
Cooperative Vision-based Automatic Landing
System for a Micro Aerial Vehicle

Martim Braga
Instituto Superior Técnico, Universidade de Lisboa, Portugal

Email: martim.gard.braga@tecnico.ulisboa.pt

Abstract—Nowadays the use of Unmanned Aerial Vehicles is
more popular than ever from hobby to military applications. The
ability of stationary hover flight makes multi-rotor UAVs partic-
ularly interesting in inspection missions. The biggest drawback
however, is the limited flight time that common drones present
due to the size of their batteries. In that regard an autonomous
landing system could mitigate the issue of constant need of human
intervention in the landing and battery charging/replacing stages.
The goal of this thesis was to control a quad-rotor UAV, from free
motion to autonomous landing on a mobile charging station. The
landing platform is placed on an UGV that acts as the mobile
charging station and processing unit of the UAV. The controller
design seeks to achieve full autonomy in the landing process based
on off-board sensors. To best guide the drone to the landing pad,
a multi-stage controller was developed. The proposed system
presents an improved accuracy and robustness in the landing
process, allowing the UAV to use the battery of the UGV as a
mobile battery range extender for longer inspection missions. As
the UGV usually has a higher payload limit, it can have large
batteries, more capable sensors and higher computational power.
The developed system was tested in a simulation environment
and in 50 consecutive landing cycles achieved an average time of
landing of 50 s, with a precision of 2 cm from the center of the
landing pad and 100% success rate.

Index Terms—UAV; UGV; Quadcopter; Automatic landing;
ROS programming; ArduPilot; DroneKit-Python; Computer vi-
sion.

I. Introduction
Unmanned Aerial Vehicles (UAV) are becoming ever more

popular in applications where an aerial point of view is
an advantage, as in military patrol, coastal and agriculture
surveillance, infrastructures inspection, etc. With such a broad
array of applications the degree of required complexity can
drastically differ. On one end of the spectrum there are
consumer level UAVs that can be simply composed by an
Inertial Measurement Unit (IMU), Global Positioning System
(GPS) sensors and a camera. On the other end, we have highly
specialized hardware to suit each desired application.

An UAV can be powered in two different ways: tethered,
where it is connected via cable in order to get power; or by on-
board battery supplies. The main disadvantage of the battery
powered UAV is the UAV’s range. Although not so relevant in
large UAVs, the smaller ones usually have a weight constraint
that implies the use of small capacity and very light batteries,
which then results in a very limited range. For each desired
application the best battery size/weight can be calculated [1]
[2], in order to get the optimal desired range and endurance.

Developing an autonomous flying and landing system can
largely improve productivity and flexibility to perform the
desired task, minimizing or completely removing human inter-
vention. Concerning the limited flight time of a small UAV, a

Fig. 1. Scheme of a typical inspection mission loop.

possible solution is to develop an automatic landing system to
recharge the UAV’s battery on a charging station. This would
enable it to do the designated task without the need of the
technical support to replace or re-charge the batteries.

To further enhance the capabilities and versatility of an
UAV, working cooperatively with Unmanned Ground Vehicles
(UGV) can reduce the time to complete the task, or make
it significantly more efficient. As the UGV does not have
a payload limit, it can have large batteries, more capable
sensors and higher computational power. For example, in solar
panel field inspections, the cooperative work between the two
vehicles further optimises the inspection process by using
an UGV to work as a mobile charging station. This latter
application of UAV and UGV cooperation allows the team, in
a field inspection mission, to complete its mission faster [3].
It also increases the inspection range of the UAV given that it
is no longer dependent on a fixed charging station.

A typical inspection mission can be divided in 5 main steps
as seen in Figure 1. This work will focus on the detection and
precision landing parts of the mission, that includes precisely
detect, guide to the landing location and land the aircraft.

II. State of the Art
In order for an UAV to perform a succesfull landing on

a small platform, a high positioning accuracy is required.
Despite the GPS being sufficient for navigation in wide open
spaces, its accuracy is, on average, of 5 m, which is insufficient
to solve the UAV landing problem.

