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Abstract

Nowadays the use of Unmanned Aerial Vehicles (UAV) is more popular than ever from hobby to mil-

itary applications. The ability of stationary hover flight makes multi-rotor UAVs particularly interesting

in inspection missions. However given the small flight time that common drones have, an autonomous

landing system could mitigate the issue of constant need of human intervention in the landing and bat-

tery charging/replacing stages. The goal of this thesis is to control a quad-rotor UAV, from free motion

to autonomous landing on a mobile charging station. The landing platform is placed on an Unmanned

Ground Vehicles (UGV) that acts as the mobile charging station and processing unit of the UAV. The

controller design seeks to achieve full autonomy in the landing process based on off-board sensors. To

best guide the drone to the landing pad, a multi-stage controller was developed. With a system like this

the robustness and accuracy in the landing process can be improved, allowing the UAV to use the bat-

tery of the UGV as a mobile battery range extender for longer inspection missions. As the UGV usually

has a higher payload limit, it can have large batteries, more capable sensors and higher computational

power. This work is specially relevant given that can be applied to the inspection of a solar farm, where

a team of ground/aerial robots could reduce both the time of the inspection and the need for human

intervention. The developed system was tested in a simulation environment and in 50 consecutive land-

ing cycles achieved an average time of landing of 50 s, with a precision of 2 cm from the center of the

landing pad and 100% success rate.

Keywords

Quadcopter; Automatic landing; ROS programming; ArduPilot, DroneKit-Python, Computer vision.
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Resumo

Nos dias que correm o uso de Veículo Aéreo Não Tripulado (VANT) é cada vez mais popular, desde

aplicações militares a uso recriativo. Visto que drones pequenos normalmente têm um tempo de voo

reduzido, um sistema de aterragem automática pode mitigar o problema da necessidade constante de

intervenção do usuário em aterrar e carregar e/ou trocar a bateria. O objectivo desta dissertação é

de controlar um quadricóptero, de voo livre até aterrar numa plataforma de carregamento móvel. A

plataforma foi colocada num Veículos Terrestres Não-Tripulados (VTNT) que fez o papel da plataforma

de carregamento móvel e unidade de processamento do drone. A concepção do controlador visa au-

tonomia total no processo de aterragem baseado em sensores exteriores ao drone. De modo a guiar o

drone até à base um controlador multiestágio foi desenvolvido. Com um sistema como este a robustez

e precisão no processo de aterragem podem melhorar, deste modo permitindo ao drone usar o robot

terrestre com base móvel de extenção de bateria na realização de tarefas de inspecção mais longas.

Como o robot terrestre não tem tanto limite de carga, pode ter baterias grande, sensores mais capazes

e maior poder de processamento. Este trabalho tem especial relevância dado que pode ser aplicado na

inspecção de parques solares, onde uma equipa de robots aério/terrestre pode reduzir tanto o tempo

da inspecção como a necessidade de intervenção humana. O sistema desenvolvido foi testado em sim-

ulação e, em 50 ciclos de aterragens consecutivas, alcançou um tempo médio de aterragem de 50 s,

com precisão de 2cm do centro da plataforma de aterragem e 100% de taxa de sucesso.

Palavras Chave

VANT; Aterragem automática; Programação ROS; ArduPilot; DroneKit-Python; Visão computacional;
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1.1 Motivation

Unmanned Aerial Vehicles (UAV) are becoming ever more popular in applications where an aerial point

of view is an advantage, such as in military patrol, coastal and agriculture surveillance, infrastructures

inspection, etc. With recent developments in technology, this type of vehicles has never been so acces-

sible to the general public. Photography enthusiasts, for example, can get shots that in the past required

far more expensive means to achieve the same goals, as helicopters or airplanes.

With such a broad array of applications the degree of complexity can drastically differ. On one end of

the spectrum, there are consumer level UAVs that can be simply composed by an Inertial Measurement

Unit (IMU), Global Positioning System (GPS) sensors and a camera, while on the other end there is

highly specialized hardware to suit each desired application.

An UAV can be powered in two different ways: tethered, where it is connected via cable in order to

get power; or by onboard battery supplies. The main disadvantage of the battery powered UAV is the

UAV’s range. Although not so relevant in large UAVs, the smaller ones usually have a weight constraint

that implies the use of small capacity and very light batteries that result in a small range. For each

desired application the best battery size/weight can be calculated [12] [13], in order to get the optimal

desired range and endurance.

Developing an autonomous flying and landing system can largely improve productivity and flexibility

to perform the desired task, minimizing or completely removing human intervention. There are many

challenges that have to be overcome in order to implement an autonomous system able to complete

the task mentioned above. Concerning the limited flight time of a small UAV, a possible solution is to

develop an automatic landing system to recharge on a charging station. This would enable it to do the

designated task without the need of the technical support to replace and charge the batteries. In order

to implement such a system robustly, one of the biggest challenges is localization. For an UAV to land on

a small platform, a high accuracy in positioning is required, given the small size of the landing platform.

Despite the GPS being sufficient for navigation in wide open spaces, its accuracy is insufficient to solve

the UAV landing problem. There are several different approaches that might include computer vision or

radio signaling to aid with the approach to the landing platform.

To further enhance the capabilities and versatility of an UAV, working cooperatively with Unmanned

Ground Vehicles (UGV) can reduce the time to complete the task, or make it more efficient. On the

other hand, the UAV can aid the UGV in adverse terrain, where the UGV’s on board camera does not

provide the operator with enough helpful information. The aerial point of view of the drone can help

plan an easier route for it to travel [14]. For example, in solar panel field inspections, the cooperative

work between the two vehicles further optimises the inspection process by using an UGV to work as a

mobile charging station. This latter application of UAV and UGV cooperation allows the team, in a field

inspection mission, to complete its mission faster [15]. It also increases the inspection range of the UAV

3



given that it is no longer dependent on a fixed charging station.

1.2 Automatic landing

The first demonstration of an automatic landing system occurred on August 23, 1937 by two American

Army pilots. The system used was a C-14B plane with added instruments and radios. There were five

beacons on the surroundings of the landing field. With this primitive system the first automatic landing

was achieved [16]. After this in June 1965, research and development was made and implemented on

commercial flights, with the aim of helping the pilots to land in adverse weather, or reduced visibility.

This way the aircraft can land safely in conditions that otherwise the pilot might not be able to perform.

