
Active Data Collection of Health Data in Mobile Devices

Ana Rita Bamansá Siles Machado

December 2021

Abstract
This paper aims to develop an intelligent notifi-

cation system to help sustain user engagement in
mHealth applications, specifically those that sup-
port self-management. The proposed approach
focuses on applying Reinforcement Learning (RL)
in its more simplistic format, intending that the
developed agent learns what moments are the
most opportune for each user, throughout their
day, only from easily obtainable non-sensitive data
and usage history. This history allows the agent to
remember how the user reacts or has reacted in
the past to its actions. Various formulations of the
problem at hand are designed, developing several
alternatives for the components required by the
different implemented RL algorithms. Through
the permutation of these components, the most
desirable combination of initialization method,
algorithm, state representation, and reward defi-
nition is searched. A simulator was developed to
mimic the behavior of a typical user and utilized
to test all possible combinations with users ex-
periencing distinct lifestyles. This work showed
promising results and, although still requiring
further testing to be fully validated, demonstrated
that an efficient and well-balanced notification
system can be built with simple formulations of an
RL problem and algorithm. Furthermore, it proved
that there is no absolute necessity for this type
of system to require the access and utilization of
sensitive user data. This approach diminishes
privacy issues that might concern the user and
limits sensor and hardware concerns, such as
lapses in collected data or battery drainage.
Keywords: mHealth; Notifications; Machine
Learning; Personalization; Reinforcement Learn-
ing; Receptivity.

1. Introduction
Mobile health, or mHealth, is defined by the

World Health Organization (WHO) as “medical and
public health practice supported by mobile devices”
such as phones, wearables or other patient moni-
toring devices [16] and is a great vehicle for the
support of self-management in Noncommunicable
diseases (NCDs).

NCDs, also known as chronic conditions [3],

such as cancer, diabetes, stroke, and other chronic
respiratory or cardiovascular diseases, are the
leading causes of death and disability worldwide.
These represent more than 70% of all deaths and
create devastating health consequences. This
epidemic threatens to overwhelm health systems
across the world, making it essential for govern-
ments to prioritize health promotion and disease
management [4]. The ability for patients to employ
self-management is now more vital than ever and
many studies have already shown promise for its
application in helping manage these chronic condi-
tions [1]. However, some key factors still restrict the
adoption of mHealth, for instance, the lack of stan-
dards and regulations, privacy concerns, or the
limited guidance and acceptance from traditional
healthcare providers. The decisive factor, however,
is always the necessity for widespread user adop-
tion and engagement [14].

Phone notifications are widely employed to
achieve user engagement, having been proven
to significantly increase verified compliance when
compared with identical trials that did not em-
ploy this technique [2]. Nonetheless, the risk
of intrusiveness into daily life is imminent. Fur-
thermore, consumers are known to highly dislike
excessive or inopportune notifications, primarily
when originated by machines [8]. For these rea-
sons, mHealth applications must function and com-
municate without burdening the consumer. Hence,
this paper focuses on developing an intelligent no-
tification system that intends to increase continued
engagement by helping applications communicate
with users when they are receptive, not bothering
them on inconvenient occasions.

2. Background
The purpose of this paper is to develop a mecha-

nism that is able to identify opportune moments for
notifications. This goal entails challenging cross-
disciplinary subjects such as information technol-
ogy, medicine, and psychology, which plays a big
part in understanding human behavior.

Push notifications emerged to contrast with the
traditional pull-based information retrieval and de-
livery paradigm, where the user would have to be
the one to initiate a request. Throughout an aver-
age day, users can get over 50 notifications on their

1

phones. Hence, feeling overwhelmed or experienc-
ing growing negative sentiments towards individual
notifications or apps is expected [8]. Grounded in
previous studies, receptivity is defined as the de-
gree to which a user considers that a notification is
received at an opportune time. Currently, there is
yet no systematic way to infer user availability and
receptivity. Identifying ideal moments for interac-
tion with a permanently high level of accuracy is a
complex problem due to its dependency on many
aspects of a user’s context [8], such as location,
movement, time or psychological state.

Nearly all current applications employ a basic in-
teraction model that assumes the user is available
and willing to engage with the device at any time or
at specific predefined time schedules. However, it
can be argued that the pervasive nature of phones
and their inherent constant accessibility does not
necessarily translate into receptivity. The poten-
tially disruptive impact of these applications should
be compensated with the customization of notifica-
tions’ characteristics (such as presentation or alert
type) [9], content [8], and an intelligent approach to
deliver them [7]. Therefore, systems that attempt to
handle such notifications intelligently are increas-
ingly relevant. Although many studies have been
published on this kind of system, most of the ex-
isting prior work can be divided into [5]: detecting
transitions between activities, assuming these rep-
resent the most opportune timings in a user’s rou-
tine, or inferring receptivity from the user’s context.