There are two main approaches to solve the localization
problem in the UAV landing procedure. One possible solution
is to have the main sensors to aid with the landing on the drone
itself while the other one is to have them close to the landing

area. A common way to solve the localization problem of
the drone relative to the landing platform is through computer
vision. Compared with typical sensors, a camera is lighter and
can provide rich information about the UAV self-motion and
external environment. The following sub-sections focus on the
key points related to the scope of this work.

A. On-board

A low cost approach was developed in [4], where by using
a Nintendo Wii remote infrared camera, the drone can detect
points on the platform. These points are infrared LED’s, that
are positioned in a pattern so that the flight controller can
estimate the position and orientation of the UAV once the
infrared LED pattern is identified.

In [5], two different computer vision algorithms were used
in parallel in order to achieve a more robust landing system.
Firstly a red blob tracking was implemented to get an estimate
of the position of the UAV relative to the platform. In parallel
to this, a corner tracking algorithm was implemented in order
to get a robust motion tracking for when the target platform
is not inside the Field of View (FOV) of the camera.

Another approach was used by [6], where a pattern was
designed to overcome the limitations of other models where
the target is only visible close to the landing pad. A set of
concentric white rings was drawn on a black background. Al-
though the pose estimation is very good using this technique,
no successful landing was performed.

B. On-ground

Unlike the on-board sensors approach, this technique al-
lows the use of high resolution cameras alongside with high
computer processing power. In [7] a triple camera system was
used. By extracting key features of the images, a robust 3D
positioning and orientation were obtained.

A stereo camera system was implemented in [8] and [9].
This technique relies not only on an RGB camera but also on a
3D point cloud. Another stereo camera system was developed
in [10] using a couple of Bumblebee cameras to detect the
UAV and estimate its position. This was done with the usage
of a CAMSHIFT algorithm to track the UAV in the image
sequence. From a height of 6 m the pose estimation had a 2.5
times higher accuracy compared to that of the GPS.

An infra-red stereo camera was also used in [11]; in this
application the UAV’s could be successfully tracked and
positioned. In [12] a stereo camera was used to estimate a 3D
position of a quadrotor and achieve an autonomous hovering
and automatic landing system. This system was capable of
locating the MAV while flying at 6 m of altitude, being 3 times
more accurate in longitudinal and lateral position estimation
than the GPS.

C. Flight Controllers

Proportional-Integral-Derivative (PID) controllers are the
most commonly used for a feedback linear control system.
A Proportional-Derivative Controller design was presented by
Erginer and Altug[13]. The developed controller was designed
to control the UAV’s altitude by controlling the pitch, roll and
yaw angles.

To develop a flight and landing controller, a feedback
linearisation controller was developed to autonomously land
a quadrotor UAV onto a moving platform [14].

Back stepping nonlinear controls can also be used when
designing a landing controller. This type of controller offers a
recursive way of design that divides the system into subsys-
tems. Such a system was used to land a rotary UAV using a
tether in [15] and [16].

Neural networks can be incorporated into a controller de-
sign. A neural network has the ability of learning, so that given
a set of observations and a class of functions, the network can
learn what function will solve a given problem in an optimal
way. An intelligent auto-landing controller was designed to
enhance the landing safety in Variable wind conditions [17].

PID Controller: As previously stated, PID controllers are
one of the most common forms of feedback controllers. With
this type of controller that has a control variable, an actuator
to allow the system to act on the control variable, and a form
to read the state of the system, an accurate and responsive
correction is made in order to stabilize the system in the
desired set point. The output u(t) of a PID controller can be
expressed by the following equation:

u(t) = Kpe(t) + Ki

∫ t

0
e(t) dt + Kd

de(t)
dt

(1)

Where u(t) is the output of the controller at the time t, e(t) is
the value of the error at that same instance, and Kp, Ki and
Kd the gains for each part of the controller. In this application
there are 3 variables to be controlled, X, Y and Z, so there is
a PID controller for each control variable.

As seen in equation 1 the proportional part of the controller
has a gain of Kp, and is responsible for the immediate correc-
tions of the system. Ki is the gain for the integral component
of the controller, which is responsible for the correction of
steady state errors. This type of errors must be identified over
time so instantaneous corrections cannot detect and correct.
The derivative part has a gain of Kd, which acts like a damper
slowing the state’s approach to the set point.

