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Resumo

Os UAVs 1 têm sido utilizados há muito tempo tanto em aplicações militares como comerciais. A sua

procura crescente levou a uma diminuição do seu preço e, por conseguinte, desencadeou um aumento

da acessibilidade e diversidade. Esta mudança no setor impulsionou a implementação dos UAVs em

alguns dos trabalhos mais perigosos dentro do setor comercial.

Estas implementações economicamente vantajosas vão desde a recolha de dados à gestão de

resı́duos. Definidos por dimensões compactas, conveniência, capacidade de descolagem vertical e

agilidade, os multi-rotors são a variação mais comum.

A estimativa e controlo cooperativos são tópicos de investigação prósperos no campo dos sistemas

multiagentes. A cooperação pode permitir ou melhorar o desempenho na execução de tarefas, através

da deteção local e troca de informação.

Com o mapeamento local a ser demasiado complexo e com elevado consumo de energia, num

ambiente sem GPS 2 e sem conhecimento prévio da localização, as tarefas de piloto automático não

podem ser executadas, tornando a estimação cooperativa a opção mais adequada. Esta tese centra-se

na investigação de diferentes topologias de interação e na seleção adequada de medições locais para

permitir a estimação coletiva da posição e orientação de todos os veı́culos.

Esta tese concentra-se nos conceitos fundamentais de um algoritmo de estimação da posição e do

rumo de um UAV para um conjunto muito especı́fico de condições, tais como, a falta de sinal GPS sob

o tabuleiro de uma ponte.

A estimativa de rumo implica conceitos de referenciais locais e inerciais, ângulos de Euler, matrizes

de rotação e sobre os sensores necessários, tais como giroscópio, acelerómetro e magnetómetro.

Os filtros são fundamentais para obter a melhor estimativa possı́vel com os sensores e modelos

disponı́veis. Devido às suas ótimas capacidades de estimação, o Filtro de Kalman, e as suas diferentes

variantes têm sido utilizados na navegação autónoma há vários anos. Por conseguinte, 4 dos algoritmos

de filtragem utilizados são o Filtro de Kalman, o Extended Kalman Filter e um filtro complementar como

Filtro de Kalman, bem como um filtro não linear, de modo a obter resultandos diferentes em função das

necessidades e restrições do meio.

Na teoria de controlo, a filtragem de Kalman, também conhecida como estimativa quadrática linear,

é um algoritmo que utiliza uma série de medições observadas ao longo do tempo, contendo ruı́do

estatı́stico e outras imprecisões, e produz estimativas de variáveis desconhecidas que tendem a ser

mais precisas do que aquelas baseadas apenas numa única medição, estimando uma distribuição

conjunta de probabilidade sobre as variáveis para cada perı́odo de tempo.

Os principais resultados foram obtidos utilizando o Extended Kalman Filter e no filtro não-linear. A

introdução do filtro não-linear não pode ser avaliada apenas com base no desvio RMS. A necessidade

de menos computing power e baterias devido ao menor número de sensores pode ser uma vantagem

em algumas situações.

Palavras-chave: UAV’s, Estimação Cooperativa, Filtros, Filtro de Kalman, Posição, Orientação.
1Unmanned Aerial Vehicles
2Global Positioning System
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Abstract

UAVs have long been used in both military and commercial applications. Its current increasing

demand has led to a decrease in one’s price and, therefore, triggered a rising accessibility and diversity.

This shift in the sector boosted the UAVs’ implementation in some of the most dangerous jobs within the

commercial sector.

These cost-effective implementations range from data collection to waste management. Defined

by compact dimensions, convenience, vertical take-off capability and agility, multi-rotors are the most

common variation.

Cooperative estimation and control are thriving topics of research within the field of multiagent sys-

tems. Cooperation may enable or improve performance in task execution, through local sensing and

exchange of information.

In a GPS denied environment without previous knowledge of the surrounding area, autopilot tasks

cannot be executed, making cooperative estimation a better suited option. This thesis is focused on

investigating different interaction topologies and the adequate selection of local measurements to enable

the collective estimation of position and orientation of all vehicles.

This thesis provides an overall view on the fundamental concepts of an UAV’s position and heading

estimation algorithm for a very specific set of conditions, such as, the lack of GPS signal under a bridge

deck.

The orientation estimation entails concepts of local and inertial referential, Euler angles, rotation

matrices and about the sensors needed, such as the rate gyroscope, the accelerometer, and the mag-

netometer.

Filters are fundamental to obtain the best estimation possible with the sensors and models available.

Due to its optimal estimation capabilities, the Kalman Filter, and its different variants have been used in

autonomous navigation for several years. Therefore, 4 of the filtering algorithms used are Kalman Filter,

Extended Kalman Filter and a complementary filter as Kalman Filter, as well as a non-linear filter, in

order to obtain different results depending on the needs and constraints of the environment.

In control theory, Kalman filtering, also known as linear quadratic estimation, is an algorithm that

uses a series of measurements observed over time, containing statistical noise and other inaccuracies,

and produces estimates of unknown variables that tend to be more accurate than those based on a

single measurement alone, by estimating a joint probability distribution over the variables for each time

frame.

The implementation of this thesis is based on two major parts, the block diagrams, and the modelling

of the state space. In the quest for the optimal solution fifteen configurations were implemented and

tested with the results being discussed further on.

The main results were based on the Extended Kalman Filter and the non-linear filter. The introduction

of the non-linear filter cannot be evaluated only based on the RMS deviation though. The need for less

computing power and batteries due to the fewer sensors can be a plus in some situations.

Keywords: UAV’s, Cooperative Estimation, Filtering, Kalman Filter, Position, Orientation.
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Chapter 1

Introduction

1.1 Motivation

UAVs have long been used in both military and commercial applications, first and foremost by defence

organisations and briefly after by civil early adopters. However, this technology still has plenty of room

to grow. Its current increasing demand has led to a decrease in one’s price and, therefore, triggered a

rising accessibility and diversity. This shift in the sector boosted the UAVs’ implementation in some of

the most dangerous jobs within the commercial sector.

Figure 1.1: Drone industry according to the law of

innovation diffusion [1].

These cost-effective implementations range

from data collection to waste management. With

continuous research and development in position

and orientation estimation as well as image based

technologies, drones’ implementation may cover

more and more complex tasks in the future.

The chart represents the state of the drone’s

industry according to the law of innovation diffu-

sion, Figure 1.1. The blue curve represents the

diffusion of innovation in a predictable path with

five distinct phases. The yellow line is a cumula-

tive depiction of total market share.

According to PwC, drones’ applications in the

commercial sector is valued at over $127B and

still growing [2].

Defined by compact dimensions, convenience, vertical takeoff capability and agility, multi-rotors are

the most common variation.

A quadrotor is a structure with 4 arms, each with a rotor in the end. Cooperative estimation and

control are thriving topics of research within the field of multiagent systems. Cooperation may enable or

improve performance in task execution, through local sensing and exchange of information.
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1.2 Topic Overview

In recent years UAVs have been capturing the attention and interest in a broad range of applications,

such as search and coverage missions, exploration, cooperative manipulation and control. In each of

these cases, the problem of cooperative localisation in a group of robots has to be solved. Coopera-

tive localisation consists in improving the positioning capacity of each robot through the exchanges of

information with other robots in the group [3].

Relative localisation between UAVs is a requisite for cooperative localisation and orientation esti-

mation in the case when absolute localisation information such as information from global positioning

system (GPS) is unavailable or to inaccurate to be used, which can happen indoors, in urban environ-

ments and even forest and remote locations. Taking this in consideration, relative localisation is a key

parameter in cooperative UAV systems [4].

A convenient solution for relative location is to obtain the distance and bearing information using

cameras and AI methods. Nevertheless, there is the limitation of cameras only being able of operate

within a limited range and are prone to suffer from occlusion and lighting conditions. In opposition,

distance measurements can be obtained using different sensors such as ultra-wideband (UWB), radars,

and lidars, which can operate over a much larger range [4].

There are, already, several methods used for solving cooperative localisation problems, such as

the Extended Kalman Filter (EKF) for a centralised system, or, if the computation is decentralised and

the communication is unreliable, other techniques like Covariance Intersection or Interleaved Update.

Approaches that assume bounded errors using polytopes and linear programming algorithms have also

been proposed [3].

Related Work

In the article Attitude and Heading Reference System Based on3D Complementary Filter, the relation-

ship between the measured signals, on each axis in the sensor coordinates, and the inertial coordinates

were defined by the Euler angles, respectively by roll (φ), pitch (θ) and yaw (ψ) angles, as a specific

sequence of rotation with respect to x, y and z axes of a referred coordinate system. The axes of inertial

coordinate system were defined as a right handed Cartesian coordinate system with North, West and

Upward (NWU) directions [5].

In the article Development of attitude and heading reference system, the Euler angles were utilised

to find the transformation matrix which relates the North-East-Down (NED) frame and the body frame.

Furthermore, the Euler angles were determined from the gyro- scope, magnetometer and accelerometer

to implement the Complementary Filter [6].

In the article A Simple Attitude Unscented Kalman Filter: Theory and Evaluation in a Magnetometer-

Only Spacecraft Scenario a quaternion-based attitude unscented Kalman filter was formulated with

quaternion errors parametrized by small angle approximations considering a magnetometer only space-

craft scenario. The method was applied to a filter with a state vector consisting of the attitude quaternion

and the gyro bias vector [7].
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A generalised complementary filter (GCF) was proposed in the article Generalized complementary

filter for attitude estimation based on vector observations and cross products, for attitude estimation. The

GCF was based on the vector observation and its cross product. The results from the GCF had better

numerical stability and much higher computational efficiency than the multiplicative extended Kalman

filter (MEKF) [8].

1.3 Problem Statement

Scenario Description

The problem of cooperative position and orientation estimation in multi-agent systems is formulated

in this thesis considering a flight in formation with three drones labelled 1, 2, 3, as shown in Figure 1.2.

The formation is composed by a leader aircraft, 3, at unknown location at time t, followed by two drones,

1 and 2, each equipped with a GPS receiver.

Figure 1.2: Context illustration. [9]

In a GPS denied environment without previous knowledge of the surrounding area, Autopilot tasks

cannot be executed, making cooperative estimation a better suited option.

Approach Overview

The work is focused on investigating the correlation between number of drones used and the results

in the cooperative estimation of the position. The different interaction topologies between drones and

the adequate selection of local measurements. As well as the better suited filtering techniques to enable

the collective estimation of position and orientation of all vehicles taking in consideration the problem

constraints.
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1.4 Thesis Outline

This thesis provides an overall view on the fundamental concepts of an UAV’s position and heading

estimation algorithm for a very specific set of conditions, such as, the lack of GPS signal under a bridge

deck. The workflow is described bellow. The first chapter provides a short introduction to the problem

being solved and an insight to the proposed methodology. The second chapter, the background, provides

important concepts about attitude and position of an UAV, the sensors used, and filtering techniques

that are crucial for proper understanding of the following chapters. In chapter 3, the reader can find

the description of the implementation explaining how the problem was solved. From block diagrams of

the simulink implementation, to their modeling. The results achieved by the proposed configurations

are exposed on the fourth chapter, which exposes the performance of the number of drones, the filter

techniques chosen and the sets of sensors. The conclusions drawn from this work and ideas of future

work can be found on chapter 5.
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Chapter 2

Background

As previously mentioned, the problem of cooperative position and orientation estimation in multi-agent

systems can be formulated, for instance, considering a flight in formation with three drones labelled

1, 2, 3, as shown in Figure 1.2. The formation is composed by a leader aircraft, 3, at unknown location at

time t, followed by two drones, 1 and 2, each equipped with a GPS receiver.

This chapter provides the fundamental concepts for the implementation of an UAV’s position and

heading estimation algorithm for a very specific set of conditions, such as, the lack of GPS signal under

a bridge deck.

The first concept introduced is orientation. In order to understand orientation, first of all, two concepts

must be introduced, the local and inertial coordinate frames. These two concepts are fundamental to

the use of Euler angles, the orientation parameters, and for a proper sensor’s output usage. In this

chapter, the mathematics behind Euler angles and the rotation matrix are key to the understanding of

the orientation’s representation. The sensors used are the rate gyroscope, the accelerometer and the

magnetometer.

Following the orientation overview, the positioning sensors must be described as well. Once the

correct estimation of the third drone position lies on it. The sensors used are the GPS and cameras

supported by two vision based algorithms whose output is the relative position and relative orientation

between drones.

The last concept mentioned in this section is filtering. Filters are fundamental to obtain the best

estimation possible with the sensors and models available. The majority of the filters presented are

variations of the Kalman Filter. These variations can be due to the non-linear nature of the model,

Extended Kalman Filter, or a Kalman Filter interpretation of Complementary Filtering.
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2.1 Orientation

The attitude of an UAV is a crucial aspect in autonomous flight. Not only accuracy but low complexity

and low cost parts are fundamental requisites.

In the representation of attitude, several approaches were developed over the years: Euler angles,

quaternions, direct cosine matrix and the rotational matrix. In this thesis only Euler angles and the

rotational matrix are examined in more detail.

2.1.1 Local and Inertial Coordinate Frames

Each vehicle has its own local referential, {Vi}, i ∈ [1, 2, 3], sympathetic with the drone’s kinematic,

that is defined by its position, I ~pi, i ∈ [1, 2, 3], and orientation, [φi, θi, ψi], i ∈ [1, 2, 3], in an inertial

referential, {I}.

The local referential, {Vi}, is sympathetic with the drone’s kinematic and has its origin on the drone’s

centre of gravity. It is defined by the x-axis being aligned with the arm of the rotor 1, the y-axis aligned

with the arm of the rotor 2 and the z axis perpendicular the xy plane aiming down, as described in Figure

2.1.

The inertial referential, {I}, has its origin on Earth’s surface, and moves sympathetic with Earth,

which means it is fixed in those coordinates throughout time. The the x-axis aims North, the y-axis aims

East and the z-axis points to Earth’s core.

Figure 2.1: Drone’s Local Referential,
in Red.

Figure 2.2: Inertial Referential,
in Green.

Each aircraft has its position expressed in the inertial referential as:

I ~pi = (xi, yi, zi) (2.1)

where, (xi, yi, zi), i ∈ [1, 2, 3], represents the location of the ith aircraft in a coordinate system external

to all vehicles.
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2.1.2 Euler Angles

Although the position of the local referential has been defined regarding the inertial referential, the

orientation has not. Intuitively the orientation is defined by three angles, the Euler angles, known as roll,

pitch and yaw.

Roll is angle of rotation related to the x-axis, whose notation is φ. Pitch is the angle of rotation related

to the y-axis, whose notation is θ. Yaw is the angle of rotation related to the z-axis, whose notation is ψ.

This representation of Euler angles are shown in Figure 2.3.

Figure 2.3: Euler angles: sequence of standard rotations.

Although the order of the representation is not compulsory, from now on, the Euler angles are rep-

resented by order, as [φ, θ, ψ]. This representation will be used in the simulations and filters introduced

further ahead.

To make a comparison, all translations can be represented as three numbers, x, y and z, as the

succession of three consecutive linear movements along three perpendicular axes X, Y and Z axes.

