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Resumo

A utilização de novos métodos para simular escoamentos de transição assume uma importância

crescente no mundo da aerodinâmica. Na gama média de números de Reynolds (105 − 107), com

aplicações que vão desde o escoamento em torno de um drone até ao estudo de modelos a serem

utilizados num túnel de vento, a utilização das equações RANS com modelos de turbulência associa-

dos a um modelo de transição é vista como uma alternativa precisa e mais barata a outros métodos,

tais como DNS ou LES. Usando as equações RANS, um dos métodos mais precisos para modelar a

turbulência são os modelos de tensões de Reynolds (RSM). Os RSM não são isotrópicos e são vistos

como sendo uma alternativa mais fiável para simulações de RANS com média no tempo, quando com-

parados com os EVMs. Associar RSMs a um método fiável de prever de transição é, portanto, algo que

deve ser experimentado, a fim de verificar se os resultados obtidos são satisfatórios e precisos quando

comparados com outros métodos de previsão de turbulência, e com dados experimentais.

O foco deste trabalho é então aplicar as equações RANS para modelar e captar as propriedades

médias de um escoamento de transição. Estas equações são completadas com o modelo de turbulência

SSG-LRR-ω, acoplado ao modelo de transição γ − Reθ. São estudados vários casos de teste: uma

placa plana, um perfil, e um esferóide 6:1. Será avaliada a robustez numérica deste acoplamento, e

a influência das condições de fronteira no local de transição, sendo estas caracterı́sticas comparadas

com as de outros acoplamentos: o k − ω SST + γ −Reθ e o k −
√
kL + γ −Reθ.

Palavras-chave: RANS, SSG-LRR-ω, γ −Reθ, escoamento de transição
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Abstract

The use of new methods to simulate transitional flows is gaining increasing importance in the world

of aerodynamics. In the middle Reynolds number range (105 − 107), with applications ranging from the

flow around a drone to the study of models to be used in a wind-tunnel, the use of RANS approach with

turbulence models coupled with a method for predicting transition appears as an accurate and cheaper

alternative to other methods, such as DNS or LES. In the RANS approach, one of the most precise

methods for modelling turbulence is the RSMs. RSMs present the advantage of not being isotropic and

are viewed as being a more accurate alternative for time-averaged RANS simulations when compared

to EVMs. Coupling this with a reliable transition-prediction method is, therefore, something that must

be tried out in order to verify that the results obtained are satisfactory and accurate when compared to

other turbulence predicting methods, and with experimental data.

The focus of this work is then to apply the RANS equations for modelling and capture the mean

properties of a transitional flow. These equations are closed with the SSG-LRR-ω turbulence model,

coupled with the γ − Reθ transition model. Several test-cases are studied: a flat plate, an airfoil, and a

6:1 prolate spheroid. The numerical robustness of this coupling is assessed, as well as the influence

of the inlet turbulence boundary conditions on the location of transition, with these characteristics being

compared with the ones from other couplings: the k − ω SST + γ −Reθ and the k −
√
kL + γ −Reθ.

Keywords: RANS, SSG-LRR-ω, γ −Reθ, transitional flow
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Chapter 1

Introduction

The constant pursuit of new ways of simulating increasingly complex transitional flows motivates

inumerous studies and research in the aerodynamics field [1–3]. For the past few years, new tools

have been developed, with the purpose of increasing the simulation’s modelling accuracy, without a

significant rise in the computational costs . For cases of transitional flows, where a significant part of the

flow is laminar, the use of the Reynolds averaged Navier Stokes (RANS) mathematical approach with a

Reynolds stress model (RSM) to model turbulence, coupled with a reliable transition prediction method

is emerging as an alternative to other numerical methods such as the direct numerical simulation (DNS),

large eddy simulation (LES), or the eN method. RSMs present the advantage of being able to deal with

turbulence anisotropy and are often regarded as being a more accurate alternative for time-averaged

RANS simulations, when compared to eddy viscosity based models (EVMs). Combining RSMs with

transition models can be advantageous in geometries with strong curvature, with rotational flows [4],

where other models as the k−ω SST model [5] might be less reliable. The focus of this work draws upon

assessing the coupling between the SSG-LRR-ω Reynolds stress model [6] and the γ − Reθ transition

model [7].

There are two main objectives of this research:

1. Evaluate the numerical robustness of the SSG-LRR-ω + γ-Reθ combination, i.e. check the ability

to reduce the residuals to negligible levels;

2. Evaluate the influence of inlet turbulence boundary conditions on the location of transition predicted

with the SSG-LRR-ω+γ-Reθ combination and compare it with the results obtained with the k − ω

SST+γ-Reθ combination;

To fullfill these objectives, three different test cases were selected, each one having different goals:

1. 2D study of a flow over a flat plate, which allows the use of an inlet boundary relatively close to the

leading edge;

2. 2D study of a flow around the NFL1-0416 airfoil that exhibits separation induced transition as well

as natural transition;
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3. 3D Study of a flow around a prolate spheroid to include a three-dimensional geometry.

1.1 Thesis Outline

This thesis has been divided into various chapters, each focusing on different relevant aspects for

the assessment and evaluation of the SSG-LRR-ω+γ −Reθ model:

1. Chapter 1 features a brief review of the transition phenomena, adressing the different mechanisms

behind it. It also focuses on the latest developments in the study of transitional flows, provid-

ing an overview about the different approaches available to conduct studies regarding this topic.

This chapter also introduces the reader to ReFRESCO [8], the software used to perform all the

simulations in this thesis.

2. Chapter 2 states the mathematical approach that is used in this work to simplify the Navier-Stokes

equations. It also furnishes a characterization of the different turbulence and transition models

used, as well as details regarding the different couplings used in this thesis. A brief explanation of

non-dimensional turbulence quantities is also given.

3. Chapter 3 states the numerical options used in ReFRESCO to numerically solve the mathematical

approach applied to the problem. It also yields a characterization of the decay of the turbulence

quantitites along the domain, and its implications in the work developed in this thesis.

4. Chapter 4 presents the results obtained for the flat plate 2D test-case, with the grid refinement

studies necessary to assess the numerical errors inherent to the SSG-LRR-ω + γ − Reθ, k − ω

SST + γ − Reθ and k −
√
LL + γ − Reθ couplings. Sensitivity studies are presented, to evaluate

the influence that the inlet turbulence boundary conditions have on these couplings, namely in the

prediction of transition.

5. Chapter 5 features the results achieved in the airfoil 2D test-case, where another sensitivity anal-

ysis was performed. It is also shown a comparison between the results obtained with the SSG-

LRR-ω + γ −Reθ and the k − ω SST + γ −Reθ couplings.

6. Chapter 6 comprises all the analysis performed with the 3D test-case of the prolate spheroid,

where the focus is to evaluate the influence of the inlet turbulent boundary conditions on the

predicition of transition using the SSG-LRR-ω + γ −Reθ and the k − ω SST + γ −Reθ couplings.

7. Chapter 7 strives to gather all the relevant conclusions withdrawn from the analysis performed with

the different test-cases, and endorses some suggestions for future work that might be done in this

field.
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1.2 Transition Phenomena

In transitional flows, the transition phenomena is obviously an important part of the flow. The transi-

tion from laminar to turbulent happens due to the amplification of small disturbances naturally existent

in the environment, that influence the boundary layer [9]. These disturbances can be of various types:

mechanical vibrations of the body itself, pressure waves related to acoustic phenomena, surface rough-

ness, etc. There are certain characteristics, such as the Reynolds number of the flow, the shape of the

velocity profile in the boundary layer, the disturbance wave-length, its angular frequency or propagation

velocity, that can make the flow to denote receptivity to the small disturbances. The disturbance can be

so amplified that, after a highly nonlinear process, it leads to a degeneration of the flow into a chaotic,

turbulent regime. Alternatively, if it is damped, the regime will remain organized, laminar. [10]

For the various types of disturbances, the transition process can be described in the following four

phases:

1. Shear layer instability due to essentially two-dimensional perturbations;

2. Appearance of secondary disturbances that contribute to tri-dimensionalities;

3. Random formation of turbulent eruptions;

4. Degeneracy in turbulent regime .

If the amplitude of the disturbance is very high, the first two, very rapid steps of the normal transition

process are bypassed, turbulent eruptions arise spontaneously, and the transition occurs abruptly, a

phenomena known as bypass transition [11].

Types of Instabilities

To describe the instabilities that a laminar boundary layer may be subjected to, that will later induce

transition from laminar to turbulent regime, one can recur to the Orr-Sommerfeld equation [12]. This

intends to find the biggest amplification rates of a given flow instability, that can be characterized by,

among others, two parameters: k and ω. k is the disturbance’s wave number, representing the number

of waves by unit of length in rad/m, and ω is the angular frequency - the number of cycles by unit of time,

in rad/s. When the ω of a given instability is zero, it can be considered a purely spatial amplification. With

a given k and Reynolds number, the Orr-Sommerfeld equation assumes the shape of an eigenfunction

Φ and eigenvalues c = cr + ici. These eigenvalues are usually represented in a k vs Re diagram where

each point corresponds to a pair (cr; ci). The geometric place of the points of ci = 0 (neutral stability

curve) separates the stable dampened regions (ci > 0) from the unstable regions where the instabilities

are amplified (ci < 0).

These instabilities may be viscous or inviscid. Viscous instabilities can only occur when the Reynolds

number is finite. On the other hand, for inviscid instabilities, even in the situation of Re =∞ (simulation

of ideal flow), there is a range of perturbation’s wavelengths that can be amplified. When looking at the
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average velocity profile of a boundary layer, they may or may not exhibit an inflection point. This will

influence the type of instabilities they can subjected to [10].

Free shear layers (such as jets, wakes and mixing layers) and boundary layers in adverse pressure

gradients do exhibit velocity profiles with an inflexion point, and so they can be subjected to both viscous

and inviscid instabilities. Boundary layers in null and favourable pressure gradients do not present an

inflexion point in their velocity profile, and so they have characteristics of only viscous instabilities.

This behaviour is displayed in figure 1.1, where the neutral stability curves for velocity profiles with

and without inflexion points are displayed. The inner part of a curve represents the unstable region, and

the outer part the stable region. As expected, the unstable region for boundary layers whose velocity

profiles have an inflection point is bigger and includes the unstable region for velocity profiles with no

point of inflection. The difference between the two curves can be seen as the inviscid instability region.

Figure 1.1: Neutral stability curves for velocity profiles with and without inflection point [13].

Crossflow Transition

Crossflow transition is a common phenomena in some curved bodies, such as spheroids or swept

wings. In the inviscid region outside the boundary layer, the curvature of the body and the pressure-

gradients produce curved streamlines in the boundary layer’s edge. In this region outside of the bound-

ary layer, the centripetal force is counteracted by the pressure gradients. However, inside the boundary

layer, the streamwise velocity is reduced, due to viscous effect in the near-wall region, therefore reducing

the centripetal forces. Since the pressure gradient remains unchanged, this creates a secondary flow in

the boundary layer, perpendicular to the streamwise direction, usually named crossflow [14]. Physically,

this inflectional boundary layer profile is inherently unstable and entails the development of a series of

streamwise-oriented co-rotating vortical disturbances that redistribute momentum within the boundary

layer. These instability modes can be of a stationary or traveling nature, depending on boundary layer

receptivity to free stream conditions and surface roughness, and have been found to have a distinctive

effect on the topology of the transition front. The growth and laminar breakdown of these crossflow

instability mechanisms will then eventually induce transition [15].

5



Figure 1.2 depicts the 3-D sketch of the various velocity profiles that are characteristic of a 3-D

boundary layer with crossflow.

Figure 1.2: Depiction of the velocity profiles in a crossflow transition environment [16] .

Streamwise Transition

In the streamwise direction, several types of transition can occur, such as the Tolmien-Schlichting

or natural transition, bypass transition and separation induced transition.

Tolmien-Schlichting transition occurs usually in zero-pressure or weak adverse-pressure gradi-

ent conditions, by the action of unstable disturbances, namely a bi-dimensional progressive wave that

emerges in boundary layer flows [17]. When the velocity fluctuations reach a certain amplitude, sec-

ondary, less powerful instabilities will arise, resembling longitudinal vortices. The progressive wave is

then disturbed by these, assuming a tri-dimensional shape, and causing tri-dimensional changes to the

velocity profile inside the boundary layer.

This is what creates the so-called hairpin vortices. These vortices are of an unstable nature, with the

discrepancies in the velocity profile causing their filaments to stretch, increasing vorticity, and increasing

the intensity of the disturbance velocities. In consequence, the disturbance to the fundamental instability

will be enlarged, producing high shear stress local regions, randomly distributed in space and time,

which tend to detonate in chaotic, tri-dimensional eruptions. These will expand, affecting the whole field,

that then assumes statistically stationary characteristics corresponding to a fully developed turbulent

state [10].

Figure 1.3, taken from [18], depicts the different phases of the transition by the action of Tolmien-

Schlichting waves.
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Figure 1.3: Depiction of transition induced by Tolmien-Schlichting waves [18].

On the other hand, bypass transition is forced by very strong freestream perturbations, that cause

the first steps of transition described in figure 1.3 to be bypassed, in a way that the turbulent spots are

directly produced. This type of transition is common among turbomachinery flows, and occurs usually

when the freestream turbulence intensity is greater than 1% [19]. Increased surface roughness and

turbulent injections into the boundary layer also promote the occurence of bypass transition.

Separation-induced Transition occurs when the laminar boundary layer is under strong adverse

pressure gradients, that will stimulate flow separation. When some disturbances such as the Kelvin-

Helmholtz (K-H) instabilities [20], or the Tolmien-Schlichting waves (these latter only prevail when the

Reynolds number is lower) enter the separated shear layer, the recirculating flow inside of it will interact

with them, leading to their growth. This will eventually trigger transition further downstream. Once

transition has started, the momentum exchange in the mixing layer decreases the size of the reverse

flow bubble, and hence its displacement effect as well. This shear layer will thus entrain more fluid, and

contribute to the reattachment of it. This entire process forms what is called laminar separation/turbulent

reattachment bubble on the surface of the body, as depicted in figure 1.4, composed by [21]. The size

of the separation bubble will vary according to the inlet turbulence boundary conditions - the larger the

turbulence intensity, the smaller the bubble, since the flow will more promptly transit to turbulent. The

value of the adverse pressure gradient will also play a part in the bubble size, since larger gradients will

originate bigger bubbles. The Reynolds number also influences the bubble dimension: for lower values

of it, transition may occur slowly, and the turbulent mixing effect may be insufficient to make the flow

reattach.
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Figure 1.4: Depiction of separation induced transition [21].