In this context, an automatic landing system, similar to the aviation sense of the word, is one that

can successfully land the aerial robot without human intervention. The main challenge associated with

the development of such a system capable of landing the UAV on a small platform is getting a precise

location of the UAV relative to the platform. Indoors there are systems that are able to precisely track

every movement based on visual cues (eg. Motion Capture System (MOCAP)). But outdoors, such

a system is not viable, so other positioning aid techniques must be used. Computer vision plays an

important role in many applications to overcome this problem.

Many different solutions were presented using visual aid to successfully land a UAV. Some use

visual markers to detect the base and were able to land onto a moving target [17]. Or commercial

solutions such as FlytBase’s FlytDock software that allows to autonomously land any drone over a visual

target [18].

1.3 UAV

UAV’s date back to the nineteenth century when the Austrians attacked the city of Venice in Italy, using

unmanned balloons that were loaded with explosives. Even though these balloons would not be con-

sidered UAVs in the modern sense of the word, they eventually led to other advances in the field. Until

very recently this technology was reserved for military use only. This changed with miniaturization and

drop in the cost of construction, which made this technology become ever more accessible to the public.

There are numerous types and configurations of UAVs, varying in size and complexity as shown in figure

1.1 below.
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Figure 1.1: Different types of UAV. [1].

UAVs can be classified by operating altitude, endurance, operating range, payload and size [19]. In

this dissertation we will focus on the group of multi-rotor UAV, more specifically a quad-rotor. Further

advancements in technology have brought smaller and more power efficient electronics, which have

allowed the creation of the micro UAV. These are very popular both amongst the military and enthusiasts,

given it’s agility and versatility being particularly useful in inspection, surveillance, mapping and search

and rescue missions. Among these categories, the micro UAVs quad-rotor drones as seen in figure 1.2

are the most popular type.

Figure 1.2: Model of a quadcopter. [2].

Such UAV’s usually have an autonomy constraint due to the fact that batteries, the most commonly

used method to store electric energy in this aplication, are heavy. So the batteries have to be small in

order to be light, which results in a flight time of only a few minutes even with a fully charged battery.

By increasing the number of on-board sensors, the total weight increases, which reduces the UAV’s

5



autonomy even further. So in order to operate for longer periods of time, the UAV needs to be charged

very often. In a non-automated system the user has to land the drone, and change or charge the battery

manually. By automating the landing process, the drone can land on a charging platform. This way

it may be able to perform tasks repeatedly without continuous human intervention. The reduction in

the amount of payload on the UAV achieved by reducing the number of on-board sensors, can further

improve the flight time.

1.4 Objective and Contribution

This master thesis’ objective is to implement a viable solution for an automatic landing system of a

micro-quadrotor UAV. There are several different ways to implement an auto-landing system, either with

on-board sensors or with sensors located near the landing platform. In this thesis the aim is to implement

a system that minimizes the need for on-board sensors, so that the payload on the UAV is decreased

and thus the flying time is maximized.

To achieve such a system a multi-stage control was developed. The automatic landing system was

developed using vision sensors positioned on a UGV to reduce position uncertainty of the UAV itself and

help guide it to the charging platform located on top of the ground robot.

The goal of this system is to improve the robustness and accuracy of the landing process, allowing

the UAV to use the battery of the UGV as a mobile battery range extender for longer inspection missions.

As the UGV does not have a payload limit, it can have large batteries, more capable sensors and higher

computational power.

The UAV used in this study is a micro Quad-rotor which, due to its small size, has a very limited

range. The goal is, with the aid of the ground robot, to enable the UAV to perform repeatedly more

extensive tasks that otherwise would require user intervention to charge or change the UAV’s batteries.

To achieve this, the work was divided into 3 main goals:

1. Off-board vision-based system to detect and accurately estimate the UAV’s position relative to

the charging platform.

2. High-level motion control system to precisely control and guide the aerial robot in space, and

successfully land it on the platform.

3. Develop a simple solution that is easily used on a wide range of quadcopters and transferable to

real hardware.
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1.5 Thesis Outline

This thesis is structured in five chapters.

The first chapter is intended to expose the motivation behind the dissertation and also presents the

basic concepts that are involved in the project.

The second chapter briefly describes the previous work done in the area of study.

The third chapter describes in detail the solution found for the automatic landing system and its

implementation.

The fourth chapter presents the thesis results and experiments.

The fifth chapter presents the work conclusions and further potential improvements to the system.
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2.1 Introduction

In order to develop a system capable of achieving the set goal, an understanding of each subsystem is

required. For this reason, it is important to identify all topics of interest to further investigate.

There are two main approaches to solve the localization problem in the UAV landing procedure. One

possible solution is to have the main sensors to aid with the landing on the drone itself and the other one

is to have them close to the landing area.

2.2 On-Board Sensors Landing Systems

A common way to solve the problem of localization of the drone relative to the landing platform is through

computer vision. Compared with typical sensors, a camera is lighter and can provide rich information

about the UAV self-motion and external environment.

Indoor landing provides a controlled environment when compared with landing outdoors, as it has

much less external disturbances. A low cost approach was developed in [20], where by using a Nin-

tendo Wii remote infrared camera, the drone can detect points on the platform. These points are In-

frared LED’s, that are positioned in a pattern so that the flight controller can estimate the position and

orientation of the UAV once the infrared LED pattern is identified.

In [3], two different computer vision algorithms were used in parallel in order to achieve a more robust

landing system. Firstly a red blob tracking was implemented to get an estimate of the position of the UAV

relative to the platform. In parallel to this, a corner tracking algorithm was implemented in order to get a

robust motion tracking for when the target platform is not inside the Field of View (FOV) of the camera.

In order to locate the landing platform, a visual cue can be placed on the landing platform, usually a red

circle or blob. This is a simple technique that helps with the positioning of the UAV relative to the landing

platform.

A possible algorithm is proposed and presented in figure 2.1. The UAV flies using GPS navigation

and, when it gets close to the landing platform, begins to capture continuous images in order to search

for the visual cue placed on the platform, in this case a red blob. If the platform is located, the tracking

procedure is carried out when the cue is in the FOV of the camera. When the position of the platform

relative to the UAV is estimated, the drone starts its descent until it reaches an altitude of less than 20cm

from the platform. At this point it starts the landing procedure.
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Figure 2.1: Proposed design for an automatic landing system [3].

This is a simple technique that helps with the positioning of the UAV relative to the landing platform.

The landing system needs to be robust. If not, any external disturbance that shifts the UAV unex-

pectedly, causing the platform to move out of the FOV of the camera, would result in the UAV getting

lost.