The same applies for rotations, all the rotations can be described using three numbers, [φ, θ, ψ], as

the succession of three rotational movements around three axes that are perpendicular one to the next.

This similarity between linear coordinates and angular coordinates makes Euler angles very intuitive, but

unfortunately they have a huge disadvantage, the possible loss of a degree of freedom (Gimbal Lock).

A gimbal lock occurs because the map from Euler angles to rotations is not a local homeomorphism

at every point, and thus at some points the number of degrees of freedom must drop below 3, at which

point gimbal lock occurs. Euler angles provide a means for giving a numerical description of any rotation

in three-dimensional space using three numbers, but not only is this description not unique, but there

are some points where not every change in rotations can be realised by a change in the Euler angles.

This is a topological constraint. 2

A potential solution to the gimbal lock is to represent the orientation in other way that not with Euler

angles. Alternative representations for orientation that can be adopted are rotation matrices, quater-

nions, or direct cosine matrices (DCM).

2Citation from https://en.wikipedia.org/wiki/Gimbal_lock
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2.1.3 Rotation Matrix

Figure 2.4: Rotation from frame {B} to {A}.

In order to avoid singularities, rotation matrices are

used in this thesis instead of Euler angles [10]. For a

better understanding of the concept, the first rotation

matrix to be defined is in two dimensions (x,y). That

means that the only angle in the orientation is yaw, ψ,

the rotation related to the z-axis. Figure 2.4 represents

the rotation from frame {B} to frame {A}. That is, from

a local referential {B} to an inertial one {A}. Coordi-

nates expressed in {B} are transformed to coordinates

expressed in {A}, by equation (2.2).

A~p =AB R(ψ)B~p (2.2)

Equation (2.2) in a matrix representation:


Apx

Apy

Apz

 =AB R(ψ)


Bpx

Bpy

Bpz

 (2.3)

If the vector ~p is described in the form ~p = p (cos(α), sin(α), 0) instead of ~p = (x, y, z):


p cos(ψ + α)

p sin(ψ + α)

0

 =AB R(ψ)


p cos(α)

p sin(α)

0

 (2.4)

Taking in consideration equation (2.4) and cos(a + b) = cos(a)cos(b) − sin(a)sin(b), sin(a + b) =

sin(a)cos(b) + cos(a)sin(b), the Yaw rotation matrix is:

A
BR(ψ) =


cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 (2.5)

As seen above, a vector defined at any local referential, {Vi}, can be transformed into the inertial

referential, {I}, employing sequentially the three rotations, each one given by its rotation matrix. The

roll and pitch rotation matrices are obtained analogous as equation (2.5).
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The Roll rotation matrix of the ith aircraft is defined as:

I
iR(φ) =


1 0 0

0 cos(φ) −sin(φ)

0 sin(φ) cos(φ)

 (2.6)

The Pitch rotation matrix of the ith aircraft is defined as:

I
iR(θ) =


cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)

 (2.7)

And the Yaw rotation matrix of the ith aircraft is defined as:

I
iR(ψ) =


cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 (2.8)

Therefore, the Rotation Matrix of the ith aircraft is defined as:

I
iR =Ii R(ψ)

I
iR(θ)

I
iR(φ) =


cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ

sψcθ sψsθsφ + cψcθ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

 (2.9)

The notation cξ = cos(ξ) and sξ = sin(ξ) was used in equation (2.8).

2.1.4 The Rate Gyroscope

In order to obtain orientation information of each drone, some sensors must be used. A gyroscope is

a spinning device used for measuring or maintaining orientation and angular velocity.

Figure 2.5: 3D Gyroscope component.

It is composed by a rotor in which the spin axis is free to assume any orientation by itself. When
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rotating, the orientation of this axis is unaffected by tilting or rotation of the mounting, according to the

conservation of angular momentum. A rate gyro is a type of gyroscope that indicates angular rates, that

is, ω = [p, q, r] without a fixed point of reference. Although there is no direct correspondence between

the angular rates [p, q, r] and the derivatives of Euler angles, the following approximation for small roll

and pitch angles can be used: [p, q] ≈ [φ̇, θ̇]. The advantage of rate gyros over other types of gyros is

the fast response rate and relatively low cost. Rate gyros are defined by a drift term and zero mean

Gaussian noise, resulting from the manufacturing process. A rate gyro is defined by the three following

equations: 
ygyro,x = p+ βgyro,z + ηgyro,x, ηgyro,x ∼ N(0, 0.0169)

ygyro,y = q + βgyro,z + ηgyro,y, ηgyro,y ∼ N(0, 0.0169)

ygyro,z = r + βgyro,z + ηgyro,z, ηgyro,z ∼ N(0, 0.0169)

(2.10)

[p, q, r], represents the angular rates, βgyro the Bias and ηgyro the sensor’s noise in the readings. The

gyro noise, ηgyro, is driven by noise of ARW (Angular Random Walk), and a Gaussian can be defined

as being zero mean, µ ≈ 0o, σgyro = 0.0169os−1 and ηgyro ∼ N(0, 0.0169). This material was withdrawal

from the book Small Unmanned Aircraft: Theory and Practice by Timothy W. McLain and Randal Beard

[11]. The bias is a drift term driven by noise of RRW (Rate Random Walk) and is defined as a function

of time:

βgyro = f(t); (2.11)

In this thesis the bias is defined as not being a function of time, equation (2.12), based on [12].

f(t) =


βgyro,x = −0.0113

βgyro,y = 0.0322

βgyro,z = 0.0115

(2.12)

2.1.5 The Accelerometer

As seen in 2.1.4, the rate gyro’s outputs are angular rates, but the goal is to obtain the angles, not

their rate of change, therefore, a couple extra sensors must be introduced.

An accelerometer is a sensor that measures proper acceleration. Proper acceleration is the accel-

eration of a body in its own instantaneous rest frame. This is different from coordinate acceleration,

which is acceleration in a fixed coordinate system. For example, an accelerometer at rest on the sur-

face of the Earth will measure an acceleration due to Earth’s gravity, straight upwards of g = 9.81m/s2,

which means, that by the definition in Figure 2.2, is opposed to the z-axis. By contrast, accelerometers

in free fall (falling toward the centre of the Earth at a rate of about 9.81m/s2) will measure zero. The

accelerometer can be modelled as the following:
yacc,x = u̇+ qw − rv + gsen(θ) + ηacc,x, ηacc,x ∼ N(0, 0.005112)

yacc,y = v̇ + ru− pw − gcos(θ)sen(φ) + ηacc,y, ηacc,y ∼ N(0, 0.007291)

yacc,z = ẇ + pv − qu− gcos(θ)cos(φ) + ηacc,z, ηacc,z ∼ N(0, 0.1614)

(2.13)
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Once the dynamic accelerations can be neglected in comparison to the static accelerations we got:
yacc,x = gsen(θ) + ηacc,x, ηacc,x ∼ N(0, 0.005112)

yacc,y = −gcos(θ)sen(φ) + ηacc,y, ηacc,y ∼ N(0, 0.007291)

yacc,z = −gcos(θ)cos(φ) + ηacc,z, ηacc,z ∼ N(0, 0.1614)

(2.14)

The data is based on [13]. This sensor is used to obtain measurements of [φ, θ], thus an extra sensor to

obtain the measurement of ψ must be incorporated.

Figure 2.6: Accelerometer sketch from https://bit.ly/3oU5e3d

2.1.6 The Magnetometer

The magnetic field sensors can be used as a compass and therefore determine the orientation of the

sensor relative to the magnetic north pole. The output is, intuitively, the yaw value, ψ, plus white noise,

ηmag.

ymag = ψ + ηmag, ηmag ∼ N(0, 12.399) (2.15)

The data was gathered from the article Magnetic Field Sensor Calibration for Attitude Determination

[14].
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2.2 Position

So that a three dimensional estimation of the position could be obtained, the orientation estimation

had to be defined previously, as the sensor’s outputs are represented in the local referential and the

position of each drone is expressed in the inertial referential. In the scenarios where [φ, θ, ψ] = [0o, 0o, 0o]

the local and inertial referential change, only, in their positioning.

Two aircraft are equipped with GPS receivers and all three with vision based relative position and

relative orientation sensors, all of which are described hereupon. This thesis aims to explore which

measurements, or combination of measurements, are better suited to obtain the estimated position of

the GPS denied aircraft, 3, with the least possible error as well as the other two aircraft. The position

estimates can be obtained using three sets of measurements: GPS coordinates of two aircraft, inter-

vehicle distance and inter-vehicle angle. Each aircraft has its position regarding the inertial referential,

{I}, defined as:
I ~pi = (xi, yi, zi), i ∈ [1, 2, 3] (2.16)

The GPS coordinates are defined as I ~pi, i ∈ [1, 2]. Each drone, j, also has its relative position regarding

the other drones, i, both in local, {Vi}, and inertial referential, {I}, defined as:

Vi ~di,j , i 6= j ∈ [1, 2, 3] (2.17)

I ~di,j , i 6= j ∈ [1, 2, 3] (2.18)

Hence, the distance between drones is defined as:

|| ~di,j ||, i 6= j ∈ [1, 2, 3] (2.19)

Each Drone has its relative angular position regarding the other drones defined as the normalised rel-

ative position vector, that can be expressed both in local, {Vi}, and inertial referential, {I}, defined

as:
Vi ~di,j

|| ~di,j || i,j
, i 6= j ∈ [1, 2, 3] (2.20)

I ~di,j

|| ~di,j || i,j
, i 6= j ∈ [1, 2, 3] (2.21)

Each set of measurements, like distance and angle has its own reliability affected by measurement

errors as well as the GPS positioning is affected by data gathering frequency and noise. Where the best

set of measurements combinations will be determined through computational simulations.

2.2.1 The GPS

GPS, or Global Positioning System, is a global navigation system that uses satellites, a receiver and

algorithms to synchronise location, velocity and time data for air, sea and land travel. The GPS output is
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modelled as: 
yGPS,x =I px + ηGPS,x, ηGPS,x ∼ N(µGPS,x, σ

2
GPS,x)

yGPS,y =I py + ηGPS,y, ηGPS,y ∼ N(µGPS,y, σ
2
GPS,y)

yGPS,z =
I pz + ηGPS,z, ηGPS,z ∼ N(µGPS,z, σ

2
GPS,z)

(2.22)

The GPS sensor’s gathered data, sourced in the Global Positioning System (GPS) Standard Positioning

Service (SPS) Performance Analysis Report [15], can be plotted being the number of samples a function

of the range error. From the plot analyses the Gaussian can be estimated and the values are in table

Figure 2.7: GPS - Global Vertical Error Histogram Figure 2.8: GPS - Global Horizontal Error Histogram

2.1. Although the mean is not null, it is considered to be in this approximation. The variance comes from

equation 2.23:

µ+ 2σ = 95%error (2.23)

Which results in the following table:

Axis σGPS [m] µGPS [m] Gaussian: ηGPS,y ∼ N(µGPS , σ
2
GPS)

x: 1.8 ≈ 0 ηGPS,x ∼ N(0, 3.24)
y: 1.8 ≈ 0 ηGPS,y ∼ N(0, 3.24)
z: 0.85 ≈ 0 ηGPS,z ∼ N(0, 0.6881)

Table 2.1: GPS Gaussian parameters table.

2.2.2 The Distance Sensor

The distance sensor is an AI vision based sensor. As seen in the beginning of this section, the

distance sensor is based on the relative positioning of the drones. In particular the module of the

vectors. And its output is:

ydistance = || ~di,j ||+ ηdistance, [i 6= j] ∈ [1, 2, 3] ηdistance ∼ N(µdistance, σ
2
distance) (2.24)
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The plots shown in Figure 2.9 are from the article Error Evaluation in a Stereo-vision-Based 3D Re-

construction System [16]. The plot above shows the error in the reconstruction of contour. The error

Figure 2.9: 3D error distribution in the x, y, and z-directions of a typical reconstructed contour.

in the distance measurement is proportional to the error of the reconstruction of contour and the dis-

tance between drones. Taking in account an expected distance bellow 10 meters and the average of the

variances in the plot, table 2.2 was arbitrated.

2.2.3 The Angle Sensor

The angle sensor is also an AI vision based sensor. And as seen in the beginning of this section, the

angle sensor is also based on the relative positioning of the drones. In particular the normalised vectors.

And its output is:

yangle =
~di,j

|| ~di,j ||
, [i 6= j] ∈ [1, 2, 3] + ηangle ηangle ∼ N(µangle, σ

2
angle) (2.25)

The similarities between the distance sensor and the angle sensor continue, and the values that

define the noise, were, once again, set arbitrarily based on Figure 2.9.

Sensor σ µ Gaussian: η ∼ N(µ, σ2)
Distance 1× 10−3 0 ηdistance ∼ N(0, 1× 10−6)

Angle 7× 10−4 0 ηangle ∼ N(0, 5× 10−7)

Table 2.2: Angle sensor Gaussian parameters table.
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2.3 Filtering

Due to its optimal estimation capabilities, the Kalman Filter, and its different variants have been used

in autonomous navigation for several years. Therefore, 3 of the following filtering algorithms are Kalman

Filter based.

2.3.1 Kalman Filter

In control theory, Kalman filtering, also known as linear quadratic estimation, is an algorithm that uses

a series of measurements observed over time, containing statistical noise and other inaccuracies, and

produces estimates of unknown variables that tend to be more accurate than those based on a single

measurement alone, by estimating a joint probability distribution over the variables for each time frame.
3

The kalman filter is an algorithm based on prediction, the first step, where it produces an estimate of

the current state as well as its uncertainty and then a subsequent update, the second step.

The current state is calculated using the known system model, input vector as well as the previous

state. This step does not include the system’s process noise and nonlinearities. After observing the

output measurements, which are corrupted with error, both the state and its uncertainty are updated,

given more weight to the more certain estimates, this means that the algorithm is recursive and its

behaviour is demonstrated, schematically in Figure 2.10.

Figure 2.10: Kalman Filter recursive algorithm behaviour [17].

It is assumed that the process noise and sensor’s noise, ηx and ηy, are Gaussian with zero mean

and its variance can be obtained from experimental data. Also, it’s assumed that the dynamic systems

3Citation from https://en.wikipedia.org/wiki/Kalman_filter
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are linear and can be described in a matrix state space representation as follows: x(k + 1) = Ax(k) +Bu(k) + ηx(k), ηx(k) ∼ N(0, Rw)

y(k) = Cx(k) +Du(k) + ηy(k), ηy(k) ∼ N(0, Rv)
(2.26)

The variables above are, k, discrete time, x, state vector, y, output vector, u, input (or control) vector, A,

state matrix, B, input matrix, C, output matrix, D, the feedforward matrix, ηx and ηy, the process noise

and sensor’s error, are Gaussian with zero mean and σx and σy as variance. The system’s optimal state

Figure 2.11: Kalman Filter probability density functions schematic [17].

estimate is obtained using the system’s predicted state estimate and the measurement with a weighted

average. The kalman gain, evaluates which measures have smaller estimated uncertainty and therefore

are trusted more. The Measurement Update is defined as: x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k + 1)[y(k + 1)− Cx̂(k + 1|k)−Du(k + 1)]

P (k + 1|k + 1) = P (k + 1|k)−K(k + 1)CP (k + 1|k)
(2.27)

This process is repeated at every time step, with the new predicted state estimate and its covariance

being dependent on the previous optimal state estimate. As seen in the following equation: x̂(k + 1|k) = Ax̂(k|k) +Bu(k)

P (k + 1|k) = AP (k|k)AT +Rw
(2.28)

The uncertainty of the measurements and of the current state estimate are fundamental to obtain the

Kalman Gain, K(k+1). The Kalman Gain is then used to calculate the optimal state estimate, equation

2.27. With a high gain, the filter places more weight on the most recent measurements, and thus follows

them more responsively. With a low gain, the filter follows the model predictions more closely.

