
Non-cooperative UAV Detection and Relative Position
Estimation

A Deep Learning Approach Using LiDAR and Camera Data

Mariana Ricardo Santos

Thesis to obtain the Master of Science Degree in

Aerospace Engineering

Supervisors: Professor Afzal Suleman
Professor Rita Maria Mendes de Almeida Correia da Cunha

Examination Committee

Chairperson: Professor Paulo Jorge Coelho Ramalho Oliveira
Supervisor: Professor Afzal Suleman

Member of the Committee: Professor Hugh Liu

December 2021

ii

To my mom and dad

iii

iv

Acknowledgments

I would like to thank my supervisors, Professor Afzal Suleman and Professor Rita Cunha for the

availability, guidance, advice and critiques on my work that help me improve my knowledge and achieve

better results.

On a more particular note, I would like to thank Professor Afzal Suleman for giving me the opportunity

of doing my Master’s thesis in Canada. I have always admired its culture and the experience of living

abroad was always part of my goals. It was a very rewarding experience, not only on a professional but

also personal level, for which I am truly grateful.

I would like to thank my mom and dad for everything they did for me throughout the years. Regardless

of the situation, they could always find a way to make sure I could grab all the opportunities I encountered

and fight for my future. I couldn’t be more proud of being their daughter. I hope that one day I can give

them the deserved life they never had.

I would also like to mention my godfather Romeu Gomes, who has always been an enormous in-

spiration to me. The first person in my family to go to university, he has built an amazing professional

career and has a beautiful family.

I would like to thank my friends who came with me to Canada for all the amazing adventures and

experiences. Thank you Beatriz, Daniele, Diogo, Hugo C., Hugo F., Pedro and especially Mariana, who

shared workspace with me and was always there listening and caring, especially when I needed a friend

the most. Thank you Mariana for being one of the most caring and kind people I have ever met.

In this thesis, I continued the work developed by Daniel Justino, who I have to thank for the incredible

availability and countless advice that always helped me throughout this work. I could not have reached

my results without his input.

I also want to thank everyone at CfAR for all the support and for accompanying my work during this

journey, offering advice, providing hardware and sharing their vast knowledge with me.

Finally, I would like to thank Sara and Ana for reminding me that, no matter how far away I am, when

I come home, our friendship will always remain as if I had never left. Thank you Xico for making me feel

that someone cares about what I have to say, regardless of how nerdy it might be.

v

vi

Resumo

O trabalho apresentado nesta tese propõe um sistema capaz de detectar e estimar a posição relativa

de UAVs (Unmanned Aerial Vehicles) não cooperativos. O sistema utiliza medições de um LiDAR (Light

Detection and Ranging) e imagens de uma câmara para detectar e seguir UAVs próximos através

da aplicação de algoritmos de deep learning. Em vez de anotar manualmente imagens para treinar

o detetor de objetos escolhido - YOLO (You Only Look Once), foram criadas imagens sintetizadas e

automaticamente anotadas com o open-source software AirSim. O YOLO foi treinado com 4761 imagens

e validado com 530 imagens, para as quais apresentou mAP (Mean Average Precision) igual a 99.03%,

precisão de 98.00%, recall de 98.00% e um IoU (Intersection over Union) de 83.11%. O YOLO fornece

coordenadas de bounding boxes que, em conjunto com medições do LiDAR, são utilizadas para estimar

a posição relativa dos UAVs. Filtros de Kalman são utilizados para suavizar as estimativas obtidas. O

sistema pode ser usado em situações nas quais sistemas convencionais de localização não são uma

boa solução, como sense and avoid. Simulações realizadas com o AirSim apresentaram um RMSE

(Root-Mean Squared Error) máximo de 8.60m para a estimativa de distância com uma câmara de

resolução 720p e 7.80m para uma câmara de resolução 1080p, quando o UAV se encontra a Z ≈ 50m.

Finalmente, simulações com dois UAVs foram realizadas para confirmar que o sistema funciona para

qualquer número de UAVs presentes nas imagens, sem qualquer informação ou suposição sobre os

mesmos.

Palavras-chave: Câmara, LiDAR, YOLO, AirSim, Filtro de Kalman

vii

viii

Abstract

This work proposes a system designed to run onboard a UAV capable of detecting and estimating

the relative position of encountered non-cooperative UAVs. The system utilizes both LiDAR (Light De-

tection and Ranging) measurements and images from a camera to detect and track nearby UAVs using

a deep learning approach. Instead of manually labelling a dataset to train the chosen object detector

- YOLO (You Only Look Once), synthesized images were automatically created and annotated using

the open-source software AirSim. YOLO was trained with 4761 training and 530 validation images to

which presented a mAP (Mean Average Precision) of 99.03%, precision of 98%, recall of 98% and an IoU

(Intersection over Union) of 83.11%. YOLO outputs bounding box coordinates that are combined with

measurements given by the LiDAR to estimate the relative position of the encountered UAVs. Kalman

Filtering is used to smooth the obtained estimations. The system can be used in situations where con-

ventional localization systems are not a good solution, such as sense and avoid. Simulations performed

with AirSim presented a maximum RMSE (Root-Mean Squared Error) of 8.60m for the distance esti-

mation with a camera with a 720p resolution and 7.80m for a camera with 1080p, when the UAV is at

Z ≈ 50m. When tested in the simulation images, YOLO presented a precision of 100% and the lowest

recall value of 92%. Finally, simulations with two UAVs were performed to confirm that the system works

for any number of encountered UAVs without any a priori information or assumption.

