this can easily be extended to accommodate other stages, with different

approaches. Specifically, we can add a model more powerful than monoBERT, that reranks a top-k′, out

of the top-k returned by monoBERT, with k′ < k, further improving ranking. This can be repeated for a

new model, indefinitely, a design also know as reranking pipelines, ranking cascades or telescoping.

3.2.5 Beyond BERT

So far we have only taken a look at BERT-based approaches, and for good reason, since they’re by

far the most explored. This is mostly due to BERT’s rapid growth, stapling it as ”the” transformer for

34

classification, and, by extension, ranking. There are, however, transformer-based alternatives that have

been seeing some attention, which could be key in addressing some of BERT’s limitations (see Section

2.1.6). Here, we’ll briefly take a look at some of these, and I once again recommend Yates et al. (2021)

for readers interested in further reading.

3.2.5.A Pretrained BERT Variants

Unsurprisingly, an obvious approach is to use the same discussed approaches, but with BERT variants,

as they’re purposefully designed as BERT replacements. Although this is underwhelming, as far going

beyond BERT, there is merit in these approaches, proving how diversified and inclusive the transformers’

ecosystem has become. This empowers anyone to easily extend existing approaches, in pursue of better

efficiency, performance or even both. And this improvements are nearly free, as they recycle most of the

work put not only on the ranking approach, but on the BERT variant as well (this is also extendable to

any NLP problem, not ranking exclusively). Not only that, as new and improved BERT variants surface,

they can easily be integrated into prior approaches, particularly important, given the current interest in

further developing and improving transformer architectures.

Despite this, ranking with BERT variants is still somewhat unexplored, mostly seeing use in ensem-

bles, for high-end performance benchmarking (e.g. the top submissions in MS MARCO (Nguyen et al.,

2016)). Note that a good performance on relevance classification does not translate into good rank-

ing performance. By extension, better performance in other common NLP tasks, doesn’t necessarily

entail better ranking performance. Specifically, in Section 2.1.6, we’ve seen how most BERT variants

were developed around improving performance in a plethora of NLP tasks (e.g GLUE (Wang et al.,

2018)), but crucially, not ranking. This is for good reason, as not only is ranking an almost isolated

NLP task, but most importantly, it’s extremely expensive to test, making it unpractical for large scale

hyper-parametrizations. What this means for ranking, is that most assumptions that could be made,

regarding the effectiveness of BERT variants, prior to testing, are probable at best. A great example

of this, is provided in (Yates et al., 2021), where RoBERTa is tested alongside monoBERT, in the exact

same conditions, finding that RoBERTa actually underperformed BERT, despite more pretraining and

better results in other NLP tasks.

3.2.5.B Distillation

A number of approaches have surfaced, that explore knowledge distillation for multi-stage ranking.

Knowledge distillation (Ba and Caruana, 2013; Hinton et al., 2015) refers to a set of techniques, aimed at

distilling the knowledge of a larger model, the teacher, by having a smaller model, the student, learning

directly from it, allowing the student to retain most of the performance, but at higher efficiency. This

idea can be applied to any model, but most importantly, to BERT. An obvious approach, is to distill a

35

pre-trained BERT, to a smaller model, with a simpler architecture (Liu et al., 2019a; Tang et al., 2019) or

even a smaller BERT model (Sanh et al., 2019; Sun et al., 2019a). These can be thought of as BERT

variants, and be adapted for ranking, just like the previously discussed models (Section 3.2.5.A).

An arguably more interesting approach surfaces, however, when we consider an already fine-tuned

model, for relevance classification. Here, rather than fine-tuning a distilled model, the student could

learn directly from monoBERT, learning relevance classification directly, which could help a smaller

model learn task specific knowledge that otherwise would not have been able. Gao et al. (2020a) goes

even further, proposing a third approach, that mixes the previous two: first, just like the first one, distil

a pre-trained BERT model, to a smaller model, of the same type of architecture; secondly, rather than

fine-tuning the distilled model, for relevance classification, train it, with an already fine-tuned, larger

model (just like normal knowledge distillation, but with a better initialization of the student ’s weights). In

their study, Gao et al. (2020a) test the 3 approaches, for reranking in MS MARCO and TREC 2019 DL

(Craswell et al., 2020), discovering that whilst direct distillation (random initialization) from monoBERT

does lead to a noticeable performance drop, both the other considered approaches perform on par with

the teacher model, even outperforming it in some cases, while having half the number of layers (6) and

half the inference time.

Li et al. (2020) also investigated the previous two best approaches, but for document ranking, find-

ing in distillation, an effective tool to improve efficiency, with limited performance degradation. Both

studies show positive results for ranker distillation, providing a competitive trade-off of efficiency and

performance, definitely deserving of further research.

3.2.5.C Ranking with Sequence-to-Sequence Models with monoT5

Inspired by T5’s versatility, successfully adapting to a plethora of NLP tasks, Nogueira et al. (2020)

explore T5’s ability to rank documents. Even thought other possible formulations exist, the authors

decided to treat the problem as a straightforward relevance classification task, such as monoBERT,

since T5 has already shown its potential for other classification tasks. Specifically, given a query [q]

and a document [d], to classify, T5 receives the following input template:

Query: [q] Document: [d] Relevant:, (3.5)

with “Query:”, “Document:” and “Query:” as literal strings. The model is then fine-tuned to produce the

tokens ”true” or ”false” (literally), corresponding to a prediction of relevance or irrelevance, respectively.

Note that unlike monoBERT, that directly scores the document at the classification task (prediction

probability), in T5, the model simply predicts a token correspondent with the predicted class, leaving

many possible formulations for retrieving a score. One obvious approach is to leverage T5’s token

prediction scores (like the original transformer, a each decoding step, the model outputs a probability

36

distribution, over the entire vocabulary), since true and false are single tokens, requiring a single decod-

ing step to be computed. After some trial and error, the authors find that computing the softmax scores

over the true and false tokens’ probabilities, and using the outputted score correspondent with the true

token, as a ranking score, yielded the best results. The model is trained just like any other task in T5,

maximum likelihood learning (Equation 2.14). Given the resemblance with monoBERT’s architecture,

the authors coined the name monoT5.

Tested in MS MARCO passage ranking, monoT5 achieved considerable improvements over the

scores from its BERT counterparts, despite sharing similar architectures. Perhaps even more impres-

sive, is that by using the same models, fine-tuned in MS MARCO, and testing them on document ranking

datasets, without further fine-tuning, monoT5 was able to beat most models, designed around document

retrieval. It is important to note, however, that the T5 model that achieved the best scores, had around

3 billion parameters, being considerably bigger than the other models. Despite that, achieving such

effectiveness without training on any of the test collections, an approach known as zero-shot learning, is

a testament of T5’s ability to leverage general purpose knowledge, for unseen tasks.

3.2.6 Document Preprocessing Techniques

In most ranking scenarios, the text corpus is mostly static and any updates are usually planed. Such a

setting allows the consideration of techniques that leverage some offline preprocessing of the document

collection, prior to the online setting. Here we’ll tackle approaches that aim to improve document rep-

resentations, either directly, improving the indices of first retrieval methods, or indirectly, through target

corpus pretraining, improving the representations learned by the transformer models.

3.2.6.A Document Expansion

In Section 3.1.1 we have discussed how document expansion can be an effective tool at combating

BM25’s problems with exact matching. With the rise of transformer models, new opportunities to tackle

this approach have been considered.

The first successful application of this idea was proposed by Nogueira et al. (2019c), introducing a

new technique, doc2query. In essence, the idea is to train a seq2seq model, so that given a document,

it is able to produce synthetic queries for which the document might be relevant. To train it, the model

simply leverages standard relevance judgements, pairs of the form (query, relevant document), already

used to train ranking models. The trained model is then used in each document of the corpus, in order

to produce multiple synthetic queries related to it. These are then appended to the original document,

forming an “expanded document”. The new expanded corpus, can now be leveraged by common bag-

of-words models, namely BM25, producing richer indices.

37

The idea behind the expanded documents, is that synthetic queries not only introduce new related

terms, previously uncaptured by the original documents and directly tackling the problems of exact

matching, but also reweights the importance of existing terms, by copying them in the produced queries.

To evaluate both contributions, the authors experiment expansions with only the new terms or only the

existing ones, finding that neither match the original expansion and suggesting that both types of terms

are complementary.

Besides doc2query, that used the original transformer, Nogueira et al. (2019a) revisited the idea of

document expansion through query generation, but using T5 as the expansion model, motivated by its

pretraining strategy, and positive results on a wide range of tasks. This new technique, docTTTTTquery,

led to a considerable improvement in performance, once again reiterating the importance of pretraining.

Both models where trained with maximum likelihood learning (Equation 2.14), for predicting related

queries, given the corresponding documents.

The findings in the previous work suggest that a good portion of BM25’s ineffectiveness lies in in-

correct estimation of terms importance, as frequency based metrics fail to estimate the actual rele-

vance. Motivated by this idea, Dai and Callan (2019a) introduces Deep Contextualized Term Weight-

ing (DeepCT), to tackle the problem directly. The premise is simple, given that Term Frequency (TF)

(see Section 2.2.1.A) fails to capture actual relevance, as terms may appear repeatedly without actually

mattering in the context of the document, they propose a model that is able to predict a better estimation,

that can then be used by BM25, in place of TF.

The first question they tackle, is how to find better relevance estimations scores for the model to train

on. Although the notion of the relevance of each term is intuitive, it is not clear how to quantify it, let

alone finding the human force required to label the entire text corpus. Instead, the authors suggest a

simple metric, Query Term Recall (QTR), that leverages the known relevance judgements:

QTR(t, d) =
|Qd,t|
|Qd|

, (3.6)

with |Qd| as the set of queries that are relevant to document d, and |Qd,t| as its subset, containing

the term t. QTR is based on the notion that a document and its set of relevant queries, tend to share

relevant terms, giving a good estimation of the relevance of each term. Given this, DeepCT treats the

predictions of these weights as a regression problem, leveraging BERT for contextualizing the tokens of

the input text, followed by a simple regression layer, that estimates QTR for each embedding. Finally,

DeepCT is used to predict the term weights of every document in the corpus, that after rescaling to

match TF’s scale (QTR, and therefore DeepCT, output values in the range [0..1]), can be used as drop-

in replacements for TF, in the BM25 indexing function. Like the previous methods, DeepCT achieves

considerable performance gains, over the ”vanilla” BM25, without beating docTTTTTquery however,

suggesting once again that the inclusion on new terms is crucial for its effectiveness.

38

The discussed models accomplish two great achievements: First, they are able to leverage trans-

formers’ powerful expressivity, without the added costs they entail at retrieval , by pushing associated

computations to a prior step, during indexing. Second, they are able to do so, whilst mostly maintaining

an inference time consistent with simpler indexing methods, namely BM25. These properties make them

perfect candidates for first-stage retrieval, providing downstream rankers with a richer set of candidate

texts to analyze, whilst maintaining inference times. Also note that for simpler scenarios, where the

effectiveness of BM25 with document expansion alone is sufficient, queries can be executed on CPUs

with low latency and high throughput (Nogueira et al., 2019c).

3.2.6.B Target Corpus Pretraining and Relevance Transfer

In the previous section, we have seen how to leverage document preprocessing, for simpler first-stage

retrievers, allowing multi-stage rankers to achieve better performance, without added inference costs.

Similar ideas can be applied to the transformer-based models, with the same goal in mind, specifically

tackling their training. So far we’ve been assuming the common use case, where an already pretrained

model (e.g. BERT’s original checkpoint, as provided by Google) is fine-tuned for the ranking task, on the

corpus data. Although there is definitely some overlap, between the pretraining and the target corpus,

they may differ in vocabulary, style, structure, and other similar factors, particularly for specialized target

domains (e.g. scientific or legal). As such, the model may benefit from additional pretraining in the target

corpus, to mitigate this mismatch. Note that this additional pretraining, like the original, is merely based

on weak supervision tasks, such as MLM or NSP, and does not require labeled data, allowing the model

to manipulate data that otherwise would not. This approach has been shown to improve performance,

even beyond ranking tasks, as reported by Raffel et al. (2020), Gururangan et al. (2020), Beltagy et al.