K(k + 1) = P (k + 1|k)CT [Rv + CP (k + 1|k)CT ]−1 (2.29)

The state space model shown in each subsequent section is in continuous time, therefore, to implement
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the Kalman Filter it must be converted to discrete time. In continuous time the system is defined as: ẋ = Ex(t) + Fu(t)

y(t) = Gx(t) +Hu(t)
(2.30)

The variables above are, t, continuous time, x, state vector, y, output vector, u, input (or control) vector,

E, state matrix, F , input matrix, G, output matrix, and H, the feedforward matrix.

To obtain the discrete state space matrices, three MATLAB functions were used. First the sampling

time is defined, h, then the τ = ss(E,F,G,H) function creates a state space model in continuous

time, then the ξ = c2d(τ, h) function converts the previous model to discrete time and the function

[A,B,C,D, Ts] = ssdata(ξ) obtains the state space discrete matrices.

2.3.2 Extended Kalman Filter

Previously, the Kalman Filter was described as a linear estimation algorithm. Once the first imple-

mentations were a non-linear one, an Extended Kalman Filter (EKF) must be implemented. In the EKF

the dynamic systems don’t need to be linear but must be differentiable functions. The system is now

represented as follows: x(k + 1) = Ax(k) +Bu(k) + ηx(k), ηx(k) ∼ N(0, Rw)

y(k) = h(xk, uk) + ηy(k), ηy(k) ∼ N(0, Rv)
(2.31)

Must be noted that the Extended Kalman Filter doesn’t need a linear function as state function, nev-

ertheless in this thesis all the state functions are linear, and therefore, the EKF is described with state

matrices. The variables above are, k, discrete time, x, state vector, y, output vector, u, input (or control)

vector, A, state matrix, B, input matrix, h(xk, uk), measurement function, ηx and ηy, the process noise

and sensor’s error, are Gaussian with zero mean and σx and σy as variance.

The predicted state estimate, x̂(k+1|k), is computed from the previous optimal state estimate, x̂(k|k),

as in the Kalman Filter, and h(xk, uk) is used to compute the predicted output, ŷ(k+1|k), estimate using

the predicted state estimate. Once h(xk, uk) cannot be in a matrix form, the system must be linearized

in each time step so that the Kalman Filter equations can be applied. The linearization around the

estimation is done computing, at each time step, the matrix of partial derivatives. The Jacobian is

computed with the current predicted state estimation, J(x(k + 1|k), u(k + 1)) ≡ J .

J(xk, uk) =


∂h1

∂x1
... ∂h1

∂xi

... ... ...

∂hj

∂x1
...

∂hj

∂xi

 (2.32)

The Measurement Update is defined as: x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k + 1)[y(k + 1)− h(x̂(k + 1|k), u(k + 1))]

P (k + 1|k + 1) = P (k + 1|k)−K(k + 1)JP (k + 1|k)
(2.33)

17



This process is repeated at every time step, with the new optimal estimate state and its covariance

influencing the prediction of the next state estimation, as follows: x̂(k + 1|k) = Ax̂(k|k) +Bu(k)

P (k + 1|k) = AP (k|k)AT +Rw
(2.34)

Once again, the Kalman Gain affects the predicted state estimation. With a high gain, the filter places

more weight on the most recent measurements, and thus follows them more responsively. With a low

gain, the filter follows the model predictions more closely.

K(k + 1) = P (k + 1|k)JT [Rv + JP (k + 1|k)JT ]−1 (2.35)

2.3.3 Kalman Filter as Complementary Filtering

In order to understand the usage of a Kalman Filter or Extended Kalman Filter as complementary

filtering, first, a brief introduction to complementary filtering must be done.

Sensor fusion can be achieved by several algorithms, one of the less complex to implement is the

complementary filter. The filter is defined by two gains that act as high and low pass filter to the sensors’

output. This filter is specially important in the orientation estimation as the accelerometer is susceptible

to vibrations that need to be filtered. In order to obtain a moving average, that is, a filtered acceleration,

a low pass filter is the answer. On the opposite end of the spectrum, the rate gyro is accurate in the

short term but due to the bias term the long term results lack accuracy. With this in mind a high pass

filter is desired. That way the short-term gyroscope data is used while eliminating long term errors. The

Figure 2.12: Block Diagram of Com-
plementary Filtering [19]. Figure 2.13: Bode Diagram of Complementary Filtering [19].

low pass filter is defined as:

GL(s) =
l

s+ l
(2.36)

The high pass filter is defined as:

GH(s) =
s

s+ l
(2.37)

And the combination of both, as shown in Figure 2.12:

GH(s) +GL(s) = 1 (2.38)
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Kalman Filters can be implemented in order to function as complementary filtering. Figure 2.14

shows a scenario where the inputs are the rate gyro, ẋmH , and the magnetometer, xmL. In a com-

plementary filtering scenario or a Kalman Filtering one, the integral of the rate gyro must be calcu-

lated before entering the filter. This integration reduces the accuracy of the heading due to the bias.

Figure 2.14: Block Diagram of Complementary Filtering with integration [20].

The output of the complementary filtering shown in Figure 2.14 is:

X̂(s) =
l

s+ l
XmL(s) +

s

s+ l

ẊmH(s)

s
(2.39)

The same filtering can be achieved using a Kalman Filter, but for that a few alterations to the implemen-

tation in 2.3.1 must be done. Recalling equation (2.30).
ẋ = Ex(t) + Fu(t)

y(t) = Gx(t) +Hu(t)

˙̂x = Ex̂(t) + Fu(t) + L(y(t)−Gx̂)

(2.40)

The difference in this application is that instead of having null input and the magnetometer and the

integral of the rate gyro as output, the input is the rate gyro and the output is the magnetometer. That is: u = ẋmH = ygyro,z

y = xmL = ymag
(2.41)

If equation (2.40) is rearranged and the Laplace transform is calculated, something similar to equation

(2.39) appears:

Ŷ (s) = [G(sI − E + LG)−1L]Y (s) + [G(sI − E + LG)−1F ]U(s) (2.42)

Taking in consideration equation (2.41):

X̂(s) =
GL

sI − E + LG
XmL(s) +

GFs

sI − E + LG

ẊmH(s)

s
(2.43)

Equation (2.43) has the same structure as equation (2.39).
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2.3.4 Non-linear Filtering

The non-linear filter was designed to obtain the position estimation of drone 3. This filter has the

objective to use less sensors than the previous filters, using only the angle sensor and not the combina-

tion of the angle sensor and distance sensor. The state space model shown in the previous filters is in

continuous time and is defined as:  ẋ = Ex(t) + Fu(t)

y(t) = h(x, t)
(2.44)

The variables above are, t, continuous time, x, state vector, y, output vector, u, input (or control) vector,

E, state matrix, F and h(x, t) the output function.

From equation (2.40), the Kalman Filter’s estimation is:

ˆ̇x = Ex̂(t) + Fu(t) + L(y(t)−Gx̂) (2.45)

Figure 2.15: Schematics of drones posi-

tioning and sensors for non-linear filtering.

For the stability proof of the non-linear filter the states are

the position of drone 3, ~p3:

x = ~p3 (2.46)

The control vector is the velocity of drone 3, ~̇p3:

u = ~̇p3 (2.47)

The inputs of the filter are the GPS positions of Drone 1

and Drone 2, ~p1 e ~p2, as well as the angle sensor,
~d1,3

|| ~d1,3||

and
~d2,3

|| ~d2,3||
:

hT =
[
~p1 ~p2

~d1,3

|| ~d1,3||
~d2,3

|| ~d2,3||

]
(2.48)

Must be noted that:
~d1,3 = ~p3 − ~p1 (2.49)

~d1,3

|| ~d1,3||
× (~p3 − ~p1) = 0 (2.50)

~̃p3 = ~p3 − ~̂p3 (2.51)

Taking in consideration the skew matrix:

a× b = S(a)b (2.52)
a1

a2

a3

×

b1

b2

b3

 =


a2b3 − b2a3
b1a3 − a1b3
a1b3 − b1a3

 = S(a)


b1

b2

b3

 (2.53)
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Using equations (2.49) to (2.52):

S(
~d1,3

|| ~d1,3||
)( ~̂p3 − ~p1) = S(

~d1,3

|| ~d1,3||
)( ~̂p3 − ~p3 + ~p3 − ~p1) (2.54)

S(
~d1,3

|| ~d1,3||
)(− ~̃p3 + ~d1,3) = −S(

~d1,3

|| ~d1,3||
) ~̃p3 (2.55)

~̂p3 − ~p1 = − ~̃p3 + ~d1,3 (2.56)

Figure 2.16: Schematics for equations

(2.49)-(2.59).

Bearing in mind equations (2.46) and (2.47):

~̇p3 = u (2.57)

˙̂
~p3 = u+ l( ~̂p3 − ~p1) (2.58)

˙̂
~p3 = u+ lS(

~d1,3

|| ~d1,3||
)2( ~̂p3 − ~p1) = u− lS(

~d1,3

|| ~d1,3||
)2 ~̃p3 (2.59)

To check whether or not ~̃p3 converges asymptotically to

zero, consider the error system:

˙̃
~p3 = ~̇p3 −

˙̂
~p3 (2.60)

˙̃
~p3 = u− u+ lS(

~d1,3

|| ~d1,3||
)2 ~̃p3 (2.61)

˙̃
~p3 = lS(

~d1,3

|| ~d1,3||
)2 ~̃p3 (2.62)

If x = ~̃p3, then equation (2.62) can be rewritten as:

ẋ = f(x, t) (2.63)

To prove that the error tends to zero Lyapunov stability arguments can be invoked, starting with a candi-

date Lyapunov function that is positive definite:

V (x) > 0 (2.64)

V (x) =

 0, x = 0

> 0, x 6= 0
(2.65)

V (x) =
1

2
xTx (2.66)
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The positive definiteness of V (x) has been proven. If one can show that the time derivative of V (x) is

negative definite along the solutions of the system, then one guarantees that x = 0 is asymptotically

stable.

V̇ (x) =

 0, x = 0

< 0, x 6= 0
(2.67)

V̇ (x) = xT ẋ = xT f(x, t) (2.68)

Considering the present case, V̇ ( ~̃p3) = l ~̃p3
T
S(

~d1,3

|| ~d1,3||
)2 ~̃p3 ≤ 0 which is only negative semi-definite, mean-

ing that convergence to the origin is not guaranteed, the filter needs some adjustments. Therefore:

˙̃
~p3 = u− u+ lS(

~d1,3

|| ~d1,3||
)2 ~̃p3 + lS(

~d2,3

|| ~d2,3||
)2 ~̃p3 (2.69)

Considering once again:

V (x) =
1

2
xTx =

1

2
~̃p3

2
(2.70)

One obtains:

V̇ (x) =

 0, x = 0

< 0, x 6= 0
(2.71)

V̇ (x) = xT ẋ = xT f(x, t) = ~̃p3
T
f(x, t) (2.72)

V̇ (x) = ~̃p3
T
l

2∑
i=1

S(
~di,3

|| ~di,3||
)2 ~̃p3 (2.73)

= −l ~̃p3
T
ST (

~d1,3

|| ~d1,3||
)S(

~d1,3

|| ~d1,3||
) ~̃p3 − l ~̃p3

T
ST (

~d2,3

|| ~d2,3||
)S(

~d2,3

|| ~d2,3||
) ~̃p3 (2.74)

Note that S(a)T = −S(a). Therefore, V̇ = −l ~̃p3
T ∑2

i=1 S
T (

~di,3

|| ~di,3||
)S(

~di,3

|| ~di,3||
) ~̃p3 which is negative definite

provided that ~d1,3 and ~d2,3 are not collinear.

When ˙V (x) = 0 when x = 0 and x→ 0 when t→∞ , therefore the filter guarantees convergence of ~̂p3

to ~p3 and takes the form:

˙̂
~p3 = u+ l

2∑
i=1

S(
~di,3

|| ~di,3||
)2( ~̂p3 − ~pi) (2.75)
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Chapter 3

Implementation

The implementation of this thesis is based on two major parts, the block diagrams and the modeling

of the state space.

The implementation has two different approaches. The first one is a decentralised approach. That

means that each drone is treated as separated identity and, therefore, has its own block diagram and

model. The second approach is a centralised model.

3.1 Block Diagrams

The implementation lays on a few blocks, regardless of being centralised or decentralised. These

fundamental blocks are the simulation block, the filtering block and the RMS block.

Must be noted that although these blocks stay the same throughout this thesis, the model changes,

and, therefore, the blocks’ behaviour changes.

Root Mean Square

The Root Mean Square block is the data gathering block. The root mean square calculation, in

estimation, is a measure of the imperfection of the fit of the estimator to the data, and is given by

equation (3.1).

RMS =

√
1

n
[(x1 − x̂1)2 + (x2 − x̂2)2 + ...+ (xn − x̂n)2] (3.1)

It has two inputs, the estimation, the Filter’s output and the real value, the simulation’s output.

Figure 3.1: Data Gathering block diagram.
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Simulation

The simulation subsystem is a block diagram that can be described in state space representation,

equation (2.26). This state space representation can describe a centralised or decentralised approach,

with linear or non-linear output.

A linear output is represented by equation (3.2).

 x(k + 1) = Ax(k) +Bu(k) + ηx(k), ηx(k) ∼ N(0, Rw)

y(k) = Cx(k) +Du(k) + ηy(k), ηy(k) ∼ N(0, Rv)
(3.2)

If the output is not linear it can be defined as in equation (2.31):

 x(k + 1) = Ax(k) +Bu(k) + ηx(k), ηx(k) ∼ N(0, Rw)

y(k) = h(xk, uk) + ηy(k), ηy(k) ∼ N(0, Rv)
(3.3)

The variables above are, k, discrete time, x, state vector, y, output vector, u, input (or control) vector,

A, state matrix, B, input matrix, C, output matrix, D, the feedforward matrix, h(xk, uk), the measurement

function, ηx and ηy, the process noise and sensor’s error.

Figure 3.2: Simulation subsystem block diagram.

The subsystem has one input, the control vector, Input 1, and two outputs, the linear sensor, output

1, and the non-linear sensor, output 2.

Should be noted that the simulation can have only linear sensors, only non-linear sensors or a com-

bination of both, depending on the implementation.