Keywords: Camera, LiDAR, YOLO, AirSim, Kalman Filter

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Tables . xv

List of Figures . xvii

Nomenclature . xix

List of Acronyms . xxii

1 Introduction 1

1.1 Context and Motivation . 1

1.1.1 Sense and Avoid . 2

1.2 Project Overview . 4

1.3 Related Work . 4

1.4 Objectives . 5

1.5 Thesis Outline . 5

2 Theoretical Background 7

2.1 Visual Object Detection . 7

2.1.1 Object Detection With Deep Learning . 7

2.1.2 YOLO . 8

2.1.3 YOLO Frameworks . 9

2.2 Multi-Object Tracking . 10

2.2.1 Deep SORT . 10

2.3 Geometric Camera Parameters . 11

2.3.1 Pinhole Respective Projection Model . 11

2.3.2 Homogeneous Coordinates . 12

2.3.3 Intrinsic Parameters . 13

2.3.4 Extrinsic Parameters . 14

2.3.5 The PnP Problem . 14

2.4 LiDAR Principles . 14

2.5 Kalman Filtering . 15

xi

2.5.1 Discrete Kalman Filter . 15

2.6 Evaluation Metrics . 17

2.6.1 Object Detection . 17

2.6.2 Model Performance . 19

3 Methodology 21

3.1 Previous Work . 21

3.1.1 LiDAR Point Cloud Filtering and Clustering . 22

3.1.2 Modified Deep SORT . 23

3.2 System Overview . 23

3.3 Detection Task . 25

3.3.1 AirSim Overview . 25

3.3.2 AirSim Simulation . 27

3.4 Relative Localization Estimation . 29

3.4.1 Position Estimation Using LiDAR . 29

3.4.2 Position Estimation Using Camera . 30

3.5 Method Limitations . 32

3.6 Kalman Filtering . 34

3.6.1 Distance Stabilization . 34

3.6.2 3D Coordinates Stabilization . 34

3.7 Implementation for Multi-UAV . 36

4 Simulations and Results 39

4.1 AirSim Setup . 39

4.1.1 Camera Calibration . 41

4.2 Yaw Simulation . 43

4.2.1 Results . 43

4.3 Camera Resolution Simulation . 50

4.3.1 Results . 50

4.4 Multi-UAV Simulation . 55

4.4.1 Results . 57

4.5 Discussion . 58

5 Conclusions and Future Work 61

5.1 Conclusions . 61

5.2 Contributions . 62

5.3 Future Work . 62

Bibliography 63

xii

A Simulation Results 69

A.1 Yaw Simulation . 69

A.2 Camera Resolution Simulation . 71

xiii

xiv

List of Tables

1.1 NATO classification of LSS-UAS. 2

2.1 Comparison of YOLO detection frameworks. 9

3.1 Vehicles used in the AirSim simulations. 28

3.2 M8-Quanergy LiDAR performance results. 30

4.1 RMSE and MaxAE results obtained for the yaw simulation. 44

4.2 Empty frames as a function of Z for the yaw simulation. 49

4.3 RMSE and MaxAE results for the LiDAR measurements of the yaw simulation. 50

4.4 RMSE and MaxAE results obtained for the 1080p simulation. 52

4.5 Empty frames as a function of Z for the 1080p simulation. 52

4.6 RMSE and MaxAE results for the LiDAR measurements of the 1080p simulation. 54

4.7 Results for the multi-UAV simulation. 57

xv

xvi

List of Figures

1.1 Sensing task as part of a collision-avoidance system. 3

2.1 Detection method of YOLO. 9

2.2 Deep SORT state machine. 11

2.3 Exemplification of collinearity between two points. 12

2.4 Normalized and physical coordinate systems. 12

2.5 Visual representation of IoU. 18

3.1 Previous work proposed architecture. 22

3.2 Example of an output of the previous work’s proposed system. 22

3.3 Diagram of the thesis proposed system. 24

3.4 Example of a labelled image from the Drone-net dataset [57]. 25

3.5 Interface of the AirSim plug-in for Unreal Engine . 26

3.6 The architecture of AirSim. 26

3.7 Images captured on different environments using AirSim and Unreal engine. 28

3.8 PawnPaths developed on Unreal Engine for AirSim. 28

3.9 Process for the creation of a dataset in the YOLO Darknet format. 29

3.10 Relative position estimation method. 30

3.11 Effect of the propeller’s movement in the bounding boxes returned by YOLO. 32

3.12 Examples of bounding boxes returned by YOLO. 33

3.13 Estimated distance versus ground truth. 33

3.14 Estimated distance before and after Kalman Filtering. 35

3.15 Architecture of the Multi-UAV algorithm. 37

3.16 Example of a ROI that captures two UAVs. 37

4.1 AirSim flight simulations. 40

4.2 Appearance of the UAV at Z ranging from 10 to 50m with a 720p camera and in a ROI with

size 416× 416. 41

4.3 Camera intrinsic calibration procedure. 42

4.4 Example of 3D-2D projection after the extrinsic calibration. 42

4.5 Trajectory followed by the UAV for the yaw simulation. 43

4.6 UAV appearance with yaw varying from 0◦ to 90◦ at Z ≈ 10m. 44

xvii

4.7 Results obtained for the OXY plane in the yaw simulation. 45

4.8 Estimation results for Z in the yaw simulation. 47

4.9 Remaining results for Z in the yaw simulation. 48

4.10 UAV at Z approximately equal to 40 and 50m with a 720p and a 1080p camera in a ROI of

size 416× 416. 51

4.11 Estimations results in the OXY plane for the 1080p simulation. 53

4.12 Estimation results for Z in the 1080p simulation. 54

4.13 Remaining results for Z in the 1080p simulation. 55

4.14 Trajectory followed by UAV 1 for the multi-UAV simulation. 56

4.15 Trajectory followed by UAV 2 for the multi-UAV simulation. 56

4.16 Minimum distance between UAVs during the multi-UAV simulation. 56

4.17 Results in the OXY plane for the multi-UAV simulation. 57

4.18 Results in the OXZ plane for the multi-UAV simulation. 58

A.1 Yaw simulation results for X over time. 69

A.2 Yaw simulation results for Y over time. 70

A.3 Yaw simulation results for Z over time. 70

A.4 Yaw simulation results for d over time. 71

A.5 Camera resolution simulation results for X over time. 71

A.6 Camera resolution simulation results for Y over time. 72

A.7 Camera resolution simulation results for Z over time. 72

A.8 Camera resolution simulation results for d over time. 73

xviii

Nomenclature

Greek symbols

α Angle between vectors a1 and a2 [◦].

γ Aspect Ratio [adimensional].

ψ Azimuth [◦].

θ Elevation [◦].

Roman symbols

d Distance [m].

h Height [pixels].

r Apparent Physical Size of an UAV [meters].

w Width [pixels].

Subscripts

i, j, k, n Computational indexes.

u, v Component of the bounding box centre [pixels].

X,Y, Z Cartesian components [m].

x, y, z Cartesian components [pixels].

Superscripts

˙ First time derivative.

i, j Computational indexes.

T Transposed.

xix

xx

List of Acronyms

AI Artificial Inteligence

AP Average Precision

API Application Programming Interface

CfAR Centre for Aerospace Research

CNN Convolutional Neural Network

cpdf conditional probability density function

CPU Central Processing Unit

Deep SORT Simple Online and Realtime Tracking With a Deep Association Metric

DNN Deep Neural Network

EO Electro-Optical

FOV Field of View

GPU Graphics Processing Unit

IoU Intersection Over Union

IPPE Infinitesimal Plane-Based Pose Estimation

LiDAR Light detection and ranging

LSS Low, Slow and Small

mAP Mean Average Precision

MAV Micro Air Vehicle

MaxAE Maximum Absolute Error

MOT Multi-Object Tracking

NATO North Atlantic Treaty Organization

PnP Perspective-n-Point

RADAR Radio Detection and Ranging

RAM Random Access Memory

RMSE Root Mean Square Error

ROI Region of Interest

SAA Sense and Avoid

SORT Simple Online and Realtime Tracking

UAS Unmanned Aircraft Systems

UAV Unmanned Aerial Vehicle

xxi

YOLO You Only Look Once

xxii

Chapter 1

Introduction

An overview of the potential of autonomous Unmanned Aerial Vehicles (UAVs) is presented in this

chapter as a contextualization for the current work. Afterwards, an analysis of the project for which

the presented system was developed is performed as well as an overview of the state of the art cur-

rent methods that serve as a base for the algorithm. This chapter ends with the thesis objectives and

contributions, followed by the outline of the thesis.

1.1 Context and Motivation

As the technological capabilities of UAVs increase, these aircraft are becoming more popular due to

their wide and various applications. UAVs are affordable, functional, versatile and continue to become

easier to acquire and operate. These vehicles present a robust solution for many industries and are

capable of serving several commercial and individual needs such as search and rescue [1], precision

agriculture [2], aerial photography [3] and infrastructure monitoring [4].

However, UAVs still have limitations in practical scenarios due to their lower payload capacity, shorter

endurance and operational range. The potential of UAVs could be further explored if autonomous op-

erations were possible, without the need for a human pilot. However, proving these UAVs are safe and

capable, so they can be allowed to perform desired applications, is challenging. Most UAV operations

are constrained to designated airspace areas or within temporary restricted airspace areas, commonly

known as segregated airspace. On special operations, UAVs can be permitted to fly in a limited envi-

ronment outside segregated airspace [5]. There has been an effort to integrate these vehicles in the

non-segregated airspace [6], but for this to be possible UAVs need to be equipped with Artificial In-

teligence (AI) algorithms capable of handling difficult problems and reacting in complex scenarios. Many

of these algorithms perform tasks that are executed by humans in manned aircraft, such as environmen-

tal sensing and perception, trajectory planning and collision avoidance.

North Atlantic Treaty Organization (NATO) industrial advisory group (NIAG) categorizes Low, Slow

and Small (LSS) Unmanned Aircraft Systems (UAS) according to their weight, operating altitude, mission

range, and payload capacity. Table 1.1 presents the details of these classifications. The work presented

1

Table 1.1: NATO classification of LSS-UAS. [7].

Categories Weight[kg] Payload [kg] Coverage [km] Altitude [m]

Micro < 2 < 1 < 10 < 1500

Mini Light < 10 < 5 < 25 < 3000

Mini Heavy < 25 < 12 < 50 < 4000

Small < 150 < 50 < 150 < 6000

in this thesis is focused on Micro, Mini Light and Mini Heavy UAS and it is also focused in only a part of

the capabilities associated with an autonomous system: the sense and relative localization estimation

tasks that can be integrated with trajectory-planning algorithms for collision avoidance protocols.

For the sensing task, the ability to use inexpensive and lightweight sensors such as cameras for

collision-avoidance purposes has become increasingly important. Visual detection of outdoor flying

small drones is challenging because they are relatively small and can fly in environments with large

amounts of background clutter and difficult lighting conditions. However, this problem has been tackled

successfully in the automotive world, for example, there are now commercial products [8, 9] designed

to sense and avoid both pedestrians and other cars. The problem of extending the algorithms used for

pedestrian and automotive detection to the world of small UAVs is difficult, as flying objects detection

poses some unique challenges [10]:

• The motions are more complex in the three-dimensional space, with objects moving in any direction

and appearing in any part of the frame;

• Flying objects can have very different shapes and can fly against very complex backgrounds mak-

ing them hard to detect, even for the human eye;

• Taking into account the speeds at which flying objects travel, potentially dangerous UAVs must

be detected when they are still far away, at distances much greater than the intruder size, which

means they may appear very small in the images;

• For small UAVs, having a powerful computer on-board is not feasible due to the limited payload of

these vehicles.

Algorithms developed for the sensing task of flying objects are usually integrated with collision-

avoidance algorithms, providing Sense and Avoid (SAA) capabilities to unmanned flying vehicles.

1.1.1 Sense and Avoid

Sense and avoid systems have four components (see Figure 1.1): sensing, conflict detection, colli-

sion avoidance and flight controller [11]. The first three components should replace the pilot’s ability to

”see and avoid”. The detection of a potential collision must be at a minimum range that depends on the

performance of both aircraft (such as the cruise speed, turn rate, and climb or descent rates). Further-

more, this detection should be possible in all weather conditions the UAS may encounter and even in

2

Figure 1.1: Sensing task as part of a collision-avoidance system. [11].

the case of loss of direct command, control, or communications with the command ground station [12].

Thus, it is of paramount importance to consider all these factors when designing the sensing subsystem

for the UAS.

Non-cooperative Sensors

Sensors for sense and avoid applications can be divided into cooperative and non-cooperative de-

pending on whether it is necessary for the encountered UAS to transmit information about its position

or not, respectively. UAS which will not actively cooperate to resolve a conflict are classified as non-

cooperative. For this project, the sensors used are non-cooperative to guarantee the safety of the flying

vehicle against any type of intruder obstacle. These sensors can be classified as passive or active

sensors, depending on whether or not they transmit the energy needed for detecting the object [11].

Two examples of passive non-cooperative sensors include:

• EO/IR Cameras: Electro-Optical (EO) and infrared (IR) cameras have the same basic principles,

differing on the wavelength of the captured radiation. These sensors are lightweight and can pro-

vide high-resolution perceptions of the scene. EO cameras use visible light and can only operate

during the daytime, but IR imagining sensors can be helpful under extreme lighting conditions and

night-time [13].

Two examples of active non-cooperative sensors include:

• RADAR: Radio Detection and Ranging (RADAR) can work during day or night and in all weather

conditions. A trade-off in low-power and long-range is expected from an effective sense and avoid

radar system. It identifies a target based on the returned pulses reflected by the detected UAV and

therefore, presents problems detecting small targets, which have a low radar cross-section (RCS).

Solutions to capture small targets include multiple-input multiple-output (MIMO) radars [14–16].

• Light detection and ranging (LiDAR): LiDAR works similarly to a RADAR. Instead of radio

waves, short and precise laser light impulses are emitted with high frequency, preceding sensor

measurement of reflected light. It provides 3D sparse point cloud representations of the environ-

ment and can achieve high update rates (5− 20Hz) over ranges of 100m.

3

Data Fusion

It might be useful to use multiple sensors types to detect and track encountered UAVs since different

sensors have different advantages and disadvantages [17]. Robustness and accuracy can be improved

as well as the sensing range. False positive and false negative detections can be also be reduced.