(2019) and Nogueira et al. (2019b)

Similarly to how a model may benefit from contacting the training data, prior to finetuning, it may also

benefit from contacting the task at hand in a out-of-domain setting (in a different labeled collection), prior

to fine-tuning on the actual dataset. This idea of ”stage-wise” or ”multi-phase” finetuning, is particularly

useful in cases where the in-domain data is insufficiently labeled, a situation prone to overfitting (failing to

generalize). By finetunning in a properly labeled, out-of-domain dataset, where the model is able to learn

the task effectively, it is then able to transfer it to the target corpus, during fine-tuning, an approach known

as few-shot learning. In extreme cases, the model can even skip fine-tuning on the target corpus entirely,

an approach known as zero-shot learning. These have also been shown to improve performance, as

reported by Dai and Callan (2019b) and Xie et al. (2020).

The two described approaches can be thought of as safe techniques to improve performance, being

worth a try in any experiment.

39

3.3 Representation-Based Transformer Architectures

Similarly to pre-BERT approaches, a good portion of neural ranking models with BERT, has followed

representation-based architectures, a natural fit, given how BERT handles representations. The goal

has been to leverage BERT, to learn query and document representations, later to be ranked according

to a similarity function. Formally, for a query q, and a document di:

P (Relevant = 1|di, q) , φ(ηq(q), ηd(di)), (3.7)

where ηq and ηd are BERT-based models that generate representations for queries and documents

respectively, and φ, a function that judges the similarity of both representations.

The interest behind this formulation lies in its ability to tackle two major limitations with the interaction-

based approaches described previously. Firstly, it tackles BERT’s slow inference, by pushing most com-

putations to a prior step. This is possible since documents and queries are computed separately, as

evidenced in Equation 3.7, allowing the precomputation of the representations of all documents (assum-

ing a mostly static collection). At inference, only the query is computed and the similarity is calculated

with φ, over all precomputed document representations, making φ also crucial for the speedup. Sec-

ond, it doesn’t require a multi-stage architecture , as long as φ enables fast similarity search algorithms.

Multi-stage architectures can’t be trained end-to-end, being optimized separately. For instance, first-

stage retrieval is optimized for recall (see Section 5.1.1), in order to maximize the number of relevant

candidates for the next stage. This, however, has no performance guarantees for the full model, as the

distributions of the reranker’s training data (sampled from the collection), and candidate set differs. Al-

though this mismatch can be somewhat mitigated by careful sampling of training data, as seen on some

extensions in Section 3.2.2, an end-to-end approach is a far more elegant solution.

So far we haven’t specified φ or the format of η’s output, a careful consideration to include all

representation-based transformer architectures under the formula in Equation 3.7. This specification

is precisely what separates most approaches, namely in ones that use simple comparison functions,

such as cosine similarity, and consequently represent q, and d as vectors, or approaches that use com-

plex comparison functions, and generally represent q and/or d, as sets of vectors. In the subsequent

sections we’ll discuss in detail the two cases.

3.3.1 Simple Comparison Functions for Ranking

The interest behind ranking with simple comparison functions (φ) (e.g cosine similarity) lies in the pos-

sibility of breaking the ranking down into a simple Nearest Neighbours Search (NNS), of a query vector,

over the space of document representations. NNS is the optimization problem of finding the point in a

given set that is closest (or most similar) to a given point. Although some efficient solutions to this prob-

40

Inq 1 Inq 2 Inq Nq

Query Encoder

Outq 1 Outq 2 Outq Nq

Query Aggregator

Q Representation

Ind 1 Ind 2 Ind Nd

Document Encoder

Outd 1 Outd 2 Outd Nd

Document Aggregator

D Representation

Scoreq,d

· · · · · ·

· · · · · ·

-

Figure 3.2: Graphical representation of a bi-encoder.

lem exist, they scale poorly beyond the dimension size of the considered representations. If, however,

we allow slight inaccuracies in the comparison function, a version of the problem known as Approximate

Nearest Neighbour (ANN), some highly scalable and efficient solutions do exist (Johnson et al., 2019;

Malkov and Yashunin, 2018) under accessible libraries. Note that for the purposes of ranking, since φ

isn’t perfect at modeling the relevance task to begin with, the slight inaccuracies are acceptable. Also,

the solutions for ANN problems go beyond the purposes of this thesis, however, assume their availability

as efficient search libraries for the considered models.

ANN search libraries offer the speedup necessary to retrieve over the entire collection, excusing the

need of a first-stage retrieval. The possibility of end-to-end retrieval explains why most representation-

based architectures, that have surfaced, fall under this category.

3.3.1.A Bi-Encoder

To my knowledge, the first mention of the use of a representation-based transformer architecture for the

purposes of ranking, is attributed to Humeau et al. (2019), naming the model ”bi-encoder”, alleging to

the encoding of queries and documents separately, opposing the previously mentioned cross-encoder

architectures. The authors pretrain a BERT-like model from scratch, with a special token [S], but for

simplicity, and in accordance with other variations in the literature (see Section 3.3.1.B), let us consider

the use of BERT, and it’s corresponding [CLS] token.

The architecture of the proposed model can be seen on Figure 3.2 and it follows the same terminol-

ogy used in Section 3.2.1, for the cross-encoder. In general, the query and document sequences are

encoded separately by a BERT encoder and an aggregator function (e.g., average pooling) is used to

extract a representative vector representation of each, which are then compared trough a comparison

function, outputting a relevance score.

Maintaining the nomenclature introduced in Equation 3.7, the authors consider the dot-product as the

comparison function φ (same as cosine similarity for normalized vectors). The encoders ηq and ηd start

41

as the same BERT model (same initial weights), but are allowed to update separately during finetuning,

and both are of the form:

reduce (BERT (t)) , (3.8)

where t is an input text, namely a query or document, BERT, preprocesses t as usual, by appending the

[CLS] token to the beginning of the sequence, and reduce(·) is a function that reduces BERT’s output

sequence of vectors into a single vector, representative of t.

For reduce(·), the authors consider 3 possibilities: 1) to extract the first output embedding, correspon-

dent to the [CLS] token, an obvious approach, considering how BERT leverages that special token for

most tasks; 2) mean pooling over the entire sequence, computing the average embedding, an approach

consistent with pre-BERT architectures that attempted document representations, as the average of its

word embeddings; 3) mean pooling over the first m output embeddings, with m as an hyper-parameter

≤ N outputs, also consistent with pre-BERT architectures.

For a vector vq, the computed representation of a query q, the relevance score of a candidate

document d, and its computed representation vd, is given by φ(vq,vd). During fine-tuning, the network

is trained to minimize the negative log likelihood (NLL) of the relevant document:

Lnll(vq,vd+ ,vd−1
, . . . ,vd−N

) = log

 eφ(vq,vd+)

eφ(vq,vd+) +
∑N
i=1 e

φ(vq.vd
−
i
)

 , (3.9)

where d+ is a relevant document and the others {d−1 , . . . , d
−
N} are N documents chosen from the training

set. The authors make use of a technique known as in-batch negatives (Yih et al., 2011), in which the

relevant documents of other queries in the mini-batch, are used as negative examples for a given query,

allowing efficient matrix multiplications that reuse the computed embeddings. This technique will be

analyzed in detail on the next Chapter (see Chapter 4)

Trough experimentation, the authors found that using the representation extracted from the [CLS]

token yielded slightly better results over the other approaches, for the finetuned model. The size of the

mini-batch, namely the number of negatives, was also tested, resulting in performance gains, as the

size increases. The authors also tested target corpus pretraining, which unsurprisingly also lead to a

performance boost (see Section 3.2.6.B).

3.3.1.B Bi-Encoder Variations

Similarly to monoBERT, several approaches have surfaced following the original Bi-encoder, propos-

ing several variations on the original architecture, namely on the sampling of training examples, loss

functions, and integration with simple keyword search, specifically BM25.

42

Dense Passage Retriever (DPR) (Karpukhin et al., 2020) adapts the bi-encoder architecture for open-

domain question answering. Specifically, the authors train a bi-encoder to retrieve the passages most

likely to contain the answer to a query, the ”retriever”, followed by a BERT-based model, the ”reader”,

trained to extract the answer span, achieving SOTA performance in various tested datasets. In their

study, the authors test negative sampling techniques, namely random sampling, hard negatives picked

with BM25 (documents with high BM25 scores but that are nonetheless non relevant) and in-batch neg-

atives. From this study they found that in-batch negatives along with a single BM25 hard negative per

query, resulted in a significant performance gain. A linear combination of DPR and BM25 scores further

boosts retrieval effectiveness, suggesting that term-matching methods such as BM25 are sensitive to

highly selective keywords and phrases, whilst bi-encoders capture lexical variations or semantic rela-

tionships better, complementing each other.

Complementing Lexical Retrieval with Semantic Residual Embedding (CLEAR) (Gao et al., 2020b)

further investigates the interaction between keyword search and bi-encoder models. Contrary to the

original bi-encoder, CLEAR uses the same BERT model for both encoders (ηq = ηd), but queries and

documents are prepended with special tokens, [QRY] and [DOC], respectively, in replacement of the

[CLS] token. Another key difference lies in the final vector representation, which is produced by apply-

ing average pooling to BERT’s output contextual representations. Like with DPR, the authors find that

linearly combining the bi-encoder’s scores with BM25’s results in a performance gain. The authors also

pick hard negatives with BM25 but use a triplet hinge loss (Weston et al., 1999), maximizing the simi-

larity between the representations of a query, vq, and a relevant document, vd+ , whilst simultaneously

minimizing the similarity between vq and a non-relevant document vd− , under a given margin m. This

loss function corresponds to:

Lhinge (vq,vd+ ,vd−) = max (0,m− φ (vq,vd+) + φ (vq.vd−)) , (3.10)

However, rather than fixing the margin as is common (e.g m = 1), m is dynamically computed in accor-

dance with BM25’s retrieval scores for the same query and documents:

m = c− λ (BM25 (vq,vd+)− BM25 (vq,vd−)) , (3.11)

with c and λ as tunable hyper-parameters. The intuition here is that by discounting the loss in cases

where BM25 is able to correctly rank the documents, since the value of m is lower, incurring in little or

even no loss, the model specializes in harder, semantic cases, that BM25 fails to capture.

Representation-focused BERT (RepBERT) (Zhan et al., 2020b) shares CLEAR’s similarity function,

along with its aggregator and loss (Equation 3.11, with m = 1) functions, but drops the interaction with

BoW models, opting instead for randomly pooled negatives.

43

Approximate Nearest Neighbor Negative Contrastive Estimation (ANCE) (Xiong et al., 2021) aims to

improve the sampling of hard negatives during training. The authors argue that random negative sam-

pling fails to provide hard negatives and sampling based on other models provides static hard negatives,

which fail to properly prepare the model for testing, since the negatives differ considerably from those

encountered in training. Optimally, the model should learn to distinguish negatives that are the closest to

the positives, in its representation space. This is exactly what the authors promise, by having the model

guide itself during training. Specifically, the model is used to dynamically sample the hard negatives,

irrelevant documents ranked high, to be trained on. This is achieved by maintaining an ANN index, that is

updated asynchronously as the training progresses. Specifically, every m training batches, a new ANN

index is computed with the current checkpoint, as the training progresses parallelly with the current ANN

index. Although maintaining the ANN index is computationally expensive, the expense can be mitigated

by tuning the index refresh rate (m), for an effectiveness trade-off.

Despite the improvements brought on by ANCE, Zhan et al. (2020a) note the instability of the tech-

nique on the later training stages. The authors demonstrated that as training progresses, and the en-

coder refines the document and query representations, the asynchronous representations available at

the ANN index become dated and provide inaccurate relevance estimations, resulting in weaker pooled

hard-negatives. Although the problem can be somewhat mitigated by increasing the index refresh rate

(m), this becomes unfeasible for large training collections. Instead, the authors propose Learning To

Retrieve (LTRe), a final training stage that freezes the weights on the document encoder, guaranteeing

the validity of representations within the ANN index, without requiring computationally expensive re-

freshes. On top of freezing the document encoder, the authors consider a pairwise loss function that is

only applied on the cases where the model fails to retrieve the relevant document (i.e., the cases where

the negative document produces higher relevance score than the positive), from the documents on the

batch. Formally, this loss corresponds to:

LLTRe (vq,vd+ ,vd−) =

{
LRankNet (vq,vd+ ,vd−) φ (vq,vd+) < φ (vq,vd−)

0 φ (vq,vd+) ≥ φ (vq,vd−)
, (3.12)

where for the pairwise loss function, the authors consider the loss used in RankNet2 (Burges, 2010):

LRankNet (vq,vd+ ,vd−) = log
(

1 + eφ(vq,vd+)−φ(vq.vd−)
)
. (3.13)

Beyond the performance improvements brought on by the technique, freezing the document encoder

may be key in pooling stronger hard-negatives akin to ANCE, without the computational expense of

refreshing the ANN index. Despite this, at the time, the technique relied on a ANCE checkpoint in

order to achieve better performance. On their follow-up work, Zhan et al. (2021) tackled this issue,

2The authors also considered LambdaRank (Burges, 2010), although noticing only small improvements on a per-case basis.