The initial conditions of this and all block diagrams are set in the modeling section, 3.2.
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Kalman Filter

The block diagram of the Kalman Filter is defined by its equations, shown in section 2.3.1. Retrieving

equations (2.27) to (2.29).

The Measurement Update, equation (2.27).

x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k + 1)[y(k + 1)− Cx̂(k + 1|k)−Du(k + 1)] (3.4)

P (k + 1|k + 1) = P (k + 1|k)−K(k + 1)CP (k + 1|k) (3.5)

The new state prediction and its covariance, equation (2.28).

x̂(k + 1|k) = Ax̂(k|k) +Bu(k) (3.6)

P (k + 1|k) = AP (k|k)AT +Rw (3.7)

The Kalman Gain calculation, equation (2.29).

K(k + 1) = P (k + 1|k)CT [Rv + CP (k + 1|k)CT ]−1 (3.8)

The Kalman Filter’s block diagram, shown below, has Input 1, the control vector, Input 2, the sensors,

and the Output 1, the estimation.

Figure 3.3: Kalman Filter block diagram.

The block diagram represents equations (3.4) to (3.8). Equation (3.4) is in yellow; Equation (3.5) is

in light blue; Equation (3.6) is in red; Equation (3.7) is in dark blue; Equation (3.8) is in green;
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Extended Kalman Filter

The Extended Kalman Filter’s block diagram has a very similar structure to the Kalman Filter’s.

Retrieving equations (2.33) to (2.35) and bearing in mind that J is the Jacobian, equation (2.32).

The Measurement Update, equation (2.33):

x̂(k + 1|k + 1) = x̂(k + 1|k) +K(k + 1)[y(k + 1)− h(x̂(k + 1|k), u(k + 1))] (3.9)

P (k + 1|k + 1) = P (k + 1|k)−K(k + 1)JP (k + 1|k) (3.10)

The new state prediction and its covariance, equation (2.34):

x̂(k + 1|k) = Ax̂(k|k) +Bu(k) (3.11)

P (k + 1|k) = AP (k|k)AT +Rw (3.12)

And, once again, the Kalman Gain, equation (2.35):

K(k + 1) = P (k + 1|k)JT [Rv + JP (k + 1|k)JT ]−1 (3.13)

The Extended Kalman Filter’s block diagram has Input 1, the control vector, Input 2, the sensors’

measurements and the Output 1, the state estimation.

Figure 3.4: Extended kalman Filter block diagram. Equation (3.9) is in yellow; Equation (3.10) is in light
blue; Equation (3.11) is in red; Equation (3.12) is in dark blue; Equation (3.13) is in green;
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Non-linear Filter

The non-linear filter’s block diagram has a very different structure to the Kalman Filter’s. The state

space model shown in the previous filters is in continuous time and the is defined as: ẋ = Ex(t) + Fu(t)

y(t) = h(x, t)
(3.14)

Retrieving the equation (2.75) and bearing in mind that the states of the filter are now the position

and velocity of drone 3, ~p3 and ~̇p3, and the control vector is its acceleration, u = ~a3:

xT =
[
~p3 ~̇p3

]
, uT =

[
~a3

]
(3.15)

We got:

˙̂x = Ex+ Fu+ l

2∑
i=1

S(
~di,3

|| ~di,3||
)2( ~̂p3 − ~pi) (3.16)

Where ~pi is used the GPS sensor’s output.

Remembering equations (2.52) and (2.53):

a× b = S(a)b (3.17)


a1

a2

a3

×

b1

b2

b3

 =


a2b3 − b2a3
b1a3 − a1b3
a1b3 − b1a3

 = S(a)


b1

b2

b3

 (3.18)

This filter can be implemented by the following block:

Figure 3.5: Non-linear Filter correction-block diagram, l
∑2
i=1 S(

~di,3

|| ~di,3||
)2( ~̂p3 − ~pi).
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3.1.1 Decentralised

The decentralised approach was the first to be implemented and simulated. This approach considers

each drone as an independent identity, and the communication between drones provides each other with

sensor information of each drone. This implementation and consequent simulation has seven different

model configurations but only three block diagrams. The three block diagrams differ from each other in

the number of drones.

The Drone

Throughout the different inter-drone interactions the drone’s block diagram is constant, changing its

matrices, inputs and outputs.

Each drone subsystem is composed by a drone simulation, a filter and a data gathering block. The

subsystem can be represented by the following block diagram:

Figure 3.6: Drone’s subsystem block diagram.

This subsystem has one input, the the control vector and four outputs. The Sensors’ Output, the real

state, the state estimation and the error of the estimation from the Data Gathering Block.

One Drone

The first Kalman filter implementation was the fusion of the data gathered from the GPS and the

predicted state from the model.

The block diagram implementation of one drone with a GPS receiver is:

Figure 3.7: Block diagram of one drone simulation.

Must be noted that the control vector is part of the Drone’s subsystem, therefore, there is no Input in

this block. The outputs are the Sensors’ output, the real states and their optimal estimation. The outputs

are connected to a scope to obtain a visual representation of the filter’s error.
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Two Drones

The second Kalman Filter implementation was designed to obtain the position estimation of the Drone

without a GPS receiver. For that two drones are needed, the Drone with a GPS receiver, as previously

used plus Drone 3.

The block diagram for this simulation is composed as follows:

Figure 3.8: Block diagram implementation of Drone 1 and Drone 3.

The subsystem of Drone 1 is the same as previously described. Drone 3, on the other hand, has one

input, the position estimation of Drone 1. The interaction between drones will be specified in section 3.2.

Three Drones

The third implementation had as goal the improvement of Drone 3 position estimation. Bearing that

in mind, another drone with a GPS receiver was added, Drone 2.

This simulation block diagram is represented in Figure 3.8.

Figure 3.9: Block diagram implementation of Drone 1, Drone 2 and Drone 3.

The subsystem of Drone 1 and Drone 2 are the same and are already described. Drone 3, on the

other hand, has one extra input, the position estimation of Drone 1 and Drone 2. The interaction between

drones will also be specified in section 3.2.

3.1.2 Centralised

As seen in the previous subsection, the decentralised approach considered each drone as indepen-

dent identities. As a result of that the optimal state estimation deteriorates, once each drone position

estimate is calculated in separate.

From this section on, there is only one simulation subsystem with states containing information on

the three drones.
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Position

The first centralised simulation has the same goal of the last implementation, to obtain the best

estimation of each drone positioning, as well as, choosing the best set of sensors for that goal.

The Simulink block diagram is very similar to the Drone subsystem. It is composed by a simulation,

an estimator and a Data Gathering Block, as seen in Figure 3.10.

Figure 3.10: Block diagram implementation of centralised positioning estimation.

There are no changes in the subsystems, they are composed as seen in section 3.1.

This system has not an input, the control vector is in the simulation subsystem. It has two outputs,

the real position and the estimation of the three drones.

Position and Orientation

Once the positioning estimation of all three drones is developed, the next goal is to implement orien-

tation in the simulation as well. For that, not only the model had to be changed, but the block diagram

needed a few adjustments as well.

The Simulink block diagram is very similar to the previous one, Figure 3.10, and is composed by a

simulation, an estimator block and RMS as seen below.

Figure 3.11: Block diagram implementation of centralised positioning and orientation estimation.

The simulation has as output the real positioning of all drones, the control vector (acceleration) and

three sets of sensors. The magnetometer, the accelerometer and the rate gyroscope are orientation

sensors. The position sensors are the same set as previously used, but now, expressed in the local

referential instead of the inertial referential.

In the filters’ block, there are two filters, one for the position estimate (Extended Kalman Filter or Non-

linear Filter) and an Extended Kalman Filter used to obtain the estimation of orientation. That estimation

is then used to transform the vectors expressed in the local referential to the inertial referential, using

the rotational matrix, iR(ψ), so that they can be used in the positioning estimation.
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The Filters’ block is composition is shown in Figure 3.12.

Figure 3.12: Filter’s Block Diagram.

The EKF subsystem has already been described as well as its block diagram. Bearing in mind that

its inputs are the control vector and the measurements given by the sensors. The output is the drones’

position estimation.

3.2 Modeling

As seen in section 3.1, the implementation lays on a few blocks, regardless of being centralised or de-

centralised. The behaviour of these blocks changes depending on the model implemented. Throughout

this section there are fourteen different models.

Each subsystem is defined by its equations, matrices and functions. Hence, each model is defined

by its subsystems.

The simulation subsystem can be described in state space representation in discrete time, as in

equation (3.2) or equation (3.3).

A linear output is represented by equation (3.14).

 x(k + 1) = Ax(k) +Bu(k) + ηx(k), ηx(k) ∼ N(0, Rw)

y(k) = Cx(k) +Du(k) + ηy(k), ηy(k) ∼ N(0, Rv)
(3.19)

If the output is not linear it can be defined as in equation (3.15):

 x(k + 1) = Ax(k) +Bu(k) + ηw(k), ηw(k) ∼ N(0, Rw)

y(k) = h(xk, uk) + ηv(k), ηv(k) ∼ N(0, Rv)
(3.20)

But, for a better intuitive understanding of the model, continuous time is used instead of discrete time.

 ẋ = Ex+ Fu+ ηw, ηw ∼ N(0, Rw)

y = Gx+Hu+ ηv, ηv ∼ N(0, Rv)
(3.21)

As the block diagrams are expressed in discrete time, three MATLAB functions were used to trans-

form the state space representation from continuous to discrete time. Being, h, the sampling time, func-

tion τ = ss(E,F,G,H) creates a state space model in continuous time; function ξ = c2d(τ, h) converts

the previous model to discrete time; and [A,B,C,D, Ts] = ssdata(ξ) obtains the discrete matrices.
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Some variables used in the implementation and not yet defined are shown in table 3.1.

Variable Symbol Value
Sampling Time h 0.005[s]

Linear Velocity and Acceleration Process Noise σ2
linear 2[m/s]|[ms−2]

Relative Position Sensor Noise σ2
vector 3[m]

Angle Positioning Sensor Noise σ2
α 3[o]

Angular Velocity Process Noise σ2
φ, σ2

θ , σ2
ψ 0.001[os−2]

Table 3.1: Extra Variables table.

3.2.1 Decentralised

This subsection describes the different approaches tested in the drone’s position.

As previously mentioned, the drone’s simulation subsystem is a block diagram of the drone’s linear

dynamic system and can be described in a state space representation in continuous time which is,

afterwards, converted to discrete time.

1st Configuration - One Drone

The first Kalman Filter implementation was the fusion of the data gathered from the GPS and the

predicted state estimation from the model in 2D. Only one drone was considered, Drone 1.

In continuous time the simulation of the Drone 1 is defined as: ẋ = Ex+ Fu+ ηw, ηw ∼ N(0, Rw)

y = Gx+Hu+ ηv, ηv ∼ N(0, Rv)
(3.22)

The states are the position of drone 1, ~p1, with coordinates (x, y) and its linear velocity, ~̇p1. The input

is the linear acceleration of drone 1.

xT =
[
~p1 ~̇p1

]
, uT =

[
~a1

]
(3.23)

The state space representation is:

ẋ =

02 I2

02 02


4×4

x+

02

I2


4×2

u (3.24)

This configuration output, the GPS, is defined by:

y =
[
I2 02

]
2×4

x+
[
02

]
2×2

u (3.25)

The process noise, ηw ∼ N(0, Rw) and the sensors’ error, ηv ∼ N(0, Rv):

Rw = σ2
linear × I4, Rv = σ2

GPS;x × I2 (3.26)
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2nd Configuration - Two Drones

The second Kalman Filter implementation was designed to estimate the positioning of Drone 3, a

drone without a GPS receiver. For that implementation at least two drones are needed. Drone 1, a

drone with a GPS receiver as shown in the first configuration is the anchor and the sensor in Drone 3

allows it to obtain its relative position to Drone 1.

As seen in the block diagrams’ section, Drone 1 and Drone 3 are independent. Therefore, only Drone

3 is defined here as Drone 1 stays the same.

In continuous time the simulation of the Drone 3 is defined as:

 ẋ = Ex+ Fu+ ηw, ηw ∼ N(0, Rw)

y = Gx+Hu+ ηv, ηv ∼ N(0, Rv)
(3.27)

The states are the position of drone 1, ~p3, with coordinates (x, y) and its linear velocity, ~̇p3. The input

is the linear acceleration of Drone 3 and the optimal estimation of Drone’s 1 positioning.

xT =
[
~p3 ~̇p3

]
, uT =

[
~a3 ~̂p1

]
(3.28)

The state space representation is:

ẋ =

02 I2

02 02


4×4

x+

02 02

I2 02


4×4

u (3.29)

This configuration output is Drone’s 3 relative position to Drone 1, I ~d1,3, and it is defined by:

y =
[
I2 02

]
2×4

x+
[
02 −I2

]
2×4

u (3.30)

The process noise, ηw ∼ N(0, Rw) and the sensors’ error, ηv ∼ N(0, Rv):

Rw = σ2
linear × I4, Rv = σ2

vector × I2 (3.31)
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3rd Configuration - Three Drones

The third drone implementation was designed to test the position estimation improvement of Drone

3. For that a third drone was added. Drone two is a drone with a GPS receiver as well as Drone 1. The

two GPS enabled drones were the same as defined previously. Therefore, only drone 3 was considered.

In continuous time the simulation of the Drone 3 is defined as:

 ẋ = Ex+ Fu+ ηw, ηw ∼ N(0, Rw)

y = Gx+Hu+ ηv, ηv ∼ N(0, Rv)
(3.32)

The states are the position of drone 3, ~p3, with coordinates (x, y) and its linear velocity, ~̇p3. The input

is the linear acceleration of Drone 3 and the optimal estimation of Drone’s 1 and Drone’s 2 positioning.

xT =
[
~p3 ~̇p3

]
, uT =

[
~a3 ~̂p1 ~̂p2

]
(3.33)

The state space representation is:

ẋ =

02 I2

02 02


4×4

x+

02 02 02

I2 02 02


4×6

u (3.34)

This configuration output is Drone’s 3 relative position to Drone 1 and Drone 2, I ~d1,3 and I ~d2,3, and it is

defined by:

y =

I2 02

I2 02


4×4

x+

02 −I2 02

02 02 −I2


4×6

u (3.35)

The process noise, ηw ∼ N(0, Rw) and the sensors’ error, ηv ∼ N(0, Rv):

Rw = σ2
linear × I4, Rv = σ2

vector × I4 (3.36)

4th Configuration - Three Drones

With the intention of improving the position estimation of all drones, another sensor was introduced.

This sensor is in Drone 1 and gives its relative position to Drone 2. Therefore, only one drone was

considered, Drone 1.