So a more robust tracking system is required. A solution that was found to prevent the UAV from

missing the target was to extract more features out of the image, such as corners. This optical flow,

once computed, allows the horizontal speed to be estimated. This, in turn, allows the UAV to hover and

ascend slowly until it detects the target. The robustness of this system is based on collecting a range of

features from the whole image around the platform and not only on the blob itself.

Another approach was used by [21], where a pattern was designed to overcome the limitations of

other models where the target is only visible close to the landing pad. A set of concentric white rings

was drawn on a black background. As each ring is analysed individually the pattern can be identified

even if the whole platform if not inside the FOV. Although the pose estimation is very good using this
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technique, no successful landing was performed.

In [22] infrared cameras were used to detect the landing platform. This method relies on the dif-

ference in temperature between the target and its surroundings. To achieve this, the target object was

covered with a black powder to increase the efficiency of thermal radiation. This proved to be a very fast

and reliable way to identify the target but no landing or pose estimation was carried out.

Using a model helicopter, successful landings were performed [23]. This was achieved by locating a

H-shaped maker on a helipad using an on-board camera. The results were robust and repeatable, but

the algorithm relies on the assumption that the marker used has a well defined geometric shape and the

camera is perpendicular to the ground.

2.3 On-Ground Sensors Landing Systems

Compared with the on-board sensors approach, this technique allows for the use of high resolution

cameras alongside high computer processing power. In [24] a triple camera system was used and, by

extracting key features of the images, a robust 3D position and orientation were obtained. A stereo

camera system was implemented in [25] and [26]. This technique relies not only on an RGB camera but

also on a 3D point cloud.

An infra-red stereo camera was also used in [27], in this application the UAV’s could be successfully

tracked and positioned. However, in a noisy background such as a cloudy/overcast sky or hot objects

showing in the image frame, the system proved not to be very reliable. In [4], a set of radio signal emitters

on a charging platform as shown in figure 2.2 has been used. This increased the pose estimation

precision of the UAV’s to about 1 cm. As both the location system and the charging platform emit radio

signals, interference between the two has to be taken into account.

11



Figure 2.2: Scheme of radio emitters network to locate the UAV when landing [4].

2.4 Flight Controllers

Proportional-Integral-Derivative (PID) controllers are possibly the most commonly used for a feedback

linear control system. A Proportional-Derivative Controller design was presented by Erginer and Altug

[28]. The developed controller was designed to control the UAV’s altitude. To do this it controls the

pitch, roll and yaw angles. Alongside this, a visual-based tracking system was successfully developed,

allowing the UAV to approach the target and hover above it at the desired altitude. This type of linear

controller can be a good option when the system’s dynamics are not known; otherwise, it can lead to

sub-optimal performance.

In feedback linearization control technique, a nonlinear feedback is added to a nonlinear system so

that, when designing the controller, an approximated linear system can be considered. To develop a

flight and landing controller, a feedback linearization controller was developed to autonomously land a

quadrotor UAV onto a moving platform [29].

Backstepping nonlinear controls can also be used when designing a landing controller. This type

of controller offers a recursive way of design that divides the system into subsystems. This allows the

designer to start developing the controller at a known and stable stage of the system and "back-out" new

controllers that will progressively stabilize each of the outer systems. Such a system was used to land a

rotary UAV using a tether in [30] and [31].

Neural networks can be incorporated into a controller design. A neural network has the ability of
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learning, so that given a set of observations and a class of functions, the network can learn what func-

tion will solve a given problem in an optimal way. An intelligent auto-landing controller was designed

to enhance the landing safety in different wind conditions [32]. This makes for a much more reliable

controller, given that it has the ability to adapt the system’s parameters to new situations that it was not

trained for to begin with.

2.4.1 PID Controller

As previously stated, PID controllers are one of the most common forms of feedback controllers. With

this type of controller, having a control variable, an actuator to allow the system to act on the control

variable, and a form to read the state of the system, an accurate and responsive correction is made

in order to stabilize the system in the desired set point. The output u(t) of a PID controller can be

expressed by the following equation:

u(t) = Kpe(t) +Ki

∫ t

0

e(t) dt+Kd
de(t)

dt
(2.1)

Where u(t) is the output of the controller at the time t, e(t) is the value of the error at that same instance,

and Kp, Ki and Kd the gains for each part of the controller. In this application there are 3 variables to

be controlled, X, Y and Z, so there is a PID controller for each of these control variables.

As can be seen in equation 2.1, the proportional part of the controller has a gain of Kp and, as the

name would suggest, it has an effect on the control signal proportional to the system error, this being

the difference between the current state and the set point.

Ki is the gain for the integral component of the controller. This gain applies an effort proportional to

the integral of the error, which in turn removes the steady state errors which must be identified over time.

Therefore it cannot be eliminated or identified in the instantaneous readings of the error or its derivative.

The derivative part has a gain of Kd, which acts like a damper on the control effort, proportional to

the derivative of the error, slowing the state’s approach to the set point. In order to get a stable system,

the gain values must be adjusted to suit the controlled system. Besides the gains, there are other

further parameters that need tuning. These are the minimum and maximum control effort, to ensure

that the output does not surpass the physical limit of the actuator, and the integral windup limit, which

sets the maximum effect that the integral part may have on the control effort. The integral windup limit is

important due to the fact that this component can easily saturate and destabilise the system’s response.
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2.5 Robot Development Tools

In order to develop the proposed system it is necessary to choose a platform or framework capable of

integrating the different types of hardware and software solutions. It is important that this platform aids

in the development of the solution as well, by running already developed packages and libraries. This

way, the result solution can be turned into a library and help the community to add further developments

using this library as a stepping stone.

Carnegie Mellon Navigation (CARMEN) [33] is an open source software designed with ease-of-use,

extensibility, and robustness in mind. It was developed by Carnegie Mellon University as a modular so-

lution aiming at easing robot programming. By being a modular solution, it enables the easy installation

and removal of add-on software. CARMEN is written in C programming language and supports C/C++

and Java as well. CARMEN was developed with the goal of solving robot navigation and mapping , so

there are no packages for computer vision. Also, the latest software update was released in 2008 [34]

and so it is no longer being supported. We may then conclude that CARMEN is not the best platform to

develop the desired system.