44

suggesting a new technique, Stable Training Algorithm for dense Retrieval (STAR), that achieves higher

performance than ANCE’s. More importantly, however, when used in conjunction with LTRe, produces

even stronger results. Note that Zhan et al. (2021) revisits and renames LTRe, proposing an Algorithm

for Directly Optimizing Ranking pErformance (ADORE).

STAR joins random and hard negative sampling, by pooling static hard negatives for each query, but

sharing them within the batches. Specifically, the technique starts by using the base model to retrieve the

top documents for all training queries, which serve as the static hard negatives that will not be updated.

The batches are formed by sampling queries and their respective positive document, along with the hard

negatives. However, unlike previous methods, the loss function considers for each query, not only the

pooled hard negatives, but also all other documents present in batch (i.e., positives and negatives from

other queries). Although not explicitly random, the shared negatives prevent the bias on the static hard

negatives, stabilizing training.

So far, every bi-encoder discussed above achieves the performance of a simple monoBERT, at best,

which reinforces the idea that interaction-based models have performed better than representation-

based. Despite this, both architectures can have an almost symbiotic relation. We can leverage cross-

encoders expressivity, to better guide a bi-encoder, for example by distilling a cross-encoder, to a much

cheaper and faster bi-encoder. This is what Barkan et al. (2019) proposed , specifically with BERT-

based cross-encoders and bi-encoders, for the task of sentence similarity. Remembering the equations

3.3 and 3.7, we can break down this transfer as:

softmax (T[CLS]W + b)1 , φ(ηq(q), ηd(di)). (3.14)

After the distillation, the bi-encoder student model performs competitively with other bi-encoders, but

remains consistently less effective than the cross-encoder, albeit much more efficient.

Qu et al. (2021), in RocketQA, leverages the higher expressivity of a cross-encoder to guide the

training of the bi-encoder. The authors build upon DPR’s architecture, but drop the interaction with the

BoW model and devise a training pipeline, in which the bi-encoder and cross-encoder improve iteratively.

In the first stage, the bi-encoder M (0)
D is trained without any particularity, but the use of a technique the

authors named cross-batch negatives, similar to in-batch but also shares negatives between batches,

when training on multiple GPUs. In the second stage, the trained bi-encoder M (0)
D is used to guide

the training of the cross-encoder MC . Specifically, the bi-encoder is used to select hard negatives, by

random sampling from the retrieved top-k. This way, the MC is adjusted to the distribution of the results

retrieved by the M
(0)
D . In the third step, a bi-encoder M (1)

D is trained with hard negatives pooled from

M
(0)
D , with the exception that negatives confidently classified as positives by the cross-encoder, aren’t

considered. This exception is meant to ”denoise” the data, since the authors suggest that most big

collections suffer heavily from false negatives, as only a small portion of the data is labeled. Finally,

45

in the last step, the collection is augmented, using MC to label the top-k passages retried by M (1)
D , for

each query, and the final bi-encoder, M (2)
D is trained on it. With this training pipeline, RocketQA is able to

surpass the performance of monoBERT on MS MARCO (Nguyen et al., 2016). In their ablation studies,

the authors found the cross-batch negatives technique to be decisive to achieve performance gains and

to provide efficacy of random negatives, when pooled in large numbers.

RocketQA also uses the bi-encoder as the first-stage retriever leveraging the fact that bi-encoders

have been able to surpass the performance of BoW models, and ANN libraries allow relatively low

inference times. Case in point, a multi-stage architecture joining RocketQA, and ERNIE (Sun et al.,

2019b), a powerful BERT variation used as a cross-encoder, has near state of the art performance in

the MS MARCO Passage Ranking benchmark, at the time of writing.

Although the previously discussed methods have tested different loss functions, the idea behind

those losses is generally the same: maximizing the similarity between related document and query’ rep-

resentations, and minimizing the similarity for unrelated pairs, which as Ren et al. (2021) remarked, are

exclusively “query-centric” similarity relations. Even though such relations are the only ones explicitly

related to the ranking task, Ren et al. (2021) argues that bi-encoders may improve ranking performance

from exploring other relations available within the training data. Specifically, the authors point out how

query-centric relations fail to properly separate document representations, which can harm generaliza-

tion for new cases. With PAssage-centric sImilarity Relations (PAIR) (Ren et al., 2021), the authors

propose a document-centric (or passage-centric, as in accordance with the authors terminology) loss,

that promotes the separation of unrelated document representations and complements the query-centric

loss of Equation 3.9:

Ld-centric(vq,vd+ ,vd−1
, . . . ,vd−N

) = log

 eφ(vq,vd+)

eφ(vq,vd+) +
∑N
i=1 e

φ(v+
d .vd

−
i
)

 . (3.15)

Given how the document-centric loss does not relate directly with the ranking task, the authors pro-

pose a two-stage training procedure: (1) train the model with a combined loss, that considers both the

document-centric and query-centric losses, enriching the learned representations; (2) train the model

with the query-centric loss exclusively, optimizing the learned representations for the ranking task. Like

Qu et al. (2021), the authors consider the powerful cross-batch negatives technique and also augment

the training data with pseudo-labels produced by a well-trained cross-encoder. PAIR is able to out-

perform RocketQA, validating the impact of considering similarity relations beyond the common query-

centric technique while training bi-encoders.

46

Inq 1 Inq 2 Inq Nq

Query Encoder

Outq 1 Outq 2 Outq Nq

Query Aggregator

vq

Ind 1 Ind 2 Ind Nd

Document Encoder

Outd 1 Outd 2 Outd Nd

vd

Attention AttentionCode 1 Code m

v1
d

vm
d

Attention

Scoreq,d

· · · · · ·

· · · · · ·

· · ·

· · ·

Figure 3.3: Graphical representation of the poly-encoder.

3.3.2 Complex Comparison Functions for Ranking

So far, the bi-encoder architectures we’ve addressed leverage simple comparison functions, enabling

the use of fast ANN libraries which considerably speed up inference, enabling full-retrieval. Despite

undeniably fast, these architectures have consistently performed worse than cross-encoders, suggesting

that attention between query and document is able to capture relevance signals otherwise missed. A

possible way of improving bi-encoder’s performance is to use comparison functions of higher complexity,

posing as a middle ground between simple bi-encoders and cross-encoders.

3.3.2.A Poly-Encoder

Humeau et al. (2019) proposed the poly-encoder architecture (see Figure 3.3), as a better performant

alternative of their bi-encoder, which utilizes an attention-based comparison function that leverages mul-

tiple representations of the candidate text. The intuition behind the idea of using multiple representations

comes from the fact that documents are commonly much longer than queries and, therefore, a single

vector is insufficient to model their interaction. To address this, the authors propose an architecture on

top of the usual encoder, that learns m context3 codes (c1, . . . , cm), in order to obtain m representative

vectors (v1
d, . . . ,v

m
d), where c1 extracts the representation v1

d by attending over all the embeddings of

the output layer (h1, . . . ,hN). Formally:

vi
d =

∑
j

wci
j hj where (wci

1 , . . . , w
ci

N) = softmax (ci · h1, . . . , ci · hN) , (3.16)

where N is the sequence length and m is an hyperparameter correspondent with the number of vector

representations per document, controlling the trade-off between inference speed and performance.

3the word context refers to Humeau et al. (2019)’s terminology, where documents are portrayed as context and queries as
candidates. For simplicity, we have maintained the terminology used throughout this thesis.

47

The query representation vq is obtained similarly to other bi-encoder architectures, by extracting the

[CLS] token’s embedding. With both prior representations, the document vector vd is computed as:

vd =
∑
i

wiv
i
d where (w1, . . . , wm) = softmax

(
vq · v1

d, . . . ,vq · vm
d

)
. (3.17)

The final score for that candidate label is then vd · vq, as in a simple bi-encoder and the model is

trained end-to-end, with cross-entropy loss (Equation 3.4). Since m ¡ N , and the query-document atten-

tion is only performed at the top layer, poly-encoder’s attention is much faster than the cross-encoder’s

full self-attention, whilst achieving better performance than a comparable bi-encoder. However, unlike

a bi-encoder, the poly-encoder architecture can’t leverage ANN libraries for fast search, since despite

computing the final ranking score as simple dot product, the computation of the final document repre-

sentation requires query-document attention, making full-retrieval unpractical.

Poly-encoders introduced the idea of using multiple representations to represent each document,

which has been continuously explored by others. One interesting approach is that of Luan et al. (2020),

which proposed a simpler alternative to the poly-encoder’s query-document attention, solely based on

inner products. Instead of attention, the query–document score is simply the largest inner product

between the query and each of the m document representations, which enables the use of ANN to

speedup retrieval.

3.3.2.B ColBERT

Recently, Khattab and Zaharia (2020) proposed ColBERT, extending the idea of multiple representations

to queries as well, computing a dense vector for each query or document token based on BERT’s con-

textual representations. Formally, for a given sequence of tokens s = [t1, . . . , tn], ColBERT computes a

matrix η (s) ∈ Rn×D, where n is the length of the sequence s and D is the dimension of each token repre-

sentation, with each row corresponding to a vector representation. Similarly to the previously discussed

CLEAR, ColBERT uses the same BERT model for encoding queries and documents, by prepending a

special token, [Q] and [D], respectively. After encoding with BERT, each output embedding passes

through a linear layer without activation, responsible for translating each embedding into a vector of

smaller dimension, D, followed by normalization (L2 norm), so that cosine similarity corresponds to a

simple inner product. For the comparison function, ColBERT uses late interaction, as the authors name

it, formally portrayed as:

sq,d = LateInteraction(q, d) =
∑
i∈η(q)

max
j∈η(d)

η(q)i · η(d)Tj , (3.18)

where sq,d is the ranking score for a query q and document d, and the max(·) function returns the maxi-

mum inner product between the query vector representation η(q)i (row i of the matrix), and each of the

48

document’s representations (columns of the matrix η(d)T), an operation the author refer to as ”MaxSim”.

Despite the reliance on simple inner products, late interaction fails to directly leverage ANN libraries,

since computing the ranking scores relies on summing inner products for each query representation. To

address this, the authors propose a two-stage retrieval approach: for the first-stage the authors index all

document representations with an ANN library, annotated with their respective document. At inference,

each query term embedding η(q)i is issued concurrently as a query and the top k′ document represen-

tations are retrieved, where k′ is an hyperparameter, with k′ ¡ k and k is the number of documents to

retrieve (e.g. k = 1000). The total number of representations is then m × k′ and the actual documents

are retrieved from these, through the annotations, resulting in K unique documents, with K ≤ m × k′,

where m corresponds to the number of query representations. In the second-stage, the late interaction

is computed for the entire K set, and the documents are ranked accordingly.

ColBERT is trained end-to-end, being optimized via pairwise softmax cross-entropy loss over the

computed scores sq,d+ and sq,d− , for triplets 〈q, d+, d−〉, corresponding to a query, a relevant document

and an irrelevant document respectively. Formally:

Lpair-nll(q, d
+, d−) = − log

esq,d+

esq,d+ + esq,d−
. (3.19)

ColBERT is able to achieve the effectiveness of simpler cross-encoders, such as monoBERT, despite

having much faster inference. One of the secrets for this result, as tested by the authors, lies on a ”query

augmentation” step, during encoding, where query sequences are padded with BERT’s [MASK] tokens,

up to a desired sequence lenght. Given BERT’s MLM pretraining task, the model is able to predict

relevant embeddings for those positions, which can then be effectively leveraged by late interaction.

Despite the quick inference, ColBERT has poor space efficiency, since the number of document

representations is tied to the sequence length, which can potentially reach 512 tokens. Although the au-

thors managed to severely improve the space occupied by representations, trough techniques of lossless

compression, the full index still remains almost 2 orders of magnitude larger than a BoW alternative.

To conclude the literature review on dense template retrieval approaches, table 3.1 aggregates all

of the discussed methods, according with their mains characteristics such as loss functions, pooling

techniques and sampling of training examples.