In continuous time the simulation of the Drone 1 is defined as:

 ẋ = Ex+ Fu+ ηw, ηw ∼ N(0, Rw)

y = Gx+Hu+ ηv, ηv ∼ N(0, Rv)
(3.37)

The states are the position of drone 1, ~p1, with coordinates (x, y) and its linear velocity, ~̇p1. The input
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is the linear acceleration of Drone 3 and the optimal estimation of Drone’s 1 and Drone’s 2 positioning.

xT =
[
~p1 ~̇p1

]
, uT =

[
~a1 ~̂p2

]
(3.38)

The state space representation is:

ẋ =

02 I2

02 02


4×4

x+

02 02

I2 02


4×4

u (3.39)

This configuration output is Drone’s 1 relative position to Drone 2, I ~d1,2, and the GPS coordinates of

Drone 1, ~p1.

y =

I2 02

I2 02


4×4

x+

02 02

02 −I2


4×4

u (3.40)

The process noise, ηw ∼ N(0, Rw) and the sensors’ error, ηv ∼ N(0, Rv):

Rw = σ2
linear × I4, Rv =


σ2
GPS;x 0 0 0

0 σ2
GPS;y 0 0

0 0 σ2
vector

0 0 0 σ2
vector

 (3.41)

5th, 6th and 7th Configurations - Three Drones

From the first to the fourth configuration only Kalman Filters were used, once the outputs were linear.

However, that is a simplification. Bearing this in mind, the sensor’s output had to be changed. The two

alternatives are distance sensors and angular position sensors.

The state space is the same from the fifth to the seventh configuration, with the exception of the

output function, hj ,∈ [5, 6, 7]. So, the three configurations are specified together. Only the changes in

Drone 3 are exhibited here.

In continuous time the simulation of the Drone 3 is defined, now, as:

 ẋ = Ex+ Fu+ ηw, ηw ∼ N(0, Rw)

y = h(x, u) + ηv, ηv ∼ N(0, Rv)
(3.42)

The states stay the same, and are the position of drone 3, ~p3, with coordinates (x, y) and its linear

velocity, ~̇p3. The input is the linear acceleration of Drone 3 and the optimal estimation of Drone’s 1 and

Drone’s 2 positioning.

xT =
[
~p3 ~̇p3

]
, uT =

[
~a3 ~̂p1 ~̂p2

]
(3.43)
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The state space representation is:

ẋ =

02 I2

02 02


4×4

x+


02 02

I2 02

I2 02


6×4

u (3.44)

The first output function is based on a distance sensor. The measurement function, h5, is defined as:

h5 =

|| ~d1,3||
|| ~d3,2||


2×1

=

√(p3x − p1x)2 + (p3y − p1y)2√
(p3x − p2x)2 + (p3y − p2y)2


2×1

(3.45)

And its Jacobian is:

J5 =

 p3x−p1x√
(p3x−p1x)2+(p3y−p1y)2

p3y−p1y√
(p3x−p1x)2+(p3y−p1y)2

02

p3x−p2x√
(p3x−p2x)2+(p3y−p2y)2

p3y−p2y√
(p3x−p2x)2+(p3y−p2y)2

02


2×4

(3.46)

The second output function is an angle based sensor. This sensor’s output is the angle between

Drone 3 and 1, α3,1 as well as between Drone 3 and 2, α3,2.

h6 =

α3,1

α3,2


2×1

=

cos−1 p1y−p3y√
(p3x−p1x)2+(p3y−p1y)2

cos−1
p2y−p3y√

(p3x−p2x)2+(p3y−p2y)2


2×1

(3.47)

Its Jacobian is:

J6 =

 (p3x−p1x)(p1y−p3y)√
(p3x−p1x)2[(p3x−p1x)2+(p3y−p1y)2]

(p3x−p1x)2√
(p3x−p1x)2[(p3x−p1x)2+(p3y−p1y)2]

02

(p3x−p2x)(p2y−p3y)√
(p3x−p2x)2[(p3x−p2x)2+(p3y−p2y)2]

(p3x−p2x)2√
(p3x−p2x)2[(p3x−p2x)2+(p3y−p2y)2]

02


2×4

(3.48)

The third output function is an angle plus distance based sensor. This sensor’s output is the angle

between Drone 3 and 1, α3,1 as well as between Drone 3 and 2, α3,2 and the distance between Drone 1

and 3, || ~d1,3||, and Drone 2 and 3, || ~d3,2||.

h7 =


α3,1

α3,2

|| ~d1,3||

|| ~d3,2||


4×1

=



cos−1
p1y−p3y√

(p3x−p1x)2+(p3y−p1y)2

cos−1
p2y−p3y√

(p3x−p2x)2+(p3y−p2y)2√
(p3x − p1x)2 + (p3y − p1y)2√
(p3x − p2x)2 + (p3y − p2y)2


4×1

(3.49)
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Its Jacobian is:

J7 =



(p3x−p1x)(p1y−p3y)√
(p3x−p1x)2[(p3x−p1x)2+(p3y−p1y)2]

(p3x−p1x)2√
(p3x−p1x)2[(p3x−p1x)2+(p3y−p1y)2]

02

(p3x−p2x)(p2y−p3y)√
(p3x−p2x)2[(p3x−p2x)2+(p3y−p2y)2]

(p3x−p2x)2√
(p3x−p2x)2[(p3x−p2x)2+(p3y−p2y)2]

02

p3x−p1x√
(p3x−p1x)2+(p3y−p1y)2

p3y−p1y√
(p3x−p1x)2+(p3y−p1y)2

02

p3x−p2x√
(p3x−p2x)2+(p3y−p2y)2

p3y−p2y√
(p3x−p2x)2+(p3y−p2y)2

02


2×4

(3.50)

The process noise is the same in all configurations, ηw ∼ N(0, Rw) and the sensors’ error is a

function of the configuration, ηv ∼ N(0, Rv):

Rw = σ2
linear × I4,

5Rv = σ2
distance × I4 (3.51)

6Rv = σ2
α × I4,

7Rv =


σ2
α 0 0 0

0 σ2
α 0 0

0 0 σ2
distance 0

0 0 0 σ2
distance

 (3.52)

3.2.2 Centralised

The decentralised approach considered each drone as independent identities, but from now on the

three drones are in the same simulation.

Another major difference is that the decentralised section has no orientation and was defined only

in two dimensions, (x, y). The eighth configuration is the last one being two dimensional and with

no orientation. The eleventh configuration introduces 2-D orientation. The twelfth is the first three

dimensional one the next one is a complete simulation.

8th, 9th and 10th Configurations

The drone’s simulation subsystem is a block diagram of the drone’s dynamic system and can be

described as follows:  ẋ = Ex+ Fu+ ηw, ηw ∼ N(0, Rw)

y = h(x, u) + ηv, ηv ∼ N(0, Rv)
(3.53)

In this iteration the states are the position of Drone 1, ~p1, the the relative position of drone 3 to Drone

1, ~d1,3, as well as Drone 2 to Drone 3, ~d3,2 and the respective velocities.

In continuous time the simulation is defined as follows:

xT =
[
~p1 ~d1,3 ~d3,2 ~̇p1 ~̇d1,3 ~̇d3,2

]
(3.54)

The inputs are, as before, the linear accelerations.
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uT =
[
~a1 ~a2 ~a3

]
(3.55)

The state space matrices are:

E =

06 I6

06 06


12×12

F =


06

I2 02 02

−I2 02 I2

02 I2 −I2


12×6

(3.56)

In this iteration, the output function is also based on GPS, distance and angle sensors. Must be

taken in consideration that the angle sensor is now the normalised relative position vectors.

The correlation between ~d1,2 and the states is:

 ~p2

~d1,2

 =

~p1 + ~d1,3 + ~d3,2

~d1,3 + ~d3,2

 (3.57)

The measurement functions are:

hT8 =
[
~p1 ~p2 || ~d1,3|| || ~d3,2|| || ~d1,2||

]
(3.58)

hT9 =
[
~p1 ~p2

~d1,3

|| ~d1,3||
~d3,2

|| ~d3,2||
~d1,2

|| ~d1,2||

]
(3.59)

hT10 =
[
~p1 ~p2 || ~d1,3|| || ~d3,2|| || ~d1,2||

~d1,3

|| ~d1,3||
~d3,2

|| ~d3,2||
~d1,2

|| ~d1,2||

]
(3.60)

The Jacobian of the GPS sensor is:

JGPS =

I2 02 02 02×6

I2 I2 I2 02×6


4×12

(3.61)

The Jacobian of the normalised distance vectors is:
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J ~di,j

|| ~di,j ||

=



02

a b

b c

 02×8

02×4

d e

e f

 02×6

02

g h g h

h k h k

 02×6


6×12

(3.62)

The Jacobian of the distance sensor is:

J ~di,j
=

03×2


l m 0 0

0 0 n p

q r q r

 03×6


3×12

(3.63)

Bearing in mind equation (3.52), that is: ~d2,1 = ~d1,3 + ~d3,2, we got:

a =
d2(1,3)y

|| ~d1,3||3
, b =

−d(1,3)xd(1,3)y
|| ~d1,3||3

, c =
d2(1,3)x

|| ~d1,3||3
(3.64)

d =
d2(3,2)y

|| ~d3,2||3
, e =

−d(3,2)xd(3,2)y
|| ~d3,2||3

, f =
d2(3,2)x

|| ~d3,2||3
(3.65)

g =
d2(1,2)y

|| ~d1,2||3
, h =

−d(1,2)xd(1,2)y
|| ~d1,2||3

, k =
d2(1,2)x

|| ~d1,2||3
(3.66)

l =
d(1,3)x

|| ~d1,3||
, m =

d(1,3)y

|| ~d1,3||
, n =

d(3,2)x

|| ~d3,2||
(3.67)

p =
d(3,2)y

|| ~d3,2||
, q =

d(1,2)x

|| ~d1,2||
, r =

d(1,2)y

|| ~d1,2||
(3.68)

The process noise is the same in all configurations, ηw ∼ N(0, Rw) and the sensors’ error is a

function of the configuration, ηv ∼ N(0, Rv). Being,

Rw = σ2
linear × I12, RGPS = σ2

GPS,x × I4, Rdistance = σ2
distance × I3, Rangle = σ2

angle × I6

(3.69)

8Rv =

RGPS 04×3

03×4 Rdistance


7×7

9Rv =

RGPS 06

06 Rangle


10×10

10Rv =


RGPS 04 04×5

03×4 Rdistance 03×6

06 06×1 Rangle


13×13

(3.70)
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Kalman Filter as Complementary Filtering

The Kalman Filter has already been introduced in subsection 2.3. As well as the Extended Kalman

Filter and Kalman Filter as complementary Filtering.

In order to choose which implementation shall be used in the orientation, a practical comparison

between the two must be done.

The simulation is equal for both implementations and is defined by:

 ẋ = Ex+ Fu+ ηw, ηw ∼ N(0, Rw)

y = Gx+Hu+ ηv, ηv ∼ N(0, Rv)
(3.71)

Where the states are the heading and its rate of change:

xT =
[
ψ r

]
(3.72)

Once the orientation is a result of process error, ηψ, the only input is the Bias, u = βgyro,z.

E =

0 1

0 0

F =

0
0

 ηw =

 0

ηψ

 (3.73)

The output is the magnetometer and the rate gyro:

G =

1 0

0 1

H =

0
1

 ηv =
ηmag
ηgyro

 (3.74)

The first implementation of the Kalman Filter is similar to the previously one used.

Using the previous representation, the Kalman Filter is defined by heading, bias and heading rate of

change as states.

xT =
[
ψ βgyro,z r

]
(3.75)

Once the orientation is a result of process error, ηψ, there is no input.

E =


0 0 1

0 0 0

0 0 0

F =


0

0

0

 ηw =


0

0

ηψ

 (3.76)

The output is the magnetometer and the rate gyro:
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G =

1 0 0

0 1 1

H =

0
0

 ηv =
ηmag
ηgyro

 (3.77)

The second implementation of the Kalman Filter is as complementary filtering.

Using the previous representation, the filter is defined by the heading and bias as the only states.

xT =
[
ψ βgyro,z

]
(3.78)

If equation (2.10), the gyro equation is rearranged and equation (2.12) is also used, results:

r = ygyro,z − βgyro,z − ηgyro,z (3.79)

˙βgyro,z = 0 (3.80)

The input of the filter is the rate gyro:

u = ygyro,z (3.81)

And, therefore, using equation (3.79), the filter’s matrices are:

E =

0 −1

0 0

F =

1
0

 ηx =

−ηgyro
0

 (3.82)

The output is only the magnetometer:

G =
[
1 0

]
H =

[
0
]
ηy =

[
ηmag

]
(3.83)

11th Configuration - 2D Orientation

Until now, every simulation had, by default, null yaw. That means that the orientation of each drone

would not change in time, but that is not a realistic approach, rather an intermediate step.

From this moment on, each local referential, {Vi}, i ∈ [1, 2, 3], sympathetic with the drone’s kinematic,

is not only defined by its position, Ipi, i ∈ [1, 2, 3], but also, its heading, ψi, i ∈ [1, 2, 3], in an inertial

referential, {I}.

A vector defined at any local referential, {Vi}, can be transformed to the inertial referential, {I},

employing sequentially the three rotations, each one given by its rotation matrix, but for now, only the 2D

yaw matrix is considered.

From equation (2.8), the Yaw rotation matrix of the ith in 2D aircraft is defined as:

iR(ψ) =

cos(ψ) −sin(ψ)

sin(ψ) cos(ψ)

 (3.84)
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And the inverse matrix in 2D:

IR(ψ) =

 cos(ψ) sin(ψ)

−sin(ψ) cos(ψ)

 (3.85)

Any vector defined at any local referential can be transformed to the inertial referential, and is repre-

sented as:
iRVi

i pj =
I pj , i, j ∈ [1, 2, 3] (3.86)

A vector defined at the inertial referential can be transformed to any local referential, and is repre-

sented as:
IRIi pj =

Vi pj , i, j ∈ [1, 2, 3] (3.87)

As seen in the block diagrams of centralised position and orientation, in subsection 3.1.2, two filters

are needed to obtain the optimal prediction of orientation and positioning. Therefore, for the first time,

the simulation equations are not the same as the equations that define the filters.

Taking this in consideration, three state space representations are presented.

The first one is the drone’s simulation subsystem and it is represented as follows:

SIMULATION =

 ẋ = Ex+ Fu+ ηw, ηw ∼ N(0, Rw)

y = h(x, u) + ηv, ηv ∼ N(0, Rv)
(3.88)

In this iteration the simulation states are the position of drone 1, ~p1, the relative position of drone 1

and drone 3, ~d1,3, as well as drone 3 and drone 2, ~d3,2 and the respective velocities, as previously, plus

the heading ψi, with i ∈ [1, 2, 3]

xT =
[
~p1 ~d1,3 ~d3,2 ψ1 ψ2 ψ3 ~̇p1 ~̇d1,3 ~̇d3,2 r1 r2 r3

]
(3.89)

The simulation inputs are, as before, the linear accelerations.

uT =
[
~a1 ~a2 ~a3

]
(3.90)

The simulation state space matrices are:

E =

09 I9

09 09


18×18

F =



06

02 02 02

I2 02 02

−I2 02 I2

02 I2 −I2
02 02 02


18×6

(3.91)

The measurement function of the simulation is based on GPS, distance and angle sensor, rate gyro

and magnetometer. It should be noted that the output of the angle sensor is no longer in the inertial
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referential but, instead, in the local referential, equation (3.87), as the states are all expressed in the

inertial referential.

hT11 =
[
~p1 ~p2 || ~d1,3|| || ~d3,2|| || ~d1,2||

~d1,3

|| ~d1,3||
~d3,2

|| ~d3,2||
~d1,2

|| ~d1,2||
r1 r2 r3 ψ1 ψ2 ψ3

]
(3.92)

The process noise, ηw ∼ N(0, Rw) and the sensors’ error, ηv ∼ N(0, Rv) are defined as:

Rlinear = σ2
linear × I6, Rψ = σ2

ψ × I3 (3.93)

Rw =


Rlinear 06 06

03×6 03×6 03×6

06×9 Rlinear 06×3

03×9 03×6 Rψ


18×18

(3.94)

RGPS = σ2
GPS,x × I4, Rdistance = σ2

distance × I3 (3.95)

Rangle = σ2
angle × I6, Rgyro = σ2

gyro × I3, Rmag = σ2
mag × I3 (3.96)

11Rv =



RGPS 04 04 04 04×3

03×4 Rdistance 03 03 03×6

06 06×1 Rangle 06×3 06×3

03 03×5 03×5 Rgyro 03

03 03 03×5 03×5 Rmag


19×19

(3.97)

The first filter to be used is the one destined to obtain the optimal orientation estimation. And, as

always, can be represented by a state space.

