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Abstract

The use of new methods to simulate transitional flows is gaining increasing importance in the world of aerodynamics.
In the middle Reynolds number range (105 − 107), with applications ranging from the flow around a drone to the study
of models to be used in a wind-tunnel, the use of RANS approach with turbulence models coupled with a method for
predicting transition appears as an accurate and cheaper alternative to other methods, such as DNS or LES. In the RANS
approach, one of the most precise methods for modelling turbulence is the RSMs. RSMs present the advantage of not being
isotropic and are viewed as being the accurate alternative for time-averaged RANS simulations when compared to EVMs.
Coupling this with a reliable transition-prediction method is, therefore, something that must be tried out in order to verify
that the results obtained are satisfactory and accurate when compared to other turbulence predicting methods, and with
experimental data.

The focus of this work is then to apply the RANS equations for modelling and capture the mean properties of a
transitional flow. These equations are closed with the SSG-LRR-ω, coupled with the γ − Reθ transition model. Several
test-cases are studied: a flat plate, an airfoil, and a 6:1 prolate spheroid. It was found that this coupling presented a greater
grid dependance than the k−ω SST + γ −Reθ coupling, and displayed more difficulties in achieving iterative convergence,
specially in regions with flow separation. The inlet turbulence boundary conditions tuned to be used with the k− ω SST +
γ−Reθ were found to be not the most suitable for the SSG-LRR-ω + γ−Reθ, with this latter coupling being less sensitive
to changes in the inlet turbulence conditions than the first one. In all the simulations performed, the SSG-LRR-ω + γ−Reθ
took longer to react to the inlet conditions, and presented transition downstream of the k − ω SST + γ −Reθ.
Keywords: RANS, SSG-LRR-ω, γ −Reθ, transitional flow

1. Introduction
The constant pursuit of new ways of simulating increasingly
complex transitional flows motivates inumerous studies and re-
search in the aerodynamics field [30–32]. For the past few years,
new tools have been developed, with the purpose of increasing
the simulation’s modelling accuracy, without a significant rise in
the computational costs. For cases of transitional flows, where
a significant part of the flow is laminar, the use of the Reynolds
averaged Navier Stokes (RANS) mathematical approach with
a Reynolds stress model (RSM) to model turbulence, coupled
with a reliable transition prediction method is emerging as an
alternative to other numerical methods such as the direct nu-
merical simulation (DNS), large eddy simulation (LES), or the
eN method. RSMs present the advantage of being able to deal
with turbulence anisotropy and are often regarded as being a
more accurate alternative for time-averaged RANS simulations,
when compared to eddy viscosity based models (EVMs). Com-
bining RSMs with transition models can be advantageous in ge-
ometries with strong curvature, with rotational flows [17], where
other models as the k−ω SST model [26] might be less reliable.
The focus of this work draws upon assessing the coupling be-
tween the SSG-LRR-ω Reynolds stress model [9] and the γ−Reθ
transition model [20].

There are two main objectives of this research:

1. Evaluate the numerical robustness of the SSG-LRR-ω +

γ-Reθ combination, i.e. check the ability to reduce the
residuals to negligible levels;

2. Evaluate the influence of inlet turbulence boundary con-
ditions on the location of transition predicted with the
SSG-LRR-ω+γ-Reθ combination and compare it with the
results obtained with the k − ω SST+γ-Reθ combination;

To fullfill these objectives, three different test cases were se-
lected, each one having different goals: a 2D study of a flow
over a flat plate, which allows the use of an inlet boundary rela-
tively close to the leading edge; a 2D study of a flow around the
NFL1-0416 airfoil that exhibits separation induced transition as
well as natural transition; a 3D study of a flow around a prolate
spheroid to include a three-dimensional geometry.

2. Transitional Flows Overview
Simulating flows around bodies with complex geometries is fun-
damental in the design process of engineering projects. To study
transitional flows, such as the flow around a drone, or the study
of wind tunnel models, methods known for their superior accu-
racy such as the direct numerical simulation (DNS) can be a
possibility. However, it is currently suitable to simulate prob-
lems only at relatively low Reynolds numbers. Other methods,
such as the large eddy simulation (LES) appear as simplifica-
tion of the DNS approach, but has a poor behaviour in near-wall
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conditions. Other tools increasingly used nowadays to simulate
transitional flows near walls draw upon some simplification of
the Navier-Stokes equations such as in the case of the Reynolds
Averaged Navier-Stokes (RANS) equations. This mathemati-
cal method averages the continuity and momentum equations,
and all the dependant variables, requiring a turbulence model
to perform the so-called ”closure of the problem” [14].

2.1. Turbulence Models
Some turbulence models, the eddy viscosity based models
(EVMs), such as the k − ω SST, obtain the Reynolds stresses
through a previously established assumption, such as the
Boussinesq hypothesis [7]. They are numerically stable, and
versatile. However, they assume the turbulence to be isotropic,
which make them poor models for flows with strong curvature
and rotation.

On the other hand, the Reynolds stress models, such as
the SSG-LRR-ω assume themselves as an alternative to EVMs.
They can deal with the anisotropy of turbulence, due to the re-
distribution of the Reynolds stresses coming from the pressure-
strain correlation. This makes RSMs more accurate than EVMs
in predicting flows with normal Reynolds stress anisotropy [18]
and flows with large amounts of rotation, such as the free vor-
tices created in the tip of a plane’s wing [8]. It is also indicated
for flows with strong curvature [17], or with large instability
regions [15] and strong adverse pressure gradients [30].

2.2. Transition Model
Except for the DNS and LES, that can be used for transitional
flows [6], but presents the disadvantages mentioned before, the
previously discussed models are not suitable to model transition
on their own [13], since they usually predict transition sooner
than what is verified in the real flow. Therefore, in order that
ensure that transition phenomena occuring in the flow are cap-
tured with the maximum accuracy possible, one should comple-
ment the turbulence model with a suitable method for predict-
ing and modelling transition.