D. Robot Development Tools
In order to develop the proposed system, it is necessary

to choose a platform or framework capable of integrating
the different types of hardware and software solutions. It
is important that this platform aids in the development of
the solution as well, by running already developed packages
and libraries. ROS was created and developed by Standford
University and later by Willow Garage in order to create a
open-ended collaboration framework that would be easy to
use and develop on. Nowadays ROS is currently the most
used platform in robotics. By being open source, hardware
and software support is ever growing due to the ease of
adding support for new hardware, adapt existing drivers to the
desired new hardware or add/modify packages for navigation,
computer vision, mapping and control systems.

ROS is compatible with Gazebo physics simulator allowing
to simulate several different systems like arm manipulators,
UAV’s, cameras, mobile robots, etc. ROS was chosen to be
the best platform to develop the desired system on, since it
has the best hardware/software support.

Fig. 2. Flowchart of the proposed system.

III. The Implementation

The major problem to implement an autonomous landing
system with the most of the sensors located near the platform
is to precisely locate the UAV. As previously stated, GPS
accuracy is insufficient to guide the drone to the base, so in
order to accomplish a robust landing system other methods
had to be developed.

The system starts after the UAV completes its mission and
needs to recharge as presented on the left side of the flowchart
of Fig. 2. At this stage the drone will be flying using GPS,
so in the first stage the ground station will receive a signal
to start the retrieval procedure of the aircraft to recharge its
battery. The GPS coordinates of the base are sent to the UAV
and handled by its autopilot system. With the autopilot system
the drone flies to the desired coordinates. If for some reason
the drone gets out of the camera’s FOV before it lands, a
recovery action takes place. It raises 2 m in an attempt to
return to where the depth camera’s FOV is wider so it can
be detected once again. Usually, in the experiments that were
made, it is enough to get back to the FOV and be detected
again but if it is not, then it raises another two times checking
if it’s out of the FOV. If raising three times 2 m is not enough
to get detected, than the drone receives a new GPS point to
go to and starts the landing cycle again.

In order to reduce pose uncertainty, a visual marker was
added to the underside of the drone. When it arrives to the
given location it switches to the vision based controller. The
vision based controller will receive the relative position of the
UAV and feed it to a PID controller to guide it closer to the
platform. This relative position is the estimated position of
the marker or, in case of the marker not being detected, the
position calculated by the depth camera is used in its place.

IV. Methodologies

The landing platform will be placed on an UGV that will
act as the ground station of the system. In order to reduce the
payload on the UAV, and also allow for the use of a better
sensor along with better computational power, a stereo RGB-
D camera was placed at the centre of the landing platform to
guide the drone to its target.

A. Detection

The detection system is composed of two sub-systems. In
the first stage, the system uses a depth-based pose estimation.
In the second stage, it uses an ARTag marker to estimate the
drone’s pose. The second and more precise pose estimation
method is used whenever the marker is detected.

1) RGB-D: To reduce the drone’s pose inaccuracy, once
close to the landing location a RGB-D camera was used to
detect the drone and get a more accurate pose estimation. To
achive this, the sensor was positioned in the centre of the plat-
form. By doing this, the best possible FOV is achieved and also
the ideal position to center the landing drone on the landing
platform. To convert the depth measurements of the camera to
a 3D coordinate system, rs2 deproject pixel to point was
used. In figure 3 the point-cloud of the depth camera can be
seen, where each white dot represents a depth measurement
value for a given pixel. The system detects the closest point
to the camera and converts the depth measure into (X, Y,
Z), giving the relative position of the drone in relation to
the camera. So, to run this detection method an empty open
environment is assumed.

2) Fiducial Markers: Fiducial markers have been used in
the recent past in computer vision for being computational
cheap and very precise in relative pose estimation. These

Fig. 3. Projection of depth camera’s point cloud.

Fig. 4. Iris drone model with ARTag.

markers of known pattern and size, when attached to an object,
can serve as a reference point of location, orientation and scale.