ORIENTATION =

 ẋ = Ex+ Fu+ ηw, ηw ∼ N(0, Rw)

y = Gx+ ηv, ηv ∼ N(0, Rv)
(3.98)

This filter has as states the heading of the three drones, ψi, i ∈ [1, 2, 3], and the bias from the rate

gyroscope, βi, i ∈ [1, 2, 3]

xT =
[
ψ1 ψ2 ψ3 β1 β2 β3

]
(3.99)

Although the orientation is a result of process noise, the input of the filter is the rate gyro.

uT =
[
r1 r2 r3

]
(3.100)
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The state space matrices of the Kalman Filter are:

E =

03 −I3
03 03


6×6

F =

I3
03


6×3

G =
[
I3 03

]
3×6

(3.101)

The output function is the magnetometer, therefore the process noise, ηw ∼ N(0, Rw) and the sen-

sors’ error, ηv ∼ N(0, Rv) are defined as:

Rgyro = σ2
gyro × I3 Rw =

Rgyro 03

03 03


6×6

Rv = σ2
mag × I3 (3.102)

With the orientation estimated, the values of the angle sensor must be expressed in the inertial

referential before they are used in the positioning filter. For that equation (3.85) is used in the rotational

matrix block’s subsystem.

The implementation of the Extended Kalman Filter whose goal is to provide the optimal estimate

of the positioning of all three drones is the same as shown in the 10th configuration, as nothing has

changed in the position estimation component.

12th, 13th and 14th Configurations - 3D Positioning

The twelfth configuration is the first three-dimensional simulation. Once again, the simulation in state

space representation.

 ẋ = Ex+ Fu+ ηx, ηx ∼ N(0, Rx)

y = h(x, u) + ηv, ηv, ηv ∼ N(0, Rv)
(3.103)

In this iteration the states are the position of drone 1, ~p1, the distance between drone 3 and drone

1, ~d1,3, the distance between drone 3 and drone 2, ~d2,3 and the respective velocities, with coordinates

(x, y, z).

In continuous time the simulation is defined as follows:

xT =
[
~p1 ~d1,3 ~d3,2 ~̇p1 ~̇d1,3 ~̇d3,2

]
(3.104)

The inputs are, as before, the linear accelerations.

uT =
[
~a1 ~a2 ~a3

]
(3.105)
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The state space representation is:

ẋ =


03


1 0 0

0 1 0

0 0 1


03 03


6×6

x+


03

1 0 0

−1 0 1

0 1 −1




6×3

u (3.106)

In this iteration, the output function is also based in GPS, distance and angle sensors. ~p2

~d1,2

 =

~p1 + ~d1,3 + ~d3,2

~d1,3 + ~d3,2

 (3.107)

Taking in consideration the relation above, as seen previously, three sensors’ configurations were

tested, being h11, h12 and h13.

The firsts configuration, h11, is composed by GPS in two drones and three distance sensors:

hT12 =
[
~p1 ~p2 || ~d1,3|| || ~d3,2|| || ~d1,2||

]
(3.108)

The second configuration, h12, is composed by GPS in two drones and three normalised distance

vectors:

hT13 =
[
~p1 ~p2

~d1,3

|| ~d1,3||
~d3,2

|| ~d3,2||
~d1,2

|| ~d1,2||

]
(3.109)

The final configuration, h13, is a combination of the previous two.

hT14 =
[
~p1 ~p2 || ~d1,3|| || ~d3,2|| || ~d1,2||

~d1,3

|| ~d1,3||
~d3,2

|| ~d3,2||
~d1,2

|| ~d1,2||

]
(3.110)

In order to implement the Extended Kalman Filter the Jacobians must be defined. The three output

functions are concatenations of three different sensors, GPS, distance and normalised distance vectors,

therefore, the three Jacobians will also be a concatenation of three matrices. It should be noticed that

the states are in the form (x, y, z) and not ~v, therefore there are 18 states instead of 6.

The Jacobian of the GPS is:

JGPS =

I3 03 03 03×9

I3 I3 I3 03×9


6×18

(3.111)

The Jacobian of the distance sensor is:

J ~di,j
=

03


a1 b1 c1

0 0 0

g1 k1 l1



0 0 0

d1 e1 f1

g1 k1 l1

 03×9


3×18

(3.112)
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a1 =
d(1,3)x

|| ~d1,3||
, b1 =

d(1,3)y

|| ~d1,3||
, c1 =

d(1,3)z

|| ~d1,3||
(3.113)

d1 =
d(3,2)x

|| ~d3,2||
, e1 =

d(3,2)y

|| ~d3,2||
, f1 =

d(3,2)z

|| ~d3,2||
(3.114)

g1 =
d(1,2)x

|| ~d1,2||
, k1 =

d(1,2)y

|| ~d1,2||
, l1 =

d(1,2)z

|| ~d1,2||
(3.115)

The Jacobian of the normalised distance vectors is:

J ~di,j

|| ~di,j ||

=



03


a2 b2 c2

b2 d2 e2

c2 e2 f2

 03×12

03×6


g2 k2 l2

k2 m2 n2

l2 n2 p2

 03×9

03


q2 r2 s2 q2 r2 s2

r2 t2 u2 r2 t2 u2

s2 u2 v2 s2 u2 v2

 03×9


9×18

(3.116)

a2 =
d2(1,3)y + d2(1,3)z

|| ~d1,3||3
, b2 = −

d(1,3)x × d(1,3)y
|| ~d1,3||3

, c2 = −
d(1,3)x × d(1,3)z
|| ~d1,3||3

(3.117)

d2 =
d2(1,3)x + d2(1,3)z

|| ~d1,3||3
, e2 = −

d(1,3)y × d(1,3)z
|| ~d1,3||3

, f2 =
d2(1,3)x + d2(1,3)y

|| ~d1,3||3
(3.118)

g2 =
d2(3,2)y + d2(3,2)z

|| ~d3,2||3
, k2 = −

d(3,2)x × d(3,2)y
|| ~d3,2||3

, l2 = −
d(3,2)x × d(3,2)z
|| ~d3,2||3

(3.119)

m2 =
d2(3,2)x + d2(3,2)z

|| ~d3,2||3
, n2 = −

d(3,2)y × d(3,2)z
|| ~d3,2||3

, p2 =
d2(3,2)x + d2(3,2)y

|| ~d3,2||3
(3.120)

Bearing in mind equation (3.102), that is: ~d2,1 = ~d1,3 + ~d3,2, we got:

q2 =
d2(1,2)y + d2(1,2)z

|| ~d1,2||3
, r2 = −

d(1,2)x × d(1,2)y
|| ~d1,2||3

, s2 = −
d(1,2)x × d(1,2)z
|| ~d1,2||3

(3.121)

t2 =
d2(1,2)x + d2(1,2)z

|| ~d1,2||3
, u2 = −

d(1,2)y × d(1,2)z
|| ~d1,2||3

, v2 =
d2(1,2)x + d2(1,2)y

|| ~d1,2||3
(3.122)

The process noise and the sensors’ error is analogous to the ones detailed in the tenth configuration

but now in three-dimensions.

EKF - 3D Drone Positioning and Orientation

The final configuration is a three-dimensional with orientation implementation. It is a fusion between

the last two subsections.

As in the 2D configuration with orientation the transformation between the inertial and local referential
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must be taken in account.

From this moment on, each local referential, {Vi}, i ∈ [1, 2, 3], sympathetic with the drone’s kinematic,

is not only defined by its position, Ipi, i ∈ [1, 2, 3], but also, its orientation, [φi, θi, ψi], i ∈ [1, 2, 3], in an

inertial referential, {I}.

A vector defined at any local referential, {Vi}, can be transformed to the inertial referential, {I},

employing sequentially the three rotations, each one given by its rotation matrix.

From section 2.1.3, we got:

The Rotation Matrix of the ith aircraft is defined as:

iR =i R(ψ)iR(θ)iR(φ) =


cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ

sψcθ sψsθsφ + cψcθ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

 (3.123)

The inverse Rotation Matrix of the ith aircraft is defined as:

IR =I R(φ)IR(θ)IR(ψ) =


cψcθ sψcθ −sθ

cψsθsφ − sψcφ sψsθsφ + cψcθ cθsφ

cψsθcφ + sψsφ sψsθcφ − cψsφ cθcφ

 (3.124)

The notation cξ = cos(ξ) and sξ = sin(ξ) was used. Must bear in mind that the product order must

be the same as the transformation rotations between referential.

Any vector defined at any local referential is transformed to the inertial referential by:

iRVi
i pj =

I pj , i, j ∈ [1, 2, 3] (3.125)

A vector defined at the inertial referential is transformed to any local referential by:

IRIi pj =
Vi pj , i, j ∈ [1, 2, 3] (3.126)

As seen in the block diagrams of centralised position and orientation, in subsection 3.1.2, two filters

are needed to obtain the optimal prediction of orientation and positioning. Therefore, for the first time,

the simulation equations are not the same as the equations that define the filters.

Bearing this in mind, two state space representations are presented.

The first one is the drone’s simulation subsystem and it is represented as follows:

SIMULATION =

 ẋ = Ex+ Fu+ ηw, ηw ∼ N(0, Rw)

y = h(x, u) + ηv, ηv ∼ N(0, Rv)
(3.127)

In this iteration the simulation states are the position of drone 1, ~p1, the relative position of drone 1

and drone 3, ~d1,3, as well as drone 3 and drone 2, ~d3,2 and the respective velocities, as previously, plus
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the orientation [φi, θi, ψi], with i ∈ [1, 2, 3]. All coordinates are now (x, y, z).

xT =
[
~p1 ~d1,3 ~d3,2 φi θi ψi ~̇p1 ~̇d1,3 ~̇d3,2 pi qi ri

]
(3.128)

The simulation inputs are, as before, the linear accelerations.

uT =
[
~a1 ~a2 ~a3

]
(3.129)

The simulation state space matrices are:

E =

018 I18

018 018


36×36

F =



09

09

I3 03 03

−I3 03 I3

03 I3 −I3
09


36×6

(3.130)

The measurement function of the simulation is based on GPS, distance and angle sensor, rate gyro,

accelerometer and magnetometer. It should be noted that the output of the angle sensor is expressed

in the local referential, that is given by equation (3.126), as the states are all expressed in the inertial

referential. The output will be shown in two different measurement functions, Oh15, referent to the

orientation and, Ph15, referring to the positioning output function.

PhT15 =
[
~p1 ~p2 || ~d1,3|| || ~d3,2|| || ~d1,2||

~d1,3

|| ~d1,3||
~d3,2

|| ~d3,2||
~d1,2

|| ~d1,2||

]
(3.131)

OhT15 =
[
ψi gyroi acci

]
, i ∈ [1, 2, 3] (3.132)

The process noise, ηw ∼ N(0, Rw) and the sensors’ error, ηv ∼ N(0, Rv) are defined as:

Rlinear = σ2
linear × I9, Rorientation =


σ2
φ 0 0

0 σ2
θ 0

0 0 σ2
ψ

 (3.133)

Rw =



Rlinear 09×6 09×6 09×6 09

09 09×6 09×6 09×6 09

09×18 Rlinear 09×3 09×3 09×3

03 03×24 Rorientation 03 03

03 03 03×24 Rorientation 03

03 03 03 03×24 Rorientation


36×36

(3.134)
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RGPS = σ2
GPS,x × I6, Rdistance = σ2

distance × I3, Rangle = σ2
angle × I9 (3.135)

Racc = σ2
acc × I9, Rgyro = σ2

gyro × I9, Rmag = σ2
mag × I3 (3.136)

Rv =



RGPS 06 06 06 06 06×9

03×6 Rdistance 03 03 03 03×21

09×3 09×6 Rangle 09×7 09×7 09×7

03 03 03×12 Rmag 03×9 03×9

09×5 09×5 09×5 09×6 Rgyro 09

09×6 09×6 09×6 09×6 09×6 Racc


39×39

(3.137)

The first filter to be used is the one destined to obtain the optimal orientation estimation. And, as always,

can be represented by a state space.