1.3 Transitional Flows Study Overview

Simulating flows around bodies with complex geometries is fundamental in early stages of the design

process of numerous engineering projects. Whether in the air flow around an airplane, a drone, or a

race car, an increase in the simulation’s modelling accuracy is beneficial to improve the efficiency of the

final design itself, and of the whole process that leads to it.

That being said, the discovery and evaluation of new methods to simulate transitional flows, as the

one presented in this thesis, that allow to correct any of the shortcomings of the current state of the art,

is beneficial. Simulating transitional flows is of increased importance when studying flows at a mid-range

Reynolds numbers (1 × 105 to 5 × 106), where transition plays a major role in the overall flow. Some

practical real life applications of these flows can include the airflow around a drone, wind tunnel flows

over scaled models, the water motion around a small submarine, or even the study of the flight of birds

of prey, such as eagles and hawks.

To study transitional flows over objects with simple geometries, methods known for their superior

accuracy such as the direct numerical simulation (DNS) can be a possibility [22]. It involves the direct

solution of the unsteady Navier Stokes equations in the whole spectrum of spatial and temporal scales

of the flow. In the DNS approach, the number of needed mesh points grows exponentially with the

Reynolds number, increasing the memory storage requirement [23]. Therefore, it is currently suitable

to simulate problems only at relatively low Reynolds numbers. Several researches have been made in

the recent years, regarding this topic, simulating the entire transition regime to a fully turbulent boundary

layer, including bypass transition due to high-intensity free-stream turbulence [24, 25], the transition

processes associated with linear instabilities such as the oblique breakdown of first mode waves in a

two-dimensional supersonic boundary layer [26, 27] or the transition due to secondary instabilities of

Tollmien-Schlichting waves in a low-speed flat plate boundary layer [1].

Other methods, such as large eddy simulation (LES) appear as simplification of the DNS approach

[28]. The principle behind LES is to ignore the smaller length scale phenomena, which are the most

computationally expensive to solve, by time and space averaging the Navier-Stokes equations. This acts

as a low-pass filter, that exempts the numerical solution from the smaller scale information. However,

the latter is not irrelevant for the simulation’s final result, prompting researches in how to model its effect
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in the flow field [29, 30]. Since this modelling is not perfect, in situations where small-scales can play an

important role, such as near-wall flows, LES may not be the most suitable option. Nevertheless, several

different studies regarding transitional flows have been performed with this method, such as a LES of

controlled transition to turbulence [3], LES of transition to turbulence in a boundary layer developing

spatially over a flat plate [31], or LES of boundary layer transition over an isolated ramp-type micro

roughness element [32].

Turbulence Models

Other tools used nowadays to simulate transitional flows near walls draw upon some simplification

of the Navier-Stokes equations such as in the case of the Reynolds Averaged Navier-Stokes (RANS)

equations. This mathematical method averages the continuity and momentum equations, and all the

dependant variables, requiring a turbulence model to perform the so-called ”closure of the problem”

[33], explained in subsection 2.1.2. Various types of turbulence models can be used, each one of them

possessing its own strenghts and downsides. Two of the most used types of turbulence models are the

eddy viscosity based models (EVMs) and the Reynolds stress models (RSMs).

EVMs can be one or two equation models, as the k− ω SST (shear stress transport) or the k−
√
kL

model, where the Reynolds stresses are obtained through a previously established assumption, such as

the Boussinesq hypothesis [34]. They present several advantages: are relatively simple due to the use

of an isotropic eddy (turbulent) viscosity; are stable via stability-promoting second-order gradients in the

meanflow equations, and work reasonably well for a large number of engineering flows [35]. However,

the use of an isotropic concept of viscosity (which is a false assumption in near-wall conditions) causes

the Reynolds stress tensor to be directly proportional to the strain rate tensor. It is then a poor model

when comes to predict the normal Reynolds stresses, which for flows with strong curvature and rotation

may harm the accuracy of the solution.

On the other hand, full second-moment RSMs, such as the SSG-LRR-ω are establishing themselves

as an alternative to one or two equation linear/non-linear EVMs [36]. The greater grid dependance and

the more difficult iterative convergence that the RSMs may yield are the current drawbacks of this model

that should have a superior modelling ability when compared to EVMs [37]. In the RSMs, the Reynolds

stresses are directly computed, eliminating the flaws coming from assumptions such as the Boussinesq

hypothesis. They can deal with the anisotropy of turbulence, due to the re-distribution of the Reynolds

stresses coming from the pressure-strain correlation. This makes RSMs more accurate than EVMs in

predicting flows with normal Reynolds stress anisotropy [37] and flows with large amounts of rotation,

such as the free vortices created in the tip of a plane’s wing [38]. It is also indicated for flows with strong

curvature [4], or with large instability regions [39] and strong adverse pressure gradients [2].

RSMs can solve an unsteadiness of the flow, in situations where an EVM could predict a steady flow

[2]. This, however, comes at the expense of a higher computational effort. Therefore, it will only be

useful if the resolved unsteadiness is effectively significant for the final result of the simulation. If not, the

RSM may not be the best alternative, since the increased computation effort and time dispended are not

really useful.
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In EVMs, the Boussinesq assumption provide specific relations between the derivatives of the Reynolds

stresses and the second derivatives of the velocity components. In RSMs, that specific relation does

not exist. Although this can contribute to the dampening of some numerical instabilities in RSMs [35], it

causes the iterative convergence to be faster in EVMs when compared with RSMs [40].

In general, RSMs are more complex than most of the EVMs, due to the higher effort placed in mod-

elling the pressure-strain correlation and the diffusion and destruction terms of the Reynolds stresses.

Therefore, RSM’s offer more possibilites to be tuned and calibrated with data coming from experimental

set-ups.

Transition Models

Except for DNS, and LES that can be used for transitional flows [41], but presents the disadvantages

mentioned before, the previously discussed models are not suitable to model transition on their own [42],

since they usually predict transition sooner than what is verified in the real flow. Therefore, in order to

ensure that transition phenomena occurring in the flow are accounted for, one should complement the

turbulence model with a suitable method for predicting transition.

Modelling transition is not easy, and the variety of models available to do it has a much smaller

spectrum than for modelling turbulent flows. [42]. This has to do with several reasons:

• Transition phenomena are indeed really sensitive to external factors, such as pressure gradients,

surface roughness, inlet turbulent quantities and Reynolds number;

• Transitional flows involve a wide range of both temporal and spatial scales, with an intricated

energy and momentum transfer between eddies of different shapes that is highly non-linear and

therefore, hard to model;

• Transition can occur due to several reasons and can be of various types: natural, separated-

induced, bypass or crossflow (for 3-D cases only), and taking all these into account in a simulation

can be a complex task;

• In the case of RANS formulation, where the effects of linear disturbance growth are eliminated

[42], transition may be hard to model, since this latter is affected by both linear and non-linear

phenomena.

Nevertheless, several transition prediction methods and models have been developed, and it is pos-

sible to enumerate some of them, such as the linear stability theory based eN method, empirical corre-

lation based methods, or local transport equation based transition models, such as the γ − Reθ model

[7].

The eN is a commonly used non-local method [43], that needs access to integral parameters of the

flow. In RANS applications, where there is usually a decomposition of the domain by several computa-

tional cores, is hard to implement this non-local method: one processing core could need information

stored in another one, requiring an additional computational effort, since this passage of information

is usually time-consuming. The eN method also presents some more downsides, since it is limited to
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some transition mechanisms, and only provides the location of the transition point, meaning it ”activates”

the turbulence model downstream of that point.This abrupt switch causes a discontinuity in the domain,

which may harm the iterative convergence [43].

Empirical correlation based methods [44] predict transition based on directly applicable correlations.

They are not very complex. and are not used much anymore nowadays, having been replaced by other

more reliable methods.

Local transport equation based transition models such as the γ model [45] or the γ − Reθ model [7]

are frequently and easily coupled with RANS applications [46]. Being local models, they only require

information available in the cell, and do not make use of integral parameters. Therefore, the domain

partition by several computational cores that are commonly used with RANS does not hinder the model

to obtain the information it requires.

In this work, the γ−Reθ model was the chosen transition model to be coupled with the SSG-LRR−ω

model, since this thesis follows the work reported in [46]. The choice of this coupling was due to all

the factors described above, and to the fact that the γ − Reθ transition model is one of the most widely

used in formulations with other turbulence models, such as EVMs. However, although the SSG-LRR-ω

+ γ-Reθ combination was implemented in [46], it has not been thoroughly tested, being still a relatively

recent approach for solving transitional flows. Therefore, its full potential is not yet known, with only

some studies being published about the capabilites and performance of this model in some very specific

conditions [2].

This work aims then to keep discovering how does this model compare with the results provided by

other more conventional approaches, such as the k − ω SST model coupled with the γ − Reθ transition

model.
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1.4 ReFRESCO Software

The 2.6 version of the ReFRESCO software was used in all the computations performed in the

present work. As defined in the official website [8], ”ReFRESCO is a viscous-flow CFD code that solves

multiphase (unsteady) incompressible flows using the Navier-Stokes equations, complemented with tur-

bulence models, cavitation models and volume-fraction transport equations for different phases. Various

turbulence models, from RANS models to high fidelity hybrid and scale resolving models, complemented

with transition models are available. The equations are discretised using a finite-volume approach dis-

cretization of the RANS and turbulence quantities transport equations, with cell-centered collocated

variables, in strong conservation form. A pressure-correction equation based on the SIMPLE algorithm

is used to ensure mass conservation. Nonorthogonality and eccentricity corrections are applied in the

determination of normal derivatives and variable values at the faces centre. Flux limiters are included in

the upwind second-order schemes applied to the convective terms. The implementation is face-based,

which permits grids with elements consisting of an arbitrary number of faces (hexahedrals, tetrahedrals,

prisms, pyramids, etc.), and if needed h-refinement (hanging nodes)”.

ReFRESCO enables a segregated or coupled solution of the continuity and momentum equations.

On the other hand, the solution of the k and ω transport equations is always segregated. Therefore, all

the simulations presented in this thesis were performed with the segregated approach.

There was a crossflow transition predicition method available, but it was decided not to include it in

the model. This would only be eventually useful in the case of the 3-D spheroid. However, the main

purpose of this test-case is to compare the behaviour of both the k − ω SST and the SSG-LRR-ω ,

and evaluate the influence that the inlet turbulence boundary conditions have on them, which does not

require a crossflow transition prediction method. However, if the results withdrawn from this work are to

be compared with experimental data, care must be taken, since crossflow transition could occur in the

real flow and not be predicted by ReFRESCO.

In all the simulations made with ReFRESCO, the fluid is assumed to be Newtonian, single-phase

and incompressible, meaning that the density ρ remains constant. The dynamic molecular viscosity µ is

also constant in a simulation.

1.5 Objectives

The aim of this work is to assess the performance of coupling of the SSG-LRR-ω turbulence model

with the γ − Reθ transition model in predicting transitional flows. The results obtained were, in some

cases, compared with the ones acquired with the k − ω SST [5], and the k −
√
kL [47] models. These

three models are the most commonly used in ReFRESCO applications.

The evaluation of this coupling was performed by simulating the flow around bodies with different

geometries. As said before, there are three different test-cases, two 2D and one 3D: a flat plate, the

NLF1-0416 airfoil, and a 6:1 prolate spheroid. These different test-cases will allow to obtain several

conclusions:
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• Validate the results obtained for the flat plate test-case using the implementation of the coupling

SSG-LRR-ω + γ − Reθ in ReFRESCO with the ones obtained in other previous works, and with

experimental data;

• Perform grid refinement studies in the 2D flat plate test-case using the SSG-LRR-ω and the k − ω

SST model coupled with the γ−Reθ, for both natural and bypass transition, to assess the numerical

robustness of the couplings;

• With the 2D flat plate test-case, perform sensitivity analysis to establish how the SSG-LRR-ω +

γ − Reθ coupling is affected by the change in the inlet turbulence conditions of the simulations,

namely the eddy viscosity ratio and the freestream turbulence intensity, and compare this data

with the one obtained with the k − ω SST + γ −Reθ and the k −
√
kL + γ −Reθ couplings;

• Evaluate how the decay of the inlet turbulence quantities influences the results of a simulation,

namely the position of transition, when the test-body is located far downstream of the inlet, in the

2D airfoil test-case;

• In the 2D airfoil test-case adress the differences in prediction of transition between the SSG-LRR-ω

+ γ −Reθ and the k − ω SST + γ −Reθ combinations;

• Using the 3D spheroid test-case, assess if the inlet turbulence boundary conditions tuned to be

used with the k − ω SST + γ − Reθ combination are suitable to be used with the SSG-LRR-ω +

γ −Reθ;

• Evaluate how the decay of the inlet turbulence quantities will affect the occurence of transition in

the 3D spheroid test-case.
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Chapter 2

Theoretical Overview

2.1 Mathematical Model

To describe flows of viscous, incompressible fluids, one can resort to mass conservation and mo-

mentum balance, which can be expressed in a Cartesian coordinate system as:

∂Ṽi
∂xi

= 0.

∂
(
ρṼi

)
∂t

+
∂
(
ρṼiṼj

)
∂xj

= − ∂P̃
∂xi

+
∂τij
∂xj

.

(2.1)

Being Ṽi the instantaneous Cartesian velocity components, ρ the fluid density, P̃ is the relative pres-

sure (with the reference pressure being the hydrostatic pressure). The subscripts i and j are compu-

tational indexes representing consecutive, non-equal cartesian coordinates x, y, z and τij stands for the

components of the stress tensor, which for a Newtonian fluid is given by:

τij = µ

(
∂Ṽi
∂xj

+
∂Ṽj
∂xi

)
. (2.2)

2.1.1 RANS Equations

The three test cases evaluated in this thesis are wall bounded transitional flows, at a middle range

Reynolds number, meaning that the boundary-layer developing on the body surface may present tran-

sition to the turbulent regime. Hence, the flow will be unsteady, exhibiting a wide range of length and

time scales that make the direct solution of equations 2.1 too expensive as per the reasons mentioned in

subsection 1.3. Therefore, the RANS approach can used, meaning that all instantaneous flow variables

Φ̃ are decomposed in a mean value Φ and a fluctuation φ (turbulence). To discover a variable Φ̃, different

type of averaging can be used, depending on the physics of the flow. For the flows analysed in this work,

where the mean flow is statistically steady, time-averaging can be applied, being defined by equation

2.3:
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Φ (xi) = lim
T→∞

1

T

∫ T

0

Φ̃ (xi, t) dt. (2.3)

Applying equation 2.3 to the variables in the continuity and momentum equations 2.1, one obtain the

RANS equations, defined by:

∂Vi
∂xi

= 0.