A typical fiducial marker is very easy to manufacture as
it can be printed and glued to any surface that needs to be
identified. This makes this marker a good solution to precisely
locate the drone in the air once close to the platform, by
sticking a marker to the underside of the UAV, as seen in figure
4. The chosen system was ARTag tracking library. ARTag is
short for Augmented Reality Tag, and consists in a dual tone
square symbol with a solid black background and a 6x6 grid
of high contrast interior cells like the one shown in figure 5.

Fig. 5. Different types of AR markers. [18]

The library used to identify these markers was
ar track alvar, which is an evolution of the standard
ARTollkit [19]. One of the biggest challenges in detecting
this type of markers is having the done approaching in
variable light conditions. To overcome this difficulty, Alvar
uses adaptive thresholding, which consists in calculating
a threshold value for each pixel using the values of the
surrounding pixels; and for a more stable pose estimations, it
uses an optical flow based tracking system. In order to find a
marker, the detection algorithm uses an edge based approach.
The edge pixels are found and used to link them into
segments, which once grouped form quadrangles. The corners
of these quadrangles are used to calculate a homography that
allows the marker to be transfered into the world frame. This
approach makes it more robust in changing light conditions.
In the simulated world, the marker was identified from around
2 m high.

B. Development Environment

1) Ardupilot: Ardupilot is an open source autopilot system
that supports a wide range of different vehicles, from multi-
copters, helicopters and fixed-wing aircrafts, to rovers, boats
and submarines [20]. This software is very popular and has a
large user base which provides quick bug fixes and testing. The
manufacturer of the selected drone, 3DR’s Iris, also supports
Ardupilot, which was one of the reasons why this software
was chosen for this work.

There are two main ways to control the UAV in Ardupilot;
one of them is to use a conventional Radio Controller, and
the other one is to use a ground control station. In order to
communicate with the UAV, the ground control station uses
MAVLink, which is a lightweight communication protocol. To
enable compatibility with other software, MAVLink has other
libraries such as MAVproxy, which is a command-line ground
station software. This communication works in both ways, as
the UAV sends information about its current state such as GPS,
local position, IMU data, battery state and much more, and the
ground station sends out control commands.

ArduPilot also offers the possibility to run over Software
In The Loop, allowing it to run without any hardware. In
this mode the sensor data comes from a flight simulator
dynamic model. A big advantage of this system is that a flight
simulation, with no hardware involved, is a fast and cheap way
to test systems without the added risk of damaging physical
components caused by a fault in the system, resulting in a
potential crash and damage of expensive hardware.

There are various flying modes for the autopilot, each mode
with a goal in mind; the modes that are used here are the
guided mode and land mode. The GUIDED mode is meant
to be used to dynamically guide a UAV to a desired location
wirelessly, using a telemetry radio module and ground station
application. The LAND mode is used to descend the drone
until it lands, and shut down the motors once it has landed.
In this project this mode is only used in the last stage of the
landing process when it is less than 0.2 m high above the
landing platform.

2) DroneKit: DroneKit is a cross-platform API that al-
lows the development of Python applications for drones that

communicate over MAVLink, using a low-latency link, with
an Ardupilot flight controller [21]. These applications run
on the MAV’s companion computer and further increase the
capabilities of the autopilot software by performing compu-
tationally heavy tasks that need a low-latency link, as are
computer vision or path planning algorithms. The API offers
a methodical access to the connected vehicle’s state and
parameter information and also enables not only direct control
over the vehicle’s movement and operation, but also mission
management. DroneKit also provides a comprehensive set of
functions and classes that make MAVLink commands easier
to understand.

In this project the main use of this development platform
consisted in handling the data concerning the positions where
the drone needs to be, and forwarding it on to the ArduPilot
flight controller. This data is transfered using MAVLink, so to
start the program a connection must be established between
the autopilot and the DroneKit application. This allows the
UGV to be run as a mobile Ground Control Station.

C. Gazebo Simulator

Gazebo is an open source simulator and physics engine [22].
It offers a very realistic 3D world with high-quality graphics
that allow the users to simulate their systems in an environment
that is as close to the reality as possible. The simulator includes
interfaces for a wide range of simulated sensors out of the box,
and with an ever growing support community, new hardware
is added to the list of simulated sensors every day.