Another existing system that can be used is OpenRDK [35]. OpenRDK supports C and C++ pro-

gramming languages only. This platform introduced the ability to use a multi-threaded and multi-process

structure. With this, it allows the developer to use multiple robots, computer vision and various hard-

ware simulators. It was successfully used in various RoboCup competions, but it seems to no longer

be supported or developed as the latest release was in 2010 [36]. Although being more capable than

CARMEN, OpenRDK should not be considered for the development of this solution as it is also no longer

being supported.

Microsoft developed Microsoft Robotics Developer Studio (MRDS) [37] as an attempt to simplify

robotics development and draw programmer’s interest to their Operating System (OS) (Windows). Being

a system that is compatible with Windows only, it limits the OS choice and consequently the hardware

that can be used. MRDS is mainly compatible with .NET, C#, C++ and IronPython programming lan-

guages. This framework allows for 3D simulations as well as supporting various packages from speech

recognition to simpler tasks such as navigation. MRDS was last updated in 2012 and it only has sup-

port up to Windows 8. [38] As this framework is no longer maintained and due to .NET dependencies it

lacks support for a variety of hardware, so it is not a good option to be used as a base to develop this

dissertation.

Robot Operating System (ROS) was created and developed by Standford University and further

developed later by Willow Garage in order to create an open-ended collaboration framework that would

be easy to use and develop on. ROS is mainly written in C++ and in Python but users can choose to

develop it also in Octave, Lisp and Java. Nowadays ROS is currently the most used platform in robotics.

By being open source, hardware support is ever growing due to the ease of adding support for new
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hardware or adapt existing drivers to the desired new hardware. ROS is compatible with Gazebo physics

simulator allowing to simulate various systems, like arm manipulators, UAV’s, cameras, and mobile

robots, etc. In addition, ROS already has many packages for navigation, computer vision, mapping and

control systems. Same as the hardware support, these packages are constantly being added by the

community.

The community also maintains a wiki page about the available packages and also tutorials on various

subjects. ROS has its annual convention and is actively supported with annual distribution releases. The

latest release was in May 2020. All things considered, ROS seems to be the best platform to develop

the desired system on, since it has the best hardware/software support.

2.6 Existing Related Implementations

An automatic landing and charging system was developed in [39]. This system consists of an UAV with

an on-board camera. The drone starts by navigating using GPS to guide it to close to the charging pad

location. When this is accomplished, it switches to visual positioning method, using a ArUco tag located

on top of the charging platform. By developing a controller that uses this relative positioning method

to guide the drone to the base and successfully land it was accomplished. This allowed the aircraft to

recharge using wireless or wired methods.

Compared with on-board systems, off-board systems have the advantage of being able to use high-

quality image systems paired with high computational resources. A ground-based approach was devel-

oped in [40] where a stereo camera was used to estimate a 3D position of a quad-rotor and with this

achieved an autonomous hovering and automatic landing system. The developed system was capable

of locating the Micro Aerial Vehicle (MAV) while flying at 6 m altitude, increasing the accuracy of both

longitudinal and lateral positions to 1 m, compared with 3 m of GPS positioning in the same conditions.

15



3
The Implementation

Contents

3.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Program Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

16



3.1 Concept

Before diving deeper into the details of the implementation, we should first review the goals of the project

and highlight all of its different parts. The aim of this thesis is to develop various methods to achieve a

system capable of reliably land a quad-rotor drone on a stationary mobile platform using external visual

servoing. A flight mission can be described in 5 main steps as shown in figure 3.1:

1. Recharge on the platform to start the mission cycle;

2. The takeoff where the UAV begins the flight;

3. The mission execution where it executes the desired tasks;

4. The detection of the flying UAV;

5. Landing where it finishes this cycle.

Figure 3.1: Flight mission scheme.

This thesis will focus on the detection and precision landing parts of the mission, that includes pre-

cisely detect, guide to the landing location and land the aircraft.
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The major problem is to precisely locate the UAV with the most part of the sensors located near the

platform. As previously stated, GPS accuracy is not good enough to guide the drone to the base, so in

order to accomplish a robust landing system other methods had to be developed.

The system starts after the MAV completes its mission and needs to recharge. At this stage the

drone will be flying using GPS, so in the first stage the ground station will receive a signal to start the

retrieval procedure of the aircraft to recharge its battery. The GPS coordinates of the base are sent to

the UAV and handled by its autopilot system. The autopilot flies it to the desired coordinates.

In order to reduce pose uncertainty a visual marker was added to the underside of the drone. When

it arrives to the given location it switches to the vision based controller. The vision based controller will

receive the relative position of the UAV and feed it to a PID controller to guide it closer to the platform.

This relative position is the estimated position of the marker or, in case of the marker not being detected,

the position calculated by the depth camera is used in its place.

3.2 Hardware

For the choice of hardware it is important to choose options that are compatible with ROS, in order to

simulate and develop the system. With this in mind a Clearpath robotics Jackal UGV, such as the one

in figure 3.2, was chosen to be used as the mobile landing station, as the manufacturer has a very

complete package of the robot for simulation and real world use [41]. For the simulations carried out in

this thesis, a base Jackal equipped with a GPS sensor, a 1.0 m diameter round landing platform and a

RGB-D camera located at the centre of the platform was used, as shown in figure 3.3.

Figure 3.2: Clearpath robotics UGV Jackal [5]

Figure 3.3: Simulated hardware.

The RGB-D used is an Intel Realsense D435, such as the one in figure 3.4, with a depth resolution

of 1280x720 and a FOV of 85.2*58º and a depth range of around 10 m. As this RGB-D is commonly

used in robotics, it is also thoroughly documented in ROS applications.
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Figure 3.4: Intel Realsense D435 [6]

Figure 3.5: 3d Robotics Iris drone [7]

The selected UAV was the 3d Robotics Iris drone shown in figure 3.5 for being compatible with ROS

and also for having the necessary software to run the system.

In this thesis the chosen hardware was used only in simulation, but due to the way it was implemented

it should work just as well in the real hardware.

3.3 Methodologies

The landing platform will be placed on an UGV that will act as the ground station of the system. In

order to reduce the payload on the UAV, and also allow the use of a better sensor along with better

computational power, a stereo RGB-D camera was placed at the centre of the landing platform to guide

the drone to its target.

3.3.1 PID Controller

In figure 3.6 a block diagram of the system used in this project can be seen.
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Figure 3.6: PID Controller Block Diagram.