49

Method Reference Base Model ηq=ηt Pooling Shared Neg. Hard Neg. Loss Function

DPR (Karpukhin et al., 2020) BERTbase 7 [CLS] in-batch BM25 Lnll (eq. 3.9)

CLEAR (Gao et al., 2020b) BERTbase 3 mean - BM25 Lhinge (eq. 3.10)

RepBERT (Zhan et al., 2020b) BERTbase 3 mean in-batch - Lhinge (eqs. 3.10, 3.11)

ANCE (Xiong et al., 2021) DPR 3 [CLS] - prior checkpoint Lnll (eq. 3.9)

LTRe (Zhan et al., 2020a) ANCE 7 [CLS] - current checkpoint LRankNet (eq. 3.13)

STAR (Zhan et al., 2021) DPR
7 [CLS]

all documents base model LRankNet (eq. 3.13)ADORE STAR - current checkpoint

RocketQA (Qu et al., 2021) ERNIEbase 7 [CLS] cross-batch cross-encoder Lnll (eq. 3.9)

PAIR (Ren et al., 2021) ERNIEbase 7 [CLS] cross-batch cross-encoder Lnll +Ld-centric (eqs. 3.9, 3.15)

Poly-Encoder (Humeau et al., 2019) BERTbase 7 Attention in-batch - Lnll (eq. 3.9)

ColBERT (Khattab and Zaharia, 2020) BERTbase 3 - - BM25 Lpair-nll (eq. 3.19)

Table 3.1: Comparison of the dense retrieval methods presented in this section, according to their main characteris-
tics: Base Model refers to model used to provide the initial parameters of the encoders, ηq=ηt indicates
whether the query and document encoders share parameters, Pooling indicates the technique used to
pool the vectorial representations from the encoders, Shared Neg. indicates if and how negatives were
shared within the batches, Hard Neg. indicates if hard negatives were used, and which model was used
for sampling, Loss Function indicates the loss function that was used during training. Note that the
information presented in this table is purposefully over-simplified, meant only to provide a brief overview
over the discussed methods and facilitate comparisons. For clarifications and further details, the reader
should consult the original papers.

50

4
Methodology

Contents

4.1 Simple Dense Template Retrieval . 52

4.2 Improved Dense Template Retrieval . 53

4.3 Summary of Techniques . 58

51

4.1 Simple Dense Template Retrieval

Following the customer support application introduced in Chapter 1, the formal definition for the problem

of template retrieval is as follows: given a query q, the model must retrieve the single template t, from a

relatively small collection of Nt templates, that better answers the query.

4.1.1 Architecture

Let us consider the commonly used dual-encoder architecture, as presented in DPR (Karpukhin et al.,

2020) (see Chapter 3) , in which 2 independent encoders EQ(·) and ET (·) encode a query q and a tem-

plate t into d-dimensional vectors, with different representation spaces. For ranking the templates, the

cosine similarity between a query q and a template t is computed from the respective representations:

s(q, t) = cosine-sim (EQ(q), ET (t)) . (4.1)

4.1.2 Loss Function

The loss function for training the encoders should maximize the similarity between positive query-

template pairs s(q, t+) and minimize the similarity between negative query-template pairs s(q, t−). A

commonly used loss term for this retrieval task is the negative log likelihood comparing the positive

template t+ against a set of negative templates T −:

Lq(q, t+, T −) = − log

(
es(q,t

+)

es(q,t+) +
∑
t−∈T − e

s(q,t−)

)
. (4.2)

The final loss is then obtained by averaging the per-query loss from Equation 4.2 over all queries

(and respective negative templates) considered in a batch from the dataset.

4.1.3 In-Batch Negatives

Selecting negative examples T − for training dense retrievers is still an open problem, as seen in Chapter

3. Given the dynamic nature of customer support, the focus of this work is on methods that maximize

training efficiency. Simple in-batch negatives, as described in DPR (Karpukhin et al., 2020), make

optimal use of the batch space, by sampling query-document positive pairs and considering, for each

query, all other documents within the batch as negatives. However, hidden in its simplicity lie 2 important

assumptions: (1) the positive document of each query is in fact unrelated with all other queries within

the batch; (2) the shared negatives provide a good estimation of instances within the full dataset. The

weight of both assumptions is small for large corpora, where each document has a limited amount of

52

related queries and vice-versa, making false in-batch negatives (i.e., related documents that appear in

other pairs within the batch) unlikely. Still, for smaller corpora such as those from customer support with

templates, the assumptions can be problematic, requiring careful selection of the pairs, such that in all

pairs within a batch, a document relates to their correspondent query and none other in the batch.

4.2 Improved Dense Template Retrieval

To improve on the method outlined in the previous section, two orthogonal innovative contributions are

proposed and described next. The first one, described in Section 4.2.1, relates to a sampling strategy

that correctly models the many-to-one relation between queries and templates, whilst the second one,

described in Section 4.2.2, refers to an expanded loss function that provides better exploration of the

training data, exploiting different similarity relations for queries and templates and considering hard

sampling techniques to filter negatives within the batch.

4.2.1 Batch Generation

Template retrieval relates queries and templates in a strictly many-to-one correspondence, at the same

time involving a small template collection. Moreover, since templates see different use, the number

of queries per template varies considerably. These characteristics actively challenge the assumptions

of vanilla in-batch negatives. In order to guarantee that the in-batch negatives are in fact negative,

the sampled pairs must have different templates. This condition influences the distribution of training

examples, penalizing frequently used templates and resulting in a distribution of negatives within the

batch that follows the distribution of the templates, and not the real one.

4.2.1.A Labeled In-Batch Negatives

Given that, by definition, each query has a single related template, labelling each text (i.e., query or

template) in a training batch with the corresponding template identifier provides sufficient information

to create all valid positive and negative pairs. More specifically, let ti correspond to the i-th template

and qi,j to the j-th query, from the sub-collection of queries that is answered by ti. Given a batch of Nq

queries and Nt templates, with each text labeled with the corresponding template index i, for each query

qi,j the template ti is considered as positive, and all other templates tn within the batch, with n 6= i, as

negatives. This technique, referred to as labeled in-batch negatives, not only prevents in-batch false

negatives, but also eliminates the paired sampling restrictions (i.e., the training examples do not have to

be explicit query-template pairs) imposed by vanilla in-batch negatives. The rightmost part of Figure 4.1

shows a working example, for a simple batch of 5 queries and templates.

53

Figure 4.1: An illustrative case of applying semi-independent query-template sampling (Algorithm 4.1) on an ex-
ample training dataset. The illustrated collection contains 15 templates ET and 60 queries EQ, where
each query is represented above the template that answers it. Each line in the Algorithm 4.1 corre-
sponds to a rectangle in the figure, denoting the resultant subset of queries or templates, represented
in higher opacity. The resultant batch B is followed by the application of the labelled in-batch nega-
tives technique, yielding the represented matrix of query-template pairs, where the positive pairs are
represented in green, and the negative ones in red.

4.2.1.B Semi-independent Query-Template Sampling

As a general rule, training instances should follow 2 principles: (1) uniform sampling of positive pairs,

since these offer explicitly labeled relevance information that should be uniformly explored; (2) sampling

negatives according to a distribution that is consistent with the corpus. Vanilla in-batch negatives fails to

follow both principles, as the distribution of negatives within the batch follows the distribution of templates

available in the positive pairs, and not the real one. With labeled in-batch negatives, on the other hand,

positives and negatives are not directly tied, enabling the consideration of both principles.

To respect both principles, whilst maximizing the utility of the instances within the batch, a semi-

independent query-template sampling strategy is proposed, as described in algorithm 4.1, and illustrated

in Figure 4.1.

Algorithm 4.1: Semi-independent query-template sampling
Data: collection of training queries EQ and the collection of their correspondent templates ET .
Result: batch B, of b labeled queries and b labeled templates.

1 Fetch a set T of b templates uniformly selected from ET , each labelled with its identifier.
2 Extract from EQ, the set QT of all queries that are answered by the templates in T .
3 Produce the set Q, by randomly sampling b queries from QT , labelling them accordingly.
4 Compose batch B, from the queries in Q and the templates in T .

Line 1 ensures that the sampled templates follow the distribution of the template collection, as in

accordance with the second principle. Line 3 ensures that the sampled queries roughly follow the distri-

bution of the available examples, as in accordance with the first principle.

54

4.2.2 Batch Exploration

The previous section focused on the proposed sampling technique that populates the training batches

with queries and templates. This section follows the exploration of said batches, focusing on the extrac-

tion of useful information from other similarity relations and filtration of unnecessary training examples.

4.2.2.A Expanded Loss Function

In most information retrieval scenarios, the explicit relevance information available follows the retrieval

task, relating queries with documents exclusively, that is, the relevance between each query and docu-

ment is generally known, but not how queries and documents relate between themselves. As such, the

query-document relations guide the majority of the proposed loss functions to model the retrieval task,

namely Equation 4.2, promoting the similarity of related query-document pairs and the dissimilarity of

unrelated query-document pairs. PAIR (Ren et al., 2021), as discussed on Chapter 3, extends this idea

by also considering the relations between unrelated documents. To surpass the unavailability of explicit

relevance information, the authors guide the selection of document pairs with powerful ranking models,

producing pseudo-relevance information. Their work showed that considering similarity relations beyond

the typical query-centric ones improves performance, despite not enforcing the ranking task directly.

In our information retrieval scenario with templates, like the ones discussed above, there is only

explicit relevance information relating queries and templates. Unlike them, however, one can infer further

valid similarity relations by considering the strict structure of the template collection, and its relation to the

available queries. Since each query relates to a single template, being unrelated with any other, there is

no overlap between the sets of related queries of each template. Since any two templates cover different

queries, all templates cover different topics and are unrelated. Similarly, a query is more related with

other queries covered by the same template, than queries covered by other templates. Considering this,

one can assess whether any two texts (i.e., queries or templates) are related or unrelated. In order to

leverage the additional relevance information, and build upon the works of PAIR, a novel loss function is

proposed, that is expanded at the batch level, considering interactions not only between query-template

pairs, but also query-query, template-template and template-query. To achieve this, the loss of a batch

is given by a weighted sum of four terms, each focused on a type of pair:

Lbatch = αL(Q, T) + β L(Q,Q) + γ L(T , T) + θL(T ,Q), (4.3)

where α, β, γ and θ are adjustable hyper-parameters, Q is the set of query representations within the

batch and T is the set of template representations within the batch. The loss L(A,B) over two sets of

representations A and B, can be any loss function that for all pairs of the form {a, b}, with a ∈ A and

b ∈ B, promotes the similarity of the pairs where a and b are related, and dissimilarity for the pairs where

55

q0

q0

q1q1

q2

q2

t0

t1

t2

(a) query-template

q0 q0

q1

q1

q2

q2

t0

t1

t2

(b) query-query

q0

q0

q1

q1

q2

q2

t0

t1

t2

(c) template-template

q0 q0

q1

q1

q2

q2

t0

t1t2

(d) query-template + query-
query

q0 q0

q1

q1

q2

q2

t0

t1

t2

(e) query-template + template-
template

q0 q0

q1

q1

q2

q2

t0

t1

t2

(f) query-template + query-
query + template-template

Figure 4.2: An illustrative case of 6 query representations {q0, q0, q1, q1, q2, q2}, and their respective positive tem-
plate representations {t0, t1, t2} with ti answering qi, after enforcing different similarity relations. The
distances between each point represent similarity (i.e., the more distant, the less similar), the dashed
lines along with the circumferences represent similarity relations, whilst the dotted lines represent dis-
similarity relations

a and b are unrelated. Although most loss functions discussed in Chapter 3 fit this criteria, the negative

log likelihood (Equation 4.2) is widely used, namely in PAIR, being the one proposed to adapt.

For that, let us first notice that each text in a batch (which can be either from a query or a template)

is given a label corresponding to the correct template (or itself). The negative log likelihood loss func-

tion can be adapted as the following generic loss term that takes two sets (A and B) of labeled text

representations (that can be from queries or templates) from the batch:

L(A,B) = − 1

|A|
∑
i∈I

∑
ai∈Ai

1

|Bi|
∑
bi∈Bi

log

 es(ai, bi)

es(ai, bi) +
∑
j 6=i

∑
bj∈Bj

es(ai, bj)

 , (4.4)

where I is the set of all labels in the batch while Ai is the set of texts in A that have label i (i.e., those

that correspond to template i) and Bi is the set of texts in B that have label i.