Notification systems that learn how, when, and
where people engage with their phones allow for
personalized communications, enhancing user ex-
perience. Systems such as these have resorted
primarily to machine learning (ML) techniques due
to their capability of discovering patterns in data
[8]. ML techniques can be divided into five: Super-
vised (SL), Unsupervised, Semi-Supervised, Ac-
tive and Reinforcement learning (RL). SL is the
most common for this kind of smart system, pre-
sumably due to the tendency of seeing the problem
at hand as the need to classify users, their pref-
erences, or even labelling moments as opportune
or inconvenient. Albeit its known capacity for swift
adaptation to dynamic, complex environments, RL
is more complicated to apply than SL, leaving it
with few implementation attempts in the mHealth
field [11]. Nonetheless, its ability to learn in real-
time while attempting to maximize user satisfac-
tion and not requiring the existence of a training
dataset makes it a desirable study subject. In this
method, an agent learns through interactions with
the surrounding environment, resorting to a frame-
work that defines them in terms of states, actions,
and rewards. In order to explore the potential of
employing RL, in this work, the developed notifica-

tion system is formulated as a RL problem.

3. Methodology

This paper envisions the search for opportune
notification timings as a reinforcement learning
problem. Through the application of RL, our sys-
tem aims to learn user preferences, routines, and
habits merely from notification interaction data.
Here, the environment is implemented by a simula-
tor that generates user responses following a prob-
abilistic model. The development of the simulator
is explained in further detail in section 3.4.

Our work is centered around mHealth and im-
proving continued user engagement. Hence, the
main aim is to discover one moment throughout
the day when the users are available and willing
to answer a notification that leads to the required
action. This action could be any self-management
task required by any mHealth application. When
this goal is achieved, no more notifications should
be sent. For that reason, the RL agent consid-
ers an answered notification as a terminal state,
meaning that the episode, in our context, a day,
has ended and that the agent only starts working
again when the next day begins. The only other
terminal state occurs at the end of the day (24h).
Tasks such as this are called episodic tasks [12].

The main objective is that, through observing the
user and the environment’s state, the agent should
decide whether to send a notification or stay silent.
Then, if a notification is sent, the agent observes
the user’s reaction and continually learns from it.
In our case, accepted notifications denote positive
signals while dismissed or ignored ones are seen
as negative reinforcement signals, penalizing the
agent for the action taken. The agent’s behavior
changes accordingly, always intending to increase
the long-run sum of rewards (reinforcement sig-
nals). These components allow the creation of a
sense of cause and effect, the existence of explicit
goals, and help the agent deal with the environ-
ment’s uncertainty and nondeterminism. A goal is
expressed by the reward structure, which, as pre-
viously mentioned, is to get the user to answer
one notification per day. Through this framework of
states (S), actions (A), and rewards (R), in this ap-
proach, as in most RL methods, the intention is to
learn the optimal action-value function (Q), which
can be defined as the expected empirical reward
for each action. By learning Q, the agent knows
which action generates a higher reward, knowing
the best action for each moment [12].

The best combination of algorithm, rewards and
state definitions must be found to discover the most
efficient solution for this learning problem. For that
reason, this work reviews, selects, and tests sev-
eral combinations.

2

3.1. RL Algorithms
In order to perform experiments that are as

varied as possible, several consensually recom-
mended algorithms were implemented.

Upper Confidence Bound (UCB) - UCB
emerges as a widely accepted nonassociative ban-
dit1, as it considers the problem as only a single
state. UCB achieves exploration by subtly favoring
the selection of actions that have the potential to
be optimal and have been employed the less [12].
To do so, it applies the selection rule:

At
.
= argmax

a

[
Qt(a) + c

√
ln(t)

Nt(a)

]
(1)

where A and a represent actions, t represents the
current timestep, Q is the action-value function and
c, the confidence level that controls the degree of
exploration. Finally, Nt(a) represents the number
of times action a has been selected prior to time t.

In (1), the term inside the square root represents
the uncertainty of the estimates of action values,
making At an upper bound of the probable value of
each action. UCB ensures that, given enough time,
all actions are eventually performed. Hence guar-
anteeing that the agent explores the action space
properly, learning the best action for the problem it
is dealing with. As time goes on and different ac-
tions are performed, to each, the sum of received
rewards and the number of selections are associ-
ated. With these values, the action-value function
Q is updated at each timestep.

It should be noted that since UCB is a single
state algorithm, it learns what is better suited for
that state only, which in this paper’s context would
be very restrictive. Hence, this algorithm is applied
in two manners that are expected to provide effi-
cient results by leveraging its advantages but still
considering that the user goes through different
states throughout time. Firstly, UCB Day, where
a different UCB instance is applied to each hour of
the day, allowing the agent to learn what action is
better suited for each decision point, which in our
case is hourly. UCB Week is the second, more per-
sonalized approach, where a separate instance is
applied to each hour of each day, each day of the
week. Considering that the week has 7 days, and
24 instances are created for each day, UCB Week
combines 168 instances, learning what is the most
beneficial action for each decision point, according
to the weekly routine of a user.

Tabular Q-learning (TQ) - Tabular methods are
settled on the core idea of RL in its most straightfor-
ward format, that both the state and action spaces

1Bandit problems are RL problems where the agent learns
to act in a single state setting, not requiring an association be-
tween actions and states (nonassociative).

are small enough for the estimates of action val-
ues and their mapping with specific contexts to be
represented as arrays or tables. These methods
are commonly used due to their simplicity and ease
of computation. Q-learning was initially defined by
Watkins in [15] and can be defined by the following
expression:

Q(St, At)← Q(St, At) + α[Rt+1+

γmax
a

(Q(St+1, a))−Q(St, At)]
(2)

where A and a represent actions, S represents the
state and R the reward. Additionally, t represents
the current timestep, Q is the action-value function
for each state-action pair, α is the learning rate
and, lastly, γ is the discount factor. The learning
rate, α, determines when Q-values are updated,
overriding older information. The discount factor,
γ, models the relevance of future rewards by caus-
ing them to lose their value over time so that more
immediate ones are valued more highly.