Several transition prediction methods and models have been
developed, and it is possible to enumerate some of them, such as
the linear stability theory based eN method, empirical non-local
correlation based methods, or local transport equation based
transition models, such as the γ −Reθ model. The eN method
is a commonly used non-local method [35] that needs access to
integral parameters of the flow. In RANS applications, where
there is usually a decomposition of the domain by several com-
putational cores, it is hard to implement this non-local method:
one processing core could need information stored in another
one, requiring an additional computational effort, since this pas-
sage of information is usually time-consuming.

The eN method also presents some more downsides, since
it is limited to some transition mechanisms, and only provides
the location of the transition point, meaning it ”activates” the
turbulence model downstream of that point, creating a disconti-
nuity in the domain [35]. Empirical non-local correlation based
methods [28] are not used much anymore nowadays, having been
replaced by other more reliable methods.

Local transport equation based transition models such as the
γ model [29] or the γ−Reθ model [20] are frequently and easily
coupled with RANS applications [22]. Being local models, they
only require information available in the cell, and do not make
use of integral parameters. Therefore, the domain partition by
several computational cores that are commonly used with RANS

does not hinder the model to obtain the information it requires.
In this work, the γ − Reθ model was the chosen transition

model to be coupled with the SSG-LRR-ω model, since this
work follows the work reported in [22], within the scope of the
MARIN-IST cooperation.

2.3. ReFRESCO Software
The 2.6 version of the ReFRESCO software was used in all
the computations performed in the present work. As defined
in the official website [4], ”ReFRESCO is a viscous-flow CFD
code that solves multiphase (unsteady) incompressible flows us-
ing the Navier-Stokes equations, complemented with turbulence
models (...) Various turbulence models, from RANS models to
high fidelity hybrid and scale resolving models, complemented
with transition models are available. The equations are dis-
cretised using a finite-volume approach discretization of the
RANS and turbulence quantities transport equations, with cell-
centered collocated variables, in strong conservation form. (...)”
ReFRESCO enables a segregated or coupled solution of the con-
tinuity and momentum equations. On the other hand, the so-
lution of the k and ω transport equations is always segregated.
Therefore, all the simulations presented in this work were per-
formed with the segregated approach. There was a crossflow
transition predicition method available, but it was decided not
to include it in the model. In all the simulations made with Re-
FRESCO, the fluid is assumed to be Newtonian, single-phase
and incompressible. The dynamic molecular viscosity µ is also
constant in a simulation.

3. Mathematical Model
To describe flows of viscous, incompressible fluids, one can resort
to mass conservation and momentum balance, which can be
expressed in a Cartesian coordinate system as:

∂Ṽi
∂xi

= 0.

∂(ρṼi)
∂t

+
∂ρṼiṼj
∂xj

= − ∂P̃
∂xi

+
τij
∂xj

.
(1)

Being Ṽi the instantaneous Cartesian velocity components, ρ
the fluid density, P̃ is the relative pressure (with the reference
pressure being the hydrostatic pressure). The subscripts i and j
are computational indexes representing consecutive, non-equal
cartesian coordinates x, y, z and τij stands for the components
of the stress tensor, which for a Newtonian fluid is given by:

τij=µ

(
∂Ṽi
∂xj

+
∂Ṽj
∂xi

)
. (2)

Being the three test-cases evaluated wall bounded transitional
flows, the RANS approach can be used, meaning that all instan-
taneous flow variables Φ̃ are decomposed in a mean value Φ and
a fluctuation φ (turbulence). To discover a variable Φ̃, differ-
ent type of averaging can be used, depending on the physics of
the flow. For the flows analysed in this work, where the mean
flow is statistically steady, time-averaging can be applied, being
defined by equation 3:

Φ(xi)=limT→∞
1
T

∫ T
0 Φ̃(xi,t)dt. (3)

Applying equation 3 to the variables in the continuity and
momentum equations 1, one obtain the RANS equations, de-
fined by:

∂Vi
∂xi

=0,

∂ρViVj
∂xj

=− ∂P
∂xi

+ ∂
∂xj

(
µ

(
∂Vi
∂xj

+
∂Vj
∂xi

)
−ρvivj

)
.

(4)
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This leads to a statistically steady flow. However, it also gen-
erates the Reynolds stress tensor −ρvivj patent in the momen-
tum equation, where the overbar represents the average value.

The notation used in this work for the Reynolds stresses is
ρRij , that is equivalent to −ρvivj . This additional term requires
closure, implying the formulation of an extra equation, i.e. writ-
ing this term as a function of known variables of the flow [12].
This is achieved by using a turbulence model, that will prescribe
the values of the Reynolds stresses, through modeling approxi-
mations, allowing the computational solving of these equations.
To prescribe the values for the Reynolds stresses, turbulence
models can follow different approaches.

3.1. EVMs
Some turbulence models, called eddy viscosity based models
(EVM), make use of a ”mathemathical concept” called eddy
viscosity µt, first described by Joseph Boussinesq in [7]. These
models involve a previously established assumption, that re-
lates the eddy viscosity with the Reynolds stresses, such as the
Boussinesq hypothesis [7] The way eddy viscosity is calculated
nowadays depends on the formulation that each model uses, but
the fundamental goal is to define it using known flow variables.

3.1.1 k − ω SST model

The k−ω SST turbulence model is a two-equation eddy viscosity
model, presented in [26]. The formulation used in this work
follows the expressions that can be found in [3]. It features two
transport equations, for the turbulent kinetic energy k and the
specific turbulent dissipation rate ω.