However, combining data from multiple sensors adds challenges to the algorithms because the system

must decide which data correspond to the same objects.

1.2 Project Overview

The work presented in this thesis is part of the research performed at the Centre for Aerospace

Research (CfAR) of the University of Victoria. The task consisted in continuing the work developed in

the previous year by Daniel Justino [18] where a sensing system detects and tracks potential intruder

UAVs in images captured using a LiDAR and a Camera. A LiDAR can provide 3D point clouds with

representations of the environment at ranges over 100m at high update rates (5− 20Hz) in low visibility

conditions such as at night. However, the 3D point clouds provided are sparse and detections worsen

in the presence of rain, fog, snow or dust. Cameras can provide rich texture-based and colour-based

information, and object detection methods using deep learning have exceeded many traditional methods

in both accuracy and speed. By combining both measurements from a LiDAR and Camera it is possible

to improve the deficiencies from each individual system.

The system should fly onboard a UAV and be used for integration with avoidance trajectory planning

algorithms for SAA applications. The work developed in the previous year was capable of detecting and

tracking UAVs in an image but no estimation regarding relative position or velocity was accomplished.

Therefore, the method presented in this thesis aims to continue the previous work by estimating the

relative localization of the encountered UAVs in (X,Y, Z) coordinates relative to the world coordinate

system.

1.3 Related Work

Numerous approaches to vision-based UAV detection and tracking have been presented in the lit-

erature. Some of the most effective approaches with low false positives utilise multi-stage-detection

pipeline, machine learning and deep learning [19].

Multi-stage detection pipelines have become less popular with the arising of machine learning and

deep learning methods. The key stages include image pre-processing, temporal filtering and detection

logic. In the pre-processing stage, background clutter is suppressed and small pixel sized aircraft are

highlighted. Popular methods for this stage include morphology [20] and machine learning [21]. Tempo-

ral filtering is required to emphasize and extract features that are usually associated with flying vehicles.

In [20] Hidden Markov Model (HMM) filtering is used and [22] proposed the use of an extended Kalman

filter. The next stage, detection logic, uses the information from the image pre-processing and temporal

4

filtering to assess whether there is a flying vehicle on the scene or not. A multi-stage-detection pipeline

used to compute the 3D position of a flying target in images captured with a depth camera is proposed

in [23].

More recently, deep learning approaches have been explored for the vision-based detection and

relative localization estimation of objects. In [24] a single camera and the deep learning algorithm You

Only Look Once (YOLO) [25], are used to estimate the distance to a Micro Air Vehicle (MAV) given its

known physical size. A similar approach is presented in [26] where the algorithm can be used for a

larger number of drones by training YOLO with a dataset that is created while systematically flying a

quadcopter in front of a static camera and applying background subtraction to the images. In [27], a

monocular camera and YOLO are used in a collision-avoidance system where a nested Kalman Filter

is used to improve the estimations of distance and velocity. All these methods use single cameras and

require a priori information about the vehicles, so they cannot be applied to non-cooperative UAVs.

By introducing a LiDAR in the system, it is possible to extend these approaches to non-cooperative

UAVs, as it will be shown in the next chapters. An example of a LiDAR Obstacle Warning and Avoidance

System (LOWAS) employed in a system for UAS sense and avoid applications is presented in [28]. In

[29], a single camera and a LiDAR are used for the detection of beacons, with results improving by using

information from both sensors and overcoming each sensor’s individual deficiencies. A neural network

is trained with data from the LiDAR and the camera so that it could estimate the position of encountered

beacons. These estimations were compared with LiDAR 3D point clouds and fuzzy logic was used to

compute the score of the final outputted distance.

1.4 Objectives

In this thesis, the study is focused on the relative localization estimation of non-cooperative UAVs

which can be encountered in airspace using data from a LiDAR and an EO camera. The work presented

in this thesis is capable of performing detection and relative localization tracking of UAVs without relying

on any cooperative sensor, marker, information or previous knowledge about the possible encountered

UAVs. This means that it can be used in scenarios where it may not be expected that the UAV will co-

operate in any way. The developed system should be lightweight, removing the need for extra hardware

to be carried, which may be important in UAVs that have limited carrying capacity.

1.5 Thesis Outline

This thesis is organized as follows: Chapter 2 introduces a theoretical background that serves as a

base for the system developed in this thesis. Chapter 3 discusses the method proposed as a solution for

the problem of relative localization estimation of UAVs with an overview of the system followed by details

of the algorithm used for the detection and position estimation. Chapter 4 presents the simulations

performed with open-source software and the correspondent results obtained. Finally, conclusions,

contributions and future work are discussed in Chapter 5.

5

6

Chapter 2

Theoretical Background

This chapter begins with an overview of the theoretical work that has been done in the fields of visual

object detection and tracking, where deep learning algorithms for the detection and tracking of objects

are discussed. A summary of the principles and models used for camera projection and sensor cali-

bration involving cameras is presented afterwards. LiDAR physics fundamentals and the mathematics

behind Kalman Filtering are also presented. This chapter ends with the presentation of some metrics

that will be used for the evaluation of the algorithms proposed in this thesis work.

2.1 Visual Object Detection

Humans are capable of looking at an image and instantly know which objects are presented and

their positions. The human visual system is fast and accurate, allowing people to perform complex

visual tasks. One of the fundamental computer vision problems is to completely understand an image

by trying to precisely estimate the concepts and locations of the objects contained in each image. This

task is referred to as object detection and its objective is to surround an object within a bounding box

and classify which type of object it is.

Traditional object detection models have a pipeline that can be mainly divided into the following

stages: informative region selection, feature extraction and classification. [30]. For the informative

region selection stage, to find all the possible positions of objects, a usual but exhaustive strategy is

to scan the image with a sliding window. The next stage, feature extraction, focuses on the problem

of extracting visual features that allow to recognize different objects but the diversity of backgrounds,

shapes, illumination conditions makes it difficult to design a robust feature extractor. Finally, a classifier

is necessary to distinguish objects from different categories.

2.1.1 Object Detection With Deep Learning

Deep Neural Networks (DNNs) can be referred to as neural networks with deep structures and have

deeper architectures with the capacity to detect more complex features and training algorithms that allow

the networks to learn object representations without the need to design features manually. The history of

7

neural networks can date back to the 1940s [31] but stopped being largely used in the early 2000s due

to lack of large-scale training data, limited computational power and lower performance when compared

with other machine learning methods. Deep learning became popular in 2006, after a breakthrough in

speech recognition.

Generic object detection can be divided into two main categories: region proposed based and regres-

sion/classification based. R-CNN [32] is an example of the first approach, which follows the traditional

pipeline, generating firstly potential bounding boxes in an image and then running a classifier on them.

Post-processing is used to refine the bounding box and eliminate duplicate detections. The second

treats object detection in a unified framework where categories and localizations are achieved directly.

An example is YOLO [25] in which the object detection is treated as a single regression problem, straight

from image pixels to bounding box coordinates and class probabilities. Overall, region proposal-based

methods perform better, but classification based methods can be processed in real-time at the cost of a

drop in accuracy. [30].

2.1.2 YOLO

The current state-of-the-art deep learning detector YOLO is a Convolutional Neural Network (CNN)

that can be trained to detect different classes of objects in an image.

The input image is divided into an SxS grid. Each cell of this grid is responsible for the prediction of

the object centred in that cell. Each cell proposes B bounding boxes and their correspondent confidence

scores. These scores are a means of measuring the confidence YOLO has that the box contains an

object and how accurate is the object’s classification. The confidence scores are defined as Pr(Object)×

IOU truthpred , which indicates how likely there are objects (Pr(Object) ≥ 0) and the confidence in their

prediction (IOU truthpred), which is defined in 2.6.

The output of YOLO is a set of predicted bounding boxes that consist of 5 predictions: x, y, w, h, and

confidence. The (x, y) coordinates represent the centre of the box and (w, h) the width and height of the

box. Because many bounding boxes have a low prediction score, YOLO keeps only the ones with the

highest scores by imposing a confidence threshold.

For each cell, C conditional class probabilities are predicted, Pr(Classi | Object), translating the

probability of the classification given, knowing that the cell contains an object. Only one set of class

probabilities per grid cell is predicted, regardless of the number of bounding boxes, B. Yields the class-

specific confidence scores for each bounding box,

Pr(Classi | Object)× Pr(Object)× IOU truthpred = Pr(Classi)× IOU truthpred . (2.1)

The object detector predictions are encoded as an S × S × (B × 5 + C) grid, see Figure 2.1.

Since the release of the first version of YOLO, many improvements have been made to the object

detector. YOLOv1 suffers from a variety of deficiencies relative to other state-of-the-art object detec-

tors regarding, for example, localization errors or low recall when compared to region proposal-based

methods.

8

Figure 2.1: Detection method of YOLO. The input image is divided into an S × S grid and for each
cell there are B predicted bounding boxes with correspondent scores, and C class probabilities. Taken
directly from [25].

2.1.3 YOLO Frameworks

The release of YOLOv2 [33] intended to present a more accurate detector that was still fast. Batch

Normalization [34] is a method used to accelerate the training of a DNN and was added to the con-

volutional layers of YOLO, improving the convergence during training and the Mean Average Precision

(mAP). Bounding boxes are predicted using anchor boxes increasing the model’s recall at the cost of a

small decrease in the mAP. Dimension clusters are used on the training set to automatically find good

values for the dimensions of the anchor boxes. The size of the input images changed from 448× 448 to

416× 416 and instead of fixing the input image size, every 10 batches the network randomly chooses a

new size, forcing the network to learn to predict well for a variety of input sizes.

YOLOv3 [35] achieved a higher mAP and was better capable of detecting smaller objects. It predicts

bounding boxes at three different scales and a similar approach to the concept of pyramid networks [36]

is used to extract features. The method allows getting more meaningful semantic information from the

later convolutional layers and high-resolution features from the earlier layers.