∂ (ρViVj)

∂xj
= − ∂P

∂xi
+

∂

∂xj

(
µ

(
∂Vi
∂xj

+
∂Vj
∂xi

)
− ρṼiṼj

)
.

(2.4)

This leads to a statistically steady flow. However, it also generates the Reynolds stress tensor−ρṼiṼj
patent in the momentum equation, where the overbar stands for average values.

The notation used in this thesis for the Reynolds stresses is ρRij , that is equivalent to −ρṼiṼj , as

expressed in equation 2.5:

ρRij = −ρṼiṼj . (2.5)

This additional term requires closure, implying the formulation of an extra equation, i.e. writing this

term as a function of known variables of the flow [48]. This is achieved by using a turbulence model,

that will prescribe the values of the Reynolds stresses, through modeling approximations, allowing the

computational solving of these equations. To prescribe the values for the Reynolds stresses, turbulence

models can follow different approaches, as explained in subsection 2.1.2.

2.1.2 Turbulence Models

Some turbulence models, called eddy viscosity based models (EVM), make use of a ”mathemathical

concept” called eddy viscosity µt, first described by Joseph Boussinesq in [34]. The reasoning behind

this first approach to eddy viscosity was to ignore the small-scale vortices (or eddies) in the motion and

to calculate a large-scale motion with an eddy viscosity, that would characterize the transport and dissi-

pation of energy in the smaller-scale flow. These models involve a previously established assumption,

that relates the eddy viscosity with the Reynolds stresses, such as the Boussinesq hypothesis [34]. The

way eddy viscosity is calculated nowadays depends on the formulation that each model uses, but the

fundamental goal is to define it using known flow variables.

There are other turbulence models, the Reynolds stress models (RSM), that directly compute the

Reynolds stresses, requiring additional equations to do so.

In this study, three different turbulence models were used: one Reynolds stress model, the SSG-

LRR-ω, and two eddy-viscosity based models, the k −
√
kL and the k − ω SST.

k − ω SST

The k − ω SST turbulence model is a two-equation eddy viscosity model, presented in [5]. The

formulation used in this thesis follows the expressions that can be found in [49]. It features two transport
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equations, for the turbulent kinetic energy k and the specific turbulent dissipation rate ω.

The turbulence kinetic energy, k, is the kinetic energy per unit mass of the turbulent fluctuations vi in

a turbulent flow [50], and can be defined as:

k ≡ 1

2
vivi =

1

2

(
v2x + v2y + v2z

)
. (2.6)

The specific turbulent dissipation rate ω is the rate at which turbulence kinetic energy is converted

into thermal internal energy per unit volume and time. It is usually defined as:

ω =
ε

kβ∗
. (2.7)

Being β∗ a constant of the turbulence model used, and ε the turbulence dissipation, representing the rate

at which turbulence kinetic energy is converted into thermal internal energy [51]. It can be expressed

as:

ε ≡ ν ∂vi
∂vk

∂vi
∂vk

. (2.8)

The two-equation model, for incompressible flow can be written, in conservation form, for steady

flows as:

ρ∂ (Vjk)

∂xj
= Pk −Dk +

∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
. (2.9)

ρ∂ (Vjω)

∂xj
= Pω −Dω +

∂

∂xj

[
(µ+ σωµt)

∂ω

∂xj

]
+ 2 (1− F1)

ρσω2
ω

∂k

∂xj

∂ω

∂xj
. (2.10)

Pk and Dk are the production and dissipation terms of the turbulent kinetic energy k, and are stated

by:

Pk = min
(
µtS

2, 15Dk

)
; Dk = β∗ρωk. (2.11)

Pω and Dω correspond to the production and dissipation terms of the specific turbulence dissipation

ω, and are prescribed as:

Pω =
γ

νt
Pk ; Dω = βρω2. (2.12)

σk, σω, σω2, β and γ are constants and F1 is a blending function that switches from the k − ε formu-

lation in the freestream to the k − ω formulation in the boundary layer. S is the strain rate magnitude,

specified in equation 2.13:

S =
√

2SijSij , with Sij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
. (2.13)

The eddy viscosity µt is given by:

µt =
ρa1k

max (a1ω, SF2)
. (2.14)
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Being F2 an auxiliary function and a1 a constant.

All the equations, damping functions and constants of this model are available in [49].

k −
√
kL

The k −
√
kL model is a linear eddy viscosity model, that features two transport equations, one

for φ =
√
kL, with L being the turbulent length scale, and another for k. This model is also used in

ReFRESCO, and provides extra data for comparison. The formulation used in this thesis follows the

expressions that can be found in [47].

The two-equation model, written in conservation form, for steady, incompressible flow, is given by the

following:

ρ∂ (Vjk)

∂xj
= Pk −Dk +

∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
, (2.15)

ρ∂ (Vjφ)

∂xj
= Cφ1

φ

k
P − Cφ2ρk3/2 − 6µ

φ

d2
fφ +

∂

∂xj

[
(µ+ σφµt)

∂φ

∂xj

]
. (2.16)

With:

Pk = µtS
2 ; Dk = ρc3/4µ

k3/2

L
+ 2µ

k

d2
. (2.17)

Cφ1
, Cφ2

, σφ are constants, d is the distance from the wall, and fφ is an auxiliary function.

The eddy viscosity µt is given by:

µt = min

(
c1/4µ Φ,

a1k

S

)
.; a1 = aSST1 fb + (1− fb) aREAL1 . (2.18)

aSST1 and aREAL1 are constants, and fb is a function that takes the value of one inside the boundary-

layer and zero outside of it.

All the equations, damping functions and constants used in this formulation are available in [47].

RSM - SSG-LRR-ω

The SSG-LRR-ω model is a blend between the Speziale-Sarkar-Gatski model (SSG) [52] in the far

field and the Launder-Reece-Rodi model (LRR) [53] near walls, combined with Menter’s baseline ω-

equation for the length scale [6]. The formulation used in this thesis follow the expressions that can be

found in [54].

The SSG-LRR-ω is a full second-moment Reynolds stress model [39, 55, 56], meaning it computes

each of the 6 Reynolds stresses directly, with each Reynolds stress having its own transport equation.

There is also a seventh transport equation for the ω variable.

The specification of the RSM model used was the SSG/LRR-RSM-ω 2012-SD, which uses a ”simple

diffusion” (SD) model rather than the generalized gradient diffusion model ([57]).

The six Reynolds stresses, for steady flows, are given by equation 2.19:
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ρ∂(VkRij)

∂xk
= ρDij + ρPij + ρΠij − ρεij + ρMij . (2.19)

With the production term ρPij and the dissipation term ρεij given by 2.20:

ρPij = −ρRik
∂Vj
∂xk
− ρRjk

∂Vi
∂xk

. ; ρεij =
2

3
ρεδij . (2.20)

The diffusion term ρDij is given by equation 2.21:

ρDij =
∂

∂xk

[(
µδkl +D

ρRkl
Cµω

)
∂Rij
∂xj

]
. (2.21)

The dissipation term ρεij is defined as:

ρεij =
2

3
ρεδij , where ε = Cµkω (2.22)

Being δij the Kronecker delta.

The pressure-strain correlation ρΠij is modelled via:

ρΠij =−
(
C1ρε+

1

2
C∗1ρPkk

)
âij + C2ρε

(
âikâkj −

1

3
âklâklδij

)
+

+
(
C3 − C∗3

√
âklâkl

)
ρk̂Ŝ∗ij + C4ρk

(
âikŜjk + âjkŜik −

2

3
âklŜklδij

)
+

+ C5ρk
(
âikŴjk + âjkŴik

) (2.23)

where pressure dilatation is neglected, and the anisotropy tensor âij is given by:

âij =
Rij
k
− 2

3
δij , (2.24)

And the remaining auxiliary terms are available in [54]. For an incompressible fluid, as it is considered

in this work, the pressure-strain correlation term represents the distribution of kinetic turbulent energy to

the different directions.

The fluctuacting mass flux ρMij is neglected.

The equation for the specific rate of dissipation ω for steady flows is given by:

ρ∂(Vkω)

∂xk
= Pω −Dω +

∂

∂xk

[(
µ+ σω

ρk

ω

)
∂ω

∂xk

]
+ σd

ρ

ω
max

(
∂k

∂xj

∂ω

∂xj
, 0

)
. (2.25)

With the production term Pω and the dissipation term Dω given by:

Pω =
αωω

k

ρPkk
2

. ; Dω = βωρω
2. (2.26)

All the damping functions and constants used in this model are available in [54].
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2.1.3 Transition Model

γ −Reθ

The γ − Reθ transition model, presented in [7] is a two-equation model used to model transitional

flows where a significant portion of the boundary layer is laminar. It solves transport equations for

the intermittency factor, γ, represented in equation 2.27 which indicates the state of the flow, and the

transition momentum thickness Reynolds number, Reθt, represented in equation 2.28. The formulation

used in this thesis for this model follows the equations found in [58].

ρ∂(γ)

∂t
+
ρ∂ (Vjγ)

∂xj
= Pγ −Dγ +

∂

∂xj

[(
µ+

µt
σf

)
∂γ

∂xj

]
, (2.27)

ρ∂ (Reθt)

∂t
+
ρ∂ (VjReθt)

∂xj
= Pθt +

∂

∂xj

[
σθt (µ+ µt)

∂Reθt
∂xj

]
, (2.28)

With:

Pγ = Flength ca1ρS [γFonset ]
0.5

(1− ce1γ) .

Dγ = ca2ρΩγFturb (ce2γ − 1) .
(2.29)

Being Flength, Fonset and Fturb auxiliary functions, ca1, ca2, ce1, ce2, σf and σθt constants, and Ω the

vorticity magnitude.

The original formulation of the γ − Reθ uses a new variable, the effective intermittency factor γeff

variable, defined in equation 2.30:

γeff = max (γ, γsep)

γsep = min
(
s1 max

[
0,
(

ReV
3.235Reθc

)
− 1
]
Freattach , 2

)
Fθt

Freattach = exp
[
−
(
RT
20

)4] (2.30)

With ReV , Reθc, Fθt and RT being auxiliary functions and s1 a constant of the model.

This original formulation of the γ − Reθ features a coupling with the k − ω SST model, where the

production term Pk and the dissipation term Dk of equation 2.9, and the blending function F1 of equation

2.10 are corrected using γeff . The production term and destruction term are multiplied by γeff , to

maintain laminar flow before transition. With this, in the laminar region, the effective intermittency is

almost 0, resulting in zero production of turbulence. The dissipation term in this region is 0.1 times of

the exact dissipation, so the destruction of turbulence is larger than its production, allowing to obtain

a laminar flow. When the effective intermittency factor is 1, the transition model returns to the original

turbulence model. This is achieved by replacing these terms by P̃k, D̃k and F̃1 respectively, with the tilde

being here used to represent the corrected formulation, given by 2.31:

P̃k = γeffPk. ; D̃k = min (max (γeff , 0.1) , 1.0)Dk.

F̃1 = max (F1, F3) . ; F3 = exp

[
−
(
Ry
120

)8]
. ; Ry = ρd

√
k

µ .
(2.31)

All the equations, damping functions, and constants used in this model are available in [58].

19



Coupling with the SSG-LRR model

The coupling of the SSG-LRR-ω with the γ − Reθ follows the work developed in [46]. To perform

the coupling, the source terms of the turbulent Reynolds stresses equation 2.19 in the RSM are relaxed

using the γeff variable, in a similar way as with the k − ω SST model. The production term of the ω

equation 2.25 is also corrected. This results in equations 2.32, 2.33, 2.34 and 2.35.

P̃ij = γeffPij . (2.32)

ε̃ij = min(max(γeff , 0.1), 1.0)εij . (2.33)

Pω = (1− clam )PSST + Clam PRSM (2.34)

Clam =

 0, cω > γ

γ−cω
1−cω , cω ≤ γ

and cω =

(
exp

(
−
(

420

R̃eθt

)4
))2

(2.35)

Where PSST corresponds to the production term Pw of the ω equation (Eq. 2.10) for the k − ω

SST model, and PRSM corresponds to the production term Pw of the ω equation (Eq. 2.25) for the

SSG-LRR-ω model.

The final coupling employs the corrected equations 2.32 to 2.35 with equation 2.27 and 2.28.

Full details of the functions and constants used in this coupling can be found in [46].

Coupling with the k −
√
kL model

The coupling of the γ −Reθ transition model with the k−
√
kL turbulence model is similar to the one

used with the k − ω SST model. This coupling follows the work developed in [59]. The production and

dissipation terms Pk and Dk are corrected in the same way. The blending function fb is also changed,

according to equation 2.36:

f̃b = max(fb, F3). (2.36)

When coupling the γ −Reθ model with the k −
√
kL model, the ω variable is needed to compute the

source terms in the γ and Reθ equations. However, this variable is not directly available, and therefore

needs to be estimated resorting to µt, as explicit in equation 2.37:

µt =
kρ

ω
→ ω =

kρ

µt
. (2.37)

All the damping functions and constants used in the formulation of this coupling are available in [47].

All the three turbulence models were coupled with one transition model, γ − Reθ, i.e. there are no

calculations performed without a transition model (with an exception for the spheroid test-case, duly

explained in section 6.2). For this reason, only the turbulence model is used to distinguish between
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formulations: RSM stands for RSM + γ−Reθ (in this work, it means the same as SSG-LRR-ω + γ−Reθ),

k − ω SST stands for k − ω SST + γ −Reθ, and k −
√
kL stands for k −

√
kL + γ −Reθ.
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2.2 Non Dimensional Turbulence Quantities

Similarly to k and ω, defined in section 2.1.2, one can define two non-dimensional parameters, the

eddy viscosity ratio (EVR) and the turbulence intensity (Tu), that will represent the turbulent charac-

teristics of the flow.