The two-equation model, for incompressible flow can be writ-
ten, in conservation form, for steady flows as in equations 5 and
6:

ρ∂(Vjk)
∂xj

=Pk−Dk+ ∂
∂xj

[
(µ+σkµt)

∂k
∂xj

]
, (5)

ρ∂(Vjω)
∂xj

=Pω−Dω+ ∂
∂xj

[
(µ+σωµt)

∂ω
∂xj

]
+2(1−F1)

ρσω2
ω

∂k
∂xj

∂ω
∂xj

. (6)

3.1.2 k −
√
kL model

The k −
√
kL model is a linear eddy viscosity model, that fea-

tures two transport equations, one for φ =
√
kL, with L being

the turbulent length scale, and another for k. This model is also
used in ReFRESCO, and provides extra data for comparison.
The formulation used in this work follows the expressions that
can be found in [27].

The two-equation model, written in conservation form, for
steady, incompressible flow, is given by the following:

ρ∂(Vjk)
∂xj

=Pk−Dk+ ∂
∂xj

[
(µ+σkµt)

∂k
∂xj

]
. (7)

ρ∂(Vjφ)
∂xj

=Cφ1
φ
k
P−Cφ2ρk3/2−6µ φ

d2
fφ+ ∂

∂xj

[
(µ+σφµt) ∂φ

∂xj

]
. (8)

3.2. RSMs
There are other turbulence models, the Reynolds stress models
(RSM), that directly compute the Reynolds stresses, requiring
additional equations to do so.

3.2.1 RSM - SSG-LRR-ω model

The SSG-LRR-ω model is a blend between the Speziale-Sarkar-
Gatski model (SSG) [34] in the far field and the Launder-Reece-
Rodi (LRR) model [21] near walls, combined with Menter’s

baseline ω-equation for the length scale [9]. The formulation
used in this work follow the expressions that can be found in
[5].

The SSG-LRR-ω is a full second-moment Reynolds stress
model [10, 15, 16], meaning it computes each of the 6 Reynolds
stresses directly, with each Reynolds stress having its own trans-
port equation. There is also a seventh transport equation for
the ω variable. The six Reynolds stresses, for steady flows, are
given by equation 9:

ρ∂(VkRij)

∂xk
=ρDij+ρPij+ρΠij−ρεij+ρMij . (9)

The equation for the specific rate of dissipation ω for steady
flows is given by:

ρ∂(Vkω)

∂xk
=Pω−Dω+ ∂

∂xk

[
(µ+σω

ρk
ω ) ∂ω

∂xk

]
+σd

ρ
ω
max

(
∂k
∂xj

∂ω
∂xj

,0

)
. (10)

3.3. Transition Model
3.3.1 γ −Reθ
The γ − Reθ transition model is a two-equation model used
to model transitional flows where a significant portion of the
boundary layer is laminar. It solves transport equations for
the intermittency factor, γ, represented in equation 11 which
indicates the state of the flow, and the transition momentum
thickness Reynolds number, Reθt, represented in equations 12.
The formulation used in this work for this model follows the
equation found in [2].

ρ∂(γ)
∂t

+
ρ∂(Vjγ)
∂xj

=Pγ−Dγ+ ∂
∂xj

[(
µ+

µt
σf

)
∂γ
∂xj

]
. (11)

ρ∂(Reθt)
∂t

+
ρ∂(VjReθt)

∂xj
=Pθt+

∂
∂xj

[
σθt(µ+µt)

∂Reθt
∂xj

]
. (12)

This original formulation of the γ − Reθ features a coupling
with the k − ω SST model, where the production term Pk and
the dissipation term Dk of equation 5, and the blending function
F1 of equation 6 are corrected.

3.3.2 Coupling with the SSG-LRR model

The coupling of the SSG-LRR-ω with the γ − Reθ follows the
work developed in [22]. To perform the coupling, the source
terms of the turbulent Reynolds stresses equation 9 in the RSM
are relaxed using the γeff variable, in a similar way as with the
k− ω SST model. The production term of the ω equation 10 is
also corrected. This results in formulations 13, 14, 15 and 16.

P̃ij=γeffPij . (13)

˜εij=min(max(γeff ,0.1),1.0)εij . (14)

Pω=(1−clam )PSST+Clam PRSM (15)

Clam =

 0, cω > γ
γ−cω
1−cω , cω ≤ γ

andcω=

(
exp

(
−
(

420
R̃eθt

)4))2

(16)

Where PSST corresponds to the production term Pw of the
ω equation (Eq. 6) for the k − ω SST model, and PRSM corre-
sponds to the production term Pw of the ω equation (Eq. 10)
for the SSG-LRR-ω model.

The final coupling joints the corrected equations 13 to 16 with
equation 11 and 12.

3.3.3 Coupling with the k −
√
kL model

The coupling of the γ−Reθ transition model with the k−
√
kL

turbulence model is similar to the one used with the k−ω SST
model. This coupling follows the work developed in [25].
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4. Non Dimensional Turbulence Quantities
Similarly to k and ω, defined in section 3.1.1, one can define two
non-dimensional parameters, the eddy viscosity ratio (EVR)
and the turbulence intensity (Tu), that will represent the
turbulent characteristics of the flow.

4.1. Eddy viscosity ratio
The eddy viscosity ratio, EVR, is defined as the ratio between
the turbulent viscosity µt and the molecular dynamic viscosity
of the fluid µ:

EV R =
µt
µ
. (17)

4.2. Turbulence Intensity
The turbulence intensity Tu, is defined as the ratio between the
root-mean square of the turbulent velocity fluctuations v, and
the mean velocity V :

Tu =
v

V
. (18)

We can also define the freestream turbulence intensity (FSTI)
as the value of Tu in the freestream.