The simulated world and robot models can be designed to
suit each desired application, which allows it to accurately
simulate in complex environments. Plug-ins can also be de-
veloped to enable Gazebo to further improve its capabilities.
There are other physics engines available but the Gazebo’s
already developed compatibility with Ardupilot’s SITL and
ROS, makes it a perfect fit for this project.

In order to run the developed system some modifications
were made to the robot models in Gazebo. In the Jackal model,
as shown in figure 6, a round landing platform with a stereo
camera in the centre was added. In the Iris model, as seen
earlier in figure 4, an ARTag was added to the underside of
the drone.

V. Results

A. PID controller

The job of the velocity controller is to place the drone above
the center of the platform and make it descend until it lands.
It achieves this by the use of three PID controllers, one for
each coordinate, as previously stated.

The initial gains of the PID controller caused the system
to have a slow time of correction, and close to the setpoint
it oscillated, so some tuning of the controller gains were
required. Every gain has to be tuned in relation to the others,
for the purpose of achieving a stable system, given that by
increasing one gain to get a faster response can cause the
system to overshoot and become unstable. With this in mind
the gains were increased in small increments, checking the
system response and adjusting the other gains to compensate
and achieve a stable system.

(a)

(b)

Fig. 6. (a) Gazebo world. b) Modified Jackal Model.

Kp Ki Kd

Initial 0.042 0.046 0.025
Tuned 0.27 0.0107 0.027

TABLE I
PID gain values for X and Y

Table I presents the initial and the implemented gain values
which were achieved after tunning the system. In Z only the
proportional gain was changed to increase the rate of descent.

Figure 7 shows the difference in performance between the
tuned controller and the initial controller performing a landing
routine. To test this, the same initial conditions were used in
order to get comparable results. The drone would start from
5 m height and from 3 m away in the x an y axis and approach
the platform to land. At t=0 the approach starts and the end
of the chart shows the moment when the drone lands.

A great improvement can be observed, as with the tuned
gains the drone centers above the platform 3.4 times faster
and lands 2.2 times faster. The jitter in the pose estimation
can be justified by the switching between detection methods.

To validate that the obtained system is stable, a hovering
routine was made where the drone started at the same point
as the landing routine but with the setpoint of Z at 1 m height,
forcing the drone to remain above the platform and trying to
center at x=0 and y=0.

In Figure 8, it is clear that a much more stable system
was achieved. Once the drone is above the platform with the
tuned gains, it remains within 2 cm of the center, while the
system with the initial gains oscillates around the setpoint with

(a)

(b)

Fig. 7. (a) Plot of position over time of landing routine with initial gains (b)
Plot of position over time of landing routine with tuned gains

(a) (b)

(c) (d)

Fig. 8. (a) Plot of position over time with initial gains (b) Plot of position
over time with tuned gains (c) Scatter plot of X and Y with initial gains (d)
Scatter plot of X and Y with tuned gains

amplitudes in excess of 15 cm of the center.

B. Pose estimation
To validate the chosen pose estimation method, the same

landing routine was used. In Figure 9 the error between
the detected position and the exact position of the drone is
shown. In the beginning, where the error is larger, the depth
camera positioning is used, but once the ARTag is detected,
the position estimation becomes much more accurate as seen
in table III.

To test if the system was able to land the drone successfully
without the ARTag pose estimation some attempts to land the
drone were made. In these test the drone landed successfully,
but in some tests one of the legs landed outside of the landing

(a)

(b)

Fig. 9. (a) Plot of position over time of landing routine with initial gains (b)
Plot of position over time of landing routine with tuned gains

Error X (m) Y (m) Z (m)

Depth camera pose Average 0.145 0.219 0.45
Maximum 0.370 0.398 0.605

ARTag pose Average 0.027 0.015 0.068
Maximum 0.107 0.826 0.172

TABLE II
Comparison between estimation error between the two methods

pad, but not enough to crash the drone. So we can see the even
without the more precise detection method the drone was able
to land successfully. This is helped by the fact that the landing
platform is 50 cm in radius and Iris has a dimension of 55cm
motor to motor, so what was observed was that this extra 5 cm
plus the centering error was what landed outside the platform.
If the platform would to be smaller the landing without the
ARTag positioning possibly would not be successful.