56

Reconsidering Equation 4.3, now with the loss function defined in Equation 4.4, the different loss

terms are as follows:

1. L(Q, T); A = Q is the set of all queries in a batch and B = T is the set of all templates. This term

corresponds to averaging the loss of each query q ∈ Q, using the negative log likelihood of the

positive template (Equation 4.2) combined with each possible negative template in the batch;

2. L(T , T); A = T and B = T both correspond to the set of all templates in the batch. This term

enforces the dissimilarity between templates;

3. L(Q,Q); A = Q and B = Q both correspond to the set of all queries in the batch. This term

enforces the dissimilarity between query representations from different templates, and promotes

the similarity of representations for queries from the same template;

4. L(T ,Q); A = T is the set of all templates in a batch and B = Q is the set of all queries in the

batch. This term is the transpose of the first one, having a similar effect but acting on each template

instead of each query;

Figure 4.2 provides a visual representation of the similarity relations enforced by each of the loss

terms, along with their combination. Query-centric similarity relations, Figure 4.2(a) enforce the similar-

ity of query-template positive pairs and dissimilarity for negative ones. Figures 4.2(b) and 4.2(c) simply

enforce query-query and template-template relations respectively, not being aligned with the retrieval

task. Figures 4.2(d) and 4.2(e) combine query-template relations with the previous two relations, re-

spectively; combining all, Figure 4.2(f) further enforces the similarity between valid query-query pairs

and the dissimilarity between invalid query-query pairs and template-template pairs.

4.2.2.B In-Batch Top-k Negatives

Chapter 3 discussed recent methods that use the model’s own representations to guide the selection of

hard-negatives (Xiong et al., 2021; Zhan et al., 2021, 2020a). Although potentially effective, these tech-

niques are computationally more demanding than the ones proposed, missing the established efficiency

goals. Inspired by these approaches, a cheaper alternative is considered, consisting of using in-batch

top-k negatives that instead of retrieving the top-k negatives over the entire corpus, retrieves them from

within the batch. The process, as seen in Figure 4.3, consists of selecting the first k + 1 columns, from

the sorted matrix of similarity scores, for computing the loss function. By reusing the representations

within a batch, the approach is much cheaper while also guaranteeing that the representations are syn-

chronous. Unlike ANCE (Xiong et al., 2021) and the other methods, the value of selecting the in-batch

top-k negatives is not on the selected hard negatives, since they are already present in the batch, but

57

s(q, t)
t0 t1 t2 t3 t4

q3,0

q2,1

q2,0

q1,1

q1,0

q3,0,t0 q3,0,t1 q3,0,t2 q3,0,t3 q3,0,t4

q2,1,t0 q2,1,t1 q2,1,t2 q2,1,t3 q2,1,t4

q2,0,t0 q2,0,t1 q2,0,t2 q2,0,t3 q2,0,t4

q1,1,t0 q1,1,t1 q1,1,t2 q1,1,t3 q1,1,t4

q1,0,t0 q1,0,t1 q1,0,t2 q1,0,t3 q1,0,t4 q1,0,t1 q1,0,t2 q1,0,t3 q1,0,t4 q1,0,t0

q1,1,t1 q1,1,t0 q1,1,t3 q1,1,t4 q1,1,t2

q2,0,t2 q2,0,t1 q2,0,t4 q2,0,t3 q2,0,t0

q2,1,t2 q2,1,t0 q2,1,t4 q2,1,t1 q2,1,t3

q3,0,t3 q3,0,t2 q3,0,t1 q3,0,t4 q3,0,t0

Top-2 Negatives

Sort Negatives

Figure 4.3: Diagram of labeled in-batch negatives followed by in-batch top-k negatives sampling. The batch-size
(b) is 5 and the k in in-batch top-k negatives technique is 2. The positive query-template pairs are
represented in green, and the negative pairs in red, with their opacity corresponding to the similarity
score (i.e., the higher the opacity, the higher the score).

in discarding all others. This delays over-fitting on simpler negatives, allowing the model to learn the

harder ones.

4.3 Summary of Techniques

This Chapter described all techniques that support the proposed model for semi-automatic selection of

answer templates. Section 4.1 reviewed related work’ techniques in the context of template retrieval,

namely the in-batch negatives techniques and the negative log likelihood loss function. Section 4.2

exposed the limitations of the previous techniques on the template retrieval setting and proposed im-

provements. Specifically, Section 4.2.1 proposed an alternative to in-batch negatives, that considers

labels for generating positive and negative pairs, detailed in Section 4.2.1.A, along with a sampling tech-

nique that samples queries and templates in a semi-independent manner, detailed in Section 4.2.1.B,

Section 4.2.2 proposed a loss function that considers multiple negative log likelihoods enforcing different

similarity relations, detailed in Section 4.2.2.A, along with a technique that filters easy negatives within

the batch, detailed in 4.2.2.B.

58

5
Experiments

Contents

5.1 Datasets and Metrics . 60

5.2 Experimental Setup . 62

5.3 Experimental Results . 63

5.4 Summary of Experiments . 68

59

This section presents the experimental validation of our contributions in two datasets of costumer

support interactions.

5.1 Datasets and Metrics

The experiments were mainly conducted on a private anonymized dataset (CS-P1) consisting of real

customer support interactions in English, made over email, where a human agent handpicked templates

for answering customer requests. We also tested the models on three smaller private anonymized

datasets in Portuguese (CS-P2, CS-P3, CS-P4). Built from real interactions, these datasets are the

most representative of the task at hand, although they cannot be made available. due to company/client

restrictions

In the interest of reproducibility and to further stimulate research on the topic, we also crafted a

dataset with public content1 that corresponds to customer support interactions and approximates the

task at hand. To create this public dataset (CS-Twitter), we built on previous work (Hardalov et al., 2018),

in which the authors handcrafted a customer support dataset for chatbots, from the public Customer

Support on Twitter data that is available on Kaggle2. We followed the same preprocessing, isolating the

tweets related to Apple support and filtering out the noisy ones. We nonetheless processed the data

further, to attend the needs of our problem. Given the apparent use of templated responses, we started

by filtering out all tweets beyond the first interaction, as these were context specific and less likely to

include templated answers. For the remaining tweets, we clustered similar responses, hopefully sharing

a template, and assumed the clusters to be the golden template identifiers for the tweets in the clusters.

After analysing various text distances, we decided to capture the similarities between response

tweets leveraging a pre-trained model from the Sentence-Transformers library (Reimers et al., 2019)

to produce sentence embeddings. In order to aggregate the similar sentences, we used HDBSCAN

(Campello et al., 2013) to produce clusters over the response embeddings. Finally, we removed all

clusters containing less than 5 elements and selected, for each cluster, the response that is closest to

the centroid, as the template. From inspection of the produced data, HDBSCAN could provide better

clusters than alternative methods, such as DBSCAN or k-means.

We split all datasets into 3 partitions, namely train, val, and test. The test split is composed of

the most recent customer interactions , simulating the real scenario, whilst the train and val splits are

composed of the remaining examples on a 85/15 stratified split (see Table 5.1 for a characterization of

the datasets).

1https://github.com/t-mesq/twitter-apple-cs-hdbscan
2https://www.kaggle.com/thoughtvector/customer-support-on-twitter

60

https://github.com/t-mesq/twitter-apple-cs-hdbscan
https://www.kaggle.com/thoughtvector/customer-support-on-twitter

5.1.1 Evaluation Metrics

The used evaluations metrics are meant to capture the models’ performance in the real world setting.

As stated, the objective for the models is to retrieve a subset with k templates that is likely to contain

the single, correct one, for an incoming query. Given how the model ranks all templates, based on the

likelihood of corresponding to the correct answer, the subset simply corresponds to the top-k.

This idea is perfectly captured by the metric recall@k, that reports on average, the percentage of

known correct answers, present in the retrieved top-k candidates. Given our specific case, where only

one correct answer exists, we can formally define recall@k as:

recall@k =
1

|Q|

|Q|∑
i=1

IA[k]
(A∗) , (5.1)

where Q corresponds to the set of queries for evaluation, I(·) corresponds to the indicator function, A[k]

corresponds to the subset with the top-k candidates, of the full set of candidates A, and A∗ corresponds

to the correct answer. The preferred value for k is 3, as it corresponds to the accorded goal of retrieving

the top-3 candidates for posterior selection by the human operator, but other values will also be recorded

in order to better assess the progression and performance of the model.

Besides recall@k, that tracks the retrieval performance, since the actual rank of the correct answer

does not impact the metric, as long as it is included in the top-k, Mean Reciprocal Rank (MRR) is

used to track the ranking effectiveness. MRR reflects the inverse of the average rank of the first correct

candidate, being a good metric to track the models’ progression. Once again, given our specification

with a single correct answer, MRR is formally defined as:

MRR =
1

|Q|

|Q|∑
i=1

1

rank (A∗)
, (5.2)

with the same definitions as the prior Equation (5.1) and where rank(·) refers to the position of a candi-

date, in the ranked set.

Dataset
#query-response pairs #templates P80% token-length

Language
train val test #total %unseen queries templates

CS-Twitter 7969 1425 2884 480 41.2 34 35 English
CS-P1 17858 3127 3918 445 2.8 113 396 English
CS-P2 1092 187 650 82 1.2 111 164 Portuguese
CS-P3 973 170 352 36 2.0 103 221 Portuguese
CS-P4 275 44 150 50 18.7 216 215 Portuguese

Table 5.1: Statistics for CS-Twitter and the private datasets. %Unseen refers to the percentage of test examples
that include templates not included in the train split and Token-length indicates the number of tokens of
texts, in terms of DistilmBERTbase tokens.

61

5.2 Experimental Setup

This section details the baselines considered for the experimental evaluation, along with the pre-trained

language models and hyper-parameters used to train the proposed approach.

5.2.1 Baselines

As a sparse retrieval baseline we consider a traditional BM25 (Lin et al., 2021) approach. For a dense

retrieval baseline, we tested all multilingual models in Sentence-Transformers (Reimers and Gurevych,

2020), in a 0-shot manner, and report results for the best: distiluse-base-multilingual-cased-v1.

Finally, as an alternative to retrieval, and given the small size of the template space, we considered

a simple multi-class classifier baseline, where each class corresponds to a template and we use the

predicted probabilities as the ranking scores. Given that the model’s output space is directly tied with

the train template space, the model is unable to retrieve templates not found in training.

5.2.2 Pre-Trained Language Models

Although our datasets were mostly in english, we only considered multilingual models in accordance

with the real world scenario where we envision the models will be applied. Both the query and tem-

plate encoders, on the trained dense retrievers, were initialized with the parameters of the distiluse-

base-multilingual-cased-v1 model from the Sentence-Transformers library (Reimers and Gurevych,

2020), as this was the best model in a zero-shot retrieval setting. For the classifier baseline, we used

DistilmBERTbase model.

5.2.3 Hyper-Parameters

The batch-size (b) used for training was 32 for all private datasets, and 192 for CS-Twitter, as its tem-

plates and queries are considerably smaller in length, in all experiments with in-batch negatives. For

experiments with random negatives, we used b=8 in for all private datasets and B=64, for CS-Twitter,

sampling N = 4 negatives in both cases. We used larger batch-sizes for CS-twitter because the texts

are much smaller then the emails in the private datasets. We also set the maximum number of train-

ing epochs to 30, for all private datasets, and 50 for CS-Twitter. Finally, we used linear learning-rate

scheduling with 500 warmup steps, and the ADAM optimizer (Kingma and Ba, 2015) with a learning-rate

of 3e-5.

62

Methods
CS-P1 CS-Twitter

MRR@10 R@3 R@10 Epochs MRR@10 R@3 R@10 Epochs

Classifier 41.2 46.9 65.4 17 5.6 7.3 12.9 35

BM25 8.5 10.1 19.0 - 2.6 3.2 6.7 -
SBERT 0-shot 10.2 12.0 25.3 - 3.2 4.0 8.6 -

Random negatives 40.2 45.9 65.5 16 7.6 8.9 18.2 16
In-batch negt 38.2 44.8 63.8 24 6.6 7.7 14.7 44
In-batch negq 32.9 37.7 51.1 26 6.9 7.8 15.4 48
Labeled in-batch negq 39.2 45.6 63.7 4 7.2 8.4 16.7 6
Labeled in-batch negt,q 41.8 47.0 67.5 6 7.8 9.6 19.1 6

Proposed approach 42.7 48.4 68.3 3 8.6 10.6 18.9 8

Table 5.2: Experimental results on CS-Twitter and CS-P1.

5.3 Experimental Results

This section presents the main experiments, studying different sampling techniques and the impact of

the each term in the proposed loss.