5. Numerical Solution

5.1. Decay of Turbulence Quantities
The turbulent quantitites will decay along the domain. The
evolution of this decay for both the turbulence kinetic energy k
and the eddy viscosity µt, for the k−ω SST and the SSG-LRR-ω
models is given by equations 19 and 20 [23]:

k∗=
k∗in(

1+β(x∗−x∗in)k∗in
(
ν
νt

)
in
Re

) β∗
β

, (19)

µt=
µtin(

1+β(x∗−x∗in)k∗in
(
ν
νt

)
in
Re

) β∗
β
−1

. (20)

The subscript in represents the value of the property at the
inlet. The superscript ∗ is used to represent non-dimensional
quantitities. The exception is β∗, that, jointly with β are con-
stants of the equation, available in [3].

It should be mentioned that the decay rate of turbulence is
influenced by the chosen freestream values of each one of the
properties. The higher the FSTI, the more rapid the decay;
the lower the µt, the more rapid the decay. [33].

When the test-body is located far downstream from the do-
main inlet, such as in the second and third test-cases - the
NLF1-0416 airfoil and the 1:6 prolate spheroid, respectively -
the decay is such that the values of this quantity in the body’s
leading edge reach an assymptotic behaviour. In other words,
a change in the inlet value will not imply a change of the value
in a point located far downstream of the inlet.

6. Flat Plate Test-Case
This test-case has three main goals:

1. Verify if the result values of Cf converge to a solution when
increasing the refinement level of the mesh;

2. Check if transition is affected by the different mesh refine-
ments;

3. Compare the transition characteristics of the RSM with
those of the k − ω SST model, by using turbulent kinetic
energy fields;

6.1. Domain

The computational domain used in this study is a rectangle
with the incoming flow V∞ and the plate of length L aligned
with the horizontal direction x. The leading edge of the plate is
located at the origin of the (x, y) Cartesian coordinate system.
The length of the domain is 1.5L, with the inlet located at
x/L = −0.25 and the outlet at x/L = 1.25. The domain has a
height of 0.25L, being the flat plate located at y/L = 0 and the
top boundary of the domain at y/L = 0.25.

The Reynolds number Re based on the undisturbed
freestream velocity V∞, L, and kinematic viscosity of the fluid
ν is 107.

6.2. Grids

The grids used were adopted from the AVT 313 workshop [1].
The coarsest grid used is depicted in figure 1, where the different
blocks are highlighted with different colours. The grid has a
symmetry axis located at the plate’s half length (x/L = 0.5).
This is depicted in image 1:

x/L

y
/L

-0.2 0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 1: Different blocks that compose the grid used in the flat-plate
test-case, highlighted in different colours.

The orthogonal grid starts upstream of the plate’s leading
edge, in order to ensure a high quality grid at the stagnation re-
gion. In the grid refinement studies, different but geometrically
similar grids were used. Their characteristics and designation
are comprised in table 1:

Table 1: Number of cells in the domain nc, on the flat plate surface ns,
((y+n )c)max and designation of the several grids used.

nc ns ((y+
n )c)max

Grid9 20,840 256 0.92

Grid8 32,000 320 0.76

Grid7 46,080 384 0.66

Grid6 62,720 448 0.58

Grid5 81,920 512 0.52

Grid4 128,000 640 0.44

Grid3 184,320 768 0.38

Grid2 250,880 896 0.33

Grid1 327,680 1024 0.30

7. Numerical Errors

This section intends to illustrate the grid dependance of the
RSM and compare it with the one of the k − ω SST model.

The different inlet turbulence quantities used in this subsec-
tion are grouped in six different sets of inlet conditions, which
are given in 2:
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Table 2: Inlet boundary conditions which are kept constant throughout
the grid refinement study.

T3AM T3A T3B

BC1 BC2 BC1 BC2 BC1 BC2

FSTI 0.01 0.01 0.05 0.05 0.07 0.07

EVR 7.55 0.10 12.67 0.10 99.15 0.10

All these conditions were used in a previous study ([24]).
These separate pairs of values aim to represent two different
types of transition. T3AM corresponds to a case where natu-
ral transition occurs.T3A and T3B correspond to cases where
bypass transition occurs.

7.1. Grid Dependance in the RSM and k − ω SST models
In this subsection, it is possible to verify how the solutions are
affected by the grid refinement level, namely:

1. If the values of Cf converge to a solution when increasing
grid refinement;

2. If the occurence of transition is affected by the different
grid refinements;

This part of the study was performed by plotting the Cf vari-
able against the Rex variable, for all the case-studies described
in table 2.

It was observed that, for all the BC1 conditions (whether for
natural or bypass phenomena), there is always the occurrence
of transition, independently of the grid refinement level. The
latter will only influence the position of the transition: the finer
the grid, the further downstream transition occurs. Figures 2
to 3 are given as an example, for the T3AM-BC1 case, both for
the RSM and the k − ω SST model.
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Figure 2: Evolution of the Cf
distribution with the grid refine-
ment level for the T3AM −BC1
condition for the RSM.
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Figure 3: Evolution of the Cf
distribution with the grid refine-
ment level for the T3AM −BC1
condition for the k − ω SST.

It is possible to see that when increasing the grid refinement,
several phenomena occur. In the T3A and T3AM solutions,
where the inlet EVR and FSTI are lower, the results for the
RSM present a larger discrepancy between grids than in the
T3B solution. Also, the solutions for the finer grids tend to be
closer to each other than the ones for the coarser grids. Finally,
it can be seen that the solutions for the k − ω SST model tend
to be closer to each other than the ones for the RSM.

Looking at all the BC2 conditions, where the inlet eddy vis-
cosity is considerably smaller (EVR=0.1) than in the BC1 con-
dition, it is possible to see that the RSM only presents transition
in the two coarser grids, remaining laminar in the seven finer
grids. This behaviour does not occur for the k−ω SST. This is
demonstrated in figures 4 and 5. Only the T3B-BC2 condition

is depicted, but the behaviour obtained for the T3AM-BC2 and
T3A-BC2 conditions is similar.
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Figure 4: Evolution of the Cf
distribution with the grid refine-
ment level for the T3B − BC2
condition for the RSM.
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Figure 5: Evolution of the Cf
distribution with the grid refine-
ment level for the T3B − BC2
condition for the k − ω SST.