In YOLOv4 [37], a ”bag of freebies” i.e., methods that increase the training time without affecting

the inference time are implemented. Methods that only affect the inference time are also added to

the network, called ”Bag of Specials”. It can be easily be trained on a single GPU, unlike many other

detection algorithms. YOLO is the state-of-the-art for real-time single-stage detectors.

A comparison between the discussed frameworks is presented in Table 2.1.

Table 2.1: Comparison of YOLO detection frameworks. Models marked with * are compared on PAS-
CAL VOC 2012 (PASCAL Visual Object Classes Challenge) [38], while others on MS COCO (Microsoft
Common Objects in Context) [39]. [40]

Frameworks Year Input size AP0.5[%] FPS[Hz]

YOLO* 2015 448 57.9 45

YOLOv2 2016 352 44.0 81

YOLOv3 2018 320 51.5 45

YOLOv4 2020 512 64.9 31

9

2.2 Multi-Object Tracking

Multi-Object Tracking (MOT), also called Multi-Target Tracking (MTT), is one of the many computer

vision tasks. Its objective is to analyse videos to identify and track objects without any prior knowledge

about their appearance and number. The MOT task can be applied to both 2D and 3D data, but in this

thesis, we focus our study on 2D data extracted by a single camera. [41]

Usually, MOT algorithms share part of the following steps: detection (an object detector analyses the

input frame), motion prediction (predicts the next position of each tracked target), affinity stage (compute

a similarity/distance score between pairs of detections) and association stage (associate detections from

different frames belonging to the same target). Many MOT algorithms skip the detection stage focusing

more on the association algorithm.

One usual approach to identify helpful observations in MOT algorithms is tracking-by-detection. In

this method, a set of bounding boxes identifying the targets in the images are used in the tracking pro-

cess, usually by associating them together and constructing a track. This approach is standard and very

effective. Another example is tracking-by-matching, in which there is a model for how the object moves

and appears. The object’s appearance model is constructed with information from previous frames and

objects in the current frame are selected based on the distance to the samples. This method performs

well if the target does not change abruptly its appearance or the background is not very complex.

2.2.1 Deep SORT

Simple Online and Realtime Tracking (SORT) [42] proposes a tracking-by-detection framework for the

MOT problem which can be used for real-time applications, combining both speed and accuracy. The

detections of each frame are represented as bounding boxes and the tracker only considers detections

from the current and previous frames.

Simple Online and Realtime Tracking With a Deep Association Metric (Deep SORT) [43] integrates

appearance information to improve the performance of SORT, allowing to track objects during longer

periods of obstructions while keeping it easy to implement and efficient. It assumes the camera is not

calibrated and there is no ego information available. They approximate the inter-frame displacements

of each object with a linear constant velocity model which is independent of other objects and camera

motion. For the tracking step, it models the object state x as

x =
[
u v γ h ẋ ẏ γ̇ ḣ

]T
, (2.2)

where u and v represent the bounding box centre position, γ is the aspect ratio, h is the height and the

remaining values represent their respective velocities in image coordinates.

For each new UAV assignment, the algorithm creates a new track that stays in a tentative state

until Amax consecutive associations are successful. Afterwards, the track transitions into an active state

(a1). Tracks that are not successfully associated with a measurement within their first Amax frames are

deleted by transitioning into an inactive state (a2). The track remains in an active state for as long as

10

observations keep being assigned to them (a3). When no associations are made, the track transitions

into a lost state (a4) where the Kalman Filter from Deep SORT continues to predict the target position

based on previous observations (a5). If it associates one observation with a track, this track transitions

back to the active state (a6), but if no associations are made for N iterations, the track is removed (a7).

Figure 2.2: State machine of the Deep SORT tracker.

For the assignment task, Deep SORT integrates motion and appearance information. To incorporate

motion information, the squared Mahalanobis distance between the newly arrived measurements and

the predicted Kalman Filter states is used, accordingly with

s(1)(i, j) = (sj − si)TS−1
i (sj − yi), (2.3)

where (yi, Si) is the projection of the ith track distribution into measurement space and sj is the jth

bounding box detection. A second metric is integrated into the assignment problem, for each bounding

box detection sj an appearance descriptor, gj is computed. Then, the second metric measures the

smallest cosine distance between the ith track and the jth detection is appearance space,

s(2)(i, j) = min{1− gTj g
(i)
k |g

(i)
k ∈ Gi}. (2.4)

In practice, a pre-trained CNN is applied to compute bounding box appearance descriptors.

2.3 Geometric Camera Parameters

2.3.1 Pinhole Respective Projection Model

The pinhole perspective (also called central perspective) projection model was first proposed at the

beginning of the fifteenth century and is a mathematically convenient and simple approximation of the

imaging process. Let P denote a scene point with coordinates (X,Y, Z), p denote its image with coordi-

11

nates (x, y, z) and O the ideal pinhole of the camera, as shown in Fig. 2.3.

Figure 2.3: Collinearity of the point P , its image p, and the pinhole O from which the perspective projec-
tion equations are derived. [44]

Since p is a point in the image plane, z = d and because p, P and O are collinear yields,


x = λX

y = λY

d = λZ

⇔

x = dXZ

y = dYZ

. (2.5)

It is possible to notice that if we have information regarding a point in the camera frame, (x, y), it is not

possible to recover the correspondent coordinates in the scene, (X,Y, Z) without knowing any more

information.

2.3.2 Homogeneous Coordinates

Consider a coordinate vector P to be (X,Y, Z)T in R3 in some fixed world coordinate system. Its

homogeneous coordinate vector P = (X,Y, Z, 1)T in R4 and the correspondent vector p = (x, y, 1))T of

its image p in the camera’s reference frame are related by the perspective projection equation [44],

p =
1

Z
MP, (2.6)

whereM is the matrix that provides an algebraic representation of the perspective projection process.

Figure 2.4: Normalized and physical coordinate systems. [44]

12

2.3.3 Intrinsic Parameters

Consider a normalized image plane parallel to the image plane but located at a distance d = 1 from

the pinhole,O, with its own coordinate system. Let p̂ = (x̂, ŷ, 1)T be the homogeneous coordinates of the

projection of point P into the normalized image plane. Equation (2.5) can be written in this normalized

coordinate system as x̂ = X
Z

ŷ = Y
Z

⇔ p̂ =
1

Z

[
Id 0

]
P (2.7)

The physical retina of the camera usually is located at a distance d 6= 1 from the pinhole and the

coordinates of the image points are usually expressed in pixels instead of meters. Additionally, pixels

may be rectangular instead of square and the actual origin of the camera coordinate system is at a

corner c of the retina and not at its centre. Finally, the camera coordinate system might be skewed, so

the angle θ between the two image axes is not equal to 90 degrees (see Fig. 2.4).

For these reasons, the relation between the vector of homogeneous coordinates in the image frame

and the homogenous coordinates in the normalized image plane is obtained through the camera cali-

bration matrix K:

p = Kp̂ =


fx s cx

0 fy cy

0 0 1

 p̂, (2.8)

and, consequentially, equation 2.6 can be rewritten as

p =
1

Z
K
[
Id 0

]
P (2.9)

The pinhole model provides only a simple approximation for the projection of points from the real

world to the camera coordinate system and is not valid when high accuracy is required. In these cases,

a more realistic camera model should be used. One method is to correct the radial and tangential lens

distortion that are responsible for the radial and tangential displacements of the image points in the

image plane.

Remembering that (x̂, ŷ)T are the coordinates of the projection of point P in the normalized image

plane, the radial distortion can be approximated by

δx
(r) = x̂(k1r

2 + k2r
4 + ...)

δy(r) = ŷ(k1r
2 + k2r

4 + ...)

, (2.10)

where k1, k2... are the radial distortion coefficients and r =
√
x̂2 + ŷ2. The tangential distortion can be

approximated by δx
(t) = 2p1x̂ŷ + p2(r2 + 2x̂2)

δy(t) = 2p2x̂ŷ + p1(r2 + 2ŷ2)

, (2.11)

where p1 and p2 are the tangential distortion coefficients. It is concluded that, in this model, the set

13

of intrinsic parameters (fx, fy, s, cx, cy) is augmented with the distortion coefficients k1, ..., kn, p1 and

p2 [45]. Since these parameters have a certain physical meaning, they are known as physical camera

parameters. Let K̃ be the augmented matrix of K, equation (2.9) is written as

p =
1

Z
K̃
[
Id 0

]
P. (2.12)

2.3.4 Extrinsic Parameters

Equation (2.12) is written in a coordinate frame attached to the camera, C. Consider the case where

this frame does not correspond to the world coordinate system, W . Extrinsic camera parameters are

necessary to transform the world coordinates to the camera centred coordinate frame.

Let CP denote the vector of homogeneous coordinates of point P expressed in C and WP the same

vector expressed inW . It is possible to change between C andW using the following rigid transformation

CP =

R t

0T 1

WP, (2.13)

where R is a rotation matrix and t is a translation vector. In this case, it is possible to write equation

2.12 as

p =
1

Z
K̃
[
R t

]
WP, (2.14)

which is the most general form of the perspective projection equation.

2.3.5 The PnP Problem

The Perspective-n-Point (PnP) problem is the problem of finding matrices R and t given the camera

calibration matrixK, the distortion coefficients k1, ..., kn, p1 and p2, and a set of 3D points in the world and

their corresponding 2D coordinates in the camera frame. A solution for this problem is the Infinitesimal

Plane-Based Pose Estimation (IPPE) [46] which is based on finding a point where the transformation is

best estimated and constraining the pose using only the transformation at this point. This method is fast

and leads to accurate pose estimates.

2.4 LiDAR Principles

LiDAR sensors have a working principle similar to RADAR sensors and use information acquired by

the light emitted by a laser beam or pulse. The laser emits coherent beams or pulses since all photons

are emitted at the same time and have the same phase. They are also monochromatic because all

photons have the same frequency or wavelength. Finally, they are said to be collimated because the

photons emitted move on parallel rays. The emitted power must be kept within a safety envelope and

an adequate frequency must be selected to guarantee safety in human environments [47]. For example,

Class 1 laser systems are safe under all conditions of normal use.