2.2.1 Eddy viscosity ratio

The eddy viscosity ratio, EVR, is defined as the ratio between the turbulent viscosity µt and the

molecular dynamic viscosity of the fluid µ:

EV R =
µt
µ
. (2.38)

2.2.2 Turbulence Intensity

The turbulence intensity Tu, is defined as the ratio between the root-mean square of the turbulent

velocity fluctuations v, and the mean velocity V :

Tu =
v

V
. (2.39)

We can also define the freestream turbulence intensity (FSTI) as the value of Tu in the freestream.
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Chapter 3

Numerical Solution

3.1 Inlet Boundary Conditions in ReFRESCO

The ReFRESCO software offers the possibility of defining several boundary conditions, among them

the values for EVR and Tu. Then as per the selected turbulence model, it will implicitly transform these

two quantities into variables of interest for that specific model. In the case of the k − ω SST model, the

obtained quantities are evidently k and ω. The latter is obtained by rearranging equations 2.14 and 2.38,

and assuming that the flow is uniform, simplifying equation 2.14, resulting in equation 3.1:

µt = ρ
k

ω
⇒ EV R =

ρ

µ

k

ω
. (3.1)

Assuming that turbulence is isotropic (the turbulent fluctuations are statistically uniform in all direc-

tions), it is possible to relate Tu with the freestream velocity V∞ to obtain k, as demonstrated in equation

3.2:

k = 1.5× Tu2 × V 2
∞. (3.2)

For the RSM, the concept of eddy viscosity does not properly exist. However, the formula expressed

in equation 2.14 used in the k − ω SST is also used in the RSM, to determine the value of ω. On the

other hand, the turbulence intensity Tu is transformed into the six components of the Reynolds stress

tensor. The non-normal stress components (R12, R13, R23) are assumed to be equal to 0. The normal

stress components (R11, R22, R33) are equal to each other and are given by equation 3.3:

Rii =
2

3
× k. (3.3)

For the k−
√
kL model, the obtained quantities are k and φ. The first one is obtained in a similar way

as in the k − ω SST, using equation 3.2. The φ variable is obtained by the formula displayed in equation

3.4:
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φ =
µt

ρC
1/4
µ

. (3.4)

Being Cµ = 0.09 a constant.

These implicit transformations made by REFRESCO allows the user to define equivalent boundary

conditions, regardless of the chosen turbulence model (SSG-LRR-ω, k − ω SST, or k −
√
kL).

3.2 Decay of Turbulence Quantities

The turbulent quantities defined in the previous section 3.1, will decay along the domain. The evolu-

tion of this decay for both the turbulence kinetic energy k and the eddy viscosity µt, for the k − ω SST

and the SSG-LRR-ω models is given by equations 3.5 and 3.6, respectively [46]:

k∗ =
k∗in(

1 + β (x∗ − x∗in) k∗in

(
ν
νt

)
in
Re
) β∗
β

, (3.5)

µt =
µtin(

1 + β (x∗ − x∗in) k∗in

(
ν
νt

)
in
Re
) β∗
β −1

. (3.6)

The subscript in represents the value of the property at the inlet. The superscript ∗ is used to

represent non-dimensional quantitities. The exception is β∗, that, jointly with β are constants of the

equation, available in [49].

Hence, k∗ is the non-dimensional k, given by equation 3.7:

k∗ =
k

V 2
∞
. (3.7)

Equations 3.5 and 3.6 are analytical solutions for the decay of k∗ and µt for the k − ω SST model,

following the assumption that the flow is uniform and aligned with the x-direction (except for the area

near the test body). For the RSM, these equations require additional premises to be valid:

1. Non-normal Reynolds stresses Rij are equal to zero, justified by the fact that it is a solution to the

respective equations and obeys to boundary conditions;

2. Normal Reynolds stresses Rii are all equal, justified by the fact that all the equations between

them are identical and obey to boundary conditions;

It should be mentioned that the decay rate of turbulence is influenced by the chosen freestream

values of each one of the properties. The higher the FSTI, the more rapid the decay; the lower the µt,

the more rapid the decay. [61].

Considering equation 3.5, if the second part of the denominator is much larger than one, the equation

can be rewritten as equation 3.8:

24



k∗ ≈ 1(
β (x∗ − x∗in)

(
ν
νt

)
in
Re
) β∗
β

. (3.8)

This can occur when performing calculations for a test-body located far downstream from the inlet,

meaning a value of x∗ much larger than one. So, in the second and third test-cases analysed in this work

- the NLF1-0416 airfoil and the 6:1 prolate spheroid, respectively - the decay is such that the values of

this quantity in the body’s leading edge reach an assymptotic behaviour. In other words, a change in the

inlet value will imply a much smaller change of the value in a point located far downstream of the inlet.

It can be such that small differences in the freestream conditions, such as the ones used in sensitivity

analysis, are not noticed in the results of the simulations.

This influence of the inlet turbulent quantities in their own decay also creates another interesting

phenomena: it may occur that the k at the leading edge is similar in two simulations with different inlet

turbulent quantities.

Care must be taken to ensure that the grid spacing is adequate with the expected decay. For large

decay rates, the coarseness of the grid far from the body may make the solver unable to support an

accurate computation and the decay can be grossly underestimated. According to [61], for the higher

freestream decay conditions, the computed results display a very noticeable grid dependence, only

slowly approaching the correct answer as the grid is refined. For significantly lower values of FSTI,

however, the decay rate is considerably reduced, and the coarser grids do not underestimate the decay

as much.

Following these assumptions, it is then expectable that, for a given inlet turbulence kinetic energy,

when the values for the eddy viscosity ratio are higher, and the decay smaller, one can observe a smaller

grid dependence.

3.3 Quantities of interest

The performance of the different couplings used in this work was evaluated resorting to the skin-

friction coefficient Cf at the surface of the test-body. This quantity is calculated at the mid-point of the

cell faces, using equation 3.9:

Cf =
τw

1
2ρV

2
∞
. (3.9)

The τw variable represents the shear-stress at the wall of the test-body, and can be defined by

equation 3.10.

τw = µ

(
∂Vt
∂xn

)
y=0

≈ µVtc
ync

(3.10)

Where the subscript t represents the direction tangential to the surface, and the subscript n rep-

resents the direction normal to the surface. Vtc is the velocity in the direction tangential to the wall,
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obtained in the near-wall cell centre, and ync is the distance between the surface and the near-wall cell

centre, in the direction normal to the surface.

One can also define the y+nc variable in equation 3.11, an useful parameter to characterize the dif-

ferent grids used. For values up to y+nc < 5, the mean velocity profiles in the near-wall region remain

laminar.

y+nc =
uτync
v

and uτ =

√
τw
ρ

(3.11)
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3.4 Numerical Model

One of the most important aspects to deal with in a CFD simulation is the numerical setup used to

solve all the transport, momentum, and pressure equations used in the turbulence and transition model.

Therefore, some details of this numerical setup must be briefly explained:

3.4.1 The linear equation solver and the mass-momentum coupling solver

All the transport , momentum and pressure equations solved in the turbulence and transition models

are solved in the form Aφ = B, being A the left-hand side matrix, φ the solved variable and B the

right-hand side vector of the equation. It is then needed to select a specific procedure to compute the

solution of the linear equations. ReFRESCO uses a PETSc (Portable Extensible Toolkit for Scientific

Computation) solver [62], which dictates how high-performance computers numerically solve partial

differential equations. It establishes procedures for parallel matrix and vector assembly, useful in parallel

application codes. Besides this, a procedure for performing the coupling between the linear systems

corresponding to the momentum and pressure equation is also needed.

3.4.2 Convergence Tolerance

At each outer loop, the solution of each one of the linear equations is computed to a certain precision,

dictated by this parameter.

3.4.3 Convective flux discretization schemes

To deal with the convective fluxes, different discretization schemes were used. For the flat-plate test-

case, to solve the momentum, turbulence, and transition equations, a scheme named Limited-QUICK

was chosen: it is a version of QUICK (Quadratic Upstream Interpolation for Convective Kinematics)

[63], with applied flux limiters. QUICK is a higher-order differencing scheme that considers a three-point

upstream weighted quadratic interpolation for the cell face values.

For the airfoil and spheroid cases, the only change performed is that the scheme used for the tur-

bulence equation was a first order upwind, for robustness purposes. The Limited-QUICK scheme was

employed in all the remaining equations.

3.4.4 Relaxation Procedure

In each simulation step, new values for the solution of the several equations are computed. How-

ever, it is possible to define by how much the previous value of the equation is updated, creating a

blend between the old value and the new one. This is obtained by using the explicit under relaxation

procedure.

Besides this, each of the linear equations being solved has a determined ”stifness”, related to the

matrix A, that needs to be monitored and controlled (increasing the matrix diagonal and B), ensuring
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that the numerical scheme is capable of producing a solution. This is the implicit under relaxation

procedure. Both these procedures need parameters to define them: the implicit and explicit under

relaxation factors.

The explicit under relaxation factor, αexp, blends the solution between two consecutive iterations,

using equation 3.12:

φn+1 = φn + αexp

(
φn+1∗ − φn

)
. (3.12)

Where φn+1∗ is the predicted solution at the new non-linear iteration, φn+1 is the used solution at a

new iteration and φn is the used solution at the old iteration. This factor must follow a balance: ideally,

it is as high as possible, in order to decrease the overall simulation time. However, too high values can

compromise the scheme’s stability and ability to converge.

The implicit under relaxation factor αimp, affects (increases) both the left-hand side of the diagonal

of matrix A, and the right-hand side vector B, as shown in equation 3.13, taken from [64]:

(
Aij +

(
Aii
αimp

−Aii
))

φnj = Bi +

(
Aii
αimp

−Aii
)
φn−1j . (3.13)

At each outer loop, equation 3.13 is applied to the non-linear problem. ReFRESCO features the

possibility of choosing both a minimum and maximum implicit under relaxation factor, allowing to define

how to transit from one to another. When the simulation is started, αimp is set to its minimum. The

user can specify the number of iterations along which the minimum factor is increased, until it reaches

its maximum value. This is useful to guarantee that the scheme is stable in the early stages of the

simulation: despite slowing down convergence, lower factors ensure a higher stablity.
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Chapter 4

Flat Plate Test-Case

This chapter is divided into four main sections. Firstly, section 4.1 features a description of the

problem. Then, in section 4.2 are presented some preliminary calculations, where the modelling done

with the SSG-LRR-ω model in ReFRESCO and the results obtained with it are compared and validated

with other proven CFD codes, and with experimental data. Following that, in section 4.3, grid refinement

studies are performed for the SSG-LRR-ω and the k − ω SST models, both coupled with the γ − Reθ
transition model, to evaluate the numerical errors, assessing several aspects:

1. Verify if the result values of Cf converge to a solution when increasing the refinement level of the

mesh;

2. Check if transition is affected by the different mesh refinements;

3. Compare the transition characteristics of the RSM with those of the k − ω SST model, by using

turbulent kinetic energy fields;

Finally, in section 4.4, sensitivity studies are performed, with the goal of quantifying the difference in

how the two models react to different turbulent inlet conditions, namely the eddy viscosity ratio and the

freestream turbulence intensity. In this section, the data obtained while running the simulations with the

k −
√
kL model was also used, to provide a broader set for comparison.

4.1 Problem Description

4.1.1 Domain

The computational domain used in this study is a rectangle with the incoming flow V∞ and the plate

of length L aligned with the horizontal direction x. The leading edge of the plate is located at the origin

of the (x, y) Cartesian coordinate system. The length of the domain is 1.5L, with the inlet located at

x/L = −0.25 and the outlet at x/L = 1.25. The domain has a height of 0.25L, being the flat plate located

at y/L = 0 and the top boundary of the domain at y/L = 0.25.
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The Reynolds number Re based on the undisturbed freestream velocity V∞, L, and kinematic vis-

cosity of the fluid ν is given by equation 4.1:

Re =
V∞L

ν
= 107. (4.1)

4.1.2 Boundary Conditions

There are six locations that require the specification of boundary conditions: the plate’s surface, the

inlet boundary, the top boundary, the outlet boundary and the symmetry planes upstream and down-

stream of the plate.

Surface of the Plate

At the surface of the plate (0 < x < L and y = 0) the impermeability of the surface and the no-slip

condition lead to exact boundary conditions for the velocity components Vx = 0 and Vy = 0. It is assumed

that the pressure does not change in the direction normal to the wall, meaning ∂p
∂n = ∇p ·~n = 0. Specific

boundary conditions at the wall are applied to the different turbulence models, and to the transition

model.

For the RSM, ReFRESCO specifies a value of zero for the Reynolds stresses at the wall:

Rij, wall = 0. (4.2)

However, for the ω equation, instead of specifying a value at the wall, ReFRESCO designates the

value for ω directly at the first interior cell, using equation 4.3 [65]:

ωcell =
6ν̂

β
(ω)
ω (∆d1)

2
, with β(ω)

ω = 0.075. (4.3)

where ∆d1 is the distance from the wall to the nearest field solution point.

For the k − ω SST model, k is specified at the wall as zero:

kwall = 0. (4.4)

Regarding the ω variable, ReFRESCO proceeds in a similar way as in the SSG-LRR-ω model, and

designates the value for ω directly at the first interior cell, using equation 4.5:

ωwall =
6ν

β1 (∆d1)
2 , with β1 = 0.075. (4.5)

For the k −
√
kL, the k and φ variables are defined by equation 4.6:

kwall = 0 ; (φ)wall = 0. (4.6)
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For the γ − Reθ transition model the boundary conditions prescribed for the surface of the plate are

given in equation 4.7:

∂γ

∂xn
= 0 ;

∂R̂eθt
∂xn

= 0. (4.7)

Where ∂nwall referes to the direction normal to the wall.

Top Boundary

At the top boundary, the pressure is set equal to zero and all the other flow variables have null normal

derivatives.

Outlet Boundary

At the outlet, streamwise derivatives equal to zero are applied to all dependent variables.

Inlet Boundary

At the inlet boundary, the velocity is set equal to undisturbed flow conditions, meaning Vx = V∞ and

Vy = 0. For all the three turbulence models used, both the FSTI and the EVR have a Dirichlet boundary

condition, i.e. an imposed value by the user. As there are various combinations of boundary conditions

used throughout the chapter, these values are given as the respective cases are presented.

For the γ − Reθ transition model, the inlet boundary conditions used were adopted from the recom-

mended ones in [58], explicit in equation 4.8:

γfarfield = 1.

R̂eθt, farfield =


(
1173.51− 589.428Tu∞ + 0.2196Tu−2∞

)
, Tu∞ ≤ 1.3

331.50 (Tu∞ − 0.5658)
−0.671

Tu∞ > 1.3

(4.8)

Symmetry Conditions

Symmetry conditions are applied at y = 0 upstream (x < 0) and downstream (x > L) of the plate.

These conditions have implications in the RSM turbulence model: being the plate in a x-symmetry

plane, the Reynolds stress components R12 (xy) should have Dirichlet condition, with an imposed value

of zero. Other Reynolds stress components should yield symmetric treatment, meaning the existance of

a null gradient [54].