As seen above, (2) maximizes the next state-
action pair, meaning that the policy is greedy. It
does not take into account how probable each ac-
tion actually is under the current policy. Unlike
similar approaches, this algorithm is an off-policy
method, meaning that, although not true, it as-
sumes a greedy policy is being used. That can
be verified in (2), where it is visible that Q is up-
dated using the value of the following state and the
value of the greedy action a, instead of the value
of the real action taken. However, different policies
can be applied to actually choose the desired ac-
tion. This choice should take into consideration the
context and particularities of the problem in ques-
tion. In our work, the ε-greedy policy, where the
agent behaves mostly in a greedy way but occa-
sionally, and with a small probability (ε > 0), se-
lects a random action, showed promising results
and was henceforth applied.

Deep Q-Learning (DQN) with Experience Re-
play - Developed by Mnih et al. in [10], the Deep Q-
learning agent, combines the previously described
Q-learning algorithm with a Neural Network(NN).
This network is usually a deep convolutional NN
due to its many layers and fully connected network.
Here, the agent’s brain is the NN instead of a table
or array. It receives an observation and outputs
the estimated values for each of the available ac-
tions. It is updated through the mean square er-
ror loss function, where the difference between the
current predicted Q-values (Qθ) and the true value
(Qtarget) is computed according to:

3

Qtarget(t) =

rt,

for terminal ϕt+1

rt + γmax
a′

(Qθ(ϕt+1, a
′)),

for non− terminal ϕt+1

(3a)

Loss(θ) =
∑

(Qtarget(t)−Qθ(ϕt, at))
2 (3b)

where a represents an action, ϕ represents the
state and R the reward. Additionally, t represents
the current timestep, Q is the action-value function
for each state-action pair, and θ represent the net-
work weights.

While this type of NN allows for more flexibil-
ity, it sometimes comes at the cost of stability.
For that reason, many extensions of this algorithm
have already been designed and tested. One, in
particular, is called Experience Replay [6], where
the agent memorizes the state, action, and effect
of that same action in the environment for every
timestep. After completing an episode, it replays
the gathered experiences by randomly selecting a
batch of a particular size and training the network
with it. This replay helps reduce instability pro-
duced by training on highly correlated sequential
data and increases the learning speed.

3.2. State Representation
Ideally, a notification system would have access

to the current activity, emotional state, location, and
other private information that we prefer not to uti-
lize to minimize privacy issues. Here, the focus is
on using accessible information such as the time or
day of the week, the user’s reaction to notifications,
or the number of notifications already answered.
Hence, the aim is to demonstrate that efficient re-
sults can be obtained from more simplistic repre-
sentations of a user’s state. Thus, for the DQN and
TQ algorithms, the state representations below de-
scribed were designed.

Four representations are contemplated: S1 and
S3 have similar formats, both containing the time of
the day in minutes, the number of notifications al-
ready sent and answered that day, and the last user
reaction. The difference between these states is
that S1 also contains the day of the week, depicted
by values from 0 to 6, allowing for a representation
of a weekly routine instead of a simple daily routine
such as S1 permits. S2 and S4 were born from a
similar approach, both containing an array of 24
elements where all positions start as 0 and then,
throughout the day, each element may change de-
pending on the outcome of the action chosen at
every hour (below, the numbers used to express
each user reaction are described). S2 has an ad-
ditional element which, again and with the same
aim as before, represents the day of the week.

The developed states resort to easily obtainable

information, focusing primarily on knowing how far
the agent is from its objective and how the user re-
acts to its actions. Furthermore, since the generic
goal is to learn the most opportune timings, time
and, in some cases, even the day of the observa-
tion are also tracked. With the purpose of record-
ing users’ reactions to the actions of the agent, 3
options were defined and associated with a value:
0, meaning that in the last timestep, a notification
was sent and ignored or dismissed; 1,a notification
was sent and positively addressed ; 3, a notifica-
tion was not sent.

3.3. Reward Definition
At each timestep, the received reward is a scalar

– Rt ∈ Z. The efficiency of any RL applica-
tion is dependent on how accurately these num-
bers frame the agent’s goal and assess progress
in reaching it. Hence, designing reward signals
is one of the most critical tasks in implementing
an RL technique. In the case of games with pre-
defined scores, the definition of different rewards is
straightforward, but some cases involve goals that
are more challenging to translate into signals. Fur-
thermore, it is not uncommon that, when rewards
are poorly structured, agents find unexpected ways
to get higher rewards, which might be undesirable.

The final selection of rewards that were applied
during our experiments are structured in the fol-
lowing manner: when a notification is sent and
the user does not answer, the agent receives re-
ward a. However, if the user responds then the
received reward value is b. Contrarily, if a notifica-
tion is not sent the agent receives c. Lastly, if the
episode, in this context a day, ends without having
achieved the goal of one answer then d is received.
Thus, the rewards assume values in the set R =
{a, b, c, d}. We define the following alternatives for
the values of {a, b, c, d}: R1 = {−1, 2,−1,−2} ;
R3 = {−2, 2,−1,−3}; R5 = {−2, 2, 0,−3} ; R6 =
{−3, 2, 0,−3}.