C. Landing

To validate the landing system, a simulated launch and
retrieve mission was simulated. The drone starts the flight from
where it previously landed.

The drone takes off to a height of 5 m and then proceeds to
go to a given GPS location away from the landing base. When
it arrives to the given point it receives the GPS coordinates of
the land pad. After this, the landing sequence is as previously
described in figure 2.

Average X (m) Y (m) Land Time(s) Time σ Success
Drone pose 0.022 0.024 49.79 6.524 100%Estimated 0.018 0.018

TABLE III
Repetitive landing statistics

Fig. 10. Scatter plot of landing position over 50 landings

Average X (m) Y (m) Land Time(s) Timeσ Success
Drone pose 0,022 0,022 65,91 10,20 100%

TABLE IV
Repetitive landing on mobile platform statistics

50 landings were performed and the corresponding statistics
are presented in table III.There it can be seen that the drone
lands on average within 3 cm of the center of the base. It also
can be seen that it takes on average about 50 seconds to land,
counting from the moment when it’s detected by the depth
camera. All 50 landings were successful. In figure 10, the
landing position variation relative to the center of the landing
pad is shown.

To simulate a mobile platform another mission scenario was
simulated. The drone has the same routine as before where
takes off to a height of 5 m and than proceeds to go to a given
GPS location away from the landing base. Then receives the
GPS coordinates of the landing pad but this time the landing
pad moves randomly from place to place while the drone is
executing the task. To test this 30 landings were done, and the
respective statistics are presented in table IV.

In table IV a higher standard deviation and average landing
time can be seen, comparing to the static landing platform this
is due to, in some landing attempts, the base was still moving,
so this resulted in a higher time. Also in some cases the drone
was transported in the platform from one place to the other,
this way simulating a mobile charging station. In figure 11 in
image (a) it can be seen that the drone land very accurately
within a radius of 4 cm of the center of the base. In the image
(b) the landing pad position in the field can be seen for the
30 landings.

VI. Discussion and Conclusion

This work achieved the proposed goals. As seen in the
previous section, the developed system is able to accurately
detect, guide the drone to the base and make it land. As the
designed system was developed and tested using Ardupilot,
it can theoretically work with a wide range of MAVLink
compatible devices and can easily be implemented in real
hardware.

The results that were obtained after testing the systems in
simulation were very good. Achieving a success rate of 100%
in various tests and landing relatively quickly.

(a)

(b)

Fig. 11. (a) Scatter plot of the final landing pose in relation the the center
of the landing pad. (b) Scatter plot of landing base position for each landing

A. Future Work
The most immediate future work would be to test and

validate the proposed system on physical hardware. The depth
camera detection algorithm is not a perfect solution as it
assumes an empty open environment to estimate the pose of
the drone. A possible solution would be to train a convolution
neural network or use other image processing algorithms to be
able to detect the drone in the air and get a depth measurement
from the area identified as a drone. This way have a more
robust detection system.

References
[1] M. Biczyski, R. Sehab, J. F. Whidborne, G. Krebs, and P. Luk,

“Multirotor sizing methodology with flight time estimation,” Journal
of Advanced Transportation, vol. 2020, 2020.

[2] L. W. Traub, “Optimal battery weight fraction for maximum aircraft
range and endurance,” Journal of Aircraft, vol. 53, no. 4, pp. 1177–
1179, 2016.

[3] K. Yu, A. K. Budhiraja, and P. Tokekar, “Algorithms for routing of
unmanned aerial vehicles with mobile recharging stations,” in 2018
IEEE International Conference on Robotics and Automation (ICRA),
2018, pp. 5720–5725.

[4] K. Wenzel, P. Rosset, and A. Zell, “Low-cost visual tracking of a
landing place and hovering flight control with a microcontroller,”
Journal of Intelligent and Robotic Systems, vol. 57, pp. 297–311,
Jan. 2010. doi: 10.1007/s10846-009-9355-5.