14

The standard LiDAR equation [48] is derived from the RADAR equation and relates the power of the

received and transmitted signals. In the case of objects that are distributed in space, the received power

is given by

Pr(t) =
D2

4πλ2

∫ H

0

ηsysηatm

R4
Pt

(
t− 2R

vg

)
σ(R)dR, (2.15)

where t is the time, D is the aperture diameter of the receiver optics, Pr the received power, Pt the

emitted power, λ the wavelength, H the flying height, R the distance from the system to the target,

ηatm and ηsys respectively the atmospheric and system transmission factors, vg the group velocity of

the laser pulse, and σ(R)dR the apparent effective differential cross-section. The cross-section is called

”apparent” because an object can be occluded by another object that is reflecting the signal.

Usually, a very short but intense pulse of laser radiation is used to compute distances by measuring

its Time of Flight (TOF), accordingly with,

d =
c · (tr − tt)

2
, (2.16)

where d is the distance between the LiDAR and the object, c is the speed of electromagnetic radiation

and tr and tt are the received and transmitted time measurements, respectively.

The relationship between the distance measurements and the LiDAR’s coordinate frame is given by


X

Y

Z

 = d


cos(ψ) · cos(θ)

cos(ψ) · sin(θ)

sin(ψ)

 (2.17)

where ψ and θ are the elevation and azimuth angles of the emitted laser beam, respectively [49].

2.5 Kalman Filtering

The Kalman Filter [50] is a mathematical procedure for situations in which noisy sensor outputs are

used to estimate the state of a system with uncertain dynamics. The filter applies to linear, discrete-time,

time-varying systems characterized by a sequence of noisy observations that allow to evaluate the state

estimate through the minimization of the mean square error.

2.5.1 Discrete Kalman Filter

Consider a linear, discrete-time system having dynamics [51]

x(k + 1) = A(k)x(k) +B(k)u(k) +G(k)w(k), t ≥ 0 (2.18a)

y(k) = H(k)x(k) + v(k) (2.18b)

x(0) = x0 (2.18c)

15

where x(k), u(k), y(k), w(k) and v(k) represent the state, control, measurements and measurements

noise vectors, respectively, and A(k), B(k), G(k) and H(k) represent the system transition, input distri-

bution, system noise and observation matrices, respectively. w(k) and v(k) are Gaussian, white noises

processes satisfying

E{w(k)} = 0, E{v(k)} = 0,

E{w(k)w(j)T } =

0 k 6= j

Q(k) k = j

, E{v(k)v(j)T } =

0 k 6= j

R(k) k = j

,

E{w(k)v(j)T } = 0,

(2.19)

and have covariance matrices Q(k) and R(k), respectively, both positive definite [51].

It is assumed that the initial condition is also modelled as a Gaussian random variable with E{x(0)} =

x0 and E{x(0)x(0)T } = P (0). For this case, the dynamics and observations are linear and Gaussian,

white noises and the conditional probability density functions (cpdfs), p[x(k)|{y(1), ...y(k)}, {u(0), ...u(k−

1)}], are Gaussian for any k. The Kalman Filter propagates this cpdf in order to obtain the state esti-

mates. Let

p[x(k)|{y(1), ...y(k)}, {u(0), ...u(k − 1)}] ∼ N (x̂(k)+, P (k)+), (2.20)

represent a Gaussian cpdf. The state estimate x̂(k)+ is the mean of this cpdf and the uncertainty of the

state’s estimate is expressed by the covariance matrix P (k)+, with

x̂(k)+ = E{x(k)|{y(1), ...y(k)}, {u(0), ...u(k − 1)}}, (2.21a)

P (k)+ = E{(x(k)− x̂(k)+)(x(k)− x̂(k)+)T |{y(1), ...y(k)}, {u(0), ...u(k − 1)}}. (2.21b)

This means that the Kalman Filter only propagates the first (mean) and second (covariance) moments

because the cpdfs are Gaussian. To evaluate x̂(k+1)+, the filter only uses previous estimate x̂(k)+ and

new observation y(k + 1).

The Kalman Filter performs two steps: prediction, with x̂(k+ 1)− representing the predicted estimate

and update, with x̂(k + 1)+ representing the updated estimate. During the prediction step, an error

between the estimated state, x̂, and the true state, x, and an error covariance matrix are computed

accordingly with

x̃(k + 1)− = x(k + 1)− x̂(k + 1)−, (2.22a)

P (k + 1)− = E{x̃(k + 1)− · (x̃(k + 1)−)T }. (2.22b)

The same applies to the update step:

x̃(k + 1)+ = x(k + 1)− x̂(k + 1)+, (2.23a)

P (k + 1)+ = E{x̃(k + 1)+ · (x̃(k + 1)+)T }. (2.23b)

16

Considering an observer of the form [51]

x̂(k + 1)+ = x̂(k + 1)− +K(k + 1)[y(k + 1)−H(k + 1)x̂(k + 1)−], (2.24)

where K(k + 1) is the Kalman Gain and represents a weighted factor that aims to minimize the error

covariance matrix P (k + 1)+. The Kalman Gain that minimizes equation (2.23b) can be written as

K(k + 1) = P (k + 1)−H(k + 1)T [H(k + 1)P (k + 1)−H(k + 1)T +R(k + 1)]−1, (2.25)

and the error covariance matrix is updated using

P (k+1)+ = P (k+1)−−P (k+1)−H(k+1)T [H(k+1)P (k+1)−H(k+1)T +R(k)]−1H(k+1)P (k+1)−.

(2.26)

As a consequence, the following equations summarize the functioning of the Kalman Filter.

Prediction Step:

x̂(k + 1)− = A(k)x̂(k)+ +B(k)u(k), (2.27a)

P (k + 1)− = A(k)P (k)+A(k)T +G(k)Q(k)G(k)T , (2.27b)

Update Step:

x̂(k + 1)+ = x̂(k + 1)− +K(k + 1)[y(k + 1)−H(k + 1)x̂(k + 1)−], (2.28a)

P (k + 1)+ = [I −K(k + 1)H(k + 1)P (k + 1)−]. (2.28b)

For every step, the Kalman filter only needs to remember the previous step making it computationally

efficient. It does not require high computational power making it a good choice for several applications.

2.6 Evaluation Metrics

In order to evaluate the algorithms used or developed for this thesis work, it is necessary to introduce

adequate performance metrics [52, 53].

2.6.1 Object Detection

Intersection Over Union

The Intersection Over Union (IoU) predicts how well adjusted to the objects are the bounding boxes

returned by the algorithms. It is given by

IoU =
Area(Bp ∩Bgt)
Area(Bp ∪Bgt)

, (2.29)

17

where Bp and Bgt are the predicted and ground truth bounding boxes, respectively. If the two bounding

boxes do not overlap, the IoU is equal to 0% and if they overlap entirely, it is equal to 100%. Two bunding

boxes match if IoU ≥ 50%, as proposed in the PASCAL VOC competition [54].

Figure 2.5: Visual representation of IoU.

Precision

The precision, P , translates the capacity to perform correct detections since it gives the relationship

between the number of objects detected versus the total number of detections. It is defined as

P =
TP

TP + FP
, (2.30)

where TP and FP are equal to the number of true positives and false positives detected, respectively.

A TP is characterized by presenting an IoU superior to 50%, otherwise, it is considered to be a FP . In

percentage, precision values vary from 0% to 100%, with P = 100% corresponding to an algorithm that

does not detect any false positives, when there are TP detections.

Recall

The recall, R, translates the ability to find all the objects in the scene since it gives the relationship

between the number of objects detected versus the total number of objects. It is defined as

R =
TP

TP + FN
, (2.31)

where FN corresponds to the number of false negatives in a set. In percentage, recall values vary from

0% to 100%, with R = 100% corresponding to an algorithm that detects all the objects in the scene, when

there are TP detections.

18

F1 Score

The F1 score is the harmonic mean of the precision, P , and recall, R. It is defined as

F1 =
2 · P ·R
P +R

. (2.32)

Precision-Recall Curve

As explained before, when YOLO detects an object in an image, this prediction as a confidence score

associated. When this score is lower than a certain confidence threshold, the prediction is discarded.

For each value of this threshold, the precision and recall presented by YOLO for the same set of images

will be different. It is possible to plot the curve of the recall versus precision for each confidence score. If

the confidence score is high, YOLO will present high precision but low recall values. On the other hand,

if it is low, YOLO will have high recall values, but low precision.

Average Precision

The Average Precision (AP) corresponds to the area under the Precision-Recall curve. AP is given

by

AP =

n∑
(Rn −Rn−1)× P, (2.33)

where Rn is the recall value of point n, and P is the maximum precision for any recall value larger than

Rn, i.e., P = max{P (R) : R ≥ Rn}.

Mean Average Precision

The mAP is the average of the AP across different classes, defined as

mAP =
1

N

j=1∑
N

APj , (2.34)

where N represents the number of total classes and APj the AP of the jth class.

2.6.2 Model Performance

RMSE

The Root Mean Square Error (RMSE) has been used as a standard statistical metric to measure

model performance. It is a measure of accuracy and it is always non-negative. It is defined as

RMSE =

√√√√ 1

N

N∑
n=1

(
x̂n − xn

)2
, (2.35)

19

where N is the total number of measurements, x̂n is the estimated value of the nth predicted measure-

ment and xn is its correspondent actual value.

A value of 0 would indicate a perfect fit to the data. In general, a lower RMSE is better than a higher

one. Comparisons across different types of data are invalid since the measure is dependent on the scale

of the numbers used.

MaxAE

The Maximum Absolute Error (MaxAE) is given by

MaxAE = max(|x̂n − xn|), (2.36)

where x̂n is the estimated value of the nth predicted measurement and xn is its correspondent actual

value. The MaxAE has the same unit of measurement as the data being predicted. Similarly to the

RMSE, a value of 0 would indicate a perfect fit to the data.