The general idea we wish to transmit to the agent
with these structures is that the goal is to get the
user to answer one notification without bothering
them by sending notifications that go unanswered.

3.4. Environment Model
In our experiments, users are simulated by com-

bining underlying models, a behavior model and a
response model, further detailed in the following
sections. The creation of this simulator allows us
to mimic the daily routine of a user. Depending
on the algorithm, previous user responses, or any
other initial information, the agent decides whether
to send a notification or remain silent. When it de-
cides that a notification should be sent, the simu-
lated user is the one who determines if it responds
or not. This work does not differentiate between ig-

4

noring the message or explicitly dismissing it, con-
sidering both as “No Answer” received. This ap-
proach is followed because we do not wish to un-
derstand why a moment is less opportune but sim-
ply that it is. In this way, the users’ answers or
lack of it are registered, and their motivations dis-
regarded. Furthermore, the user’s answer is con-
sidered to be either immediate or non-existent.

3.4.1 Behaviour Model

This model reflects a users’ routine, for exam-
ple, the activities performed, their duration, and
the user’s location. It mirrors the ExtraSensory
dataset [13], which aggregates daily traces of 60
participants. Measurements from smartphones
and smartwatches were collected, along with self-
reported labels. Since this data was collected in
the wild, its reliability is not perfect; after processed
and cleaned, it considers 51 possible tags, shown
in Appendix A (15 locations, 8 primary activities,
28 secondary ones). These include primary activi-
ties, which describe movement or posture and are
mutually exclusive, and secondary activities, which
represent a more specific context. For the latter,
such as for locations, the user could apply several
tags to a single instance in time. In this simulator,
the users’ state is represented as the combination
of one primary activity and a set of up to 43 pos-
sible secondary tags, composed by secondary ac-
tivities and locations.

From the available data, three user traces were
chosen. These were selected according to two
main concerns: providing lifestyles as distinct as
possible while ensuring the availability of enough
data to represent a week in these users’ lives.

3.4.2 Response Model

The response model simulates how a user re-
sponds to a notification in any given context, orig-
inating the observations that our agent receives
throughout the simulation. Based on our investiga-
tion, a set of behaviors that researchers consen-
sually agree users tend to show were considered
when implementing this model [8, 9, 7].

First, when the behavior model presents labels
such as sleeping, which ensure an inability to an-
swer, the simulator does not respond to notifica-
tions. Furthermore for labels that represent tasks
such as driving or being in a meeting, for which
usually a low probability of answering is associ-
ated, the simulator tends not to respond;

Second, a randomness level is always associ-
ated with every decision the simulator makes, ex-
cept when the user is sleeping. This level intends
to express the same randomness a human would
show in their daily life;

Third, a component (β), defined as the exponen-
tial decay in (4), is used to convey the diminishing
desire to use the app that most users would expe-
rience as the number of daily notifications rises.

β(nt) = P (Answer | nt) = e−λnt (4)
Here, nt represents the number of messages al-
ready sent during the current day. λ equals 0.3,
chosen to guarantee reasonable values are ob-
tained.

Forth, each user has a predefined prior proba-
bility of answering P (A) and not answering P (A).
This value represents a person’s predisposition to
be on their phone and regularly use a mHealth ap-
plication. For this reason, these are fixed values
selected depending only on how compliant or not
our simulated user ought to be.

Assuming statistical independence between la-
bels and following the Naive Bayes probability
model (5), the probability of the user answering or
not, given their current context, is calculated.

P (C | L0, ..., Li, Li+1, ..., Llt)

∝ P (C,L0, ..., Li, Li+1, ..., Llt)

∝ P (C)P (L0 | C)...P (Li | C)P (Li+1 | C)...P (Llt | C)

∝ P (C)

i∏
j=0

[P (Lj | C)]

lt∏
k=i+1

[
P (Lk | C)

]
(5)

A set of Lt labels, provided by the behavior model
represents this context. For every instant in time,
there are i labels that describe the moment (L)
and (lt − i) that were not chosen and indicate ac-
tivities the user is not currently doing (L). Con-
sidering our two possible classes (C), Answer(A)
and NoAnswer(A), the model is formulated as pre-
sented in (5).

The values of P (L | C) and P (L | C) are un-
known. To calculate these, the Bayes’ theorem,
P (L | C) = P (C|L)P (L)

P (C) , can be applied. Addition-
ally, knowing the conditional probability formula,
P (C | L) = P (C,L)

P (L) , and P (C,L)+P (C,L) = P (C),
it is possible to calculate P (L | C) using only
P (L | C). Leaving now only the values of P (C | L)
and P (L) as unknown. Hence, these were trans-
formed into either obtainable components from the
behavior’s model dataset or reasonably estimated.

Estimation of Conditional Probability Values:
For each label provided by the behaviour model,
reasonable values were defined for the probability
of answering given that label (P (A | L)) and not
answering given that same label (P (A | L)). These
values are detailed in Appendix A.