ORIENTATION =

 ẋ = Ex+ Fu+ ηw, ηw ∼ N(0, Rw)

y = h(x, u) + ηv, ηv ∼ N(0, Rv)
(3.138)

This filter has as states the orientation of the three drones, [φi, θi, ψi], i ∈ [1, 2, 3], and the bias from the

rate gyroscope, βi, i ∈ [1, 2, 3]

xT =
[
φ1 θ1 ψ1 β1x β1y β1z φ2 θ2 ψ2 β2x β2y β2z φ3 θ3 ψ3 β3x β3y β3z

]
(3.139)

Even though the orientation is a result of process noise, the system has an input, the rate gyro.

uT =
[
p1 q1 r1 p2 q2 r2 p3 q3 r3

]
(3.140)

The state space matrices of the Extended Kalman Filter are:

E =



03 −I3 03×12

03×18

03×9 −I3 03×6

03×18

03×9 03×6 −I3
03×18


18×18

F =



I3 03 03

03 03 03

03 I3 03

03 03 03

03 03 I3

03 03 03


18×9

(3.141)

The output function is based on the magnetometer and the accelerometer. Recalling from section 2.1

equations (2.14) and (2.15):

OhT =
[
gsen(θi) − gcos(θi)sen(φi) − gcos(θi)cos(φi) ψi

]
, i ∈ [1, 2, 3] (3.142)
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And its Jacobian of the orientation measurement function, Oh, is:

JO =




0 a 0

b c 0

d e 0

0 0 1

 04×15

04×3


0 f 0

h k 0

l m 0

0 0 1

 04×12

04×6


0 n 0

p q 0

r s 0

0 0 1

 04×9


12×18

(3.143)

a = gcos(θ1), b = −gcos(θ1)cos(φ1), c = gsin(θ1)sin(φ1) (3.144)

d = gcos(θ1)sin(φ1), e = gsin(θ1)cos(φ1), f = gcos(θ2) (3.145)

h = −gcos(θ2)cos(φ2), k = gsin(θ2)sin(φ2), l = gcos(θ2)sin(φ2) (3.146)

m = gsin(θ2)cos(φ2), n = gcos(θ3), p = −gcos(θ3)cos(φ3) (3.147)

q = gsin(θ3)sin(φ3), r = gcos(θ3)sin(φ3), s = gsin(θ3)cos(φ3) (3.148)

The process noise, ηw ∼ N(0, Rw) and the sensors’ error, ηv ∼ N(0, Rv) are defined as:

Rgyro = σ2
gyro × I3 Rw =



Rgyro 03×8 03×7

03×18

03×6 Rgyro 03×9

03×18

03×12 Rgyro 03×3

03×18


18×18

(3.149)

Racc,mag =


σ2
acc,x 0 0 0

0 σ2
acc,y 0 0

0 0 σ2
acc,z 0

0 0 0 σ2
mag

 Rv =


Racc,mag 04 04

04 Racc,mag 04

04 04 Racc,mag


12×12

(3.150)

With the orientation estimated, the values of the angle sensor must be expressed in the inertial

referential before they are used in the positioning filter. For that equation (3.125) is used in the rotational

matrix block’s subsystem. The implementation of the Extended Kalman Filter for the optimal positioning

estimation was defined in the fourteenth configuration - 3D Positioning.
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3.2.3 Non-linear Filter

The non-linear filter has a centralised simulation as well and it is represented as follows:

SIMULATION =

 ẋ = Ex+ Fu+ ηw, ηw ∼ N(0, Rw)

y = h(x, u) + ηv, ηv ∼ N(0, Rv)
(3.151)

In this iteration, the simulation states are the position of drone 1, ~p1, drone 2, ~p2, and drone 3, ~p3 plus

the orientation [φi, θi, ψi], with i ∈ [1, 2, 3] and the respective velocities.

xT =
[
~p1 ~p2 ~p3 φi θi ψi ~̇p1 ~̇p2 ~̇p3 pi qi ri

]
(3.152)

The simulation inputs are, as before, the linear accelerations.

uT =
[
~a1 ~a2 ~a3

]
(3.153)

The simulation state space matrices are:

E =

018 I18

018 018


36×36

F =


09

09

I9

09


36×6

(3.154)

The measurement function of the simulation is based on GPS, angle sensor, rate gyro, accelerometer

and magnetometer. It should be noted that the output of the angle sensor is expressed in the inertial

referential, that is given by equation (3.121), as the states are all expressed in the inertial referential.

The output will be shown in two different measurement functions, Oh16, referent to the orientation and,
Ph16, referring to the positioning output function.

PhT16 =
[
~p1 ~p2

~d1,3

|| ~d1,3||
~d2,3

|| ~d2,3||

]
(3.155)

OhT16 =
[
ψi gyroi acci

]
, i ∈ [1, 2, 3] (3.156)

The first filter to be used is the one destined to obtain the optimal orientation estimation. And is repre-

sented by the following state space.

ORIENTATION =

 ẋ = Ex+ Fu+ ηw, ηw ∼ N(0, Rw)

y = h(x, u) + ηv, ηv ∼ N(0, Rv)
(3.157)

This filter has as states the orientation of the three drones, [φi, θi, ψi], i ∈ [1, 2, 3], and the bias from the
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rate gyroscope, βi, i ∈ [1, 2, 3]

xT =
[
φ1 θ1 ψ1 β1x β1y β1z φ2 θ2 ψ2 β2x β2y β2z φ3 θ3 ψ3 β3x β3y β3z

]
(3.158)

Even though the orientation is a result of process noise, the system has an input, the rate gyro.

uT =
[
p1 q1 r1 p2 q2 r2 p3 q3 r3

]
(3.159)

The state space matrices of the Extended Kalman Filter are:

E =



03 −I3 03×12

03×18

03×9 −I3 03×6

03×18

03×9 03×6 −I3
03×18


18×18

F =



I3 03 03

03 03 03

03 I3 03

03 03 03

03 03 I3

03 03 03


18×9

(3.160)

The output function is based on the magnetometer and the accelerometer. Recalling from section

2.1 equations (2.14) and (2.15):

OhT =
[
gsen(θi) − gcos(θi)sen(φi) − gcos(θi)cos(φi) ψi

]
, i ∈ [1, 2, 3] (3.161)

And its Jacobian of the orientation measurement function, Oh, is:

JO =




0 a 0

b c 0

d e 0

0 0 1

 04×15

04×3


0 f 0

h k 0

l m 0

0 0 1

 04×12

04×6


0 n 0

p q 0

r s 0

0 0 1

 04×9


12×18

(3.162)

a = gcos(θ1), b = −gcos(θ1)cos(φ1), c = gsin(θ1)sin(φ1) (3.163)

d = gcos(θ1)sin(φ1), e = gsin(θ1)cos(φ1), f = gcos(θ2) (3.164)
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h = −gcos(θ2)cos(φ2), k = gsin(θ2)sin(φ2), l = gcos(θ2)sin(φ2) (3.165)

m = gsin(θ2)cos(φ2), n = gcos(θ3), p = −gcos(θ3)cos(φ3) (3.166)

q = gsin(θ3)sin(φ3), r = gcos(θ3)sin(φ3), s = gsin(θ3)cos(φ3) (3.167)

The process noise, ηw ∼ N(0, Rw) and the sensors’ error, ηv ∼ N(0, Rv) are defined as:

Rgyro = σ2
gyro × I3 Rw =



Rgyro 03×8 03×7

03×18

03×6 Rgyro 03×9

03×18

03×12 Rgyro 03×3

03×18


18×18

(3.168)

Racc,mag =


σ2
acc,x 0 0 0

0 σ2
acc,y 0 0

0 0 σ2
acc,z 0

0 0 0 σ2
mag

 Rv =


Racc,mag 04 04

04 Racc,mag 04

04 04 Racc,mag


12×12

(3.169)

With the orientation estimated, the values of the angle sensor must be expressed in the inertial

referential before they are used in the positioning filter. For that equation (3.125) is used in the rotational

matrix block’s subsystem.

The next step is to obtain the estimation of Drone 3, using the non-linear filter. The position of drone

1 and 2, ~p1 and ~p2, is assumed to be the reading from the GPS sensors.

˙̂x = Ex̂+ Fu+ l

2∑
i=1

S(
~di,3

|| ~di,3||
)2( ~̂p3 − ~pi) (3.170)

The state is the position of drone 3 and its velocity:

xT =
[
~p3 ~̇p3

]
(3.171)

The control vector is the linear acceleration of drone 3.

u = ~a3 (3.172)

The matrices E and F are:

E =

03 I3

03 03


6×6

F =

03

I3


6×3

(3.173)
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The gain, l, is the following matrix, with a = 0.5 and b = 0.4:

l =

aI3
bI3


6×3

(3.174)

3.2.4 Summary of States, Inputs and Outputs

SIMULATION

States Inputs Outputs

Config.:

1 ~p1 ~̇p1 ~a1 ~p1

2 ~p3 ~̇p3 ~a3 ~̂p1
I ~d1,3

3 ~p3 ~̇p3 ~a3 ~̂p1 ~̂p2
I ~d1,3

I ~d3,2

4 ~p1 ~̇p1 ~a1 ~̂p2 ~p1
I ~d1,2

5 ~p3 ~̇p3 ~a3 ~̂p1 ~̂p2 || ~d1,3|| || ~d3,2||

6 ~p3 ~̇p3 ~a3 ~̂p1 ~̂p2 α3,1 α3,2

7 ~p3 ~̇p3 ~a3 ~̂p1 ~̂p2 α3,1 α3,2 || ~d1,3|| || ~d3,2||

8 ~p1 ~d1,3 ~d3,2 ~̇p1 ~̇d1,3 ~̇d3,2 ~a1 ~a2 ~a3 ~p1 ~p2|| ~d1,3|||| ~d3,2|||| ~d1,2||

9 ~p1 ~d1,3 ~d3,2 ~̇p1 ~̇d1,3 ~̇d3,2 ~a1 ~a2 ~a3 ~p1 ~p2
~d1,3

|| ~d1,3||
~d3,2

|| ~d3,2||
~d1,2

|| ~d1,2||

10 ~p1 ~d1,3 ~d3,2 ~̇p1 ~̇d1,3 ~̇d3,2 ~a1 ~a2 ~a3 ~p1 ~p2|| ~d1,3|||| ~d3,2|||| ~d1,2||
~d1,3

|| ~d1,3||
~d3,2

|| ~d3,2||
~d1,2

|| ~d1,2||

11 ~p1 ~d1,3 ~d3,2ψ1ψ2ψ3 ~a1 ~a2 ~a3 ~p1 ~p2|| ~d1,3|||| ~d3,2|||| ~d1,2||
~d1,3

|| ~d1,3||
~d3,2

|| ~d3,2||
~d1,2

|| ~d1,2||

~̇p1 ~̇d1,3 ~̇d3,2r1r2r3 ψ1ψ2ψ3r1r2r3

12 ~p1 ~d1,3 ~d3,2 ~̇p1 ~̇d1,3 ~̇d3,2 ~a1 ~a2 ~a3 ~p1 ~p2|| ~d1,3|||| ~d3,2|||| ~d1,2||

13 ~p1 ~d1,3 ~d3,2 ~̇p1 ~̇d1,3 ~̇d3,2 ~a1 ~a2 ~a3 ~p1 ~p2
~d1,3

|| ~d1,3||
~d3,2

|| ~d3,2||
~d1,2

|| ~d1,2||

14 ~p1 ~d1,3 ~d3,2 ~̇p1 ~̇d1,3 ~̇d3,2 ~a1 ~a2 ~a3 ~p1 ~p2|| ~d1,3|||| ~d3,2|||| ~d1,2||
~d1,3

|| ~d1,3||
~d3,2

|| ~d3,2||
~d1,2

|| ~d1,2||

15 ~p1 ~d1,3 ~d3,2φiθiψi ~a1 ~a2 ~a3 ~p1 ~p2|| ~d1,3|||| ~d3,2|||| ~d1,2||
~d1,3

|| ~d1,3||
~d3,2

|| ~d3,2||
~d1,2

|| ~d1,2||
ψigyroiacci

~̇p1 ~̇d1,3 ~̇d3,2piqiri

16 ~p1 ~p2 ~p3φiθiψi ~a1 ~a2 ~a3 ~p1 ~p2|| ~d1,3|||| ~d3,2|||| ~d1,2||
~d1,3

|| ~d1,3||
~d3,2

|| ~d3,2||
~d1,2

|| ~d1,2||
ψigyroiacci

~̇p1 ~̇p2 ~̇p3piqiri

Table 3.2: States, Inputs and Outputs in simulations.
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The states of the position filter are the same states present in the simulation, the inputs of the position

filter are the inputs plus the outputs (sensors) of the simulation and the outputs of the filter are the drones’

position. The exceptions of are the 11th 15th and 16th configurations, which are described below:

ORIENTATION FILTER POSITION FILTER

States Inputs Outputs States Inputs Outputs

Config.:

11 ψi βi ri ψi ~p1 ~d1,3 ~d3,2 ~a1 ~a2 ~a3 ~p1 ~p2 ~̂p1 ~̂p2 ~̂p3

~̇p1 ~̇d1,3 ~̇d3,2 || ~d1,3|||| ~d3,2|||| ~d1,2||
~d1,3

|| ~d1,3||
~d3,2

|| ~d3,2||
~d1,2

|| ~d1,2||

15 φi θi ψi βix βiy βiz pi qi ri φi θi ψi ~p1 ~d1,3 ~d3,2 ~a1 ~a2 ~a3 ~p1 ~p2 ~̂p1 ~̂p2 ~̂p3

~̇p1 ~̇d1,3 ~̇d3,2 || ~d1,3|||| ~d3,2|||| ~d1,2||
~d1,3

|| ~d1,3||
~d3,2

|| ~d3,2||
~d1,2

|| ~d1,2||

16 φi θi ψi βix βiy βiz pi qi ri φi θi ψi ~p3 ~̇p3 ~a3 ~p1 ~p2
~d1,3

|| ~d1,3||
~d2,3

|| ~d2,3||
~p3

Table 3.3: States, Inputs and Outputs of the filters.
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Chapter 4

Results

This section shows the quest for the optimal solution. In order to obtain the optimal solution fifteen

configurations were implemented and tested. This allowed to understood the impact of the choice of

filtering technique, of the sensors’ used and the preponderance of the interactions between drones.

The results are organised in three parts, plots, where the real states and the estimations are shown.

Tables, that show the simulation’s error, the root mean square. And charts, for a better error visualisation

and understanding of the path chosen to the optimal solution.

1st Configuration - One Drone

The first Kalman Filter implementation was the fusion of the GPS and the model. Only one drone

was considered. This configuration is set in two dimensions, (x, y).

Figure 4.1: 1st Config.: GPS data fusion, x-axis. Figure 4.2: 1st Config.: GPS data fusion, y-axis.

The plots, Figure 4.1 and 4.2, show the real position of Drone 1, in blue, the GPS data in yellow and

the filter’s optimal position estimation in orange.

Table 4.1 displays the average deviation between the real position of Drone 1 and its estimation.
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Drone: x− axis [m] y − axis [m]

1 0.6484 0.7594

Table 4.1: 1st Configuration - RMS Deviation Table.

2nd Configuration - Two Drones

The second Kalman Filter implementation was designed to estimate the positioning of Drone 3, a

drone without a GPS receiver. For that implementation at least two drones are needed. Drone 1, a

drone with a GPS receiver as shown in the first configuration is the anchor and the sensor in Drone 3

allows it to obtain its relative position to Drone 1, ~d1,3. This configuration is set in two dimensions, (x, y).

The plots, Figure 4.3 and 4.4 show the real position of Drone 3, in blue and the filter’s optimal position

estimation in orange. Table 4.2 displays the average deviation between the real position of Drones 1 and

3 and the estimations.

Drone: x− axis [m] y − axis [m]

1 0.6484 0.7594

3 0.5904 0.6903

Table 4.2: 2nd Configuration - RMS Deviation Table.

Figure 4.3: 2nd Config.: Drone 3 position estima-
tion, x-axis.

Figure 4.4: 2nd Config.: Drone 3 position estima-
tion, y-axis.

3rd Configuration - Three Drones

The third drone implementation was designed to test the position estimation improvement of Drone

3. For that a third drone was added. Drone two is a drone with a GPS receiver as well as Drone 1.

The plot shows the real position of Drone 1, in blue and the filter’s optimal position estimation in

orange. The error in the optimal estimation of Drone 3, as seen in Table 4.3 is smaller than in the

previous configuration, Table 4.2.
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Figure 4.5: 3rd Config.: Drone 3 position estimation,
x-axis.

Figure 4.6: 3rd Config.:Drone 3 position estimation,
y-axis.

Drone: x− axis [m] y − axis [m]

1 0.6484 0.7594

2 0.6484 0.7594

3 0.1156 0.1633

Table 4.3: 3rd Configuration - RMS Deviation Table.

4th Configuration - Three Drones

In this iteration another relative position sensor was introduced to Drone 1 to interact with Drone 2.