The results obtained in the finest grid, grid1 with the dif-
ferent inlet conditions, for both turbulence models (RSM and
k − ω SST), are compiled in figure 6, which shows that when
the inlet EVR is higher (the BC1 cases), the solutions for both
models become more similar. In these cases, the Cf curves for
the RSM and k−ω SST present analogous behaviour, but tran-
sition happens further downstream for the RSM model.
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Figure 6: Cf distribution for all the different cases tested with the flat
plate, with different inlet turbulence boundary conditions, for the RSM
and the k − ω SST models.

7.2. Influence of Inlet Boundary Conditions - Sensitivity
Analysis

In order to try to quantify how much more sensitive to the tur-
bulence inlet conditions the RSM is when compared to the k−ω
SST model, sensitivity studies were carried out. The sensitiv-
ity coefficients quantify how much a quantity will vary when
another quantity (from which the first one is dependant on) is
varied by a fixed amount. In this case, they measure the vari-
ation of the x-coordinate (when changing the inlet EVR and
the FSTI) for which the Cf is equal to a given value. In each
simulation, three different Cf values were used, one correspond-
ing to the beginning of the transition zone, one for the middle,
and one for the end. Table 3 feature the sensitivity coefficients
calculated for the T3A case, as an example, with the three tur-
bulence models.
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Table 3: Sensitivity coefficients to the inlet turbulent boundary condi-
tions calculated for the T3A case, for the beginning, middle, and end of
transition, for the three different turbulence models: SSG-LRR-ω, k − ω
SST and k −

√
kL.

T3A

Beginning Middle End

k −
√
kL

k − ω
SST

RSM k −
√
kL

k − ω
SST

RSM k −
√
kL

k − ω
SST

RSM

FSTI -0.079 -0.23 -0.32 -0.052 -0.18 -0.20 -0.042 -0.16 -0.19

EVR -0.67 -0.24 -1.07 -0.54 -0.20 -0.70 -0.50 -0.17 -0.68

7.3. Conclusions
Regarding the numerical errors assessed, several things can be
concluded. The RSM presents a greater grid dependence than
the k−ω SST model and needs finer grids than the k−ω when
performing a similar simulation. The difference between the
k−ω SST model and the RSM is augmented when the inlet eddy
viscosity is lower, meaning the RSM is especially sensitive to
this flow property, which can justify the differences in transition
occurence between both models. The RSM model also presents
transition downstream of the experimental location, both for
natural and bypass transition.

By looking at the sensitivity coefficients obtained, it is pos-
sible to draw another broad set of conclusions. All the three
turbulence models are more sensitive to changes in the inlet
boundary conditions in the T3A case (bypass transition) case,
where the base eddy viscosity ratio is higher. Also, the RSM
is the most sensitive turbulence model, whether for the FSTI
or EVR, in both natural and bypass transition. Besides, the
difference between the RSM and the k− ω SST model is larger
in the EVR sensitivity coefficient than in the FSTI. The dif-
ference between the RSM and the other models is the largest
in the T3A (bypass transition) case, where the base eddy vis-
cosity ratio is higher. In almost all cases, sensitivity coefficients
decrease towards the end of the transition, showing the decreas-
ing influence of the inlet conditions along the transition region.
The k−

√
kL model presents the lowest FSTI sensitivity coeffi-

cients. However, its EVR sensitivity coefficients are between the
ones of the RSM and k−ω SST model. This suggests that this
model presents a different behaviour than the other two, namely
when predicting the decay of the inlet turbulence quantities, as
explicit in [22].

8. Airfoil Test-Case
The focus of this test-case is on the flow over the NLF1-0416
airfoil. It includes studies regarding the sensitivity to inlet tur-
bulence boundary conditions for both the SSG-LRR ω and the
k−ω SST model, and features a comparison between the SSG-
LRR-ω model and the k−ω SST model regarding their predic-
tion of the location of transition, for similar conditions.

8.1. Domain
The computational domain used in this study is a rectangle with
the incoming flow V∞ and the airfoil’s chord c aligned with the
horizontal direction x, with a zero angle of attack α. The leading
edge of the airfoil is located at the origin of the (x, y) Cartesian
coordinate system. The length of the domain in the x direction
is 36c, with the inlet located at x/c = −12 and the outlet at
x/c = 24. The domain has a height in the y direction of 24c,
being the top boundary of the domain located at y/c = 12 and
the bottom boundary of the domain at y/c = −12.

The Reynolds number Re based on the undisturbed
freestream velocity V∞, chord of the airfoil c and kinematic
viscosity of the fluid ν is 4× 106.

8.2. Grids

All the simulations in the airfoil test-case were performed using
the same grid, taken from a previous study [25]. Similarly to the
ones used in the flat plate test-case, this is comprised by several
structured blocks, which feature different levels of refinement
according to their location in the domain. The mesh is depicted
in figures 7 and 8.
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Figure 7: Different blocks that
comprise the grid used in the air-
foil test-case highlighted in dif-
ferent colours - view of the entire
domain.
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Figure 8: Different blocks that
comprise the grid used in the air-
foil test-case highlighted in dif-
ferent colours - zoomed view.

8.3. Sensitivity Coefficients

Three different simulations are carried out for each case, sum-
marized in table 5. These allowed to calculate a ”minus” and a
”plus” coefficient. Besides using the values of these properties
at the inlet, two additional sets of sensitivity coefficients were
calculated, featuring the FSTI and EVR values in two distinct
locations: at a distance of 1c from the airfoil’s leading edge -
11c downstream of the inlet - and at the leading edge itself.