Calculation of the Probability of each Label:
The labels, which are considered mutually inde-
pendent, conditional only to C, are supplied by the

5

dataset. From the latter, the probability of each la-
bel can be calculated according to the formula pre-
sented in (6).

P (Lk) =
NLk

NL
(6)

The result is dependant on the chosen user since
NLk

represents the number of times Lk occurs in
their routine, and NL defines the total number of
labels in that same routine.

Final Response Probability Model: Now with
the values of P (A | L), P (A | L) and P (L) known
for each label, the before unknown values of P (L |
C) and P (L | C) are easily obtained. As previ-
ously stated, there is an additional element used
to represent user discontentment with notification
volume, β. That element is incorporated in (7) and
(8), finalizing our expressions as,

P (A | L0, ..., Li, Li+1, ..., Llt) ∝

β

P (A)

i∏
j=0

[P (Lj | A)] ∗
lt∏

k=i+1

[
P (Lk | A)

] (7)

P (A | L0, ..., Li, Li+1, ..., Llt) ∝

(1− β)

P (A)

i∏
j=0

[
P (Lj | A)

]
∗

lt∏
k=i+1

[
P (Lk | A)

]
(8)

For each instance, the above presented factors
are estimated, normalized, and, resorting to a sim-
ple sampling method, the simulator’s response is
determined.

X ∼ U(0, 1)

ĉ ∈
{
A,A

}
∼
∥∥P (C | L0, ..., Li, Li+1, ..., Llt)

∥∥
C∈{A,A}

⩽ X

(9)
We believe this sampling technique allows us to
reflect the ambiguity of users more accurately. ĉ
represents the class that defines the simulator’s re-
sponse. Depending on the simulator’s reaction and
the state of the environment, the algorithm then ob-
tains the respective reward and adjusts the strat-
egy accordingly.

4. Experiments
4.1. Model Initialization Methods

One of the main objectives of this paper is to an-
alyze the efficiency levels that algorithms can ob-
tain when models are initialized in different man-
ners.

No Previous Knowledge Models (Online
Learning) - This method entails no previous expe-
rience, implying that the models start with no prior

knowledge and learn only from interaction with a
specific user. It is expected that this method would
allow for a better customization and better results
in the long run. However, it is also anticipated that
it shall take longer to start doing so since it must
learn every user preference from scratch.

Previously trained models (Offline Learning)
- Here, models are trained with two different users
before being tested with a third one, where they
only apply what they have learned from previous
experience. These models are expected to provide
acceptable results from the moment they are de-
ployed since they are likely to have already learned
generic preferences that people share amongst dif-
ferent lifestyles. Nonetheless, since no learning
happens after the training stage, these are not per-
sonalized and are not expected to reach such good
results as the remaining methods.

Previously trained adaptive models (Combi-
nation of Offline and Online Learning) - In this
case, models are likewise trained before being de-
ployed. However, they continue learning, which
allows them to start more efficiently than mod-
els with no previous knowledge while also growing
to be customizable. Assuming the chosen users’
routines are varied enough to provide generalized
knowledge that could then be applied to any user,
this model, which combines the two previous ones,
is expected to offer the best and most stable re-
sults.

4.2. Users’ Routine - Daily vs. weekly routine
This paper hypothesizes that patterns of oppor-

tune timings can be found in a person’s routine. By
applying the different state representations of Q-
learning and DQN and the different formulations of
UCB, this work intends to test if higher levels of
efficiency can be obtained when letting the agent
learn what a typical week is for the user instead of
a typical day. It is expected that when modeling
opportune timings throughout a week, the agent
takes longer to learn, but if enough time is pro-
vided, better results can be obtained. It is essen-
tial that it can be understood if this extra time taken
to train provides improvements that are considered
significant enough for the user to accept the distur-
bance of a not yet so well-trained model for more
extended initial periods.

4.3. Performance Metrics
As performance metrics of our algorithms, we

selected two: Goal Achievement Rate (Gr) and No-
tification Volume (Nv).

Gr =
NA

NDays
(10)

Nv =
NSent

NDays
=

∑Days
i=0 (NAi

+NAi
)

NDays

(11)

6

Gr, in (10), is defined as the fraction of accepted
notifications (NA) over the number of episodes be-
ing tested (NDays, each episode representing a
day). High Gr values show that our agent was able
to identify when users are open to receiving and
answering notifications throughout the day. How-
ever, an agent may increase the Gr by simply in-
creasing interaction with users. Thus, the volume
of sent notifications is also tracked to balance this
effect. With (11), the average number of notifica-
tions sent per day, also referred to as notification
volume, can be obtained.

A well-behaved agent presents a high response
rate (Gr) while maintaining a low notification vol-
ume (Nv), ensuring in this way that our system gets
a response without bothering the user when he is
not receptive.

5. Results & Discussion

Experiments were performed for all combina-
tions of the described initialization methods, algo-
rithms, states, and rewards. For each, 3 tests were
executed by applying the leave-one-out technique
for a set of 3 simulated users. The respective me-
dian was then determined as a measure of central
tendency to diminish the influence of outliers. All
graphs presented show the average result among
tested users, employing the Nv and Gr metrics.
The standard deviation was also analyzed and is
likewise depicted in the displayed graphs. Further-
more, in the tables shown throughout this section,
the average Gr and Nv values obtained over 300
days of training are presented.