Where u is the setpoint or desired position, in this case Xsetpoint=0 m ,Ysetpoint=0 m, the Zsetpoint is

dynamic, while the drone is not centered on top of the platform (XandY >= 0.1 m) the setpoint is 1 m,

when it’s centered (XandY <= 0.1 m) it switches to 0.15 m;

s is the position read by the sensor;

e is the error of the system, that is, the difference between the set point and the current state of the

system.

v is the output of the PID that, in this case, is the velocity calculated to drive the drone to the desired

position.

The Process is the change in position of the UAV once the output of the PID is applied.

The dynamics of the system can be tuned to achieve the desired behaviour by tuning the Gains

(Kp, Ki and Kd). These influence how fast or slow the system gets to the desired set point, how fast it

stabilizes on the set-point and how it reacts to external disturbances.

In the system in question, not all the coordinates are to be handled in the same manner so different

Gains were set for handling the rate of change of speed in the horizontal plane (X and Y) and descent

speed (Z) in the vertical plane.

3.4 Detection

The detection system is composed of 2 sub-systems. In the first stage, the system uses a depth-based

pose estimation. In the second stage it uses an ARTag marker to estimate the drone’s pose. The second

and more precise pose estimation method is used whenever the marker is detected.
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3.4.1 RGB-D

To reduce the drone’s pose inaccuracy, once close to the landing location a RGB-D camera was used for

detecting the drone and get a more accurate pose estimation. To achive this, the sensor was positioned

in the centre of the platform. By doing this, the best possible FOV is achieved and also the ideal position

to center the landing drone on the landing platform. To convert the depth measurements of the camera

to a 3D coordinate system, rs2_deproject_pixel_to_point was used. This is a function provided by Intel,

the camera manufacturer, that given a 2D pixel location on an image and the depth measurement, it can

map this into a 3D point in the world frame.

Figure 3.7: Projection of Depth camera’s point cloud.

In figure 3.7 the point-cloud of the depth camera can be seen, where each white dot represents a

depth measurement value for a given pixel. The system detects the closest point to the camera and by

knowing the intrinsic camera parameters, a conversion between image frame and the real world can be

made. This allows for an estimation of the distance between pixels and the distance in the real world. By

having the depth measure for a specific pixel, a 3D coordinate in the real world (x, y, z) can be estimated,

giving the relative position of the drone in relation to the camera. So, to run this detection method an

empty open environment is assumed.

This method is not the most precises detection method as it assumes the closes point to the camera

as the position of the drone, this can be the left front leg or other point on the drone’s body that not it’s

centroid, as in an ideal detection method would be desirable. This method is good as it can detect the

drone far from the base and provide a good enought of a pose estimation for the system to guide the

UAV close to the platform. This method is capable of detecting the drone up to about 8 m in height. The
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depth FOV at maximum height can be seen in figure 3.8 below.

Figure 3.8: Projection of Depth camera FOV.

3.4.2 Fiducial Markers

Fiducial markers have been used in the recent past in computer vision for being computationally cheap

and very precise in relative pose estimation. These markers, figure 3.9, of known pattern and size, when

attached to an object can serve as a reference point of location, orientation and scale.

Figure 3.9: Different types of Augmented Reality (AR)
markers. [8] Figure 3.10: Exemple of QR code [9]

The most popular type of fiducial marker is the QR code, figure 3.10, that carries much more infor-

mation than the typical marker used in robotics but, by doing so, it has a much more intricate design,

which makes it almost impossible to correctly detect where variable light conditions and image distortion

may blur the image of the marker. A typical fiducial marker is very easy to manufacture as it can be

printed and glued to any surface that needs to be identified. This makes this marker a good solution to

precisely locate the drone in the air once close to the platform, by fixing a marker to the underside of the

UAV, such as the one shown in figure 3.11.

In robotics, the fiducial markers used tend to have less information coded in the marker than QR

Codes, but as a trade off can be more robustly detected in all sorts of conditions. There are many types
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of fiducial markers and corresponding identification systems. The chosen system was ARTag tracking

library. ARTag is short for Augmented Reality Tag, and consists in a dual tone square symbol with a

solid black background and a 6x6 grid of high contrast interior cells like the one shown in figure 3.12.

Figure 3.11: Iris drone model with ARTag Figure 3.12: ARTag marker used

The library used to identify these markers was ar_track_alvar, which is an evolution of the standard

ARTollkit [42]. One of the biggest challenges in detecting this type of markers is having this done in

variable light conditions. To overcome this difficulty, Alvar uses adaptive thresholding, which consists in

calculating a threshold value for each pixel using the values of the surrounding pixels; and for a more

stable pose estimation, it uses an optical flow based tracking system. In order to find a marker, the

detection algorithm uses an edge based approach. The edge pixels are found and used to link them

into segments, which once grouped form quadrangles. The corners of these quadrangles are used to

calculate a homography that allows the interior of the marker to be transfered into the world frame This

approach makes it more robust to changing light conditions.

This library also has the ability to work with stereo camera, which provides a more precise pose

estimation. An identified marker can be seen in figure 3.13 where, when close to the camera, the ARTag

on the underside can be successfully detected, in this image illustrated as a purple square.
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Figure 3.13: ARTag being detected in simulation

In the developed system the marker used is a 13x13 cm marker. This size marker was chosen in

order to be the biggest possible without interfering with the thrust of the propellers. This method by itself

would be insufficient as it can only detect the marker up to 3m away. But in conjunction with the first

method of detection, the system can guide the drone using the first method that is able detect further

away, but estimates the posing less accurately, and than when it enters the operating range of this

marker detection method switch and get a very precise pose estimate.

3.5 Development Environment

3.5.1 Ardupilot

Ardupilot is an open source autopilot system that supports a wide range of different vehicles, from

multicopters, helicopters and fixed-wing aircrafts, to rovers, boats and submarines [43]. This software is

very popular and has a large user base which provides quick bug fixes and testing. The manufacture of

the selected drone, 3DR’s Iris, also supports Ardupilot, which was one of the reasons why this software

was chosen for this thesis.