The leading edge of the airfoil is located far downstream -
12c - of the inlet, a considerably larger value than what was
verified in the flat plate test-case, where the leading edge was
located 0.25L downstream of the inlet. Therefore, there will be
a higher decay of the different turbulent quantities especified at
the inlet, with them reaching the assymptotic region described
in subsection 5.1 near the leading edge of the airfoil. The results
obtained are shown in table 4. Only the coefficients for the
upper surface are shown, but the ones for the lower surface
follow a similar behaviour.
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Table 4: Sensitivity coefficients to the inlet turbulent boundary conditions
obtained with the Cf distribution for the upper surface of the NLF1-0416
airfoil using the SSG-LRR-ω and the k − ω SST models.

Upper Surface

Beginning Middle End

Minus Plus Minus Plus Minus Plus

FSTI

RSM

Inlet 1.260E − 4 8.342E − 5 1.698E − 4 1.051E − 4 2.457E − 4 2.365E − 4

11x/c −2.254E − 3 −2.217E − 3 −3.032E − 3 −2.603E − 3 −4.398E − 3 −4.717E − 3

12x/c −2.331E − 3 −2.060E − 3 −2.943E − 3 −2.488E − 3 −4.257E − 3 −4.506E − 3

k − ω SST

Inlet −7.200E − 4 8.132E − 5 −4.768E − 4 5.101E − 5 −5.177E − 4 6.465E − 4

11x/c −1.285E − 2 −1.211E − 3 −8.505E − 3 −7.638E − 4 −9.224E − 3 −9.432E − 4

12x/c −1.243E − 2 −1.197E − 3 −8.627E − 3 −7.431E − 4 −9.362E − 3 −9.545E − 4

EVR

RSM

Inlet −3.255E − 2 −3.372E − 2 −3.305E − 2 −3.342E − 2 −3.236E − 2 −3.135E − 2

11x/c −2.982E − 2 −3.092E − 2 −3.025E − 2 −3.055E − 2 −2.957E − 2 −2.866E − 2

12x/c −2.982E − 2 −3.092E − 2 −3.025E − 2 −3.055E − 2 −2.957E − 2 −2.866E − 2

k − ω SST

Inlet −6.645E − 2 −5.982E − 2 −5.572E − 2 −5.322E − 2 −6.522E − 2 −5.945E − 2

11x/c −6.090E − 2 −5.598E − 2 −5.169E − 2 −4.883E − 2 −5.977E − 2 −5.443E − 2

12x/c −6.090E − 2 −5.598E − 2 −5.169E − 2 −4.883E − 2 −5.977E − 2 −5.443E − 2

Table 5: Inlet turbulence boundary conditions used for the determination
of the sensitivity coefficients to the inlet EVR and FSTI for the airfoil
test-case.

EVR

EVR(µt
µ

) 45 50 55

FSTI 0.03 0.03 0.03

FSTI

EVR(µt
µ

) 50 50 50

FSTI 0.02 0.03 0.04

The overall coefficients calculated at the inlet are consider-
ably small, and therefore should not be accepted as significant,
since they do not fairly represent the variations of the inlet tur-
bulence boundary conditions in regions close to the airfoil. Both
the FSTI and EVR inlet coefficients are larger for the k−ω SST
model than for the RSM, but within the same order of magni-
tude. For both models, the inlet coefficients are much smaller
for the FSTI than for the EVR, with the difference being of
two orders of magnitude. For the FSTI, in both models is ver-
ified a decrease of one order of magnitude of the value of the
coefficients between the inlet and the regions near/at the lead-
ing edge of the airfoil. For the EVR, the values remain fairly
constant along the three locations.

8.4. Comparison between the k−ω SST and the SSG-LRR-
ω

The results obtained for all the cases described in table 5, used
to calculate the sensitivity coefficients in subsection 8.3, were
extremely similar. The curves of Cf for the upper and lower
surfaces of the airfoil, both for the RSM and the k − ω are
depicted in figure 9:
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Figure 9: Cf curves obtained for the five different sets of turbulent inlet
conditions, both for the SSG-LRR-ω and the k − ω SST. The filled lines
represent the reults obtained for the SSG-LRR-ω model and the dashed
lines for the k − ω SST model. Green lines correspond to the results for
the upper surface, and blue lines for the lower surface.

Analysing the results, several aspects can be noticed. The
k−ω SST predicts transition upstream of the SSG-LRR-ω, both
for the upper and lower surface. The SSG-LRR-ω presents a
region with negative Cf values just before the start of transition.
This implies that, in the RSM, the adverse pressure gradient
makes the laminar boundary layer separate before the transition
to turbulent regime. This does not happen in the k − ω SST.
In this laminar regime, the Cf value predicted by both models
is similar. However, after transition occurs, the SSG-LRR-ω
predicts a slightly higher value of Cf . This may arise from
the ability to deal with turbulence anisotropy of this model,
predicting turbulence more accurately along the curve surface of
the airfoil in turbulent regime. It can be seen that the difference
between both models in the prediction of transition position is
smaller in the upper surface, where the pressure gradient is more
adverse, when compared to the lower surface.

9. Spheroid Test-Case
This final test-case presents the analysis of the flow over a 6:1
spheroid at an angle of attack of 5◦. The goal of this chapter is
to evaluate how the RSM behaves in predicting transition over
the surface of the spheroid, and compare it with the results
obtained for the k − ω SST model. It is eventually shown that
the inlet conditions tuned for being used with the k − ω SST
may not be the most suitable to be used with the SSG-LRR-
ω, even though the transition model coupled with both these
models is the same.