Analyzing these results is a complex task since
users appreciate different aspects in systems such
as the one here developed. Ideally, the notifica-
tion system should have the following properties:
first, Gr should approach 100% and Nv 1 notifi-
cation per day. Standard deviation values should
not be high, ensuring consistency when applying
the models to different users and in various situa-
tions. Furthermore, the results should be stable,
meaning that the provided service should be con-
sistent, not showing significant, unexpected varia-
tions in the Nv and Gr values throughout the train-
ing process. Although the system is expected to
explore, user experience should not be affected in
such a way that users would start experiencing dis-
satisfaction towards the application. Lastly, from
deployment, the agent should not require a long
period to start providing an acceptable level of user
experience. Users must be able to start seeing the
benefits of their effort early on, reinforcing user en-
gagement and commitment.

To provide a bit more clarity regarding the con-
clusions that can be reached from the obtained re-
sults, the average values over all simulations of the

permutations of algorithms, states, and rewards in
each initialization method are shown in Table 1.
Additionally, the average values over all simula-
tions of the combinations of initialization methods,
states, and rewards in each algorithm are likewise
shown. The analysis of these results is provided in
the following sections.

—- Gr Nv

No Previous Knowledge 0.887±0.017 3.049±0.785
Previously Trained 0.888±0.069 3.351±1.338

Previously Trained Adaptive 0.963±0.041 2.877±0.881
UCB 0.905±0.049 2.082±0.399
TQ 0.975±0.015 2.983±0.837

DQN 0.854±0.067 3.706±1.467

Table 1: Average values over all combinations of each initial-
ization method and algorithm.

5.1. Previously Trained Model

These simulations confirmed that a generic pre-
diction model trained on multiple users’ data tends
to be less accurate for predicting the interruptibil-
ity of a specific user than individual-based mod-
els. This statement can be confirmed in Table 1,
where the average values obtained for each ini-
tialization method are stated. Furthermore, when
compared to the other two initialization methods,
this model displays, on average, a higher standard
deviation. Nonetheless, it obtains satisfactory re-
sults when resorting to the right combination of al-
gorithm, state, and reward, which in this case is:
DQN, using state S1 and S3, and rewards R5 and
R6, shown in Table 2.

DQN Gr Nv

S1 with R5 0.996± 0.005 1.926± 0.095
S1 with R6 0.983± 0.012 1.813± 0.123
S3 with R5 0.996± 0.004 1.931± 0.082
S3 with R6 0.992± 0.003 1.864± 0.121

Table 2: Previously Trained - DQN.

Here, the network can leverage less complex state
representations throughout the training phase and
learn generic user preferences better than any
other combination. This shows that, if the purpose
is to learn generic preferences, it should be done
in the less detailed manner possible, which in this
context is represented by modeling a nonspecific
daily routine (S3). Although not adaptable to new
users’ routines, a consistently pleasant user expe-
rience can still be offered. However, if applied to
a user that has atypical habits, this model would
not prove satisfactory since, at its core, it is not
learning specific user preferences and adapting to
their schedule, but simply applying previous knowl-
edge. Hence, this implementation resembles no-
tification systems that apply supervised learning
techniques, not exploring the potential benefits of
RL.

7

5.2. Previously Trained Adaptive Model

As expected, and shown in Table 1, this method
appears to provide the overall best performing av-
erage results amongst all three initialization tech-
niques since it can be refined as the final user is
actively using the application.

Both UCB and TQ present a good balance be-
tween our metrics, as shown in Table 3.

Algorithm State/Reward Gr Nv
with R3 0.987± 0.014 1.721± 0.127UCB Day with R5 0.987± 0.009 1.716± 0.009

S1 with R5 0.982± 0.013 1.907± 0.289
S1 with R6 0.981± 0.009 1.949± 0.237
S2 with R5 0.985± 0.004 1.945± 0.285TQ
S2 with R6 0.981± 0.011 1.922± 0.298

Table 3: Previously Trained Adaptive - UCB and TQ.

As seen in Figure 1, and as happens through
most combinations executed in this initialization
method, although Nv converges early on, Gr val-
ues do not, which signifies that the agent is still
exploring and attempting to learn the user’s most
opportune timings. While doing so, and due to the
consequent inconsistency in the provided notifica-
tion service, this behavior may put at risk user en-
gagement with the application.

5.3. No Previous Knowledge Model

Looking at Table 1, this method appears to be
less efficient than the Previously Trained Adaptive
model,taking longer to achieve efficient Gr values
(2 to 3 months). When analyzing Figure 2 in more
detail, it can be concluded that although the av-
erage values are worse than the ones detailed in
the other initialization methods, that is caused by
the model’s lack of previous experience and knowl-
edge. Meaning that in the beginning this model
provides a worse user experience, and Gr and Nv

results, due to the fact that it is learning every user
preference from scratch. These initial results di-
minish the presented average Gr values while rais-
ing the average Nv values. However, in the long
run, the personalized models achieve better results
that converge faster than the ones shown in the
Previously Trained Adaptive model. This conver-
gence implies that users are provided with a more
consistent experience due to the system’s con-
tinued success at finding opportune times, hence
maintaining a high Gr, and the lack of peaks in the
Nv values, consistently and steadily approaching
about two notifications per day as time goes by.