5.3.1 Main Results

Besides the baselines and proposed approach, that integrates both the proposed loss and sampling

techniques, we also considered 5 other settings corresponding to the use of the vanilla loss (L(Q, T)),

but with different mechanisms to construct the negative instances:

• Random negatives: randomly samples N negative templates for each query-template pair;

• In-batch negt: samples B templates, uniformly and without repetition, along with a positive query

for each template;

• In-batch negq: samples B templates, weighed by frequency of positive queries and without repe-

tition, and a positive query for each template;

• Labeled in-batch negq: samples B queries, uniformly and without repetition, along with each

positive template. If this produces repeated templates, we swap them with uniformly sampled

templates not present in the batch;

• Labeled in-batch negt,q: corresponds to the proposed sampling technique, as described in Chap-

ter 4;

Table 5.2 presents the obtained results, from which we can infer the following main conclusions:

63

1. The proposed sampling technique not only outperforms all the alternative methods in both datasets,

but it does so with considerably fewer training steps . As expected, vanilla in-batch negatives is

sub-optimal for template retrieval. The labeled in-batch negatives were key in overcoming the

sampling limitations, and the proposed technique makes good use of its capabilities.

2. The proposed loss, that also considers template-template and query-query similarity relations,

yields a significant performance boost. This result suggests that exploring semantic relations be-

yond the ranking task is beneficial, likely being a result of learning more robust representations

with better generalization capabilities.

3. The overall poor performance on CS-Twitter exposes potential problems with the dataset, probably

because it was created semi-automatically with reduced human supervision. Despite this, most

results seem to be in agreement with those from CS-P1, enforcing the validity of the conclusions. In

fact, the only noticeable discrepancy occurs in the experiment involving the in-batch negq strategy,

with CS-Twitter exhibiting better relative performance. The discrepancy can be explained by the

large batch-size (192), corresponding to almost half of the total number of templates. Since each

batch will include a large number of sampled templates, the model is able to better explore the full

corpus, independently of the sampling strategy.

4. The poor performance of BM25 exposes the difficulty of the template retrieval task. Since each

template covers a range of queries, the text is generally unspecific, resulting in reduced term

overlap between templates and queries. Trained dense retrievers, or the classification model,

on the other hand, were able to achieve good performance, showing that semantic relations are

effectively superior to simple term matching.

5. The classification baseline is in fact quite strong, outperforming several of the retrieval methods.

This can be attributed to the small number of templates, although it should be emphasised that

template collections can be highly dynamic in real settings, motivating the use of retrieval methods

that can adapt to the collection without model re-training.

5.3.2 Analysis on the Sampling Techniques

The experiments in Table 5.2 already compare the different sampling techniques. To provide better

insights over the practical differences of each method, we plot the distributions of templates and queries,

throughout training, for each technique. To collect the data points, we record the template identifiers of

the sampled queries and templates, at each step, for a total of 10 epochs in CS-P1. The result of

this study is presented in Figure 5.1, which confirms the intuitions behind the design of the proposed

sampling technique. As expected, vanilla in-batch negatives mirrors the distributions of queries and

64

0 100 200 300 400
Queries according to Identifiers

10 4

10 3

10 2

Pr
ob

ab
ilit

y

0 100 200 300 400
Templates according to Identifiers

In-batch negq

In-batch negt

Labeled in-batch negq

Labeled in-batch negt, q

Random neg
Real

Figure 5.1: Comparison between the real and observed distributions obtained with different sampling techniques,
during training, for queries (LEFT) and templates (RIGHT). The template identifiers are ordered by the
real distribution and we plot the mean over bins of 10 templates, to reduce the number of data points
and generate smoother lines that are easier to interpret.

templates, as they are sampled in pairs. This results in techniques that are only capable of optimizing

the distribution of templates (i.e., in-batch negt) or queries (in-batch negq), but not both, resulting in

sub-optimal performance. Labeled in-batch negatives are effectively able to decouple both distributions,

being key in providing good estimations. Labeled in-batch negq provides a good estimation over the

distribution of queries, although, the observed distribution of templates is slightly biased towards the

most frequent. This results from the query-guided sampling technique, which explains the slightly worse

performance. Labeled in-batch negt,q, on the other hand, is able to provide a uniform distribution of

templates, whilst maintaining a distribution of queries very close to the real one, providing by far, the

best balance and accompanying best performance. Random negatives, despite selecting templates

on a per-query basis, is still slightly biased towards the most frequent templates, a result of the positive

examples still following the query distribution. This, coupled with the reduced number of negatives, are

likely the main factors for the lower performance.

Overall, the results seem to imply a strong correlation between the quality of the sampling techniques,

as an estimator of the involved distributions, and the observed retrieval performance.

5.3.3 Analysis on the Loss Terms

The proposed loss function combines different negative log-likelihoods, each enforcing a different sim-

ilarity relation. In order to assess the contribution of each component, along with their interaction, we

tested 5 different combinations:

• L(Q, T): corresponds to the control experiment and simply considers the common negative log

likelihood over the positive template;

65

Loss in-batch CS-P1 CS-Twitter
top-k neg MRR@10 R@3 R@10 MRR@10 R@3 R@10

L(Q,T)
7 41.8 47.0 67.5 7.8 9.6 19.1
3 41.9 48.3 67.9 8.1 9.6 18.4

L(Q,T)+L(T ,T)
7 38.7 45.3 65.4 7.2 8.7 18.0
3 39.7 45.9 65.6 7.6 8.8 18.0

L(Q,T)+L(Q,Q)
7 41.5 46.7 67.8 8.0 9.6 17.8
3 41.6 48.4 67.1 7.7 9.2 18.6

L(Q,T)+0.5(L(Q,Q)+L(T ,T))
7 41.8 47.0 67.7 8.6 10.6 18.9
3 42.7 48.4 68.3 8.3 10.3 18.3

L(Q,T)+L(Q,Q)+L(T ,T)+L(T ,Q)
7 41.3 47.0 65.9 8.4 10.2 19.0
3 41.4 47.7 67.4 7.5 8.7 16.8

Table 5.3: Ablation study on the components of the loss and in-batch top-k sampling, on CS-Twitter and CS-P1.

• L(Q, T) + L(T , T): considers equal contribution of and template-template and query-template

relations,

• L(Q, T) + L(Q,Q): considers equal contribution of query-template and query-query relations;

• L(Q, T)+0.5(L(Q,Q)+L(T , T)): combines the query-template relations with equally contributing

template-template and query-query relations;

• L(Q, T) + L(Q,Q) + L(T , T) + L(T ,Q): similar to the previous loss, but additionally considering

template-query relation.

For each of the considered losses, we also test the impact of using in-batch top-k negatives. We

selected values for k experimentally, after testing different powers of 2, resulting in k = 4 for CS-P1 and

k = 24 for CS-Twitter. The results of these experiments are presented in Table 5.3.

Just as reported in PAIR (Ren et al., 2021), the loss that combines query-template and template-

template relations under-performs, suggesting some misalignment with the retrieval task. Similarly,

combining query-template and query-query relations also appears ineffective. The combination of both,

however, produces a considerable gains, suggesting complementarity. Moreover, in CS-P1, in-batch top-

k sampling improved performance consistently, regardless of the considered loss. The same is however

not true in the case of CS-Twitter. We believe this discrepancy relates to potential problems in the

dataset. Specifically, during the construction of the dataset, the cases where the clustering algorithm

failed to group responses sharing an underlying template produce incorrect hard negatives that are

harmful for training, often being picked up in the top-k lists.

5.3.4 Analysis on Harder Datasets

The previous studies focused on CS-Twitter and CS-P1, as the sizes of these datasets provide better

training conditions and more representative results. However, in a real world scenario, training data is

66

Methods
CS-P2 CS-P3 CS-P4

MRR R@3 R@10 MRR R@3 R@10 MRR R@3 R@10

Classifier 55.1 63.5 84.5 62.2 71.9 91.5 20.9 28.0 48.0

BM25 13.7 16.6 25.1 14.2 15.3 44.0 14.2 14.7 36.0
SBERT 0-shot 16.2 20.2 35.5 24.2 28.1 57.1 18.6 24.0 44.7

Random negatives 65.7 76.9 87.1 65.4 73.3 87.5 30.3 35.3 70.0
In-batch negt 64.6 74.0 89.1 65.2 72.7 86.9 33.9 40.7 60.0
In-batch negq 63.8 73.8 87.7 64.9 73.3 88.1 36.4 44.0 72.0
Labeled in-batch negq 64.1 72.6 85.2 64.8 72.7 87.2 35.4 40.0 69.3
Labeled in-batch negt,q 64.3 76.6 91.1 66.4 71.9 89.8 34.3 40.0 68.7

Proposed Approach 68.4 77.5 89.8 67.4 74.7 89.8 36.8 42.7 64.7

Table 5.4: Experimental results on other private datasets

not always abundant (e.g., brand new services) and, as such, achieving good performance in these con-

ditions is imperative. To test these scenarios, we evaluate the previous models on 3 smaller portuguese

datasets and present the results in Table 5.4:

1. Generically, CS-P2 and CS-P3 register a considerable higher performance when compared to all

other tested datasets, despite having relatively few training examples. This is likely a result of

the smaller number of templates, facilitating the retrieval task. Still, CS-P2 and CS-P3’ examples-

templates ratio is considerably lower than CS-P1, suggesting that as the template collection grows,

effective training requires considerably more training data.

2. The classifier’s performance was noticeably lower than that of the dense retriver models, especially

in CS-P4. This is expected as unlike the bi-encoders that can extract relevance judgements from

the template text, the classifier depends exclusively on the available training queries. For smaller

datasets, these are often insufficient to construct a general understanding of the query space and

the model fails to generalize for newer queries. This is especially noticeable when comparing

the classifier’s performance on CS-P2 and CS-P3. Unlike the bi-encoders, which achieve similar

performance in both datasets , the classifier clearly performed worse on CS-P2, the dataset with a

less queries per template. In the case of CS-P4, the larger difference is also partially explained by

the higher percentage of text examples involving templates that weren’t seen during training, which

the classifier is functionally unable to retrieve. Both factors cement the dense retriever architecture

as the stronger model in harsher training conditions.

3. The proposed approach mostly retained the best performance, further validating its ideas and

proving the robustness of the new methods in harsher training conditions.

4. The in-batch negq strategy was, in general, moderately effective , just like in CS-twitter. This,

again, is likely a result of the relatively small number of templates, in comparison to the considered

67

batch-size (32). In particular, the method achieves better performance than in-batch negt, in CS-

P3, but not on CS-P2, which is likely the consequence of CS-P2 having a considerably higher

number of templates than CS-P3 (82 >> 36).

5. The overall good results on multilingual data validate the applicability of the proposed approach in

other languages. This is expected, as the approach simply refines the representation space of the

base model. Given the multilingual pretraining of the base model, the approach is effectively able

to transfer multilingual knowledge.

5.4 Summary of Experiments

This chapter described the conducted experiments, providing insight over the challenges of template

retrieval and the proposed bi-encoder architecture. Section 5.1 detailed the datasets where the ex-

periments were performed, along with the metrics used to track the models’ performance. Section 5.2

described the experimental methodology. Finally, Section 5.3 presented all the reported experiments.

Specifically, Section 5.3.1 compared the performance of the tested approaches on the main datasets,

CS-P1 and CS-Twitter, showing the proposed approach to noticeably outperform all others, Section

5.3.2 tested the different sampling techniques and related their performance with the observed training

distributions, demonstrating their clear correlation and explaining the success of the proposed sampling

technique. Section 5.3.3 tested the contribution of each loss term in the proposed loss function, along

with the in-batch top-k negative technique, evidencing the complementary nature of the loss terms, and

finally, Section 5.3.4 compared the performance of the tested approaches on smaller datasets, expos-

ing the classifier’s poor performance when training with fewer training examples, in comparison with the

ranking models.

68

6
Conclusions and Future Work

Contents

6.1 Conclusions . 70

6.2 Future Work . 71

69

This chapter recaps the main contributions, along with the conclusions they bring, and suggests

future works focused on improving and adapting the proposed techniques.

6.1 Conclusions

This dissertation proposed a model for semi-automatic selection of answer templates, adapting SOTA

dense retrieval models to retrieve over the template collection. Our work explored the main challeng-

ing factors that oppose this adaptation, developing novel techniques to mitigate them, namely a semi-

independent query-template sampling technique and an expanded loss function that considers multiple

similarity relations. Experiments on several private datasets, and a purposely built dataset with public

Twitter customer support data, attest to the efficacy of the proposed techniques and the complete model.