9.1. Domain
The 6:1 prolate spheroid with length L is embedded in a three
dimensional computational domain, shaped like a rectangular
prism, with a length of 200L a height of 200L and a width of
100L. The incoming flow V∞ is alligned with the horizontal
direction x. The major axis of the spheroid is parallel to the
xy plane, and is oriented in an angle of attack α of 5◦ with
the x direction. The center of the spheroid is located at the
origin of the (x, y, z) Cartesian coordinate system. The inlet
is located at x/L = −100 and the outlet at x/L = 100. The
domain has a lateral boundary located at z/L = 100 and a
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symmetry boundary condition at z/L = 0. The top boundary
of the domain is placed at y/L = 100 and the bottom boundary
of the domain at y/L = −100.

The Reynolds number Re based on the undisturbed
freestream velocity V∞, length of the spheroid L and kinematic
viscosity of the fluid ν is 6.5× 106.

9.2. Grids
The simulations of the spheroid test-case were performed using
always the same grid, which is comprised by several structured
blocks. Figures 10 and 11 intend to represent different parts of
this grid that are worth noticing.

Figure 10: Detailed view of the
grid zoomed near the leading
edge of the spheroid. The grid is
considerably more refined in the
regions adjacent to the body, to
better capture the near-wall phe-
nomena.

Figure 11: Depiction of the grid
used on the spheroid’s surface,
near its leading edge. This grid
structure is symmetric in rela-
tion to the spheroid’s mid planes,
and so the region near the trail-
ing edge will present an identical
configuration.

9.3. Results
The values used in the initial simulation - Case1 - provide a
value of 0.15% of Tu in the leading edge of the spheroid, to
match the values proposed by [11], for a simulation with the 6:1
prolate spheroid test-case with the k−ω SST model. This simu-
lation did not converge, and presented a large region of laminar
separation. On the other hand, for the same inlet turbulence
boundary conditions, the k − ω SST model, without crossflow
transition prediction, presented transition to turbulent regime,
and a considerably smaller separation bubble upstream of it.
This can be observed in figures 12 and 13. Upon this conclu-
sion, several cases were run, trying to evaluate how the tur-
bulence inlet conditions affected the solution. These cases are
presented in table 6. The reasoning behind the chosen values
for each simulation ought to be explained:

� Case2 was run with same conditions as Case1, but with no
transition model, to perceive if the difference in the tran-
sition prediction between Case1 and the results obtained
for the k − ω SST were related to the coupling with the
γ −Reθ transition model;

� Since Case2 did converge, the inlet turbulence quantities
were increased, to the values of Case3, and the transition
model was again coupled with the SSG-LRR-ω. Cases 3 to
6 were run in order to find a lower limit of the turbulence
quantities in the LE of the spheroid for which the SSG-
LRR-ω + γ − Reθ did not converge anymore, which was
achieved in Case6. Due to the increased inlet turbulence
quantitites, these simulations did not present laminar sep-
aration bubble, as in Case1. This can be seen in figure
14;

� Case7 had the goal of mimicking the turbulence intensity
at the leading edge of Case6, but with a much higher value
of EVR and lower value of FSTI at the inlet, to verify if the
iterative convergence was achieved for the same conditions
at the LE but with a higher EVR at the inlet;

� Finally Case8 was run to perceive if iterative convergence
was achieved with the lower value of FSTI at the LE with
which the simulation had converged - Case5, but with a
higher value of inlet FSTI, and the lowest possible value of
EVR at the inlet [25].

Table 6: Description of all the cases used to study the flow over the
6:1 spheroid, regarding the usage of transition model, the turbulence
quantities in several points, flow separation, and iterative convergence.
”T.M.” stands for transition model, ”Sep.” stands for ”flow separation”
and ”Conv.” stands for convergence

Case T.M
Inlet

EVR

Inlet

FSTI (%)

LE

EVR

LE

FSTI (%)

TE

EVR

TE

FSTI (%)
Sep. Conv.

1 Yes 250 0.500 206.455 0.151 206.295 0.150 Yes No

2 No 250 0.500 206.455 0.151 206.295 0.150 No Yes

3 Yes 8000 5.000 6024.222 0.849 6019.186 0.845 No Yes

4 Yes 8000 0.580 7800.101 0.495 7798.382 0.494 No Yes

5 Yes 800 0.580 703.606 0.260 703.133 0.259 No Yes

6 Yes 800 0.350 746.110 0.226 745.751 0.226 - No

7 Yes 2000 0.257 1959.496 0.226 1959.137 0.226 - No

8 Yes 800 2.780 547.357 0.259 546.888 0.258 No Yes

Figure 12: Map of the skin-
friction in the x direction on the
surface of the spheroid using the
SSG-LRR ω model with 0.15 % of
FSTI at the LE of the spheroid.
The streamlines show the recir-
culation of the flow inside the
large separation bubble that is
formed.

Figure 13: Map of the skin-
friction in the x direction on
the surface of the spheroid us-
ing the k − ω SST model with
0.15 % of FSTI at the LE of the
spheroid. The recirculation of
the flow shown by the streamlines
highlights a much smaller separa-
tion bubble than in the RSM.

Figure 14: Map of the skin-
friction in the x direction on the
surface of the spheroid using the
SSG-LRR-ω with Case4. The
streamlines show that there is
no recirculation of the flow as in
Case1.

Figure 15: Cf distribution on
the unrolled surface of the pro-
late spheroid obtained for Case1
with the k − ω SST model.