For this case, simple combinations of both UCB
Day and the TQ algorithm, with state representa-
tion S1, provide the best results, shown in Table
4. Furthermore, it should be noted that the lower
average deviation values are obtained with this im-
plementation, as visible in Table 1.

Algorithm State/Reward Gr Nv

with R5 0.979 ± 2.8e−17 1.714 ± 2.8e−17UCB Day with R6 0.973 ± 0.004 1.529 ± 0.092
S1 with R5 0.999 ± 0 2.699 ± 0.633TQ S1 with R6 0.999 ± 0 Gr 2.684 ± 0.660

Table 4: No Previous Knowledge - UCB and TQ.

5.4. Overall Results
Best Combination - Amongst the obtained re-

sults, and following the previously defined guide-
lines to analyze them, the best performing combi-
nation is shown in ComboA - Figure 1. It imple-
ments UCB Day, for which a state representation is
not required, with reward R5. As already detailed in
section 3.1, UCB Day applies an upper confidence
bound algorithm for each hour of the day, helping
the model learn what action is better for each deci-
sion moment. The initialization method applied in
this case was the Previously Trained Adaptive, pro-
viding a high Gr rate from the model’s deployment
while still allowing it to adapt over time to the user’s
specific routine, consequently achieving a lower Nv

as time goes on. This same combo but with re-
ward R3 provided analogous results. In contrast,
R6 produced a worse user experience due to the
higher penalization value for unanswered notifica-
tions, leading to a lower Nv but also a lower Gr.

Similar results, visible in ComboB - Figure 2,
were achieved in the best combination of the No
Previous Knowledge method, also resorting to
UCB Day and reward R5. However, ComboB’s ini-
tialization method implies starting with no previous
knowledge of generic user preferences, leading to
initially lower Gr and slightly higher early Nv val-
ues. It takes approximately two months to achieve
Gr values equivalent to the ones obtained with the
initially discussed combination. Furthermore, and
contrarily to ComboA, in ComboB, the reward that
offered a comparable outcome utilized R6, demon-
strating that, when starting with no former experi-
ence, punishing the agent more severely for send-
ing notifications that go unanswered generates a
superior performance.

It is relevant to note that although not providing
the best performance, the combination that offered
acceptable results consistently throughout all ini-
tialization options was implemented with TQ, state
S1, and rewards R5 and R6. This affirmation is
supported by Table 1. Additionally, DQN presented
the most unstable and inconsistent effects, which is
also reflected in Table 1, providing an overall less
pleasant user experience.

Best State Representation - There was not one
state which commonly displayed a better perfor-
mance. This outcome was expected since the suc-
cess of a state representation is highly dependent
on the utilized algorithm and respective computa-
tional requirements. Yet, it could be said that S1
and S3 tend to perform better throughout all com-

8

(a) Goal Achievement Rate

(b) Notification Volume

Figure 1: ComboA: Previously Trained Adaptive, UCB Day - average result among tested users over 300 days of training.

(a) Goal Achievement Rate

(b) Notification Volume

Figure 2: ComboB: No Previous Knowledge, UCB Day - average result among tested users over 300 days of training.

9

binations, revealing that more complex, detailed
states are not necessarily always more efficient.
Thus implying that no conclusion can yet be taken
on whether patterns of opportune timings are bet-
ter learned for an average day (S3) or an average
week (S1). What can be confirmed is that, if ap-
propriately designed, more straightforward states,
such as S3, can contain all of the essential infor-
mation, allowing for an efficient application of ba-
sic algorithms and providing superior results due
to the consequent lower memory, time, and com-
putational requisites.

Best Reward Structure - Contrarily to the state,
the reward structure is highly linked and depen-
dent on the problem and goal at hand instead of
the applied algorithm. For this reason, it is pos-
sible to verify that the reward which generated a
better overall performance in the tackled problem
was R5. These values provided the best balance
between achieving one daily answered notification
and not bothering the user.

6. Conclusions & Future Work

This work aimed to build an intelligent notifica-
tion system that could adequately manage inter-
ruptions, created in a mHealth self-management
application, by learning what moments were the
most opportune for each user throughout their
day. Theoretical background and related work
were analyzed, and a possible approach was de-
veloped. For the proposed methodology, a set of
RL algorithms and problem formulations were re-
viewed, selected, and tested, in an attempt to de-
termine the most desirable combination of initial-
ization method, algorithm, state, and reward defi-
nition for the problem at hand. This work demon-
strates that a balanced and efficient intelligent no-
tification system can be built for the purpose of be-
ing applied to a mHealth application without requir-
ing access to any private user information or de-
vice sensor. Hence, addressing some of the main
concerns commonly shared among users, such as
privacy or device and sensor-related limitations.

Possible future work could be to include more
detailed user reactions which are not forced to be
instant but could arrive within a predefined interval.
These responses could be further elaborated by,
for example, introducing oblivious dismissal (noti-
fication goes unnoticed) and intentional dismissal
(people decide not to address it). Lastly, this study
applies a simulator, requiring further testing in mo-
bile devices utilized by real users with different
lifestyles, diseases, contexts, and demographics.
These would permit understanding which model is
better applied to which type of user.