4.1.3 Numerical Settings

Grids

The grids used in the whole study, except for the ones in subsection 4.2.1 were adopted from the

AVT 313 workshop [66]. The coarsest grid used is depicted in figure 4.1, where the different blocks
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are highlighted with different colours. The grid has a symmetry axis located at the plate’s half length

(x/L = 0.5).
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Figure 4.1: Different blocks that compose the grid used in the flat-plate test-case, highlighted in different
colours.

The orthogonal grid starts upstream of the plate’s leading edge, in order to ensure a high quality grid

at the stagnation region. In the grid refinement studies, different but geometrically similar grids were

used. Their characteristics and designation are comprised in table 4.1:

Table 4.1: Number of cells in the domain, on the flat plate surface, ((y+n )c)max and designation of the
several grids used.

Grid Designation
Number of cells

in the domain

Number of cells on the

flat plate surface
((y+n )c)max

Grid9 20,840 256 0.92

Grid8 32,000 320 0.76

Grid7 46,080 384 0.66

Grid6 62,720 448 0.58

Grid5 81,920 512 0.52

Grid4 128,000 640 0.44

Grid3 184,320 768 0.38

Grid2 250,880 896 0.33

Grid1 327,680 1024 0.30

Simulation Stopping Criteria

The stopping criteria used in these simulations was a convergence tolerance of 10−6 for the resid-

uals of certain variables, namely Vi, P , γ and Reθ. The residual norm used was the L∞ norm, which

considers only the maximum residual value of a given variable in the entire grid.

The residuals of the turbulence-solving equation were exempted from this criteria. This eliminates
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the need for the residuals of both the Rij and the ω to go below the value 10−6 as a requirement to stop

the simulation. This is explained by a condition imposed in ReFRESCO, regarding the calculation of the

different Reynolds Stresses. ReFRESCO solves the transport equation, obtaining a value for ρRij .

Then, ReFRESCO checks the conditions described in equations 4.9 and 4.10:

• For the diagonal elements of the Reynolds stress tensor:

ρRij ≥ 0 i ∈ 1, 2, 3 (no summation on i) (4.9)

• For the off-diagonal elements of the reynolds stress tensor (i not equal to j):

ρRij ≤
√

(ρRii) (ρRjj) i, j ∈ 1, 2, 3 (no summation on i or j) (4.10)

If the specific condition for each Reynolds stress, normal or non-normal, is not verified, ReFRESCO

imposes it, and obtains a new value. However, when solving the equation at the next iteration with

this new value, the new solution will not comply with either equation 4.9 or 4.10, creating a loop, and

impeding further convergence.

4.2 Preliminary Calculations

Preliminary test-cases were run prior to proceeding to quantify the numerical errors and the influence

of the inlet boundary conditions obtained for the SSG-LRR-ω + γ−Reθ. The purpose of doing so was to

evaluate how the implementation of this coupling in ReFRESCO would compare to the results obtained

both experimentally in [66] and with other proven codes, as by [2].

4.2.1 Comparisons with Other Studies

The implementantion of the SSG-LRR-ω + γ−Reθ coupling in ReFRESCO was compared to the one

performed in [2], where the original formulation of this coupling can be found.

To mimic the inlet conditions used in [2], the grid presented in subsection 4.1.3 needed to be adapted,

since the grids used in [2] have the inlet located at x/L = −0.15. Besides this, the cell size in the direction

normal to the plate was changed, to ensure that the y+ value was appropriate and did not increase the

simulation running time. Only the finest grid, grid1, was used.

The values then applied to the inlet conditions of ReFRESCO were the same as one condition used

in [2] and are explicit in table 4.2.

The results of the simulations are displayed in figures 4.2 and 4.4. The vertical bars are shown in the

same x-axis values for each pair of graphics, to ease the value correspondence:
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Table 4.2: Inlet conditions used for the flat plate test-cases in [2].
Property Value

Inlet Velocity (m/s) 5.2
µt/µ 13

FSTI(%) Inlet Value 7.28
Density (kg/m3) 1.2

Dynamic viscosity (10−5kg/ms) 1.79

Figure 4.2: Cf distribution for the k − ω SST
model with the inlet conditions described in
table 4.2.

Figure 4.3: Cf distribution for all the models used
in [2] with the inlet conditions presented in table
4.2

Figure 4.4: Cf distribution for the RSM
model with the inlet conditions described in
table 4.2.

Figure 4.5: Cf distribution for all the models used
in [2] with the inlet conditions presented in table
4.2

By looking at these graphics, one sees that both the k − ω SST and SSG-LRR-ω models run by

ReFRESCO present a very similar behaviour with the one obtained in [2], validating the implementation

performed in [46].
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4.2.2 Correlation with Experimental Studies

After proving that the implementation of the RSM with the γ−Reθ transition model behaves similarly

to other CFD codes for identical inlet conditions, it is useful to verify how it correlates with experimental

data withdrawn from [67]. In this section, the type of grid used was the one explained in subsection

4.1.3. Only the finest grid, grid1, was used.

Specific inlet conditions were withdrawn from [66], which provide the correct location for flow transi-

tion when used in the k − ω SST model. The values for these conditions are compiled in table 4.3:

Table 4.3: Inlet boundary conditions for the k − ω SST + γ -Reθ model that match the experimental
location of transition.

T3AM T3A

I 0.01V∞ 0.05V∞

νt 25ν = 25V∞L/Re 280ν = 280V∞L/Re

Using the data from table 4.3, ReFRESCO was run using both the RSM and the k − ω SST model.

The results are displayed in figures 4.6 to 4.9:
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Figure 4.6: Cf distribution obtained with the
RSM and k-ω model and experimental corre-
lation for the T3AM case (grid1).

Figure 4.7: Turbulence Kinetic Energy map ob-
tained with the RSM model for the experimen-
tal correlation data for the T3AM case.
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Figure 4.8: Cf distribution obtained with the
RSM and k-ω models and experimental corre-
lation for the T3A case (grid1).

Figure 4.9: Turbulence Kinetic Energy map ob-
tained with the RSM model for the experimen-
tal correlation data for the T3A case.

Looking at figures 4.6 and 4.8, it is possible to see that, as it is expected, the results for the k−ω SST

model are identical to the experimental ones. However, the solutions for the RSM do present a small

deviation from the experimental data. Since the formulation of the coupling SSG-LRR-ω had already

been compared to other similar formulations from other sources in subsection 4.2.1 with satisfactory

results, one can conclude that this difference arises from the inlet turbulence boundary conditions used.

These had been tuned to be used with the k − ω SST model in [66], but may not be the most suitable

to be used with the RSM. This prompts the research explained in subsection 4.4.3, of how sensitive are

the models to the variation of these inlet turbulence boundary conditions.

4.3 Numerical Errors

After comparing the implementation of the SSG-LRR-ω in software ReFRESCO against both experi-

mental data and results from other CFD codes, subsection 4.3.1 intends to illustrate the grid dependance

of the RSM and compare it with the one of the k − ω SST model. The results for the k − ω SST model

were obtained in another study [68], with a different set of grids, but with equal inlet turbulence boundary

conditions to the ones used in this study. These are grouped in six different sets of inlet conditions,

adopted from [68], which are given in 4.4:

Table 4.4: Inlet boundary conditions which are kept constant throughout the grid refinement study.

T3AM T3A T3B

BC1 BC2 BC1 BC2 BC1 BC2

FSTI 0.01 0.01 0.05 0.05 0.07 0.07

EVR 7.55 0.10 12.67 0.10 99.15 0.10

These separate pairs of values aim to represent two different types of transition:
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1. T3AM corresponds to a case where natural transition occurs;

2. T3A and T3B correspond to cases where bypass transition occurs;

4.3.1 Grid Dependance in the RSM and k − ω SST models

In this subsection, it is possible to verify how the solutions are affected by the grid refinement level,

namely:

1. If the values of Cf converge to a solution when increasing grid refinement;

2. If the occurence of transition is affected by the different grid refinements;

This part of the study was performed by plotting the Cf variable against the Rex variable, for all the

case-studies described in table 4.4.

It was observed that, for all the BC1 conditions (whether for natural or bypass phenomena), there

is always the occurrence of transition, independently of the grid refinement level. The latter will only

influence the position of the transition: the finer the grid, the further downstream transition occurs. This

is explicit in figures 4.10 to 4.15. Along all the simulations performed with the flat plate, the RSM demon-

strated to have a satisfactory iterative convergence, with no major problems in reducing the residuals to

negligible levels. However, it proved to have more difficulties in converging to a solution than the k − ω

SST model, i.e., it took a larger number of iterations.
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Figure 4.10: Evolution of the Cf distribution
with the grid refinement level for the T3AM −
BC1 condition for the RSM.
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Figure 4.11: Evolution of the Cf distribution
with the grid refinement level for the T3AM −
BC1 condition for the k − ω SST.
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Figure 4.12: Evolution of the Cf distribution
with the grid refinement level for the T3A−BC1
condition for the RSM.
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Figure 4.13: Evolution of the Cf distribution
with the grid refinement level for the T3A−BC1
condition for the k − ω SST.
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Figure 4.14: Evolution of the Cf distribution
with the grid refinement level for the T3B−BC1
condition for the RSM.
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Figure 4.15: Evolution of the Cf distribution
with the grid refinement level for the T3B−BC1
condition for the k − ω SST.

It is possible to see that when increasing the grid refinement, several phenomena occur:

1. In the T3A and T3AM solutions, where the inlet EVR and FSTI are lower, the results for the RSM

present a larger discrepancy between grids than in the T3B solution;

2. The solutions for the finer grids tend to be closer to each other than the ones for the coarser grids;

3. The solutions for the k − ω SST model tend to be closer to each other than the ones for the RSM;

To illustrate this behaviour, figure 4.16 displays the evolution of the transition position x/L, with the

increasing size of the grid cells hi/h1.

As per [69], one can obtain the numerical uncertainty for the calculation of the position of transition,

depicted in figure 4.16 by the black error bars. The uncertainty was calculated only for the finest grid,
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using the data from the five finest grids. This decision arises from the way the grids are set (see table

4.1), resulting in two sets of grids where the finest grid is twice as refined as the coarsest one: grid1 to

grid5 and grid5 to grid9. Since the three coarsest grids display a considerably different behaviour from

the others, it would not be reasonable to calculate this uncertainty using the set of the 5 coarsest grids.

The values obtained for all the BC1 cases are expressed in table 4.5:

Figure 4.16: Evolution of transition position with the increasing level of grid refinement for the different
turbulent inlet conditions. Bars representing the numerical uncertainty for the calculation of transition
position for the finer grid are shown. The used axis scale is different in the rightmost figure.

Table 4.5: Values of uncertainty for the calculation of the transition position.

Case RSM k − ω SST

T3AM-BC1 0.015 0.003

T3A-BC1 0.015 0.005

T3B-BC1 0.003 0.001

Several aspects should be noticed:

1. In T3B-BC1 conditions, where the inlet EVR is considerably higher than in T3A-BC1 and T3AM-

BC1, the uncertainty of the calculation of transition position is lower.
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2. For all the conditions tested, the uncertainty in the calculated transition position is larger for the

RSM than for the k − ω SST.

3. Regarding the RSM, there is a big convergence gap between the three coarsest grids and the

others. So, when using the RSM model in future studies, care must be taken with the number of

grids used and its level of refinement. In this case, if only the three coarsest grids were used for

the RSM, the results would be precise, but inaccurate.

4. In the RSM, the difference between the results of the finest and coarsest grids is much more

sizeable than in the k − ω SST model, which can indicate that the RSM may require finer grids

when performing a similar simulation.

Looking at all the BC2 conditions, where the inlet eddy viscosity is considerably smaller (EVR=0.1)

than in the BC1 condition, it is possible to see that the RSM only presents transition in the two coarser

grids, remaining laminar in the seven finest grids. This behaviour does not occur for the k− ω SST. This

is demonstrated in figures 4.17 and 4.18. Only the T3B-BC2 condition is depicted, but the behaviour

obtained for the T3AM-BC2 and T3A-BC2 conditions is similar.
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Figure 4.17: Evolution of the Cf distribution
with the grid refinement level for the T3B−BC2
condition for the RSM.
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Figure 4.18: Evolution of the Cf distribution
with the grid refinement level for the T3B−BC2
condition for the k − ω SST.

The results obtained in the finest grid, grid1 with the different inlet conditions, for both turbulence

models (RSM and k−ω SST), are compiled in figure 4.19, which shows that when the inlet EVR is higher

(the BC1 cases), the solutions for both models become more similar. In these cases, the Cf curves for

the RSM and k − ω SST present analogous behaviour, but transition happens further downstream for

the RSM model.

On the other hand, for every BC2 condition, where the inlet EVR is lower, the solution for the k − ω

SST model features the occurrence of transition, while for the RSM it does not.
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Figure 4.19: Cf distribution for all the different cases tested with the flat plate, with different inlet
turbulence boundary conditions, for the RSM and the k − ω SST models.

4.3.2 Turbulence Kinetic Energy decay

In order to verify how the decay could possibly influence the ocurrence of transition, turbulence kinetic

energy maps were produced, which allow to study the decay of this variable inside the study domain.

These maps feature solutions of both the RSM and the k−ω SST model, for two different grids: grid1, the

finest one, and grid8, the finest grid for which transition did occur in the RSM for the BC2 sub-condition.

The numerical solutions obtained for the decay of the turbulence kinetic energy with both the k − ω

SST model and the RSM are also compared. These values are obtained in freestream along the domain,

far away from the flat plate’s surface.

For grid8 and T3B-BC2 condition, the turbulence kinetic energy in the vicinity of the boundary layer

is shown in figures 4.20 and 4.21, for the RSM and k − ω SST models respectively. It is possible to see

that transition was predicted by both models. Figure 4.22 has the values of turbulence kinetic energy in

the freestream, for both models, also for the T3B-BC2 condition.
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Figure 4.20: Turbulence Kinetic Energy for the
T3B−BC2 condition for the SSG-LRR-ω using
grid8.

Figure 4.21: Turbulence Kinetic Energy for the
T3B − BC2 condition for the k − ω SST using
grid8.
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Figure 4.22: Curves representing the variation of the freestream turbulence kinetic energy along the
domain in the x direction for both the RSM and the k − ω SST models for T3B-BC2 conditions using
grid8.