Figures 16 to 21 show the Cf distributions obtained with the
SSG-LRR-ω for all the converged cases mentioned in table 6,
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as well as Case1. Figure 15 shows the Cf distribution obtained
with the k−ω SST model, for Case1. In these figures, the y axis
represents the azimuthal angle φ of a given point at the surface
of the spheroid [19], and the x axis represents the spheroid’s
non-dimensional length x/L. Except for figure 16, whose solu-
tion did not converge, the Cf distributions are in line with the
expected results:

1. Figure 15 displays the results obtained for Case1 with the
k − ω SST model, and show transition occurring fairly
downstream of the location predicted by the SSG-LRR-
ω for the same case, but with no transition model, patent
in figure 17;

2. Figure 17 presents Case2, with no transition model coupled
with the SSG-LRR-ω. The high values of Cf on the left
side of the map mean that transition occurs fairly close of
the leading edge, considerably upstream of what occurs in
all other cases that feature the coupling of the SSG-LRR-ω
with the γ −Reθ model;

3. From Case3 to Case5, in figures 18 to 19, transition occurs
further downstream in each case, due to the successive de-
crease of the inlet turbulence quantitites. This is under-
standable, since larger values of inlet FSTI and EVR will
prompt transition to occur earlier;

4. Case8, presented in figure 21 is comparable to Case5, in fig-
ure 19, since they both present the same value of 0.26% for
the turbulence intensity at the leading edge of the spheroid.
However, the higher value of FSTI at the inlet in Case8
causes transition to be triggered earlier than in Case5.

Figure 16: Cf distribution on
the unrolled surface of the pro-
late spheroid obtained for Case1,
with the SSG-LRR-ω model.

Figure 17: Cf distribution on
the unrolled surface of the pro-
late spheroid obtained for Case2,
with the SSG-LRR-ω model.

Figure 18: Cf distribution on
the unrolled surface of the pro-
late spheroid obtained for Case3,
with the SSG-LRR-ω model.

Figure 19: Cf distribution on
the unrolled surface of the pro-
late spheroid obtained for Case4,
with the SSG-LRR-ω model.

Looking at figures 16 to 21, several conclusions may be with-
drawn:

1. The inlet turbulence boundary conditions tuned for being
used with the k − ω SST model are not suitable for being
used with the SSG-LRR-ω model with this latter needing
a greater turbulence intensity to display the same results

Figure 20: Cf distribution on
the unrolled surface of the pro-
late spheroid obtained for Case5,
with the SSG-LRR-ω model.

Figure 21: Cf distribution on
the unrolled surface of the pro-
late spheroid obtained for Case8,
with the SSG-LRR-ω model.

of the k − ω SST model;
2. For identical inlet turbulence boundary conditions, espe-

cially for relatively low values, the RSM tends to present
larger regions with flow separation, with its inherent recir-
culation, than the k−ω SST. This occurs because the RSM
delays the occurence of transition and then inherently what
happens is laminar separation.

3. The k−ω SST model can converge to a result in situations
where the RSM can present some iterative convergence dif-
ficulties, namely in regions of instability, such as the large
separation bubble yielded in Case1.

10. Conclusions
This final section intends to summarize the achievements and
conclusions obtained in the different test-cases, whilst providing
some ideas for future work developed in this area.

10.1. Numerical Robustness of the SSG-LRR-ω + γ −Reθ
coupling

Along almost all the simulations performed in this work, the
SSG-LRR-ω model demonstrated to have a satisfactory itera-
tive convergence, with no major problems in reducing the resid-
uals to negligible levels. However, in general, it proved to have
more difficulties in converging to a solution than the k−ω SST
model, i.e., it took a larger number of iterations. Additionaly,
in some situations of large regions of instability, such as separa-
tion bubbles, the RSM could not converge to a solution, whilst
the k− ω SST model could. The RSM presented a greater grid
dependence, and needed a finer grid than the k− ω SST model
to present similar results. The uncertainty of the calculation of
transition position when increasing the grid refinement is larger
in the RSM than in the k − ω SST.

10.2. Transition Prediction
In this work was concluded that the SSG-LRR-ω tends to
present transition downstream of the location predicted by the
k − ω SST model. In some specific cases, when the values of
the inlet turbulence boundary conditions are lower, the RSM
may not be able to match the experimental data and the values
predicted by the k − ω SST: these latter two exhibit transition
whilst the RSM predicts a full laminar solution.

10.3. Influence of the decay of the turbulence inlet condi-
tions

The decay of the FSTI is more accentuated than the one of the
EVR, meaning that variations of the inlet value of the EVR
will have a greater impact on the simulation results than vari-
ations of the inlet FSTI - greater decay of the FSTI will imply
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that a variation on the inlet is not translated into a variation
near a test-body located far downstream from the inlet. The
higher the value of the inlet turbulence boundary conditions,
the greater the sensitivity of the models studied to changes in
these conditions. From all the models studied, the SSG-LRR-ω
appeared to be the most sensitive. It was also found out that
the inlet turbulence boundary conditions tuned to be used with
the k − ω SST are not the most suitable to be used with the
SSG-LRR-ω.

10.4. Future Work
With the conclusions withdrawn from the work developed, it is
possible to define some future work to be carried out regarding
this topic. It would be interesting to study a method to obtain
the appropriate inlet turbulence boundary conditions to be used
in a study with the SSG-LRR-ω, taking the conditions tuned
for the k−ω SST as a starting point, since this latter is a more
commonly used model, and therefore there is plenty of accessible
data for it. The experimental data available could also be used
to tune these conditions for the RSM. Another suggestion would
be to include the crossflow prediction method in this coupling,
and assess if the differences observed in the spheroid test-case
between the k−ω SST and the SSG-LRR-ω would persist. The
crossflow prediction would also be useful to better compare the
results obtained in this test-case with the experimental ones.
Stability studies could be carried out, in order to perceive if
would be worth to develop additional tools to ensure the itera-
tive convergence of the SSG-LRR-ω in a broad set of conditions,
i.e, when there are large instability regions, or if the test-body
presents a complex geometry. Finally, it would be fruitful to
compare the performance of the SSG-LRR-ω with other turbu-
lence models in environments that theoretically suit this model
the most [17]. To seize all the advantages coming from the
ability to deal with the turbulence anisotropy, some test-cases
could be studied, such as delta wings, oblate spheroids, or even
moving cylinders.
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