This autopilot software has the basic goal to provide control over the UAV. A basic view of the overall

autopilot system can be seen in figure 3.14:
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Figure 3.14: Ardupilot overall architecture. [10]

There are two main ways to control the UAV in Ardupilot; one of them is to use a conventional Radio

Control (RC) controller, and the other is to use a ground control station. In order to communicate with

the UAV, the ground control station uses MAVLink, which is a lightweight communication protocol. To

enable compatibility with other software, MAVLink has other libraries such as MAVproxy, which is a

command-line ground station software. This communication protocol allows the ground control station

to send control instructions that get interpreted and converted to Roll/Pitch/Yaw/Throttle values in order

to perform the desired tasks. In the the developed system the landing controller sends velocity and

position commands to the autopilot, this gets interpreted in the corresponding controller and converted

in instructions to the drone’s motor as can be seen figure 3.14. To perform these actions the autopilot

has inner control loops for attitude, speed and navigation controllers. MAVLink communications works

in both ways, as the UAV sends information about its current state such as GPS and local position, IMU

data, battery state and much more, and the ground station sends out control commands as previously

explained. This communication is made by an established Internet Protocol (IP) connection between the

ground control station and the drone’s computer that gets established before the flight begins.
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Figure 3.15: Basic structure of ArduPilot. [11]

In figure 3.15, the architecture of the Ardupilot system can be seen. ArduPilot also offers the possibil-

ity to run over SITL, and this allows it to run without any hardware. In this mode the sensor data comes

from a flight simulator dynamic model. A big advantage of this system is that a flight simulation, with no

hardware involved, is a fast and cheap way to test systems without the added risk of damaging physical

components caused by a fault in the system, resulting in a potential crash and damage of expensive

hardware. There are various flying modes for the autopilot, each mode with a goal in mind; the modes

that are used here are the GUIDED mode and LAND mode. The GUIDED mode is meant to be used

to dynamically guide a UAV to a desired location wirelessly, using a telemetry radio module and ground

station application. The LAND mode is used to make the drone descend until it lands, and shut down

the motors once it has landed. In this project, this mode is only used in the last stage of the landing

process when it is less than 0.2 m high above the landing platform, it descends the rest of the way, and

turns off the motors.
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3.5.2 DroneKit

DroneKit is a cross-platform Application Programming Interface (API) that allows the development of

Python applications for drones that communicate over MAVLink, using a low-latency link, with an Ardupi-

lot flight controller [44]. These applications run on the MAV’s companion computer and further increase

the capabilities of the autopilot software by performing computationally heavy tasks that need a low-

latency link, as are computer vision or path planning algorithms. The API offers a methodical access

to the connected vehicle’s state and parameter information and also enables not only direct control

over the vehicle’s movement and operation, but also mission management. DroneKit also provides a

comprehensive set of functions and classes that make MAVLink commands easier to understand.

In this project, DroneKit-Python was used, which allows the development of python-based applica-

tions. In this project the main use of this development platform consisted in handling the data concerning

the positions where the drone needs to be, and forwarding it on to the ArduPilot flight controller. This

data is transfered using MAVLink, so to start the program a connection must be established between the

autopilot and the DroneKit application.

Some Dronekit functions were used without any modifications while others were adapted to perform

the desired task. The function fly_tojackal (jackpose, altitude) was created using Dronekit’s sim-

ple_goto (location). This funtion receives a GPS location, in this case the coordinates of the landing

pad (jackpose), and the desired altitude, it checks whether the drone has arrived to the goal location,

something that the base simple_goto function is unable to do. The simple_goto function receives a

point with GPS coordinates in the LocationGlobal or LocationGlobalRelative frames. Both use WGS84

coordinate system for latitude and longitude but, in the Global frame, altitude is given in relation to the

Mean Sea-Level (MSL) while in the GlobalRelative it is given in relation to the home position. This is the

position where the drone was first initialized.

The function is defined as shown below:

1 def fly_tojackal(jackpose , Altitude):

2 """

3 Flys to given position and altitude and checks if arrives to given pose

4 """

5 print("Flying towards jackal ...")

6 # Prints the given location

7 print("jack lat - ", jackpose.latitude)

8 print("jack long - ", jackpose.longitude)

9 print("jack alt - ", jackpose.altitude)

10 point1 = LocationGlobal(jackpose.latitude , jackpose.longitude , jackpose.altitude

+ Altitude)

11 vehicle.simple_goto(point1)
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12

13 currentLocation = vehicle.location.global_frame

14 distance = get_distance_metres(currentLocation , jackpose)

15

16 # gets current position to check if it has arrived

17 while distance >=0.3:

18 currentLocation = vehicle.location.global_frame

19 distance = get_distance_metres(currentLocation , jackpose)

20 print("distance - ", distance)

21 time.sleep(1)

22 print("reached destination starting final approach")

The function receives a position in the LocationGlobal frame, in this case it receives the landing pad

location (jackpose), and a desired altitude, (Altitude). This variable is used to set the height of the drone

in relation to the landing pad. After issuing the command to fly to the given location, it enters a loop to

wait until the current position of the drone is within 0.2 m of the landing pad. To compare the current

position with the one of the base, a DroneKit function was used get_distance_metres(aLocation1,

aLocation2), which receives two sets of coordinates and returns the distance between the two objects

in metres.

To send the velocity commands to the drone, the function send_ned_velocity(velocity_x, veloc-

ity_y, velocity_z, duration) was used.

1 def send_ned_velocity(velocity_x , velocity_y , velocity_z , duration):

2 """

3 Move vehicle in direction based on specified velocity vectors.

4 """

5 msg = vehicle.message_factory.set_position_target_local_ned_encode(

6 0, # time_boot_ms (not used)

7 0, 0, # target system , target component

8 mavutil.mavlink.MAV_FRAME_LOCAL_NED , # frame

9 0b0000111111000111 , # type_mask (only speeds enabled)

10 0, 0, 0, # x, y, z positions (not used)

11 velocity_x , velocity_y , velocity_z , # x, y, z velocity in m/s

12 0, 0, 0, # x, y, z acceleration (not supported yet , ignored in GCS_Mavlink)

13 0, 0) # yaw , yaw_rate (not supported yet , ignored in GCS_Mavlink)

14

15

16 # send command to vehicle on 100 Hz cycle

17 for x in np.arange(0,duration ,0.01):

18 vehicle.send_mavlink(msg)

19 time.sleep(0.01)
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The function generates a SET_POSITION_TARGET_LOCAL_NED MAVLink message that specifies

the speed components of the vehicle. The message is resent to the vehicle at a 1 Hz rate but the refresh

rate was modified to 100 Hz for a faster adjustment of the speed commands.

3.5.3 Gazebo Simulator

Gazebo is an open source simulator and physics engine [45]. It offers a very realistic 3D world with

high-quality graphics that allow the users to simulate their systems in an environment that is as close

to the reality as possible, as seen in figure 3.16. The simulator includes interfaces for a wide range of

simulated sensors out of the box, and with an ever growing support community, new hardware is added

to the list of simulated sensors every day.