References
[1] V. P. Cornet and R. J. Holden. Systematic

review of smartphone-based passive sensing
for health and wellbeing. Journal of Biomedi-
cal Informatics, 77:120–132, 2018.

[2] M. Fiordelli, N. Diviani, and P. J. Schulz. Map-
ping mhealth research: A decade of evolution.
JMIR, 15(5):1–14, 2013.

[3] Y. Fukazawa, N. Yamamoto, T. Hamatani,
K. Ochiai, A. Uchiyama, and K. Ohta.
Smartphone-based mental state estimation:
A survey from a machine learning perspec-
tive. JIP, 28:16–30, 2020.

[4] Geneva: WHO. Noncommunicable diseases
progress monitor 2020, 2020.

[5] B. J. Ho, B. Balaji, M. Koseoglu, and M. Sri-
vastava. Nurture: Notifying users at the right
time using reinforcement learning. UBICOMP,
pages 1194–1201, 2018.

[6] L.-j. Lin. Reinforcement Learning for Robots
Using Neural Networks. PhD thesis, 1993.

[7] A. Mehrotra and M. Musolesi. Intelligent Noti-
fication Systems: A Survey of the State of Art
and Research Challenges. 1(1):1–26, 2017.

[8] A. Mehrotra, M. Musolesi, R. Hendley, and
V. Pejovic. Designing content-driven intelli-
gent notification mechanisms for mobile appli-
cations. UBICOMP, pages 813–824, 2015.

[9] A. Mehrotra, V. Pejovic, J. Vermeulen, and
R. Hendley. My phone and me: Understand-
ing people’s receptivity to mobile notifications.
CHI, pages 1021–1032, 2016.

[10] V. Mnih, K. Kavukcuoglu, and Silver. Human-
level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

[11] T. Rachad and A. Idri. Intelligent Mobile Appli-
cations: A Systematic Mapping Study. Mobile
Information Systems, 2020, 2020.

[12] A. G. B. Richard S. Sutton. Reinforcement
learning : an introduction. MIT Press, 2º edi-
tion, 2018.

[13] Y. Vaizman, K. Ellis, and G. Lanckriet. Rec-
ognizing Detailed Human Context in the Wild
from Smartphones and Smartwatches. IEEE
Pervasive Computing, 16(4):62–74, 2017.

[14] S. Vishwanath, K. Vaidya, and R. Nawal.
Touching lives through mobile health-
Assessment of the global market opportunity.
PwC, 2012.

[15] P. Watkins,. Q-learning. Machine Learning,
8(3-4):279–292, 1992.

[16] WHO Global Observatory for eHealth.
mHealth: new horizons for health through
mobile technologies: second global survey
on eHealth, 2011.

10

Appendix A - ExtraSensory Dataset Labels
Number Label Label Type P (A | L)

1 OR indoors Location 0.5
2 LOC home Location 0.6
3 SITTING Primary Activity 0.6
4 PHONE ON TABLE Secondary Activity 0.7
5 LYING DOWN Primary Activity 0.6
6 SLEEPING Secondary Activity 0.01
7 AT SCHOOL Location 0.5
8 COMPUTER WORK Secondary Activity 0.3
9 OR standing Primary Activity 0.5

10 TALKING Secondary Activity 0.3
11 LOC main workplace Location 0.5
12 WITH FRIENDS Secondary Activity 0.3
13 PHONE IN POCKET Secondary Activity 0.4
14 FIX walking Primary Activity 0.5
15 SURFING THE INTERNET Secondary Activity 0.8
16 EATING Secondary Activity 0.8
17 PHONE IN HAND Secondary Activity 0.8
18 WATCHING TV Secondary Activity 0.9
19 OR outside Location 0.5
20 PHONE IN BAG Secondary Activity 0.4
21 OR exercise Primary Activity 0.15
22 DRIVE - I M THE DRIVER Secondary Activity 0.1
23 WITH CO-WORKERS Secondary Activity 0.1
24 IN CLASS Location 0.2
25 IN A CAR Location 0.5
26 IN A MEETING Location 0.08
27 BICYCLING Primary Activity 0.05
28 COOKING Secondary Activity 0.7
29 LAB WORK Secondary Activity 0.1
30 CLEANING Secondary Activity 0.2
31 GROOMING Secondary Activity 0.18
32 TOILET Secondary Activity 0.9
33 DRIVE - I M A PASSENGER Secondary Activity 0.6
34 DRESSING Secondary Activity 0.2
35 FIX restaurant Location 0.6
36 BATHING - SHOWER Secondary Activity 0.1
37 SHOPPING Secondary Activity 0.3
38 ON A BUS Location 0.7
39 AT A PARTY Location 0.3
40 DRINKING ALCOHOL Secondary Activity 0.6
41 WASHING DISHES Secondary Activity 0.06
42 AT THE GYM Location 0.4
43 FIX running Primary Activity 0.1
44 STROLLING Primary Activity 0.8
45 STAIRS - GOING UP Secondary Activity 0.5
46 STAIRS - GOING DOWN Secondary Activity 0.5
47 SINGING Secondary Activity 0.9
48 LOC beach Location 0.8
49 DOING LAUNDRY Secondary Activity 0.8
50 AT A BAR Location 0.4
51 ELEVATOR Location 0.8

Table 5: Table of labels used in the ExtraSensory Dataset [13].

11