The plot shows the real position of Drone 1, in blue and the filter’s optimal position estimation in orange.

When compared, the results of the fourth configuration, Table 4.4, are much better than the ones from

the first configuration, Table 4.1.

Figure 4.7: 4th Config.: Drone 1 position estimation,
x-axis.

Figure 4.8: 4th Config.: Drone 1 position estimation,
y-axis.
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Drone: x− axis [m] y − axis [m]

1 0.1251 0.1787

2 0.1251 0.1787

3 0.1156 0.1633

Table 4.4: 4th Configuration - RMS Deviation Table.

5th, 6th and 7th Configurations - Three Drones

From the first to the fourth configuration only Kalman Filters were used, once the outputs were linear.

However, that is a simplification. Bearing this in mind, the sensor’s output had to be changed. The two

alternatives are distance sensors, 5th configuration and angular position sensors, 6th configuration, or

the concatenation of both, 7th configuration.

The plots show the real position of Drone 1, in blue and the filter’s optimal position estimation in

orange. Table 4.5 displays the average deviation between the real position of Drone 3 and its estimation.

Figure 4.9: 5th Config.: Drone 3
position estimation, x-axis.

Figure 4.10: 5th Config.: Drone 3
position estimation, y-axis.

Figure 4.11: 6th Config.: Drone 3
position estimation, x-axis.

Figure 4.12: 6th Config.: Drone 3
position estimation, y-axis.

Figure 4.13: 7th Config.: Drone 3
position estimation, x-axis.

Figure 4.14: 7th Config.: Drone 3
position estimation, y-axis.

Configuration: x− axis [m] y − axis [m]

5 0.9453 0.0492

6 91.2630 40.2206

7 0.9444 0.0494

Table 4.5: 5th, 6th and 7th Configurations - RMS Deviation Table of Drone 3.

60



8th, 9th and 10th Configurations

The decentralised approach considered each drone as independent identities, but from now on the

three drones are in the same simulation. These three configurations are a different approach to the 5th,

6th and 7th configurations.

Figure 4.15: 8th Config.: Drone 3 position estima-
tion, x-axis.

Figure 4.16: 8th Config.:Drone 3 position estima-
tion, y-axis.

The plots show the real position in blue and the filter’s optimal position estimation in orange.

Configuration number eight is based on distance sensors. Must be taken in consideration that with

the state change, and with the process noise being the same, its influence is now bigger, making the

same configurations, fifth and eighth have different deviations.

The ninth configuration uses normalised vectors as the output of the angular sensor.

Figure 4.17: 9th Config.: Drone 3 position estima-
tion, x-axis.

Figure 4.18: 9th Config.: Drone 3 position estima-
tion, y-axis.

The tenth configuration uses normalised vectors as the output of the angular sensor plus the distance

sensor.

Table 4.6 displays the average deviation between the real position of Drone 3 and its estimation.
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Figure 4.19: 10th Config.: Drone 3 position estima-
tion, x-axis.

Figure 4.20: 10th Config.: Drone 3 position estima-
tion, y-axis.

Configuration: x− axis [m] y − axis [m]

8 0.5163 1.0386

9 0.6596 0.9294

10 0.7306 0.9777

Table 4.6: 8th, 9th and 10th Configurations - RMS Deviation Table of Drone 3.

Kalman Filter as Complementary Filtering

The following plot shows the real heading, in black streak, from the simulation and the the two

estimated headings, from implementation one, in blue, and two, in red.

Figure 4.21: Simulation, (blue), KF implementation one, (orange), and implementation 2, (yellow).

The following table outlines the root mean square deviation in the two implementations.
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Configuration RMS Deviation [o]

Implementation 1 0.611

Implementation 2 0.022

Table 4.7: Kalman Filter as Complementary Filtering - RMS Deviation Table.

11th Configuration - 2D Orientation

Until now, every simulation had, by default, null yaw. That means that the orientation of each drone

would not change with time, but that is not a realistic approach, rather an intermediate step.

From this moment on, each local referential sympathetic with the drone’s kinematic, is not only de-

fined by its position but also, its heading in an inertial referential.

The following plots show the estimation, in blue, and the real orientation, in orange, for all three

drones as well as the position estimation of Drone 3, in orange, and its real position, in blue.

Figure 4.22: 11th Config.: Drone
1 heading estimation.

Figure 4.23: 11th Config.: Drone
2 heading estimation.

Figure 4.24: 11th Config.: Drone
3 heading estimation.

Figure 4.25: 11th Config.: Drone 3 posi-
tion estimation, x-axis.

Figure 4.26: 11th Config.: Drone 3 posi-
tion estimation, y-axis.

Drone: x− axis [m] y − axis [m]

1 0.5270 0.5309

2 1.3247 1.2038

3 0.6243 0.6504

Table 4.8: 11th Configuration - RMS Deviation Table of Drone 3.

63



12th, 13th and 14th Configurations - 3D Positioning

Once the 2D orientation is already implemented, the next step is to introduce another dimension.

From now on the coordinates are (x, y, z).

The first results are from configuration number twelve, Figures 4.27, 4.28, 4.29. The measurement

function is based on the distance sensor, || ~di,j ||.

Figure 4.27: 12th Configuration:
Drone 3 position estimation, x-
axis.

Figure 4.28: 12th Configuration:
Drone 3 position estimation, y-
axis.

Figure 4.29: 12th Configuration:
Drone 3 position estimation, z-
axis.

The next configuration, 13th, Figures 4.30, 4.31, 4.32, is based on the normalised vector sensor,
~di,j

|| ~di,j ||
.

Figure 4.30: 13th Configuration:
Drone 3 position estimation, x-
axis.

Figure 4.31: 13th Configuration:
Drone 3 position estimation, y-
axis.

Figure 4.32: 13th Configuration:
Drone 3 position estimation, z-
axis.

The 14th configuration is based in the concatenation of the previous two, Figures 4.33, 4.34, 4.35.

Figure 4.33: 14th Configuration:
Drone 3 position estimation, x-
axis.

Figure 4.34: 14th Configuration:
Drone 3 position estimation, y-
axis.

Figure 4.35: 14th Configuration:
Drone 3 position estimation, z-
axis.

Table 4.9 displays the root mean square deviation of Drone 3 in all three configurations.
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Configuration: x− axis [m] y − axis [m] z − axis [m]

12 51.8973 46.7386 28.5462

13 7.2012 7.9761 7.9149

14 0.6731 0.8565 0.6207

Table 4.9: 12th, 13th and 14th Configuration - RMS Deviation Table of Drone 3.

EKF - 3D Positioning and Orientation

This configuration is a three-dimensional implementation with orientation. It is a fusion of the last two

subsections.

As in the 2D configuration with orientation the transformation between the inertial and local referential

must be taken in account.

From this moment on, each local referential, {Vi}, i ∈ [1, 2, 3], sympathetic with the drone’s kinematic,

is not only defined by its position, Ipi, i ∈ [1, 2, 3], but also, its orientation, [φi, θi, ψi], i ∈ [1, 2, 3], in an

inertial referential, {I}.

Figure 4.36: 15th Configuration:
Drone 3 orientation estimation, ψ.

Figure 4.37: 15th Configuration:
Drone 3 orientation estimation, θ.

Figure 4.38: 15th Configuration:
Drone 3 orientation estimation, φ.

Figure 4.39: 15th Configuration:
Drone 3 position estimation, x-
axis.

Figure 4.40: 15th Configuration:
Drone 3 position estimation, y-
axis.

Figure 4.41: 15th Configuration:
Drone 3 position estimation, z-
axis.
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Table 4.9 displays the root mean square deviation of Drone 3 in the fifteenth configuration and in all

three configurations from the previous subsection: Configurations number 12, 13 and 14.

Configuration: x− axis [m] y − axis [m] z − axis [m]

12 51.8973 46.7386 28.5462

13 7.2012 7.9761 7.9149

14 0.6731 0.8565 0.6207

15 0.8114 1.5697 1.0639

Table 4.10: 15th Configuration - RMS Deviation Table of Drone 3.

Non-linear Filter - 3D Positioning and Orientation

This configuration is a three-dimensional implementation with orientation.

As in the previous configuration, each local referential, {Vi}, i ∈ [1, 2, 3], sympathetic with the drone’s

kinematic, is not only defined by its position, Ipi, i ∈ [1, 2, 3], but also, its orientation, [φi, θi, ψi], i ∈

[1, 2, 3], in an inertial referential, {I}.

The plots show the real position in blue and the filter’s optimal position estimation in orange.

Figure 4.42: Non-linear Filter:
Drone 3 position estimation, x-
axis.

Figure 4.43: Non-linear Filter:
Drone 3 position estimation, y-
axis.

Figure 4.44: Non-linear Filter:
Drone 3 position estimation, z-
axis.

Table 4.9 displays the root mean square deviation of Drone 3 in the fifteenth and sixteenth configu-

rations.

Configuration: x− axis [m] y − axis [m] z − axis [m]

EKF 0.8114 1.5697 1.0639

Non-linear 2.4023 2.3082 1.2903

Table 4.11: 15th Configuration - RMS Deviation Table of Drone 3.
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4.0.1 Overall Results

The final configuration is a result of a series of implementations and simulations. During this process

the deviation between the real position and the optimal estimate suffers alterations. Two plots were

made of the deviation between the real position and the optimal estimate of Drone 1, a drone with a

GPS receiver, and of Drone 3, a drone without one.

Figure 4.45: Drone 1: Blue; Drone 3: Red; RMS deviation [m] per configuration.

The blue plot portrays the evolution of Drone’s 1 deviation as a function of the configuration. As seen

in Table 5.1 and Figure 4.45, the deviation stays the same through the first three configurations as the

simulation of Drone 1 has no changes. The simulation is a fusion between the model and the GPS data.

In red is the evolution of Drone’s 3 deviation as a function of the configuration. In the first configuration

there was no Drone 3. In the second configuration the filter’s estimate is a fusion between the model

and its relative position to the anchor, Drone 1. In the third configuration, Drone 2 was added, to provide

another anchor point to Drone 3. This new anchor in combination with Drone 1, led to a huge decrease

in the deviation between the real and the optimal estimation of Drone’s 3 position.

With the introduction of another drone, Drone 2, with a sensor whose output is its relative position to

Drone 1, in configuration number 4, the filter’s estimate is now a fusion of the GPS data, the model and

relative position to another drone. With more data, the optimal estimate is closer to the real position, as

seen in the results of the fourth configuration.

The introduction of Drone 2 does not only affect the RMS deviation of Drone 1 but also Drone 3.

Therefore, since the third configuration, all simulations have three drones, all aware of their relative

position to the others.
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The next trio of configurations is an attempt to use already existing AI vision based algorithms to

obtain the relative position between drones. As the vector between drones, ~di,j , is not an existing one,

a non-linear output had to be implemented. Bearing that in mind three approaches were tested. The

first was to use the distance between drones, || ~di,j ||, the second was to obtain the angle between two

aircraft, αi,j and the third was a concatenation of the two.

The distance between drones, fifth configuration, increased the deviation of Drone 1, blue, as the

filter had to obtain two coordinates, (x, y), with one measure, || ~di,j ||, instead of the previous two, ~di,j .

But, surprisingly, decreased the deviation in the estimation of Drone’s 3 position, red.

The angle between drones, sixth configuration, could not converge, therefore the deviation is not

shown in Figure 4.45.

The combination of both, seventh configuration, due to the error of the angle sensor, is as good as

the distance between drones, alone. Bearing this in mind, the angle approach had to be tested again.

With the goal of testing an angle based output, the states of the simulation, and filter were swapped

in the next configurations. The drones are no longer independent identities but rather part of a collective

simulation and filtering process, it is a centralised approach.

With the states going from position, ~pi, of the three drones to position of Drone 1, ~p1, and relative

positions, ~d1,3 and ~d3,2, plus the fact that the process noise stayed the same, is expected that the

deviation would increase, as it did with Drone 3, in red, but that did not happen with Drone 1, in blue. As

direct opposition to the results of the fifth configuration.

Instead, the deviation of Drone 1, blue, decreased with the implementation of the distance between

drones in this centralised approach, eighth configuration. The ninth configuration, the normalised vector

between drones,
~di,j

|| ~di,j ||
increased slightly the deviation in comparison to the distance vector. And the

combination of both, configuration number ten, was just slightly better than the ninth configuration, but

these results must be studied in three dimensions, as well.

The same simulation, but now in three dimensions, (x, y, z), has different results to the same outputs

as configurations number eight, nine and ten. In 3D, the best choice is the concatenation of both the

distance and normalised vector between drones. The values of configuration number twelve and thirteen

were suppressed from the red plot as its values were outliers.

The introduction of orientation in two dimensions, configuration eleven, has results paradoxically

opposite to that imagined, as more states must be estimated and the deviation decreases. This contrasts

with the implementation of orientation in three dimensions, configuration fifteen, which increased its

deviation in comparison with null orientation, configuration fourteen.
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Chapter 5

Conclusions

As seen by the results in table 5.1, the 16th configuration was not an improvement regarding the

RMS deviation. That was already expected once the 16th configurations only uses the GPS and the

angle sensor to estimate the position of the drones and the 15th configuration uses those sensors plus

the distance sensor. The 6th configuration has as output the angle sensor (α) which was not able to

converge, and therefore, the results are disproportionate. The 12th configuration was in 3D and has as

output only the distance sensor, and due to the lack of information the algorithm wasn’t able to identify

the positioning of the drone.

Drone 1 Drone 3

x y z x y z

Configuration:
1 0.6484 0.7594 - - - -
2 0.6484 0.7594 - 0.5904 0.6903 -
3 0.6484 0.7594 - 0.1156 0.1633 -
4 0.1251 0.1787 - 0.1156 0.1633 -
5 0.6484 0.7594 - 0.9453 0.0492 -
6 55.455 58.682 - 91.263 40.221 -
7 0.6484 0.7594 - 0.9444 0.0494 -
8 0.3488 0.2737 - 0.5163 1.0386 -
9 0.6425 0.9274 - 0.6596 0.9294 -
10 0.6419 0.8403 - 0.7306 0.9777 -
11 0.5270 0.5309 - 0.6243 0.6504 -
12 0.8368 0.8282 0.5575 51.897 46.739 28.546

13 1.6177 2.7003 1.6159 7.2012 7.9761 7.9149

14 0.4065 0.4316 0.41495 0.6731 0.8565 0.6207

15 0.6938 0.7934 0.6415 0.8114 1.5697 1.0639

16 1.0741 1.0974 1.0742 2.4023 2.3082 1.2903

Table 5.1: RMS deviation per configuration table.

The introduction of the non-linear filter cannot be evaluated only based on the RMS deviation though.

The need for less computing power and batteries due to the fewer sensors can be a plus in some
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situations. In order to evaluate the results some context on the environment in which the drones operate

is fundamental. Nevertheless, configurations 15 and 16 are the better suited for implementation.

Future work should include the further development of the non-linear filter technique. For instance,

the generalisation of this filter for all the estimates of all drones’ positions and not only Drone 3. Also,

for further validation, these configurations should be tested using an UAV on the context of real time

navigation.
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