The simulated world and robot models can be designed to suit each desired application, and this

allows it to accurately simulate in complex environments. Plug-ins can also be developed to enable

Gazebo to further improve its capabilities. There are other physics engines available but the Gazebo’s

already developed compatibility with Ardupilot’s Software in the Loop (SITL) and ROS, makes it a perfect

fit for this project.

Figure 3.16: Gazebo world. Figure 3.17: Modified Jackal Model

In order to run the developed system some modifications were made to the robot models in Gazebo.

In the Jackal model, as shown in figure 3.17, a round landing platform with a Realsense camera in the

centre was added. In the Iris model, as seen earlier in figure 3.11, an ARTag was added along with

changing the color to a lighter shade of grey to improve the detection of the marker. The simulated world

of a solar farm is a modified version of a world available with the Jackal model. The modified world is

available in DURABLE’s GitHub repository [46].
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3.6 Program Architecture

The landing program flowchart of the developed solution can be seen in figure 3.18. The landing con-

troller gets the GPS coordinates of the landing base and commands the drone to go to that location.

Figure 3.18: Program flowchart.

When it arrives to the given location, it checks if it is on the camera’s FOV. If it is not, it gets a

new updated GPS position and is sent there. Otherwise, if it is on the camera’s FOV, it calculates

the relative position to correct the previous GPS positioning error. Following this procedure, the PID

controller guides it to the landing platform. The PID controller receives the position calculated by the

depth camera algorithm, if the ARTag is detected, then this more precise method of pose estimating is

used to feed the PID controller. When it gets to within 10 cm of the center of the base and less than 20

cm high, the command to change mode to LAND is given and the program ends. If for some reason the

drone gets out of the camera’s FOV before it lands, a recovery action takes place. It raises 2 m in an

attempt to return to where the depth camera’s FOV is wider so it can be detected once again. Usually,

in the experiments that were made, it is enough to get back to the FOV and be detected again but if it

is not, then it raises another two times checking if it’s out of the FOV. If raising three times 2 m is not

enough to get detected, than the drone receives a new GPS point to go to and starts the landing cycle

again.
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3.7 Coordinate System

To guide the drone to the landing platform all the coordinate frames must be aligned. The Realsense

sensor calculates the relative position of the UAV in relation to itself so, to guide the drone in the intended

way the commands must be given in the correct coordinate system. Gazebo uses a NWU (North, West,

Up) coordinate system. It can be seen in figure 3.19 that North is the X axis in red, West is the Y axis in

green and the Up is the Z axis in blue.

Figure 3.19: Gazebo coordinate system.

The drone receives a message in the NED (North, East, Down) format, illustrated in figure 3.19. The

drone has a global NED frame where North is facing the front of drone, and East the right side. But the

drone also has a local NED frame where North corresponds with Gazebo’s X axis, East is the -Y of the

West of the world frame. This transformation can be expressed by the transformation matrix 3.1 below.


XNED

YNED

ZNED

1

 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1



XNWU

YNWU

ZNWU

1

 (3.1)

To send the correct commands, the coordinates calculated by the sensor must be transformed to the

correct frame. To do so, the coordinates are multiplied by the Rotation matrix as seen in equation 3.2:
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X ′

Y ′

Z ′

 = Rz

XY
Z

 (3.2)

Where Rz is the rotation on the Z axis

Rz =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 0

 (3.3)

Where α is the angle of rotation of the base on the Z axis as seen in figure 3.20

Figure 3.20: Illustration of the angle of rotation
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4.1 Results

The results of the developed system are presented in this section. The tests were conducted to test the

various aspects of the system.

4.1.1 PID Controller

The job of the velocity controller is to center the drone above the center of the platform and make it

descend until it lands. It achieves this by the use of three PID controllers, one for each coordinate,

as previously stated. The initial gains of the PID controller caused the system to have a slow time of

correction, and close to the setpoint it oscillated, so some tuning of the controller gains were required.

Every gain has to be tuned in relation to the others, for the purpose of achieving a stable system, given

that by increasing one gain to get a faster response can cause the system to overshoot and become

unstable. With this in mind, the gains were increased in small increments, checking the system response

and adjusting the other gains to compensate and achieve a stable system at all times.

Kp Ki Kd

Initial 0.042 0.046 0.025
Tuned 0.27 0.0107 0.027

Table 4.1: PID gain values for X an Y

In table 4.1 the values of the gains obtained with tuning are shown. In Z only the proportional gain

was changed to increase the rate of descent. In order to validate the superior performance of the tuned

system a set of tests was conducted.
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(a)

(b)

Figure 4.1: (a) Plot of position over time of landing routine with initial gains (b) Plot of position over time of landing
routine with tuned gains

Figure 4.1 shows the difference in performance between the tuned controller and the initial controller

performing a landing routine. To test this, the same initial conditions were used in order to get compara-

ble results. The drone would start from 5 m height and from 3 m away in the X an Y axis and approach

the platform to land. At t=0 the approach starts and the end of the chart shows the moment when the

drone lands.

A great improvement can be observed, as with the tuned gains the drone centers above the platform

3.4 times faster and lands 2.2 times faster. The jitter in the pose estimation can be justified by the

switching between detection methods.
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(a) (b)

(c) (d)

Figure 4.2: (a) Plot of position over time with initial gains (b) Plot of position over time with tuned gains (c) Scatter
plot of X and Y with initial gains (d) Scatter plot of X and Y with tuned gains

To validate that the obtained system is stable, a hovering routine was made where the drone started

at the same point as the landing routine but with the setpoint of Z at 1 m height, forcing the drone to

remain above the platform and trying to center at x=0 and y=0.

In Figure 4.2, it is clear that a much more stable system was achieved. Once the drone is above the

platform with the tuned gains, it remains within 2 centimeters of the center, while the system with the

initial gains oscillates around the setpoint with amplitudes in excess of 15 cm of the center.
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4.1.2 Pose Estimation

To validate the chosen pose estimation method, the same landing routine was used.

(a)

(b)

Figure 4.3: (a) Plot of position over time of landing routine with initial gains (b) Plot of position over time of landing
routine with tuned gains
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In Figure 4.3 the error difference between the detected position and the exact position of the drone

is shown. In the beginning, where the error is bigger, the depth camera positioning is used, but once the

ARTag is detected, the position estimation becomes much more accurate.