20

Chapter 3

Methodology

This chapter begins with a discussion of the previous work developed at CfAR for the detection and

tracking of non-cooperative UAVs that serves as a starting point for the work developed in this thesis.

Subsequently, an overview of the final architecture is presented and three main tasks are discussed: de-

tection, relative position estimation and algorithm adaptation for the problem of multi-UAV. A discussion

of the method’s limitations is also presented.

3.1 Previous Work

The work presented in this thesis carries on the work previously developed by Daniel Justino in [18]

during his time at CfAR. Therefore, this section presents an overview of the algorithm that he developed

for the task of detection and tracking of non-cooperative UAVs in an image using a LiDAR and a camera.

Using an object detector such as YOLO to inspect a whole image and detect UAVs is computationally

expensive and can lead to the acquisition of a large number of false positives. For this reason, one of

the largest contributions of the developed work was the implementation of a method that is capable of

generating a Region of Interest (ROI) in the captured images, in which YOLO searches for the UAV.

Note the scheme present in Fig. 3.1 that represents the architecture proposed. The LiDAR detects

and acquires a UAV by giving a 3D point cloud that is clustered and filtered by the algorithm to obtain

just the points relative to the encountered UAV. These points are then projected into the 2D image using

the geometric camera parameters and the projection perspective projection equation (2.14). Afterwards,

a ROI centred in the 2D projected point is created with a fixed size of 128x128 pixels. The object detector

YOLOv3 scans this ROI and tries to detect the UAV inside it. If a UAV is detected, the tracking algorithm

based on Deep SORT is used to predict the position of the UAV in the following frames, i.e, for each

instant t, the modified Deep SORT predicts the position of the ROI in the next frame, at t + 1. For this

reason, at instant t+ 1, YOLO will be inspecting ROIs created by the LiDAR 3D-2D projection and ROIs

predicted by the modified Deep SORT. The modified Deep SORT tracker is especially important when

LiDAR measurements are not available.

The discussed architecture detects and tracks UAVs in an image and outputs the UAV’s pixel co-

21

Figure 3.1: Previously proposed architecture. The dashed line represents a link between consecutive
iterations [18].

ordinates in the image camera frame. The architecture is not capable of providing relative position

estimations of the detected UAV, (X,Y, Z), in the world coordinate frame (see Fig.3.2). Therefore, the

work presented in this thesis aims to continue the work discussed thus far and find a solution for the

problem of relative position estimation of non-cooperative UAVs using a LiDAR and a camera.

Figure 3.2: Example of an output of the previously proposed system. LiDAR detections are identified
by red dots, the ROI, ground truth and YOLOv3 detections correspond to the yellow, light blue and dark
blue bounding boxes, respectively. Taken directly from [18].

3.1.1 LiDAR Point Cloud Filtering and Clustering

When filtering the point cloud given by the LiDAR, the objective is to remove points that do not

correspond to any of the encountered UAVs. These points may result from reflections of the LiDAR

beam on the ground, trees, buildings, etc. In this system, the filtering algorithm uses information from

the sensor system’s orientation and altitude to determine the boundaries corresponding to the region in

which the UAVs may be flying.

22

Clustering is used to find the points reflected by the same UAV and assign them into clusters cor-

respondent to the UAVs present in the scene. This task is performed by a density-based clustering

solution called DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [55] that requires

the following two parameters: maximum distance between two points for them to be considered in the

neighbourhood of the other (set to 0.5m) and the minimum number of points necessary to form a cluster

(set to 1).

3.1.2 Modified Deep SORT

The prediction of the position of the UAVs in the following frame is based on the MOT algorithm

Deep SORT since its distance metric is a good fit for scenarios that deal with a small number of sparse

flying UAVs. Deep SORT was planned for the tracking of pedestrians, where CNN appearance descrip-

tors add value to the algorithm but, for the specific case of small UAVs, the CNN appearance descriptors

are not particularly useful. For this reason, these descriptors were discarded and the algorithm is called

modified Deep SORT.

3.2 System Overview

The previous architecture developed by Daniel Justino detects and tracks UAVs in images but cannot

provide localization estimations for the encountered UAVs in the world coordinate frame. Therefore, this

thesis aims to find a solution for the task of relative position estimation of non-cooperative UAVs using

information from a LiDAR and a camera, providing relative coordinates (X,Y, Z) of the UAVs relative to

the onboard payload, in the world coordinate frame.

The method proposed can be divided into two different steps: detection and relative localization

estimation, as presented in Figure 3.3.

For the detection task, most of the work presented in section 3.1 was kept. For each frame, the 3D

point cloud given by the LiDAR is filtered and clustered by the algorithm. When there are points likely to

be related to an encountered UAV, a ROI is created using the 3D-2D projection. YOLO looks for UAVs

in the ROIs created by the projection and by the modified Deep SORT tracker. If for a specific frame no

ROI is created, the output of that frame is empty. The same happens if YOLO does not detect a UAV in

any of the ROIs created for that frame. The modified Deep SORT is used to predict the position of the

UAVs in the following frames. The algorithm constructs a track with the previous detections and uses

this information to predict the position of the UAV in the following frame.

The main work of this thesis is focused on the second task, relative localization estimation. The

position of the UAVs is estimated with two different methods. When YOLO detects a UAV with a corre-

spondent LiDAR measurement, i.e., if there is a LiDAR 2D projection inside the bounding box returned

by YOLO, the correspondent LiDAR 3D coordinates are used directly. If there are no correspondent

LiDAR points for the detected UAV, position estimation is performed using the camera.

Because the LiDAR 3D point clouds are sparse, most of the estimations will be based on information

23

Figure 3.3: Diagram of the proposed system.

from the camera. Most of the solutions presented for this task that use a single camera assume a priori

knowledge about the encountered UAVs. By introducing a LiDAR in the system, these methods can be

generalized to cases where no a priori information about the target is necessary while maintaining a

system that is simple, affordable and of small dimensions and weight.

To estimate the UAV’s position with the camera, it is necessary to estimate its relative distance first.

The method used to achieve this requires knowing the apparent physical size of the target, r, which will

be discussed in detail in section 3.4, the bounding boxes returned by YOLO and the geometric camera

parameters. The value of r is called apparent since it changes accordingly with variations in the attitude

of the UAV. A Kalman Filter is used to smooth the estimates of the distance that afterwards is used to

compute the relative 3D coordinates of the UAV in the LiDAR’s coordinate frame.

The proposed system is suitable to be used in situations where conventional localization systems

cannot be used and works for any number of UAVs present in the scene and without any previous

information or assumption about these UAVs.

24

3.3 Detection Task

As mentioned before, for the detection task, most of the work presented in 3.1 was kept but some

key updates were implemented.

Firstly, YOLO was updated to the last released version at the time of the training, YOLOv4, since this

version was computationally faster and presented a larger AP0.5 than the previously released frame-

works. Also, the size of the ROI was changed from 128 × 128 pixels to 416 × 416 pixels, which is the

standard size of the input images of YOLOv4, because it was observed experimentally that this size

provided better detection results for the model trained.

The Deep SORT tracker was configured to keep a new track in the tentative state until Amax = 3

consecutive associations are successful and to remove this track if no associations are made for N = 9

iterations.

The coordinates of the bounding boxes returned by YOLO are used in the estimation of distance and

3D coordinates when using only the camera. As it will be explained in section 3.4, these bounding boxes

need to fit around the target almost perfectly in order to achieve good results (see Figure 3.4(b)). For this

reason, it was necessary to create a dataset that satisfied this requirement so that YOLO could be trained

to return bounding boxes in these conditions. Most of the available datasets to train YOLO for UAV

detection present bounding boxes similar to Figure 3.4(a) and do not satisfy the system’s requirements,

so it was necessary to develop a synthetic customized dataset using the open-source software AirSim

[56].

(a) Actual label of the image. (b) Desired label for the image.

Figure 3.4: Example of a labelled image from the Drone-net dataset [57].

3.3.1 AirSim Overview

AirSim [56] is an open-source simulator that enables the development and testing of algorithms for

autonomous vehicles and facilitates the collection of annotated data for the training of object detectors

such as YOLO. AirSim was built on Unreal Engine [58] which offers realistic simulations, enabling the

realization of Software-in-the-loop (SITL) and Hardware-in-the-loop (HITL) experiments (see Figure 3.5).

25

Figure 3.5: Snapshot that shows two aerial vehicles flying in a rural environment. The inset shows depth,
object segmentation and front camera streams generated in real-time.

The core components of AirSim include environment model, vehicle model, physics engine, sensor

models, rendering interface, public Application Programming Interface (API) layer and an interface layer

for vehicle firmware (see Figure 3.6).

Figure 3.6: Architecture of AirSim that depicts the core components and their interactions. [56]

The simulator provides sensor data from the simulated world to the flight controller which outputs the

actuator signals that are taken as input by the vehicle model.

AirSim is implemented as a plug-in for the Unreal engine and can be dropped into any Unreal project.

The Unreal engine platform offers a marketplace with hundreds of pre-made detailed environments,

turning AirSim into a powerful tool for gathering simulated training data in a large number of different

environments. AirSim simulations can be personalized using the file settings.json which is a file in the

JSON format [59] that allows the user to change the simulation accordingly with their needs.

26

Amongst other functionalities, the file allows the following modifications:

• Type of simulated vehicles: AirSim has built-in physics models for both cars and quadrotors. It

is possible to configure the number of vehicles and their type.

• Sensors: AirSim allows the full personalization of the payload of each vehicle. Currently, AirSim

supports cameras (scene, depth and segmentation images), LiDARs, barometers, IMUs, GPS,

Magnetometers and Distance Sensors.

• PawnPaths: It is possible to specify the vehicle pawn blueprints and replace the default quadrotor

in AirSim with another UAV mesh while maintaining the original physics model. It is also possible

to change the physics model.