For grid1 and conditions T3B-BC2, the turbulence kinetic energy in the vicinity of the boundary layer

is shown in figures 4.23 and 4.24, for the RSM and k − ω SST models respectively. It is possible to see

that only the k − ω solution presents transition, whilst the RSM remains laminar. Similarly to what has

been done for grid8, figure 4.25 depicts the values of turbulence kinetic energy in the freestream, for

both models, for the T3B-BC2 condition.
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Figure 4.23: Turbulence Kinetic Energy for the
T3B−BC2 condition for the SSG-LRR-ω using
grid1.

Figure 4.24: Turbulence Kinetic Energy for the
T3B − BC2 condition for the k − ω SST using
grid1.
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Figure 4.25: Curves representing the variation of the freestream turbulence kinetic energy along the
domain in the x direction for both the RSM and the k − ω SST models for T3B-BC2 conditions using
grid8.

By looking at figures 4.22 and 4.25, one sees that the freestream turbulence decay is similar in both

models, in both situations, and thus it does not justify the differences in the models’ transition prediction.
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4.3.3 Conclusions

For this part of the study, one can infer several conclusions:

1. The RSM presents a greater grid dependence than the k − ω SST model;

2. The RSM needs finer grids than the k − ω when performing a similar simulation;

3. The prediction of decay of the turbulence kinetic energy is similar for both models;

4. The small difference in the decay prediction is not enough to justify differences in transition oc-

curence between both models;

5. The difference between the k − ω SST model and the RSM is augmented when the inlet eddy

viscosity is lower, meaning the RSM is especially sensitive to this flow property, which can justify

the differences in transition occurence between both models;

6. The RSM model presents transition downstream of the experimental location, both for natural and

bypass transition;

7. The uncertainty in the calculation of the position of transition with increasing grid refinement is

larger in the RSM than in the k − ω SST, for the same set of grids;

8. The solution of the RSM obtained with ReFRESCO presents a similar behaviour to the results

obtained with other codes, described in [2];
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4.4 Influence of Inlet Boundary Conditions

In order to try to quantify how much more sensitive to the turbulence inlet conditions the RSM is

when compared to the k − ω SST model, sensitivity studies were carried out. As mentioned in sub-

section 4.3.3 the location of transition predicted by the RSM appears to be more sensitive to the inlet

turbulence boundary conditions than the k−ω SST model, and also more sensitive to the grid refinement

level. Therefore, sensitivity coefficients were calculated for these two models. This is done by running

simulations for small variations of the inlet turbulence boundary conditions FSTI and EVR. These sim-

ulations were performed with three different turbulence models: RSM, k − ω SST and the k −
√
kL

model.

The grid used in this study corresponds to grid1 explained in subsection 4.1.3. The discretization

scheme is the same as explained in 3.4. The symmetry, outlet, top and surface of the plate’s boundary

conditions, the simulation stopping criteria are the same as described in subsection 4.1.3. The math-

ematical model applied to the Navier Stokes equations, the turbulence and transition models used are

the same as described in subsection 2.1.

4.4.1 Inlet Boundary Conditions

As in the grid refinement studies, at the inlet boundary, the velocity is set equal to undisturbed flow

conditions, meaning Vx = V∞ and Vy = 0. Specific values for turbulence kinetic energy and eddy

viscosity are chosen.

In both types of transition (natural transition with T3AM set of values, and bypass transition for T3A),

there are three different simulations:

1. A base one that will act as an original for comparison (based on the values from the AVT 313

workshop [66])

2. One where the value of FSTI is slightly changed and the EVR is maintained as the original, that

will serve to calculate the FSTI sensitivity coefficient;

3. One where the value of EVR is slightly changed and the FSTI is maintained as the original, that

will serve to calculate the EVR sensitivity coefficient;

These values are compiled in table 4.6:

Table 4.6: Inlet turbulence boundary conditions used for the determination of the sensitivity coefficients.
T3AM

EVR 25 25 30
FSTI 0.01 0.02 0.01

T3A

EVR 280 280 300
FSTI 0.05 0.06 0.05

45



4.4.2 Calculation of the Sensitivity Coefficients

The sensitivity coefficients quantify how much a quantity will vary when another quantity (from which

the first one is dependant on) is varied by a fixed amount. In this case, they measure the variation of

the x-coordinate (when changing the inlet EVR and the FSTI) for which the Cf is equal to a given value.

In each simulation, three different Cf values were used, one corresponding to the beginning of the

transition zone, one for the middle, and one for the end. This value of Cf is chosen visually, by looking

at each simulation and noticing where the transition begins and ends. This Cf value is different in the

T3AM and T3A case, since these comprise natural and bypass transition cases respectively, which imply

a different Cf range during transition. Figures 4.26 and 4.27 depict this reasoning. The three horizontal

grey lines are aligned with three different values of Cf , representing the beginning, middle and end of

transition.
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Figure 4.26: Cf distribution for the RSM model,
using three different sets of inlet conditions,
for the T3AM conditions. The three horizontal
lines correspond to the three phases of transi-
tion: beginning, middle and end.

Rex

C
f
×

1
0

3

0 100000 200000 300000 400000 500000 600000

2

3

4

5

6

7 EV_280_TI_0.05_Reference
EV_280_TI_0.06
EV_300_TI_0.05

Figure 4.27: Cf distribution for the RSM model,
using three different sets of inlet conditions, for
the T3A conditions. The three horizontal lines
correspond to the three phases of transition:
beginning, middle and end.

Since, for each case, the variations between the three simulations are not significant, the values of

Cf chosen are suitable for monitoring the transition in all of them. Bearing figure 4.26 as an example,

one can calculate the turbulence intensity sensitivity coefficient, when Cf = 1, corresponding to the

beginning of transition.

One must then know the x-coordinate for this Cf value, both for FSTI = 0.01 and FSTI = 0.02,

displayed next:

Table 4.7: X-coordinate values used to calculate the FSTI sensitivity coefficient.

Turbulence Intensity X-coordinate

0.01 0.4526

0.02 0.4026

46



With these values, one can use the formula:

f(xi+1) − f(xi)
xi+1 − xi

(4.11)

As proposed by [70], the sensitivity coefficient can be correctly calculated with different intervals between

values. Replacing the values in table 4.7 in equation 4.11, one obtains:

0.4026− 0.4526

0.02− 0.01
= −5 (4.12)

Multiplying the result by xi and dividing by f(xi) to normalize the coefficient:

−5× 0.01

0.4526
= −0.1105 (4.13)

47



4.4.3 Results

Doing a similar analysis for both transition types in the RSM model, both for the EVR and FSTI, in the

beginning, middle, and end of the transition zone, it is possible to compile all the calculated sensitivity

coefficients. Besides the RSM turbulence model, these coefficients were also calculated for the k − ω

SST and the k −
√
kL models, to provide a better term of comparison. Tables 4.8 and 4.9 feature the

sensitivity coefficients calculated for the T3A and T3AM cases, respectively, with the three turbulence

models.

Table 4.8: Sensitivity coefficients to the inlet turbulent boundary conditions calculated for the T3A case,
for the beginning, middle, and end of transition, for the three different turbulence models: SSG-LRR-ω,
k − ω SST and k −

√
kL.

T3A

Beginning of Transition Middle of Transition End of Transition

k −
√
kL

k − ω

SST
RSM k −

√
kL

k − ω

SST
RSM k −

√
kL

k − ω

SST
RSM

Turbulence Intensity

Sensitivity Coefficient
-0.079 -0.23 -0.32 -0.052 -0.18 -0.20 -0.042 -0.16 -0.19

Eddy Viscosity Ratio

Sensitivity Coefficient
-0.67 -0.24 -1.07 -0.54 -0.20 -0.70 -0.50 -0.17 -0.68

Table 4.9: Sensitivity coefficients to the inlet turbulent boundary conditions calculated for the T3AM case,
for the beginning, middle, and end of transition, for the three different turbulence models: SSG-LRR-ω,
k − ω SST and k −

√
kL.

T3AM

Beginning of Transition Middle of Transition End of Transition

k −
√
kL

k − ω

SST
RSM k −

√
kL

k − ω

SST
RSM k −

√
kL

k − ω

SST
RSM

Turbulence Intensity

Sensitivity Coefficient
-0.067 -0.078 -0.11 -0.062 -0.071 -0.10 -0.061 -0.071 -0.10

Eddy Viscosity Ratio

Sensitivity Coefficient
-0.18 -0.16 -0.24 -0.16 -0.14 -0.23 -0.14 -0.13 -0.23
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Figures 4.28 and 4.29 help to visualise the values of the above tables:

Figure 4.28: Sensitivity coefficients to the inlet turbulent boundary conditions calculated for the T3A
case, for the beginning, middle, and end of transition, for the three different turbulence models: SSG-
LRR-ω, k − ω SST and k −

√
kL.

Figure 4.29: Sensitivity coefficients to the inlet turbulent boundary conditions calculated for the T3AM
case, for the beginning, middle, and end of transition, for the three different turbulence models: SSG-
LRR-ω, k − ω SST and k −

√
kL.
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4.4.4 Conclusions

By looking at the sensitivity coefficients obtained, it is possible to draw some conclusions:

1. All the three turbulence models are more sensitive to changes in the inlet boundary conditions in

the T3A case (bypass transition) case, where the base eddy viscosity ratio is higher;

2. The RSM is the most sensitive turbulence model, whether for the FSTI or EVR, in both natural and

bypass transition;

3. The difference between the RSM and the k−ω SST model is larger in the EVR sensitivity coefficient

than in the FSTI;

4. The difference between the RSM and the other models is the largest in the T3A (bypass transition)

case, where the base eddy viscosity ratio is higher;

5. In almost all cases, sensitivity coefficients decrease towards the end of the transition, showing the

decreasing influence of the inlet conditions along the transition region;

6. The k −
√
kL model presents the lowest FSTI sensitivity coefficients. However, its EVR sensitivity

coefficients are between the ones of the RSM and k−ω SST model. This suggests that this model

presents a different behaviour than the other two, namely when predicting the decay of the inlet

turbulence quantities, as explicit in [46].
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Chapter 5

Airfoil Test-Case

The focus of this chapter is on the flow over the NLF1-0416 airfoil, and it is divided into two main

sections. The first one, section 5.1, presents the definition of the problem, with the characterization

of the domain, the boundary conditions and the numerical settings used. Then, section 5.2 comprises

the results obtained for the various simulations performed in this test-case. This section is divided in

two subsections. Firstly, subsection 5.2.1 includes studies regarding the sensitivity to inlet turbulence

boundary conditions for both the SSG-LRR ω and the k − ω SST model. These aim to verify if the

behaviour for the airfoil test-case is similar to the observed for the flat plate, where the RSM appears

to be more sensitive to the inlet turbulence boundary conditions than the k − ω SST model. Sensitivity

coefficients to the inlet turbulent boundary conditions were calculated for this test-case, similarly to what

is presented for the flat plate test-case in section 4.4.3.

The second subsection, 5.2.2, features a comparison between the SSG-LRR-ω model and the k−ω

SST model regarding their prediction of the location of transition, for similar conditions.

5.1 Problem Definition

5.1.1 Domain

The computational domain used in this study is a rectangle with the incoming flow V∞ and the airfoil’s

chord c aligned with the horizontal direction x, with a zero angle of attack α. The leading edge of the

airfoil is located at the origin of the (x, y) Cartesian coordinate system. The length of the domain in the

x direction is 36c, with the inlet located at x/c = −12 and the outlet at x/c = 24. The domain has a

height in the y direction of 24c, being the top boundary of the domain located at y/c = 12 and the bottom

boundary of the domain at y/c = −12.

The Reynolds number Re based on the undisturbed freestream velocity V∞, chord of the airfoil c and

kinematic viscosity of the fluid ν is given by equation 5.1:

Re =
V∞c

ν
= 4× 106. (5.1)

51



5.1.2 Boundary Conditions

There are five locations that require the specification of boundary conditions: the airfoil’s surface, the

inlet boundary, the outlet boundary, the top boundary and the bottom boundary.

Surface of the Airfoil

At the surface of the airfoil the boundary conditions used are identical to the ones described in

subsection 4.1.2 for the flat plate.

Top and Bottom Boundary

At the top and bottom boundaries, all the flow variables have null normal derivatives in the vertical

direction. The vertical velocity component is equal to zero (Vy = 0)

Outlet Boundary

At the outlet, streamwise derivatives equal to zero are applied to all dependent variables, except for

the pressure, which is fixed and equal to zero.

Inlet Boundary

At the inlet boundary, the boundary conditions are identical to the ones described for the flat plate in

subsection 4.1.2.

Inlet Turbulent Boundary Conditions

As proceeded in the flat plate test-case in subsection 4.4, specific values for inlet turbulence bound-

ary conditions FSTI and EVR are set, in order to calculate the sensitivity coefficients to these two vari-

ables. For each calculation, there are three different simulations:

1. A base one that will act as an original for comparison.

2. One where the value of the inlet property being studied is slightly decreased and the other inlet

property is maintained as the original, that will enable to calculate a ”minus coefficient”;

3. One where the value of the inlet property being studied is slightly increased and the other inlet

property is maintained as the original that will enable to calculate an ”plus coefficient”;

The ”minus” and ”plus” coefficients have identical purposes, and the reason of considering them both,

instead of a single coefficient as in subsection 4.4 with the flat plate test-case, is to have a broader set

of information for comparison. The values used to calculate these sensitivity coefficients are compiled

in table 5.1.
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Table 5.1: Inlet turbulence boundary conditions used for the determination of the sensitivity coefficients
to the inlet EVR and FSTI for the airfoil test-case.

EVR

EVR(µtµ ) 45 50 55

FSTI 0.03 0.03 0.03

FSTI

EVR(µtµ ) 50 50 50

FSTI 0.02 0.03 0.04

5.1.3 Numerical Settings

Grids

All the simulations in the airfoil test-case were performed using the same grid, taken from a previous

study [59]. Similarly to the ones used in the flat plate test-case, this is comprised by several structured

blocks, which feature different levels of refinement according to their location in the domain. Two prelimi-

nary calculations were performed with coarser grids, to evaluate the iterative convergence of the model,

and tune the relaxation factors mentioned in subsection 3.4.4. The successively used grids are different

but geometrically similar, each one of them being twice as refined as the previous one along the airfoil

surface. The number of cells in each grid are displayed in table 5.2. Grids grid − 1 and grid − 2 were

run to tune the relaxation parameters, and then grid − 3 was used to perform all the simulations in this

test-case.

Figures 5.1 to 5.4 depict the different blocks used to form grid − 1, the coarser one. The different

levels of refinement are patent in the different parts of the domain. Figure 5.4 intends to highlight the

detail of the mesh used near the airfoil surface, in order to best capture the near-wall phenomena.

grid− 3 presents a similar geometry, but it is four times more refined.