Error X (m) Y (m) Z (m)

Depth camera pose estimation Average 0.145 0.219 0.45
Maximum 0.370 0.398 0.605

ARTag pose estimation Average 0.027 0.015 0.068
Maximum 0.107 0.826 0.172

Table 4.2: Error in pose estimation between methods statistics

In table 4.2 the difference in accuracy between the two methods is shown. It can clearly be seen that

the error of the depth camera is about 4 times larger than with the ARTag positioning method.

To test if the system was able to land the drone successfully without the ARTag pose estimation

some attempts to land the drone were made. In these tests the drone landed successfully, but in some

tests one of the legs landed outside of the landing pad, although not enough off center to crash the

drone. So it can be seen that even without the more precise detection method the drone was still able

to land successfully. This is helped by the fact that the landing platform is 50 cm in radius and Iris has a

dimension of 55cm motor to motor, so what was observed was that this extra 5 cm added to the centering

error was what made one of the legs to land outside the platform. Were the platform to be smaller, the

landing procedure without the ARTag positioning system would potentially become unsuccessful.

4.1.3 Landing

To validate the landing system a simulated launch and retrieve mission was simulated. The drone starts

the flight from where it previously landed, and to get comparable results the landing pad in this test is

assumed to be static.

The drone takes off to a height of 5 m and then proceeds to go to a given GPS location away from

the landing base. When it arrives to the given point it receives the GPS coordinates of the landing pad.

After this, the landing sequence is as previously described in section 3.6.

Average X (m) Y (m) Landing Time(s) Timeσ Success Rate
Drone pose 0.022 0.024 49.79 6.524 100%Estimated 0.018 0.018

Table 4.3: Repetitive Landing Statistics

50 landings were performed and the corresponding statistics are presented in table 4.3. These 50

landings were performed back to back to simulate a real application where the errors in the various
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sensors would be cumulative. In table 4.3 it can be seen that the drone lands on average within 3 cm of

the center of the base. It can also be seen that it takes on average about 50 seconds to land, counting

from the moment when it’s detected by the depth camera. All 50 landings were successful.

In figure 4.4, the landing position variation relative to the center of the landing pad is shown.

Figure 4.4: Scatter plot of landing position over 50 landings

To simulate a mobile platform another mission scenario was simulated. The drone has the same

routine as before where it takes off to a height of 5 m and than proceeds to go to a given GPS location

away from the landing base. Then it receives the GPS coordinates of the landing pad but this time the

landing pad moves randomly from place to place while the drone is executing the task. To test this 30

landings were performed, and the respective statistics are presented in table 4.4.

Average X (m) Y (m) Landing Time(s) Timeσ Success Rate
Drone pose 0,022 0,022 65,91 10,20 100%

Table 4.4: Repetitive landing on mobile platform statistics

(a) (b)

Figure 4.5: (a) Scatter plot of the final landing pose in relation the the center of the landing pad. (b) Scatter plot of
landing base position for each landing
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In table 4.4 a larger standard deviation and longer average landing time can be seen, when compared

with the landings on the static landing platform. In some of the landing attempts this is due to the base

being still moving, resulting in a longer approach and landing time. Also in some of the studied cases

the drone was transported on the platform from one place to another, thus simulating a mobile charging

station. In figure 4.5 it can be seen in image (a) that the drone lands very accurately within a radius of

4cm of the center of the base. In image (b) the landing pad position in the field can be seen for each of

the 30 landings.
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5.1 Conclusions

This thesis achieved the proposed goals. As was shown in the previous section, an off-board vison-

based system that is able to accurately estimate the UAV’s pose, and a high-level motion control system

that can control the drone guiding it to the landing base as well as make it land were successfully

developed and implemented. As the designed system was developed and tested using Ardupilot and

DroneKit, it can theoretically work with a wide range of MAVLink compatible devices and can easily be

implemented in real hardware.

The results that were obtained after testing the systems were adequate. However, subjecting the

UAV to disturbances in the detection component, such as change in the surrounding light conditions or

in the environment, such as variable wind speeds or direction, would have been a good test to further

validate the system.

5.2 Future Work

The most immediate future work would be to test and validate the proposed system on physical hard-

ware. This task was originally intended to be part of this project but due to time constraints this was

deemed as not feasible.

The depth camera detection algorithm is not a perfect solution as it assumes an empty open envi-

ronment to estimate the pose of the drone. A possible solution would be to train a convolution neural

network or use other image processing algorithms to be able to detect the drone in the air and get a

depth measurement from the area identified as a drone.

Further tuning of the system could be done in order to allow the system to perform landings onto a

moving platform. The system would need to correct the drone’s position faster, and a trajectory planner

would be needed as well.

Fusion between on-ground and on-board solutions could further improve reliability and robustness

of the system. With this, obstacle avoidance and a more reliable landing system could be achieved.
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A.1 Code Repositories

All of the used code is available at GitHub, as well as the developed code.

Some packages were modified to suit the desired function and are available ate GitHub at Detection

Repository.

Detection GitHub https://github.com/MartimBraga/Detection

Ardupilot code https://github.com/ArduPilot/ardupilot/tree/master/ArduCopter

Dronekit code https://github.com/dronekit/dronekit-python

Original PID code https://github.com/roscitra/Quadcopter-range-control-system-using-PID-method-Python-

Simulation enviroment https://github.com/durable-ist/Multi_Robot_Simulation

48



49


	Titlepage
	Declaration
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Automatic landing
	1.3 UAV
	1.4 Objective and Contribution
	1.5 Thesis Outline

	2 State of the Art
	2.1 Introduction
	2.2 On-Board Sensors Landing Systems 
	2.3 On-Ground Sensors Landing Systems
	2.4 Flight Controllers
	2.4.1 PID Controller

	2.5 Robot Development Tools
	2.6 Existing Related Implementations

	3 The Implementation
	3.1 Concept
	3.2 Hardware
	3.3 Methodologies
	3.3.1 PID Controller

	3.4 Detection
	3.4.1 RGB-D
	3.4.2 Fiducial Markers

	3.5 Development Environment
	3.5.1 Ardupilot
	3.5.2 DroneKit
	3.5.3 Gazebo Simulator

	3.6 Program Architecture
	3.7 Coordinate System

	4 Results
	4.1 Results
	4.1.1 PID Controller
	4.1.2 Pose Estimation
	4.1.3 Landing


	5 Conclusion
	5.1 Conclusions
	5.2 Future Work

	Bibliography
	Appendix A

	A Code of Project
	A.1 Code Repositories