Tests showed that the proposed sampling technique is not only able to model the skewed distribu-

tion of training examples resultant from the different use frequencies of each template, but also does so

efficiently. It achieves this by sampling queries and templates in separate stages, each focused on the

respective distribution. The technique, semi-independent query-template sampling, is likely the most

insightful contribution of our work. Its importance lies not only on the performance/efficiency gains it

provided, but also on the insight regarding the importance of separating the distribution of queries and

documents (i.e., templates) in training examples. We showed empirical evidence that correctly approxi-

mating these distributions is key in achieving good performance. Furthermore, we highlight the common

in-batch negatives technique’s inability to correctly model both distributions, as pair sampling imposes

the same distribution of queries and templates. This problem is, for the most part, overlooked in the re-

cent works of information retrieval, being often undermined by the lack of hard negatives, or abundance

of easy negatives, also characteristic with in-batch negatives (Yates et al., 2021). The constant under-

mining of this problem is likely a result of 2 main factors: (1) The success of hard negative sampling

techniques, proving by opposition the importance of explicitly including hard negatives; (2) The public

datasets that see most work (Nguyen et al., 2016) are often sparse, with most queries having a single

positive document and vice-versa, resulting in similar distributions, which is the optimal case for in-bath

negatives. These conclusions highlight the importance of testing different IR scenarios that challenge

the norm.

In regards to the proposed loss function, Ren et al. (2021), with PAIR, already introduced the potential

performance gains associated with considering similarity relations beyond the typical query-centric, but

only explored the dissimilarity between documents. The tests regarding the proposed loss show that the

query-query similarity relations are not only useful, but also appear to complement the former.

Although less impactful, the in-batch top-k negatives technique also produced modest improvements.

The technique is highly integrable and analogue to ANCE’s top-k negative sampling (Xiong et al., 2021),

70

but performed on a batch level. Surprisingly, it seems mostly unexplored, despite its simplicity. This is

likely the result of the somewhat counter-intuitive notion that a model may benefit from constricting the

available information within the batch. The idea works since the process only filters the easy negatives,

which not only fail to provide useful information, but may even be harmful.

Overall, the experiments on different datasets of customer support interactions attest to improve-

ments brought forward by the proposed ideas and lead us to conclude that a dense retriever framework

for retrieval of customer support templates is not only feasible, but competent.

6.2 Future Work

Despite positive, the results achieved, along with the techniques proposed, motivate their further explo-

ration. For organization, this section is subdivided into two: Section 6.2.1 pertaining to future work on

the topic of customer support with templates, improving the proposed techniques and proposing oth-

ers, whilst Section 6.2.2 focuses on extending and adapting the proposed methods to other areas of

information retrieval.

6.2.1 Customer Support

Continuing the work on the customer support with templates is imperative, in order to bring more at-

tention to an area of interest that is mostly unexplored, despite offering new and important challenges

not found on the currently considered information retrieval (IR) scenarios, and with any improvements

having positive real-world implications.

First of all, despite the noticeable improvements, some of the techniques proposed remain mostly

unexplored. In the case of the proposed loss function, despite containing four independently adjusted

terms, exploration mostly focused on testing different combinations but failed to consider different weight-

ing schemes, given the high costs associated with tuning 3 independent hyper-parameters (i.e., assum-

ing the weight of the forth term as the complement to the others). Even so, the consistent performance

gains, suggest that tuning may be key in achieving higher performances. Still on the topic, Ren et al.

(2021) suggested a training scheme with 2 phases, the first considering extended similarity relations and

the second simply query-centric, showing the latter to be crucial for optimizing the model to the retrieval

task. A similar training scheme could be applied here, by a first-stage that enforces all relations, possibly

even considering an extended dataset (Ren et al., 2021), and a second stage that focuses exclusively

on the retrieval task. Alternatively, instead of two separate training stages, one could consider dynamic

loss term weights, that vary throughout training (e.g., gradually reducing the weights of the loss terms

misaligned with the retrieval task). In-batch top-k sampling is another technique that could be explored

further, specifically by considering different values of k for each of the loss terms, as they’re likely inde-

71

pendently optimized. Similarly to scheduling the loss weights, dynamically varying k may also benefit

the model, since as training progresses, and the model improves retrieval, the number of easy negatives

within the batch increases, suggesting a smaller k, to hopefully filter them. This idea is inline with the

Learning To Retrieve Zhan et al. (2021, 2020a) technique, albeit less aggressive.

As discussed in Section 3, one of the main benefits of considering the transformer framework lies

in the ease of swapping the base model. Given the continuous development and improvement of pre-

trained models, a fruitful line of future work lies on testing newer base models, likely to improve perfor-

mance/efficiency at virtually no cost (i.e., other than training). Furthermore, preliminary tests with the

recently developed paraphrase-multilingual-MiniLM-L12-v2 model from the Sentence-Transformers

library (Reimers and Gurevych, 2020), show modest performance improvements, despite having close

to twice as fast inference speed and smaller vector representations (25% smaller).

Finally, although this thesis focused on the bi-encoder architecture, the strong performance behind

the classifier baseline is notable, despite its relative simplicity. These characteristics make it not only

a solid baseline, but a full-fledged model for the real-world scenario, under the right conditions (e.g.,

well established template collections, mostly static and with abundant training examples). As such,

improving the classifier model should also be considered as a direction for future work. Here, just

like with the bi-encoder architecture, changing the base model with newer developments is an obvious

follow-up, very likely to produce results. Another possible line of work, more specific with the classifier

architecture, lies in considering newer developments on loss functions for single-label classification,

namely the asymmetric loss (Ben-Baruch et al., 2020). This loss tackles the common positive-negative

imbalance, characteristic with classification problems with a large number of classes, as is the case of

template classification, making it a great fit.

6.2.2 Beyond Customer Support

Although the proposed techniques were motivated by the challenges associated with customer support

with templates, they may provide a useful contribution to works beyond this scenario.

Given the simplicity of in-batch top-k negatives, the technique can virtually be used in any retrieval

scenario, without any adaptation (i.e., apart from tuning), although it’s likely more useful when using

shared negatives, such as the common in-batch negatives. A particularly interesting case to test is

with cross-batch negatives Qu et al. (2021), where the massive batches are very likely to include an

abundance of easy negatives, and may benefit heavily from the technique.

Extending PAIR with the consideration of other loss terms, may improve performance. Furthermore,

just like in pair, a powerful cross-encoder model may be used to provide pseudo-labels, but for query

pairs, allowing the formation o groups of queries that should have similar representations, akin to the

assumption that queries from the same template should be similar.

72

The labelled in-batch negatives technique not only counters the challenges associated with the many-

to-one relation between queries and templates, but it thrives on it, leveraging the fact the template label

is informative enough to identify the positive and negative pairs. This makes it a great fit for IR scenarios

such as FAQ retrieval or QA with query paraphrases, where many-to-one relations are commonly found.

However, the idea fails when considering many-to-many relations, which are typical in common retrieval

scenarios. Here, one could generate pseudo-labels that follow a many-to-one relation, by grouping

clusters of similar queries or documents. Given this structure, training could follow two stages: (1)

A coarse-grain stage that leverages the many-to-one structure to efficiently train to model to correctly

group query and document representations, within the same cluster; (2) A fine-grained stage that learns

to retrieve the correct documents, within each cluster (e.g., with ADORE (Zhan et al., 2021)).

73

74

Bibliography

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint arXiv:1607.06450.

Ba, L. J. and Caruana, R. (2013). Do deep nets really need to be deep? arXiv preprint arXiv:1312.6184.

Barkan, O., Razin, N., Malkiel, I., Katz, O., Caciularu, A., and Koenigstein, N. (2019). Scalable attentive

sentence-pair modeling via distilled sentence embedding. arXiv preprint arXiv:1908.05161.

Beltagy, I., Lo, K., and Cohan, A. (2019). SciBERT: A pretrained language model for scientific text. arXiv

preprint arXiv:1903.10676.

Ben-Baruch, E., Ridnik, T., Zamir, N., Noy, A., Friedman, I., Protter, M., and Zelnik-Manor, L. (2020).

Asymmetric loss for multi-label classification. arXiv preprint arXiv:2009.14119.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning. In Proceedings of

the 26th Annual International Conference on Machine Learning, ICML ’09, page 41–48. Association

for Computing Machinery.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017). Enriching word vectors with subword

information. Transactions of the Association for Computational Linguistics, 5:135–146.

Burges, C. J. (2010). From ranknet to lambdarank to lambdamart: An overview. Learning, 11(23-581).

Campello, R. J. G. B., Moulavi, D., and Sander, J. (2013). Density-based clustering based on hierarchical

density estimates. In Pei, J., Tseng, V. S., Cao, L., Motoda, H., and Xu, G., editors, Advances in

Knowledge Discovery and Data Mining.

Caruana, R. (1997). Multitask learning. Mach. Learn., 28(1):41–75.

Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D. (2020). ELECTRA: Pre-training text encoders as

discriminators rather than generators. arXiv preprint arXiv:2003.10555.

Collobert, R. and Weston, J. (2008). A unified architecture for natural language processing: Deep neural

networks with multitask learning. In Proceedings of the 25th International Conference on Machine

Learning, ICML ’08, page 160–167. Association for Computing Machinery.

75

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, E., Ott, M.,

Zettlemoyer, L., and Stoyanov, V. (2020). Unsupervised cross-lingual representation learning at scale.

Craswell, N., Mitra, B., Yilmaz, E., Campos, D., and Voorhees, E. M. (2020). Overview of the TREC

2019 deep learning track. arXiv preprint arXiv:2003.07820.

Crestani, F., Lalmas, M., Van Rijsbergen, C. J., and Campbell, I. (1998). “is this document rele-

vant?. . . probably”: A survey of probabilistic models in information retrieval. ACM Comput. Surv.,

30:528–552.

Dai, Z. and Callan, J. (2019a). Context-aware sentence/passage term importance estimation for first

stage retrieval. arXiv preprint arXiv:1910.10687.

Dai, Z. and Callan, J. (2019b). Context-aware sentence/passage term importance estimation for first

stage retrieval.

Devlin, J. (2018). Multilingual BERT README.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep bidirectional

transformers for language understanding. In Proceedings of the 2019 Conference of the North.

Furnas, G. W., Landauer, T. K., Gomez, L. M., and Dumais, S. T. (1987). The vocabulary problem in

human-system communication. Commun. ACM, 30(11):964–971.

Gao, L., Dai, Z., and Callan, J. (2020a). Understanding BERT rankers under distillation. Proceedings of

the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval.

Gao, L., Dai, Z., Chen, T., Fan, Z., Van Durme, B., and Callan, J. (2020b). Complementing lexical

retrieval with semantic residual embedding. arXiv preprint arXiv:2004.13969.

Gururangan, S., Marasović, A., Swayamdipta, S., Lo, K., Beltagy, I., Downey, D., and Smith, N. A. (2020).

Don’t stop pretraining: adapt language models to domains and tasks. arXiv preprint arXiv:2004.10964.

Han, S., Wang, X., Bendersky, M., and Najork, M. (2020). Learning-to-rank with BERT in TF-ranking.

arXiv preprint arXiv:2004.08476.

Hardalov, M., Koychev, I., and Nakov, P. (2018). Towards automated customer support. In International

Conference on Artificial Intelligence: Methodology, Systems, and Applications. Springer.

Harman, D. (2019). Information retrieval: The early years. Foundations and Trends® in Information

Retrieval, 13(5):425–577.

Harris, Z. S. (1954). Distributional structure. WORD, 10(2-3):146–162.

76

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural network. arXiv preprint

arXiv:1503.02531.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks,

4(2):251 – 257.

Humeau, S., Shuster, K., Lachaux, M.-A., and Weston, J. (2019). Poly-encoders: Transformer ar-

chitectures and pre-training strategies for fast and accurate multi-sentence scoring. arXiv preprint

arXiv:1905.01969.

Johnson, J., Douze, M., and Jégou, H. (2019). Billion-scale similarity search with GPUs. IEEE Transac-

tions on Big Data.

Kaelbling, L., Littman, M., and Moore, A. (1996). Reinforcement learning: A survey. J. Artif. Intell. Res.,

4:237–285.

Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., and tau Yih, W. (2020). Dense

passage retrieval for open-domain question answering. In Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing (EMNLP).

Khattab, O. and Zaharia, M. (2020). Colbert: Efficient and effective passage search via contextualized

late interaction over bert. In Proceedings of the 43rd International ACM SIGIR conference on research

and development in Information Retrieval, pages 39–48.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Kitaev, N., Kaiser, Ł., and Levskaya, A. (2020). Reformer: The efficient transformer. arXiv preprint

arXiv:2001.04451.

Lai, G., Xie, Q., Liu, H., Yang, Y., and Hovy, E. (2017). RACE: Large-scale reading comprehension

dataset from examinations. In Proceedings of the 2017 Conference on Empirical Methods in Natural

Language Processing, pages 785–794.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2019). AlBERT: A lite bert for

self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.