Table 5.2: Number of cells on the surface of the airfoil, total number of cells, and ((y+n )c)max of the
different grids used in the airfoil test-case.

Number of cells

on the airfoil’s surface

Total number

of cells
((y+n )c)max

grid-1 512 47616 6.67

grid-2 1024 190464 0.63

grid-3 2048 761856 0.33

Simulation Stopping Criteria

The stopping criteria used in these simulations was a convergence tolerance of 10−8 for the resid-

uals of certain variables, namely Vi, P , γ and Reθ. The residual norm used was the L∞ norm, which

53



x/L

y
/L

-10 -5 0 5 10 15 20

-10

-5

0

5

10

15

20

Figure 5.1: Different blocks that comprise the
grid used in the airfoil test-case highlighted in
different colours - view of the entire domain.
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Figure 5.2: Different blocks that comprise the
grid used in the airfoil test-case highlighted in
different colours - zoomed view.

x/L

y
/L

-0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Figure 5.3: Different blocks that comprise the
grid used in the airfoil test-case highlighted in
different colours - zoomed view.
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Figure 5.4: Different blocks that comprise the
grid used in the airfoil test-case highlighted in
different colours - surface detail.

considers only the maximum residual value of a given variable in the entire grid.

The residuals of the turbulence-solving equation were exempted from this criteria, as explained in

section 4.1.3.

5.1.4 Sensitivity Coefficients Calculations

The calculation of the inlet turbulence boundary conditions for the airfoil test-case followed the same

reasoning described in subsection 4.4.2 for the flat plate test-case. The Cf values used to calculate the

coefficients are highlighted with horizontal bars, both for the upper and lower surface of the airfoil, in

figures 5.5 and 5.6 for the SSG-LRR-ω and the k − ω SST models respectively.

In this section, besides using the values of these properties at the inlet in the denominator of equation

4.11, two additional sets of sensitivity coefficients were calculated, with the denominator of equation 4.11
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Figure 5.5: Cf distribution for the RSM model.
The three horizontal lines correspond to the
three phases of transition: beginning, middle
and end. The filled green bars match the cho-
sen Cf values for the upper surface, and the
dashed blue lines for the lower surface.

Figure 5.6: Cf distribution for the k − ω SST
model. The three horizontal lines correspond
to the three phases of transition: beginning,
middle and end. The filled green bars match
the chosen Cf values for the upper surface,
and the dashed blue lines for the lower surface.

featuring the Tu and EVR values in two distinct locations: at a distance of 1c from the airfoil’s leading

edge, 11c downstream of the inlet, and at the leading edge itself. The purpose of doing so is to confirm

that calculating sensitivity coefficients at a position far downstream of the inlet is unreasonable, since

the decay of turbulence quantities causes the changes in their inlet values to be poorly represented in

regions near the leading edge of the airfoil.
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5.2 Results

5.2.1 Sensitivity Coefficients

The leading edge of the airfoil is located far downstream - 12c - of the inlet, a considerably larger value

than what was verified in the flat plate test-case, where the leading edge was located 0.25L downstream

of the inlet. Therefore, there will be a higher decay of the different turbulent quantities specified at the

inlet, with them reaching the assymptotic region described in subsection 3.2 near the leading edge of

the airfoil. This will cause these variables to have fairly similar values in that location, and thus the inlet

turbulence boundary conditions sensitivity coefficients are expected to be much smaller than the ones

observed for the flat plate.

The sensitivity coefficients obtained with the turbulence quantities at the three locations specified in

subsection 5.1.4 with both the SSG-LRR-ω and the k − ω SST models are displayed in table 5.3, using

the Cf distribution for the upper surface of the NLF1-0416 airfoil. For the lower surface of the airfoil,

coefficients are displayed in table 5.4.

Table 5.3: Sensitivity coefficients to the inlet turbulent boundary conditions obtained with the Cf distri-
bution for the upper surface of the NLF1-0416 airfoil using the SSG-LRR-ω and the k − ω SST models.

Upper Surface

Beginning of Transition Middle of Transition End of Transition

Minus

Coefficient

Plus

Coefficient

Minus

Coefficient

Plus

Coefficient

Minus

Coefficient

Plus

Coefficient

FSTI

RSM

Inlet 1.260E − 4 8.342E − 5 1.698E − 4 1.051E − 4 2.457E − 4 2.365E − 4

11x/c −2.254E − 3 −2.217E − 3 −3.032E − 3 −2.603E − 3 −4.398E − 3 −4.717E − 3

12x/c −2.331E − 3 −2.060E − 3 −2.943E − 3 −2.488E − 3 −4.257E − 3 −4.506E − 3

k − ω SST

Inlet −7.200E − 4 8.132E − 5 −4.768E − 4 5.101E − 5 −5.177E − 4 6.465E − 4

11x/c −1.285E − 2 −1.211E − 3 −8.505E − 3 −7.638E − 4 −9.224E − 3 −9.432E − 4

12x/c −1.243E − 2 −1.197E − 3 −8.627E − 3 −7.431E − 4 −9.362E − 3 −9.545E − 4

EVR

RSM

Inlet −3.255E − 2 −3.372E − 2 −3.305E − 2 −3.342E − 2 −3.236E − 2 −3.135E − 2

11x/c −2.982E − 2 −3.092E − 2 −3.025E − 2 −3.055E − 2 −2.957E − 2 −2.866E − 2

12x/c −2.982E − 2 −3.092E − 2 −3.025E − 2 −3.055E − 2 −2.957E − 2 −2.866E − 2

k − ω SST

Inlet −6.645E − 2 −5.982E − 2 −5.572E − 2 −5.322E − 2 −6.522E − 2 −5.945E − 2

11x/c −6.090E − 2 −5.598E − 2 −5.169E − 2 −4.883E − 2 −5.977E − 2 −5.443E − 2

12x/c −6.090E − 2 −5.598E − 2 −5.169E − 2 −4.883E − 2 −5.977E − 2 −5.443E − 2
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Table 5.4: Sensitivity coefficients to the inlet turbulent boundary conditions obtained with the Cf distri-
bution for the lower surface of the NLF1-0416 airfoil using the SSG-LRR-ω and the k − ω SST models.

Lower Surface

Beginning of Transition Middle of Transition End of Transition

Minus

Coefficient

Plus

Coefficient

Minus

Coefficient

Plus

Coefficient

Minus

Coefficient

Plus

Coefficient

FSTI

RSM

Inlet 2.886E − 5 2.743E − 5 4.787E − 5 3.811E − 5 6.010E − 5 5.717E − 5

11x/c −4.884E − 4 −5.746E − 4 −8.092E − 4 −9.293E − 4 −1.073E − 3 −4.954E − 4

12x/c −4.991E − 4 −5.482E − 4 −8.319E − 4 −8.872E − 4 −1.039E − 3 −4.910E − 4

k − ω SST

Inlet 1.476E − 3 2.354E − 4 1.577E − 3 1.661E − 4 1.200E − 3 9.457E − 5

11x/c −2.621E − 2 −3.511E − 3 −2.801E − 2 −2.480E − 3 −2.144E − 2 −1.413E − 3

12x/c −2.543E − 2 −3.484E − 3 −2.712E − 2 −2.451E − 3 −2.070E − 2 −1.404E − 3

EVR

RSM

Inlet −4.513E − 3 −1.816E − 3 −5.436E − 3 −3.513E − 3 −2.778E − 2 −7.385E − 3

11x/c −4.142E − 3 −1.592E − 3 −4.972E − 3 −3.222E − 3 −2.500E − 3 −6.772E − 3

12x/c −4.142E − 3 −1.592E − 3 −4.972E − 3 −3.222E − 3 −2.500E − 3 −6.772E − 3

k − ω SST

Inlet −1.663E − 1 −1.706E − 1 −1.563E − 1 −1.573E − 1 −1.554E − 1 −1.475E − 1

11x/c −1.523E − 1 −1.556E − 1 −1.428E − 1 −1.442E − 1 −1.419E − 1 −1.418E − 1

12x/c −1.523E − 1 −1.556E − 1 −1.428E − 1 −1.442E − 1 −1.419E − 1 −1.418E − 1

The EVR and the FSTI do not decrease exactly in the same way. Table 5.5 presents the values of

FSTI and EVR defined at the inlet, and in a location of 11x/c downstream from it. The decay of the EVR

is such that the variations between the different simulations remain relatively similar in both locations.

On the other hand, the decay for the FSTI is much more accentuated, meaning the variations between

values set at the inlet is one order of magnitude larger than the ones documented 11c downstream of

it. Since the variation between values of the EVR is nearly constant along the domain, one should

expect the sensitivity coefficients calculated for the different locations to be fairly similar. Elseways, with

the FSTI, since the variation decreases significantly along the domain, the coefficients are expected to

increase near the airfoil’s leading edge when comparing with the inlet ones. This behaviour can also be

illustrated by figure 5.7, that feaures the analytical solution for equation 3.5, for different inlet turbulence

boundary conditions, in a portion of the domain from the inlet to the LE. These different conditions are

summarized in table 5.5. It can be assessed that when there is a variation of the EVR at the inlet, that

difference is maintained along the domain up to the LE of the airfoil - the cases of the solid green line

and the dashed pink line. However, when there are changes in the inlet FSTI, the inlet value of k can be

the same in two simulations, but have a fairly different decay along the domain - the cases of the solid

green line and the dashed blue line.
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Table 5.5: Inlet turbulence boundary conditions used for the determination of the sensitivity coefficients
to the inlet EVR and FSTI for the airfoil test-case.

Decay Study Cases

EVR(µtµ ) 45 55 55
FSTI 0.03 0.03 0.05
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Figure 5.7: Analytical solution for the turbulent kinetic energy decay along the domain for three different
cases.

Table 5.6: Values of the turbulence quantities of the different simulations, at the inlet and at a distance of
11c downstream from it. The variation of values between simulations is displayed for the two locations,
in percentage.

Variation Variation

EVR
Inlet 45 9% 50 10% 55

11 x/c 29.8950 12% 33.5195 11% 37.1750

FSTI
Inlet 0.02 50% 0.03 30% 0.04

11 x/c 0.002535 3% 0.002464 2% 0.002409

From tables 5.3 and 5.4, some conclusions can be withdrawn:

1. The overall coefficients calculated at the inlet are considerably small, and therefore should not

be accepted as significant, since they do not fairly represent the variations of the inlet turbulence

boundary conditions in regions close to the airfoil.
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2. In general the plus coefficients are smaller than the minus coefficients. This is justified by the fact

that for higher values of the inlet turbulence quantities, the decay will be more accentuated, and

the values of sensitivity obtained of both the k − ω SST and the RSM is going to decrease.

3. Both the FSTI and EVR inlet coefficients are larger for the k − ω SST model than for the RSM, but

within the same order of magnitude;

4. For both models, the inlet coefficients are much smaller for the FSTI than for the EVR, with the

difference being of two orders of magnitude;

5. There is not a clear trend among the coefficients regarding their position in transition, whether in

the beggining, middle or end of it.

6. The minus coefficients are usually larger than the plus coefficients, with a significant difference

between them, altough in the same order of magnitude. This enforces the idea that this sensitivity

analysis does not produces fruitful conclusions: starting from the base values, the results should

be fairly similar whether the interval used to calculate the coefficients is added or subtracted -

minus and plus coefficients - and that is not verified.

7. For the FSTI, in both models is verified a decrease of the value of the coefficients between the inlet

and the regions near/at the leading edge of the airfoil. That reduction is of similar value in both

models - one order of magnitude;

8. For the EVR, with both models, there is a slight decrease of the sensitivity coefficients between

the inlet and the regions near/at the leading edge of the airfoil, but they remain in the same order

of magnitude for the three locations;

Figure 5.8 shows a map of turbulence kinetic energy along the domain, where is patent the accentu-

ated decay of this variable, reaching an assymptotic behaviour in a region far upstream of the airfoil.
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Figure 5.8: Turbulent kinetic energy decay along the domain. It is possible to see that the inital decay
- near the leading edge - is abrupt, and then it tends to a stable, assymptotic behaviour. The airfoil is
located in the middle of the image, and it is possible to see the wake it produces.

5.2.2 Comparison between the k − ω SST and the SSG-LRR-ω

The results obtained for all the cases described in table 5.1, used to calculate the sensitivity coeffi-

cients in subsection 5.2.1, were extremely similar. The curves of Cf for the upper and lower surfaces of

the airfoil, both for the RSM and the k − ω are depicted in figure 5.9:
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Figure 5.9: Cf curves obtained for the five different sets of turbulent inlet conditions, both for the SSG-
LRR-ω and the k − ω SST. The filled lines represent the reults obtained for the SSG-LRR-ω model and
the dashed lines for the k − ω SST model. Green lines correspond to the results for the upper surface,
and blue lines for the lower surface.

Analysing the results, several aspects can be noticed:

1. The k − ω SST predicts transition upstream of the SSG-LRR-ω, both for the upper and lower

surface;

2. The SSG-LRR-ω presents a region with negative Cf values just before the start of transition. This

implies that, in the RSM, the adverse pressure gradient makes the laminar boundary layer separate

before the transition to turbulent regime. This does not happen in the k − ω SST;

3. In the laminar regime, the Cf value predicted by both models is similar. However, after transition

occurs, the SSG-LRR-ω predicts a slightly higher value of Cf .

4. The difference between both models in the prediction of transition position is smaller in the upper

surface, where the pressure gradient is more adverse, when compared to the lower surface;
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Chapter 6

Spheroid Test-Case

This chapter presents the analysis of the flow over a 6:1 spheroid at an angle of attack of 5◦ . The

goal of this chapter is to evaluate how the RSM behaves in predicting transition over the surface of the

spheroid, and compare it with the results obtained for the k − ω SST model. It is eventually shown that

the inlet conditions tuned for being used with the k − ω SST may not be the most suitable to be used

with the SSG-LRR-ω, even though the transition model coupled with both these models is the same.

It was chosen not to perform a sensitivity analysis for the prolate spheroid test-case, since it had

already been concluded with the airfoil test-case in subsection 5.2.1 that for test-bodies located far

downstream of the domain, sensitivity coefficients with the inlet boundary conditions do not present

fruitful conclusions.