• APIs: AirSim exposes APIs so you can interact with the vehicle in the simulation programmatically,

using Python code. It is possible to use these APIs to retrieve images, get the state of the vehicle,

control it, etc.

• Controller: AirSim comes with its own controllers, but can be personalized to use external soft-

ware, such as PX4 Autopilot [60]. When using the built-in controller, the vehicle can be moved

using APIs and when using PX4 it can be moved using RC controllers or tools such as QGround-

Control [61].

• Recording: The recording feature allows to record data such as segmented and scene images in

real-time at an adjustable rate.

For the creation of the dataset to train YOLO, the simulations used PX4 Autopilot as a controller that

received the desired state from the QGroundControl.

PX4 is an open-source flight control software for drones and other unmanned vehicles. It utilizes

a port-based architecture so when developers add components, the extended system does not lose

robustness or performance, making it highly modular and extensible in terms of both software and hard-

ware. The system is designed to be coupled with embedded computer vision for autonomous capabili-

ties, making it a good solution for developers working on localization and obstacle detection algorithms.

PX4 can be used in various simulators such as AirSim or Gazebo [62].

QGroundControl provides full flight control and mission planning for drones with the Micro Air Vehicle

Link (MAVLink) communication protocol [63] and all the code is open-source.

3.3.2 AirSim Simulation

During the simulations performed to gather training data, 4 different environments were used: Blocks,

Landscape Mountains, A Boy and His Kite, and Sun Temple.

Two UAVs flew in every simulation so that the first UAV (carrying one camera) could record images

of the second UAV. It was decided to train YOLO with images of two drones: DJI Inspire 1 and Mavic

Pro considering that these were the drones available at CfAR and used in the experiments of previous

27

(a) Landscape from A Boy and His Kite. (b) Landscape from Blocks. (c) Landscape from A Boy and His Kite.

Figure 3.7: Images captured on different environments using AirSim and Unreal engine.

years. The specifications of these drones can be found in Table 3.1. For this reason, two PawnPaths

meshes were created in Unreal engine, as presented in Figure 3.8. These meshes were taken from

the Sketchfab website [64, 65] and edited in Unreal Engine so that the propellers could work with the

quadrotor physics model built-in AirSim. YOLO could have been trained for other UAVs and even for

other classes of objects, but in the scope of this thesis and taking into account the limited time available

to build a dataset, it was trained just for these two.

Table 3.1: Properties of the vehicles used in the AirSim simulations.

Dimensions [cm] Weight [g] Nº of Motors Autonomy [min]

DJI Inspire 1 44× 45× 30 2, 845 4 18

DJI Mavic Pro 32× 24× 81 734 4 21

1 unfolded

(a) PawnPath of the DJI Inspire 1. (b) PawnPath of the DJI Mavic Pro.

Figure 3.8: PawnPaths developed on Unreal Engine for AirSim.

In the Blocks and Landscape Mountains environments, the drones were recorded flying from the

front, back, rotated by ±90◦ , rotated by ±45◦ and moving randomly at both close and long distances.

In the A Boy and His Kite, and Sun Temple environments, several different flights were performed with

random trajectories that allowed to capture the drones with different attitudes and at different distances.

The camera frames were programmed to have 1920 × 1080 pixels, a horizontal Field of View (FOV)

of 90◦ and a vertical FOV of 50.6◦ . Alongside the scene camera frames, segmented images were

collected. A Python code was created to use APIs to change the colours of the segmentation images

28

so that every object in the environment would appear black and only the drones would appear in white.

This facilitated the process of finding the bounding boxes of the drones present in the image, using the

Python library OpenCV [66]. These points were written to a text file accordingly to the YOLO darknet

format, i.e., one text file per image containing annotations and a numeric representation of the label (0

or 1 in the case of DJI Mavic Pro or Inspire 1, respectively). The annotations were normalized to the

range [0, 1] which makes them easier to work with even after scaling or stretching images.

(a) Scene image from Landscape Moun-
tains.

(b) Segmented image correspondent to
(a).

(c) Boundary points of the drone in (b).

Figure 3.9: Process for the creation of a dataset in the YOLO Darknet format.

A total of 4761 training images and 530 validation images were gathered to train the object detector.

After the training, YOLO was tested on the 530 images from the validation set and presented a mAP of

99.03%, precision of 98.00%, recall of 98.00% and IoU of 83.11%.

3.4 Relative Localization Estimation

LiDARs are capable of giving 3D point clouds with high accuracy and at high frame rates but these

point clouds are sparse and the UAVs are not detected when flying between the LiDAR beams. In addi-

tion, LiDAR beams can have small ranges. On the contrary, cameras can capture sequenced frames in

which the UAV is always visible and YOLO can always perform UAV detection in these frames. However,

single camera position estimation state-of-the-art methods require an a priori knowledge of the encoun-

tered UAVs and are usually used in cooperative UAV missions. By using information from the previous

LiDAR detections as the necessary a priori knowledge for the implementation of single camera methods,

these can be expanded to non-cooperative flying vehicles and the system can continue to estimate the

UAV’s position only with the camera even when there is no LiDAR data.

3.4.1 Position Estimation Using LiDAR

The LiDAR measurements are used directly whenever available and validated by YOLO, i.e., if the

LiDAR 3D-2D projection results in points that are inside the bounding box returned by YOLO. In [67],

the accuracy of distance measurement of a previous model of the LiDAR available at CfAR is tested in

both outdoor and indoor environments. The data-sheet for this LiDAR displayed a range accuracy equal

to < 5cm (1σ at 50m) and the results obtained are presented in table 3.2.

29

Table 3.2: M8-Quanergy LiDAR performance results.[67]

Experiment Range of distances[m] Error range[cm]

Indoor 2 to 14 1.79 to 4.47

Outdoor 10 to 40 1.70 to 6.86

It is possible to notice that the algorithm presented is fully dependent on the detections performed by

YOLO. This decision was made taking into account that only an object detector can distinguish a UAV

from a bird or the tip of a tree. For this reason, to use information from the LiDAR clusters, YOLO must

detect the UAV in the same position too.

3.4.2 Position Estimation Using Camera

Whenever there are no measurements from the LiDAR, the relative position estimation is computed

using only the camera. The presented method has been used for distance estimation using a single

camera in several works such as [24] and [26], but always assumed knowledge about the encountered

UAVs. In this work, we present a solution that expands this method to any non-cooperative UAV.

The task of relative position estimation can be divided into two phases: distance estimation and 3D

coordinate estimation.

It is possible to notice from Fig. 3.10 that the distance d, from the centre of the UAV and the origin

of the camera coordinate system, Oc, is estimated from the angle α which corresponds to the angle

between vectors a1 and a2. These are directional vectors of 3D lines intersecting with Oc and the

centres of the horizontal edges of the bounding box of the detected UAV.

Figure 3.10: Scheme of the projection of the detected UAV to the camera projection plane P . The UAV

is specified by the physical size r. The camera coordinate frame is defined by the camera origin Oc,

vectors xc, yc and zc.

The angle α between vectors a1 and a2 is given by

α = acos

(
a1 · a2

‖a1‖ · ‖a2‖

)
, (3.1)

30

and, as a consequence, the approximate distance, d, to the detected object is given by

d =
r

tan(α/2)
, (3.2)

where r is the estimated physical size of the UAV.

Since we are developing a system that works for any non-cooperative UAV, it is necessary to find

a way to estimate the target’s physical dimension, r. To accomplish this, the last LiDAR measurement

before losing the LiDAR information is used. Since the distance given by the LiDAR from frame t−1 and

the corresponding bounding box returned by YOLO at t− 1 are known, yields,

r(t− 1) = d(t− 1) · tan(α(t− 1)/2). (3.3)

In subsequent camera frames, at t, t + 1 and so on, it is assumed r constant and equal to the last

estimate, until a new LiDAR measurement occurs and the value of r is updated. The performance of the

distance estimation improves as the number of LiDAR measurements increases since the value of r is

updated more often and the algorithm takes into account more changes in the UAV’s attitude.

Vectors a1 and a2 are directional vectors with origin in the camera coordinated frame (xc, yc, zc) and

end in the image plane. Thus far, the only information available is the coordinates p = (x, y) of the two

points of the horizontal edges of the bounding boxes. To use this method to compute the 3D coordinates

in the world coordinate frame, it is necessary to know the value of the coordinate z as well. However,

as shown in section 2.3, it is impossible to calculate this value because the distance from the image

plane to the camera origin, Oc, is unknown. For this reason, vectors a1 and a2 are obtained from the

normalized image plane, which is at the known distance ẑ = 1. The relation between the vector of

homogeneous coordinates in the image frame and the homogeneous coordinates in the normalized

image plane was given by equation (2.12) and therefore, the points in the normalized plane can be

obtained using equation 3.4,

p̂ = K̃−1p, (3.4)

where K̃ is the matrix with the intrinsic camera parameters and the radial and tangential distortion

coefficients.

The position of the encountered UAV, in 3D coordinates and relative to the camera coordinate frame,

is obtained using vectors a1, a2 and distance, d. Let vector ac be the vector from the camera origin

towards the centre of the detected UAV, C, yields:

ac =
a1 + a2

2
, (3.5a)

C = d
ac
‖ac‖

. (3.5b)

The coordinates of point C are given with respect to a coordinate system centred in the camera. It is

necessary to transform these coordinates to the LiDAR coordinate frame. This can be achieved using

equation (2.13) and the extrinsic camera parameters.

31

Vectors a1 and a2 are computed using the horizontal edges of the bounding box instead of the vertical

because the rotation of the propellers causes variations in the width of the bounding box which would

increase the errors of the estimations. Notice Figures 3.11(a) and 3.11(b) in which the UAV presents

the same attitude but due to the position of the propellers the bounding box in 3.11(b) presents a larger

width.

(a) (b)

Figure 3.11: Effect of the propeller’s movement in the bounding boxes returned by YOLO.