Li, C., Yates, A., MacAvaney, S., He, B., and Sun, Y. (2020). PARADE: Passage representation aggre-

gation for document reranking. arXiv preprint arXiv:2008.09093.

77

Lin, J., Ma, X., Lin, S.-C., Yang, J.-H., Pradeep, R., and Nogueira, R. (2021). Pyserini: A python toolkit

for reproducible information retrieval research with sparse and dense representations. In Proceedings

of the International ACM SIGIR Conference on Research and Development in Information Retrieval.

Liu, L., Wang, H., Lin, J., Socher, R., and Xiong, C. (2019a). MKD: a multi-task knowledge distillation

approach for pretrained language models. arXiv preprint arXiv:1911.03588.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and

Stoyanov, V. (2019b). RoBERTa: A robustly optimized bert pretraining approach. arXiv preprint

arXiv:1907.11692.

Luan, Y., Eisenstein, J., Toutanova, K., and Collins, M. (2020). Sparse, dense, and attentional represen-

tations for text retrieval. arXiv preprint arXiv:2005.00181.

MacAvaney, S., Nardini, F. M., Perego, R., Tonellotto, N., Goharian, N., and Frieder, O. (2020). Train-

ing curricula for open domain answer re-ranking. Proceedings of the 43rd International ACM SIGIR

Conference on Research and Development in Information Retrieval.

Malkov, Y. A. and Yashunin, D. A. (2018). Efficient and robust approximate nearest neighbor search

using hierarchical navigable small world graphs. IEEE transactions on pattern analysis and machine

intelligence, 42(4):824–836.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representations in

vector space. arXiv preprint arXiv:1301.3781.

Mitra, B. and Craswell, N. (2018). An introduction to neural information retrieval. Foundations and

Trends® in Information Retrieval, 13(1):1–126.

Morgan, W., Greiff, W., and Henderson, J. (2004). Direct maximization of average precision by hill-

climbing, with a comparison to a maximum entropy approach. In Proceedings of HLT-NAACL 2004:

Short Papers, pages 93–96. Association for Computational Linguistics.

Nguyen, T., Rosenberg, M., Song, X., Gao, J., Tiwary, S., Majumder, R., and Deng, L. (2016). MS

MARCO: A human generated machine reading comprehension dataset. In CoCo@ NIPS.

Nogueira, R. and Cho, K. (2019). Passage re-ranking with bert. arXiv preprint arXiv:1901.04085.

Nogueira, R., Jiang, Z., and Lin, J. (2020). Document ranking with a pretrained sequence-to-sequence

model. arXiv preprint arXiv:2003.06713.

Nogueira, R., Lin, J., and Epistemic, A. (2019a). From doc2query to docTTTTTquery. Online preprint.

78

Nogueira, R., Yang, W., Cho, K., and Lin, J. (2019b). Multi-stage document ranking with BERT. arXiv

preprint arXiv:1910.14424.

Nogueira, R., Yang, W., Lin, J., and Cho, K. (2019c). Document expansion by query prediction. arXiv

preprint arXiv:1904.08375.

Onal, K. D., Zhang, Y., Altingovde, I. S., Rahman, M. M., Karagoz, P., Braylan, A., Dang, B., Chang,

H.-L., Kim, H., McNamara, Q., Angert, A., Banner, E., Khetan, V., McDonnell, T., Nguyen, A. T., Xu,

D., Wallace, B. C., de Rijke, M., and Lease, M. (2018). Neural information retrieval: at the end of the

early years. Information Retrieval Journal, 21(2):111–182.

Pasumarthi, R. K., Bruch, S., Wang, X., Li, C., Bendersky, M., Najork, M., Pfeifer, J., Golbandi, N., Anil,

R., and Wolf, S. (2019). Tf-ranking. Proceedings of the 25th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L. (2018). Deep

contextualized word representations. arXiv preprint arXiv:1802.05365.

Qu, Y., Ding, Y., Liu, J., Liu, K., Ren, R., Zhao, W. X., Dong, D., Wu, H., and Wang, H. (2021). RocketQA:

An optimized training approach to dense passage retrieval for open-domain question answering. In

Proceedings of the 2021 Conference of the North American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu, P. J.

(2020). Exploring the limits of transfer learning with a unified text-to-text transformer.

Rajpurkar, P., Jia, R., and Liang, P. (2018). Know what you don’t know: Unanswerable questions for

SQuAD. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics

(Volume 2: Short Papers), pages 784–789.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016). SQuAD: 100,000+ questions for machine

comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natural

Language Processing, pages 2383–2392.

Reimers, N. and Gurevych, I. (2020). Making monolingual sentence embeddings multilingual using

knowledge distillation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-

guage Processing.

Reimers, N., Gurevych, I., Reimers, N., Gurevych, I., Thakur, N., Reimers, N., Daxenberger, J.,

Gurevych, I., Reimers, N., Gurevych, I., et al. (2019). Sentence-bert: Sentence embeddings us-

ing siamese bert-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural

Language Processing. Association for Computational Linguistics.

79

Ren, R., Lv, S., Qu, Y., Liu, J., Zhao, W. X., She, Q., Wu, H., Wang, H., and Wen, J.-R. (2021). PAIR:

Leveraging passage-centric similarity relation for improving dense passage retrieval. In Findings of

the Association for Computational Linguistics: ACL-IJCNLP 2021.

Robertson, S. (1977). The probability ranking principle in ir. Journal of Documentation, 33:294–304.

Robertson, S., Walker, S., Jones, S., Hancock-Beaulieu, M. M., and Gatford, M. (1995). Okapi at trec-3.

In Overview of the Third Text REtrieval Conference (TREC-3), pages 109–126. Gaithersburg, MD:

NIST.

Robertson, S. and Zaragoza, H. (2009). The probabilistic relevance framework: Bm25 and beyond.

Found. Trends Inf. Retr., 3(4).

Rumelhart, D., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-propagating

errors. Nature, 323:533–536.

Salton, G. and Buckley, C. (1988). On the use of spreading activation methods in automatic information.

In Proceedings of the 11th Annual International ACM SIGIR Conference on Research and Develop-

ment in Information Retrieval, SIGIR ’88, page 147–160. Association for Computing Machinery.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller,

faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

Sherstinsky, A. (2020). Fundamentals of recurrent neural network (rnn) and long short-term memory

(lstm) network. Physica D: Nonlinear Phenomena, 404:132306.

Simmons, R. F. (1965). Answering english questions by computer: A survey. Commun. ACM, 8:53–70.

Sun, S., Cheng, Y., Gan, Z., and Liu, J. (2019a). Patient knowledge distillation for BERT model com-

pression. arXiv preprint arXiv:1908.09355.

Sun, Y., Wang, S., Li, Y., Feng, S., Chen, X., Zhang, H., Tian, X., Zhu, D., Tian, H., and Wu, H. (2019b).

Ernie: Enhanced representation through knowledge integration. arXiv preprint arXiv:1904.09223.

Tang, R., Lu, Y., Liu, L., Mou, L., Vechtomova, O., and Lin, J. (2019). Distilling task-specific knowledge

from BERT into simple neural networks. arXiv preprint arXiv:1903.12136.

Taylor, W. L. (1953). “cloze procedure”: A new tool for measuring readability. Journalism Quarterly,

30(4):415–433.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin,

I. (2017). Attention is all you need. In Proceedings of the 31st International Conference on Neural

Information Processing Systems.

80

Voorhees, E. M. (1994). Query expansion using lexical-semantic relations. In Proceedings of the 17th

Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,

SIGIR ’94, page 61–69, Berlin, Heidelberg. Springer-Verlag.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. R. (2018). GLUE: A multi-task bench-

mark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461.

Weston, J., Watkins, C., et al. (1999). Support vector machines for multi-class pattern recognition. In

Esann, volume 99, pages 219–224.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q.,

Macherey, K., et al. (2016). Google’s neural machine translation system: Bridging the gap between

human and machine translation. arXiv preprint arXiv:1609.08144.

Xie, Y., Yang, W., Tan, L., Xiong, K., Yuan, N. J., Huai, B., Li, M., and Lin, J. (2020). Distant supervision for

multi-stage fine-tuning in retrieval-based question answering. In Proceedings of The Web Conference

2020, WWW ’20, page 2934–2940, New York, NY, USA. Association for Computing Machinery.

Xiong, L., Xiong, C., Li, Y., Tang, K.-F., Liu, J., Bennett, P. N., Ahmed, J., and Overwijk, A. (2021).

Approximate nearest neighbor negative contrastive learning for dense text retrieval. In International

Conference on Learning Representations.

Xu, J. and Croft, W. B. (2000). Improving the effectiveness of information retrieval with local context

analysis. ACM Trans. Inf. Syst., 18(1):79–112.

Xu, J., He, X., and Li, H. (2020). Deep learning for matching in search and recommendation. Founda-

tions and Trends® in Information Retrieval, 14(2–3):102–288.

Xue, L., Constant, N., Roberts, A., Kale, M., Al-Rfou, R., Siddhant, A., Barua, A., and Raffel, C. (2020).

mt5: A massively multilingual pre-trained text-to-text transformer.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., and Le, Q. V. (2020). Xlnet: Generalized

autoregressive pretraining for language understanding.

Yates, A., Nogueira, R., and Lin, J. (2021). Pretrained transformers for text ranking: Bert and beyond. In

Proceedings of the 14th ACM International Conference on Web Search and Data Mining.

Yih, S. W.-t., Toutanova, K., Platt, J., and Meek, C. (2011). Learning discriminative projections for text

similarity measures. In Proceedings of the Fifteenth Conference on Computational Natural Language

Learning. Association for Computational Linguistics.

Zhan, J., Mao, J., Liu, Y., Guo, J., Zhang, M., and Ma, S. (2021). Optimizing dense retrieval model

training with hard negatives. arXiv preprint arXiv:2104.08051.

81

Zhan, J., Mao, J., Liu, Y., Zhang, M., and Ma, S. (2020a). Learning to retrieve: How to train a dense

retrieval model effectively and efficiently. arXiv preprint arXiv:2010.10469.

Zhan, J., Mao, J., Liu, Y., Zhang, M., and Ma, S. (2020b). RepBERT: Contextualized text embeddings

for first-stage retrieval. arXiv preprint arXiv:2006.15498.

Zhang, K., Xiong, C., Liu, Z., and Liu, Z. (2020). Selective weak supervision for neural information

retrieval. Proceedings of The Web Conference 2020.

82

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms

	1 Introduction
	1.1 Problem Definition
	1.2 Objective
	1.3 Methodology
	1.4 Contributions
	1.5 Organization of the Dissertation

	2 Fundamental Concepts
	2.1 Neural Models
	2.1.1 Feed-Forward Models
	2.1.2 Training with Gradient Descent
	2.1.3 Seq2Seq Architectures
	2.1.4 The Transformer Architecture
	2.1.5 The BERT Transformer Encoder Model
	2.1.6 BERT Variants
	2.1.7 The T5 Model for Multi-Task Learning

	2.2 Text Representation Models
	2.2.1 Sparse Models
	2.2.2 Dense Models and Word Embeddings

	3 Related Work
	3.1 Ranking Before Transformers
	3.1.1 Frequency-Based Indexing and BM25
	3.1.2 Deep Learning-Based Ranking

	3.2 Interaction-Based Transformer Architectures
	3.2.1 Simple Relevance Classification with MonoBERT
	3.2.2 MonoBERT Extensions
	3.2.3 Document Ranking
	3.2.4 Multi-Stage Rerankers
	3.2.5 Beyond BERT
	3.2.6 Document Preprocessing Techniques

	3.3 Representation-Based Transformer Architectures
	3.3.1 Simple Comparison Functions for Ranking
	3.3.2 Complex Comparison Functions for Ranking

	4 Methodology
	4.1 Simple Dense Template Retrieval
	4.1.1 Architecture
	4.1.2 Loss Function
	4.1.3 In-Batch Negatives

	4.2 Improved Dense Template Retrieval
	4.2.1 Batch Generation
	4.2.2 Batch Exploration

	4.3 Summary of Techniques

	5 Experiments
	5.1 Datasets and Metrics
	5.1.1 Evaluation Metrics

	5.2 Experimental Setup
	5.2.1 Baselines
	5.2.2 Pre-Trained Language Models
	5.2.3 Hyper-Parameters

	5.3 Experimental Results
	5.3.1 Main Results
	5.3.2 Analysis on the Sampling Techniques
	5.3.3 Analysis on the Loss Terms
	5.3.4 Analysis on Harder Datasets

	5.4 Summary of Experiments

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work
	6.2.1 Customer Support
	6.2.2 Beyond Customer Support

	Bibliography