[5] H. W. Ho and Q. Chu, “Automatic landing system of a quadrotor uav
using visual servoing,” Apr. 2013.

[6] S. Lange, N. Sünderhauf, and P. Protzel, “Autonomous landing for a
multirotor uav using vision,” In Workshop Proceedings of SIMPAR
2008 Intl. Conf. on Simulation, Modeling and Programming for
Autonomous Robots, Jan. 2008.

[7] C. Martı́nez, P. Campoy, I. Mondragón, and M. A. Olivares-Méndez,
“Trinocular ground system to control uavs,” in 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2009,
pp. 3361–3367.

[8] Ma, Yan, Coordinated landing and mapping with aerial and ground
vehicle teams, 2012. [Online]. Available: http://hdl.handle.net/10012/
6993.

[9] A. Bachrach, S. Prentice, R. He, et al., “Estimation, planning, and
mapping for autonomous flight using an rgb-d camera in gps-denied
environments,” The International Journal of Robotics Research,
vol. 31, no. 11, pp. 1320–1343, 2012.

[10] D. Pebrianti, F. Kendoul, S. Azrad, W. Wang, and K. Nonami,
“Autonomous hovering and landing of a quad-rotor micro aerial
vehicle by means of on ground stereo vision system,” Journal of
System Design and Dynamics, vol. 4, pp. 269–284, Jan. 2010. doi:
10.1299/jsdd.4.269.

[11] W. Kong, D. Zhang, X. Wang, Z. Xian, and J. Zhang, “Autonomous
landing of an uav with a ground-based actuated infrared stereo vision
system,” Nov. 2013, pp. 2963–2970. doi: 10 . 1109 / IROS . 2013 .
6696776.

[12] D. Pebrianti, F. Kendoul, S. Azrad, W. Wang, and K. Nonami,
“Autonomous hovering and landing of a quad-rotor micro aerial
vehicle by means of on ground stereo vision system,” Journal of
System Design and Dynamics, vol. 4, no. 2, pp. 269–284, 2010.

[13] B. Erginer and E. Altug, “Modeling and pd control of a quadrotor
vtol vehicle,” in 2007 IEEE Intelligent Vehicles Symposium, 2007,
pp. 894–899.

[14] H. Voos and B. Nourghassemi, “Nonlinear control of stabilized flight
and landing control for quadrotor uavs,” in 7th Workshop on Advanced
Control and Diagnosis ACD 2009, Zielo Gora, Poland, 2009.

[15] B. Ahmed and H. R. Pota, “Backstepping-based landing control of
a ruav using tether incorporating flapping correction dynamics,” in
2008 American Control Conference, 2008, pp. 2728–2733.

[16] B. Ahmed, H. R. Pota, and M. Garratt, “Flight control of a rotary
wing uav using backstepping,” International Journal of Robust and
Nonlinear Control: IFAC-Affiliated Journal, vol. 20, no. 6, pp. 639–
658, 2010.

[17] S. M. B. Malaek, N. Sadati, H. Izadi, and M. Pakmehr, “Intelligent
autolanding controller design using neural networks and fuzzy logic,”
in 2004 5th Asian Control Conference (IEEE Cat. No.04EX904),
vol. 1, 2004, 365–373 Vol.1.

[18] “Artag photo webpage.” (), [Online]. Available: https : / /commons .
wikimedia . org / wiki / File : Comparison of augmented reality
fiducial markers.svg.

[19] “Ar track alvar wiki ros webpage.” (), [Online]. Available: http://wiki.
ros.org/ar track alvar.

[20] “Ardupilot webpage.” (), [Online]. Available: https://ardupilot.org/. (
18 Oct 2021 04:00:52).

[21] “Dronekit-python webpage.” (), [Online]. Available: https://dronekit-
python . readthedocs . io / en / latest / about / index . html. (18 Oct 2021
04:00:52).

[22] “Gazebo simulator website.” (), [Online]. Available: http://gazebosim.
org/. (accessed: 14.06.2010).