6.1 Problem Definition

6.1.1 Domain

The 6:1 prolate spheroid with length L is embedded in a three dimensional computational domain,

shaped like a rectangular prism, with a length of 200L a height of 200L and a width of 100L. The incoming

flow V∞ is alligned with the horizontal direction x. The major axis of the spheroid is parallel to the xy

plane, and is oriented in an angle of attack α of 5◦ with the x direction. The center of the spheroid is

located at the origin of the (x, y, z) Cartesian coordinate system. The inlet is located at x/L = −100

and the outlet at x/L = 100. The domain has a lateral boundary located at z/L = 100 and a symmetry

boundary condition at z/L = 0. The top boundary of the domain is placed at y/L = 100 and the bottom

boundary of the domain at y/L = −100.

The Reynolds number Re based on the undisturbed freestream velocity V∞, length of the spheroid

L and kinematic viscosity of the fluid ν is given by equation 6.1:

Re =
V∞L

ν
= 6.5× 106. (6.1)
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6.1.2 Boundary Conditions

There are six locations that require the specification of boundary conditions, similarly to what is

verified for the airfoil test-case: the inlet boundary, the surface of the spheroid, the top, bottom and side

boundary, the outlet boundary and the symmetry boundary.

Surface of the Spheroid

At the surface of the spheroid the boundary conditions used are identical to the ones described in

subsection 4.1.2 for the flat plate.

Top and Bottom Boundary

At the top and bottom boundaries, the boundary conditions used are the same as the ones used for

the airfoil test-case, described in subsection 5.1.2.

Lateral Boundaries

At the lateral boundaries, the boundary conditions used are the same as the ones used for the top

and bottom boundaries of the airfoil test-case, described in subsection 5.1.2.

Outlet Boundary

At the outlet, the boundary conditions used are the same as the ones used for the airfoil test-case,

described in subsection 5.1.2.

Symmetry Boundary

Similarly to what is described in subsection 4.1.2 for the flat plate test-case. a symmetry boundary

condition is applied in the domain of the spheroid test-case, at z = 0.

Inlet Boundary

At the inlet boundary, the boundary conditions are identical to the ones described for the flat plate in

subsection 4.1.2.

Inlet Turbulent Boundary Conditions

Altough sensitivity coefficients were not calculated, different inlet boundary conditions were used

in different simulations performed in this test-case. The values of each simulation and the reasoning

behind them will be explained in subsection 6.2.
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6.1.3 Numerical Settings

Grids

The simulations of the spheroid test-case were performed using always the same grid, which is

comprised by several structured blocks. This grid was the coarser one from a set of five grids, but

it was decided to use it instead of the finer ones due to the lack of computational power/cluster time

available. This grid had been already used in a previous study [60] and was therefore adopted for this

work. Figures 6.1 to 6.4 intend to represent different parts of this grid that are worth noticing. Table 6.1

presents the main characteristics of it.

Table 6.1: Number of cells on the surface of the spheroid, total number of cells, and ((y+n )c)max of the
grid used in the spheroid test-case.

Number of cells

on the spheroid’s surface

Total number

of cells
((y+n )c)max

grid-spheroid 31504 5303536 0.72

Figure 6.1: Depiction of the grid in the regions
near the spheroid. The ”cross” in the mesh is
due only to visual effects, and does not intend
to represent any additional local refinement.

Figure 6.2: Zoomed view of the grid used
around the spheroid test-body. It is possible
to see the additional refinement employed near
the body.

6.1.4 Simulation Stopping Criteria

The simulation stopping criteria used for the spheroid test-case is identical to the one described for

the flat plate test-case, in subsection 4.1.3.

6.2 Results

The values used in the initial simulation - Case1 - provide a value of 0.15% of Tu in the leading edge

of the spheroid, to match the values proposed by [71], for a simulation with the 6:1 prolate spheroid
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Figure 6.3: Detailed view of the grid zoomed
near the leading edge of the spheroid. The grid
is considerably more refined in the regions ad-
jacent to the body, to better capture the near-
wall phenomena.

Figure 6.4: Depiction of the grid used on the
spheroid’s surface, near its leading edge. This
grid structure is symmetric in relation to the
spheroid’s mid planes, and so the region near
the trailing edge will present an identical con-
figuration.

test-case with the k − ω SST model. This simulation did not converge, and presented a large region

of laminar separation. On the other hand, for the same inlet turbulence boundary conditions, the k −

ω SST model, without crossflow transition prediction, presented transition to turbulent regime, and a

considerably smaller separation bubble upstream of it. This can be observed in figures 6.5 and 6.6.

Upon this conclusion, several cases were run, trying to evaluate how the turbulence inlet conditions

affected the solution. These cases are presented in table 6.2, that informs if a simulation was run with

or without the γ−Reθ transition model, the value of the turbulence quantities FSTI and EVR at the inlet,

and at the leading and trailing edges of the spheroid, obtained with equations 3.5 and 3.6. It also tells if

the results presented flow separation, and if the simulation had a sucessful iterative convergence or not.

The reasoning behind the chosen values for each simulation ought to be explained:

• Case2 was run with same conditions as Case1, but with no transition model, to perceive if the

difference in the transition prediction between Case1 and the results obtained for the k − ω SST

were related to the coupling with the γ −Reθ transition model;

• Since Case2 did converge, the inlet turbulence quantities were increased, to the values of Case3,

and the transition model was again coupled with the SSG-LRR-ω. Cases 3 to 6 were run in order

to find a lower limit of the turbulence quantities in the LE of the spheroid for which the SSG-LRR-ω

+ γ − Reθ did not converge anymore, which was achieved in Case6. Due to the increased inlet

turbulence quantitites, these simulations did not present laminar separation bubble, as in Case1.

This can be seen in figure 6.7;

• Case7 had the goal of mimicking the turbulence intensity at the leading edge of Case6, but with a

much higher value of EVR and lower value of FSTI at the inlet, to verify if the iterative convergence

was achieved for the same conditions at the LE but with a higher EVR at the inlet;
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• Finally Case8 was run to perceive if iterative convergence was achieved with the lower value of

FSTI at the LE with which the simulation had converged - Case5, but with a higher value of inlet

FSTI, and the lowest possible value of EVR at the inlet [59].

Table 6.2: Description of all the cases used to study the flow over the 6:1 spheroid, regarding the
usage of transition model, the turbulence quantities in several points, flow separation, and iterative
convergence. In the penultimate column, ”Sep.” stands for ”flow separation”.

Case
Transition

Model

Inlet

EVR

Inlet

FSTI (%)

LE

EVR

LE

FSTI (%)

TE

EVR

TE

FSTI (%)
Sep. Status

1 Yes 250 0.5 206.455 0.151 206.295 0.150 Yes
Not

Converged

2 No 250 0.5 206.455 0.151 206.295 0.150 No Converged

3 Yes 8000 5 6024.222 0.849 6019.186 0.845 No Converged

4 Yes 8000 0.58 7800.101 0.495 7798.382 0.494 No Converged

5 Yes 800 0.58 703.606 0.260 703.133 0.259 No Converged

6 Yes 800 0.35 746.110 0.226 745.751 0.226 -
Not

Converged

7 Yes 2000 0.257 1959.496 0.226 1959.137 0.226 -
Not

Converged

8 Yes 800 2.78 547.357 0.259 546.888 0.258 No Converged

Figure 6.5: Map of the skin-friction in the x di-
rection on the surface of the spheroid using the
SSG-LRR ω model with 0.15 % of FSTI at the
LE of the spheroid. The streamlines show the
recirculation of the flow inside the large sepa-
ration bubble that is formed on the suction side.

Figure 6.6: Map of the skin-friction in the x di-
rection on the surface of the spheroid using the
k−ω SST model with 0.15 % of FSTI at the LE
of the spheroid. The recirculation of the flow
shown by the streamlines highlights a much
smaller separation bubble in the suction side
than in the RSM.

Figures 6.9 to 6.14 show the Cf distributions obtained with the SSG-LRR-ω for all the converged

cases mentioned in table 6.2, as well as for Case1. Figure 6.8 shows the Cf distribution obtained with
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Figure 6.7: Map of the skin-friction in the x
direction on the surface of the spheroid using
the SSG-LRR-ω with Case4. The streamlines
show that there is no recirculation of the flow
as in Case1.

Figure 6.8: Cf distribution on the unrolled sur-
face of the prolate spheroid obtained for Case1
with the k − ω SST model.

the k − ω SST model, for Case1. In these figures, the y axis represents the azimuthal angle φ of a

given point at the surface of the spheroid [72], and the x axis represents the spheroid’s non-dimensional

length x/L. Except for figure 6.9, whose solution did not converge, the Cf distributions are in line with

the expected results:

1. Figure 6.8 displays the results obtained for Case1 with the k − ω SST model, and show transition

occurring fairly downstream of the location predicted by the SSG-LRR-ω for the same case, but

with no transition model, patent in figure 6.10;

2. Figure 6.10 presents Case2, with no transition model coupled with the SSG-LRR-ω. The high

values of Cf on the left side of the map mean that transition occurs fairly close of the leading

edge, considerably upstream of what occurs in all other cases that feature the coupling of the

SSG-LRR-ω with the γ −Reθ model;

3. From Case3 to Case5, in figures 6.11 to 6.13, transition occurs further downstream in each case,

due to the successive decrease of the inlet turbulence quantitites. This is understandable, since

larger values of inlet FSTI and EVR will prompt transition to occur earlier;

4. Case8, presented in figure 6.14 is comparable to Case5, in figure 6.13, since they both present

the same value of 0.26% for the turbulence intensity at the leading edge of the spheroid. However,

the higher value of EVR at the spheroid’s leading edge in Case8 causes transition to be triggered

earlier than in Case5.

Looking at figures 6.9 to 6.14, several conclusions may be withdrawn:

67



Figure 6.9: Cf distribution on the unrolled
surface of the prolate spheroid obtained for
Case1, with the SSG-LRR-ω model.

Figure 6.10: Cf distribution on the unrolled
surface of the prolate spheroid obtained for
Case2, with the SSG-LRR-ω model.

Figure 6.11: Cf distribution on the unrolled
surface of the prolate spheroid obtained for
Case3, with the SSG-LRR-ω model.

Figure 6.12: Cf distribution on the unrolled
surface of the prolate spheroid obtained for
Case4, with the SSG-LRR-ω model.

1. The inlet turbulence boundary conditions tuned for being used with the k − ω SST model are not

suitable for being used with the SSG-LRR-ω model with this latter needing a greater turbulence

intensity to display the same results of the k − ω SST model;

2. For identical inlet turbulence boundary conditions, especially for relatively low values, the RSM

tends to present larger regions with flow separation, with its inherent recirculation, than the k − ω

SST. This occurs because the RSM delays the occurence of transition and then inherently what

happens is laminar separation.

3. The k − ω SST model can converge to a result in situations where the RSM can present some

iterative convergence difficulties, namely in regions of instability, such as the large separation

bubble yielded in Case1.
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Figure 6.13: Cf distribution on the unrolled
surface of the prolate spheroid obtained for
Case5, with the SSG-LRR-ω model.

Figure 6.14: Cf distribution on the unrolled
surface of the prolate spheroid obtained for
Case8, with the SSG-LRR-ω model.
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Chapter 7

Conclusions

This chapter intends to summarize the achievements and conclusions obtained in the different test-

cases, whilst providing some ideas for future work developed in this area.

7.1 Achievements

7.1.1 Validation with results from other codes and experimental data

The coupling of the SSG-LRR-ω + γ − Reθ implemented in ReFRESCO demonstrated equivalent

results to the ones obtained with the same coupling implemented in other CFD codes. When comparing

with experimental data, the results were in accordance with what was expected i.e. the RSM predicted

transition slightly downstream of what was verified in the real flow.

7.1.2 Numerical Robustness of the SSG-LRR-ω + γ −Reθ coupling

Along almost all the simulations performed in this thesis, the SSG-LRR-ω model demonstrated to

have a satisfactory iterative convergence, with no major problems in reducing the residuals to negligible

levels. However, in general, it proved to have more difficulties in converging to a solution than the k − ω

SST model, i.e., it took a larger number of iterations. Additionaly, in some situations of large regions

of instability, such as separation bubbles, the RSM could not converge to a solution, whilst the k − ω

SST model could. The RSM presented a greater grid dependence, and needed a finer grid than the

k−ω SST model to present similar results. The uncertainty of the calculation of transition position when

increasing the grid refinement is larger in the RSM than in the k − ω SST.

7.1.3 Transition Prediction

In this thesis was concluded that the SSG-LRR-ω tends to present transition downstream of the

location predicted by the k−ω SST model. In some specific cases, when the values of the inlet turbulence

boundary conditions are lower, the RSM may not be able to match the experimental data and the values
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predicted by the k − ω SST: these latter two exhibit transition whilst the RSM predicts a full laminar

solution.

7.1.4 Influence of the decay of the turbulence inlet conditions

The decay of the FSTI is more accentuated than the one of the EVR, meaning that variations of the

inlet value of the EVR will have a greater impact on the simulation results than variations of the inlet

FSTI - greater decay of the FSTI will imply that a variation on the inlet is not translated into a variation

near a test-body located far downstream from the inlet.

The higher the value of the inlet turbulence boundary conditions, the greater the sensitivity of the

models studied to changes in these conditions. From all the models studied, the SSG-LRR-ω appeared

to be the most sensitive.

It was also found out that the inlet turbulence boundary conditions tuned to be used with the k − ω

SST are not the most suitable to be used with the SSG-LRR-ω.

7.2 Future Work

With the conclusions withdrawn from the work developed, it is possible to define some future work to

be carried out regarding this topic.

It would be interesting to study a method to obtain the appropriate inlet turbulence boundary con-

ditions to be used in a study with the SSG-LRR-ω, taking the conditions tuned for the k − ω SST as a

starting point, since this latter is a more commonly used model, and therefore there is plenty of acces-

sible data for it. The experimental data available could also be used to tune these conditions for the

RSM.

Another suggestion would be to include the crossflow prediction method in this coupling, and assess

if the differences observed in the spheroid test-case between the k− ω SST and the SSG-LRR-ω would

persist. The crossflow prediction would also be useful to better compare the results obtained in this

test-case with the experimental ones.

Stability studies could be carried out, in order to perceive if would be worth to develop additional tools

to ensure the iterative convergence of the SSG-LRR-ω in a broad set of conditions, i.e, when there are

large instability regions, or if the test-body presents a complex geometry.

Finally, it would be fruitful to compare the performance of the SSG-LRR-ω with other turbulence

models in environments that theoretically suit this model the most [4]. To seize all the advantages

coming from the ability to deal with the turbulence anisotropy, some test-cases could be studied, such

as delta wings, oblate spheroids, or even moving cylinders.
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