3.5 Method Limitations

The bounding boxes returned by YOLO can vary sudden and significantly in size because the bound-

ing boxes do not always fit around the detected UAV in the same way, inducing a random and unpre-

dictable error. In addition, changes in the attitude of the UAV during its flight can lead to estimation

errors. Notice Figure 3.12(a) and Figure 3.12(b) correspondent to similar positions (X,Y, Z) of a UAV

but different attitudes. If the computation of the physical size, r, is made for the bounding box repre-

sented in Figure 3.12(a) and a few frames later, in the frame of Figure 3.12(b), the value of r has not

been updated, the algorithm will predict that the UAV is at a closer distance than it is, because the

height of the bounding box increased and the value of r remained the same. Situations where the UAV

is predicted to be closer than it is are safer than the opposite case, where the UAV is predicted to be

further than reality. In some cases, with very complex backgrounds, YOLO can detect only a part of the

UAV, not bounding its body entirely (see Figure 3.12(c)). In this case, the height of the bounding box is

usually smaller than expected and a strong increase in distance is estimated.

Since the distance estimation is dependent on the height of the bounding box returned by YOLO,

which is given in pixels, there exists a quantization phenomenon associated with the smallest measure-

ment unit - 1 pixel. In Figure 3.13 the distance estimated by the algorithm for distances of 10, 20, 30

and 40m is presented. It is possible to see that the values outputted always take discrete values that

correspond to variations of a small number of pixels. It is also possible to notice that for distances of

32

(a) (b) (c)

Figure 3.12: Examples of bounding boxes returned by YOLO.

10m a variation of 1 pixel corresponds to an absolute error in distance of 30cm but for a distance of

40m, a variation of 1 pixel corresponds to an absolute error of 6.8m in distance, which is significantly

larger. These results correspond to images taken with a camera with a resolution of 720p (images of

size 1280× 720 pixels) because this is the resolution of the camera available at CfAR. In later chapters,

it will be studied the effect of using a camera with a higher resolution (1080p).

(a) Estimated distance at 10m. (b) Estimated distance at 20m.

(c) Estimated distance at 30m. (d) Estimated distance at 40m.

Figure 3.13: Estimated distance versus ground truth.

A Kalman Filter was implemented for the distance estimation and 3D coordinate stabilization (when

using the camera) to smooth all the variations discussed.

33

3.6 Kalman Filtering

The Kalman Filter does not require high computational power, making it a good choice for the appli-

cations intended in this thesis and can be used to smooth the algorithm’s estimations, avoiding sudden

and strong variations.

3.6.1 Distance Stabilization

For the distance estimation, it was considered a very simple linear, discrete-time system having

dynamics

x(k + 1) = A(k)x(k) +B(k)u(k) +G(k)w(k), t ≥ 0 (3.6a)

y(k) = H(k)x(k) + v(k), (3.6b)

x(0) = x0, (3.6c)

where x(k), u(k), y(k), w(k) and v(k) represent the state, control, measurements and measurements

noise vectors, respectively, and A(k), B(k), G(k) and H(k) represent the system transition, input distri-

bution, system noise and observation matrices, respectively. w(k) and v(k) are Gaussian, white noises

processes satisfying Equation (2.19) and have covariance matrices Q(k) and R(k), respectively.

The considered state transition matrix is based on a linear velocity model,

A(k) =

1 ∆t

0 1


2×2

, (3.7)

and the input u = 0 since there are no control inputs. The Kalman Filter is initialized with estimates of

x̂0, and predicted (a priori) estimate covariance, P0, given by

x̂0 =

d(t = 0)

ḋ(t = 0)


2×1

, (3.8a)

P0 =

1 0

0 1


2×2

, (3.8b)

where d(t = 0) is computed with the last available LiDAR measurement and H(k) =
[
1 0

]
1×2

.

The covariance of the measurements noise matrix, R(k), and the process noise matrix, Q(k), were

tuned manually. The results obtained for constant distances of 10, 20, 30 and 40m are presented in figure

3.14.

3.6.2 3D Coordinates Stabilization

For the 3D coordinates stabilization, it was used a linear, discrete-time system of the form presented

in Equation 3.6c. The state transition matrix is based, once again, in a linear velocity model with no

34

(a) Estimated distance at 10m. (b) Estimated distance at 20m.

(c) Estimated distance at 30m. (d) Estimated distance at 40m.

Figure 3.14: Estimated distance before and after Kalman Filtering.

control inputs (u = 0). The Kalman Filter is initialized with estimates of x̂0, and predicted (a priori)

estimate covariance, P0, given by

x̂0 =
[
x(t = 0) y(t = 0) z(t = 0) ẋ(t = 0) ẏ(t = 0) ż(t = 0)

]T
6×1

, (3.9a)

P0 =


1 . . . 0
...

. . .

0 1


6×6

, (3.9b)

where x(t = 0), y(t = 0) and z(t = 0) are given by the last available LiDAR measurement and

H(k) =


1 . . . 0 . . . 0
...

. . .
...

...

0 1 . . . 0


3×6

. (3.10)

Matrices Q(k) and R(k) were tuned manually once again.

35

3.7 Implementation for Multi-UAV

In order to be able to detect and estimate the position of several UAVs in a sequence of images, it is

necessary to find a method to associate each detected UAV in a new frame with its previous detection in

the last frame, creating the UAV’s track. This is an assignment problem that will be solved using a simple

distance metric. Future work involves the usage of Deep SORT’s association metrics and possibly its

CNN appearance feature descriptors to associate UAVs between frames. However, this method has not

yet been implemented in the algorithm proposed in this work.

For simplicity, the algorithm creates a list containing the information of all the UAVs present in the

scene. For each UAV, the list has information regarding:

• the coordinates of the centre of the last bounding box returned by YOLO, (cx, cy);

• the estimate of the apparent physical size, r;

• a Kalman Filter for the distance and a Kalman Filter for the 3D coordinates;

• a parameter that counts the number of frames since the last successful association, COUNTER DEAD;

• a flag that allows to know if the UAV has already been updated in the current frame, COUNTER FRAME;

• the UAV identification, UAV ID;

• the last LiDAR measurement and correspondent YOLO detection for the computation of the physi-

cal size, r.

For each frame, the algorithm searches for UAVs in the list that have been lost for more than

LOSS THRESHOLD frames and removes them. This guarantees that the list does not accumulate data

regarding lost UAVs, occupying more memory and slowing down the execution during the assignment

task. This also prevents wrong assignments between the detected UAVs and old lost UAVs. It is de-

sired to set the LOSS THRESHOLD to a value greater than 0 since YOLO can fail to detect a UAV in

some frames because the background is complex, for example, but still be able to detect the UAV a few

frames later. In this situation, it is desirable to be able to associate the UAV with its previous detection

at N frames ago, so that it is possible to know its apparent physical size, r and estimate its relative

localization.

Note Figure 3.15, for each ROI, YOLO tries to detect a UAV. If a new detection is confirmed, the

algorithm checks if the list of UAVs is empty. When it is, the new detected UAV is added to the list, if not,

the algorithm tries to assign the detected UAV with the ones already present in the list.

The assignment is performed based on the coordinates of the centre of the bounding box returned

by YOLO, (cx, cy), in pixels. These coordinates are compared to the centres of the bounding boxes of all

the other UAVs present in the list, according to

s =
√

(cx − cix)2 + (cy − ciy)2, (3.11)

36

Figure 3.15: Architecture of the Multi-UAV algorithm.

where (cix, c
i
y) represents the centre of the bounding box of the UAV with correspondent index i in the

list of vectors. This represents a circle of radius s around the centre of the bounding box. The algorithm

chooses the UAV correspondent to the smallest value of s and compares this value with a threshold.

If s ≤ DETECTION THRESHOLD, the assignment is validated and the algorithm proceeds, if not, the

detection is considered to be a new UAV that just entered the scene and is added to the list.

Because ROIs have a size equal to 416× 416 pixels, a ROI may capture more than one UAV. Some-

times, one of the UAVs could even be cropped and as consequence the bounding box returned by YOLO

could not bound entirely the UAV, providing a smaller height than what was expected (see Figure 3.16).

As a consequence, the estimated distance would be much further than the real value. The solution

found to correct this problem is to verify, after the assignment, if the UAV has already been updated for

that specific frame and if so, choose the estimation that presents the closest distance, since this is the

safest approach when trying to avoid a potential collision.

Figure 3.16: Example of a ROI that captures two UAVs.

The developed algorithm can only fail to assign and update the detected UAV properly in the following

two situations:

• If two or more UAVs are flying at a distance that is closer than the DETECTION THRESHOLD;

• If the detected UAV is at a distance closer than the DETECTION THRESHOLD from the last known

37

position of another UAV that was lost at N frames ago with N ≤ LOSS THRESHOLD. This cor-

responds to a time window of LOSS THRESHOLD×T seconds, where T is the camera’s sampling

rate.

In both these situations, the assignment fails only if the distance metric, s, computed between the

detected UAV in the ith frame and all the UAVs in the ith − 1 frame gives a smaller number of pixels

between two different UAVs. One of the solutions to guarantee good results is having a high frame rate.

However, the system is limited by the execution time of YOLO and as the number of UAVs increases,

YOLO needs to analyse a larger number of ROIs and the execution time increases as well.

It is possible to conclude that the algorithm only needs to store information regarding the last detec-

tion (for each UAV) making it computationally less expensive.

38

Chapter 4

Simulations and Results

This chapter presents simulations performed for the testing of the proposed system and their cor-

respondent results. The algorithm is tested with images gathered during simulations in Unreal Engine

with AirSim. Firstly, a flight with varying pre-defined yaw is performed to study the influence of attitude

variations in the estimations performed by the algorithm. Also, a flight simulation with a camera of higher

resolution is used to study the influence of camera resolution on the system’s output. Finally, a multi-UAV

flight test is presented to test the assignment problem and show the system’s capabilities regarding the

detection and tracking of multiple encountered UAVs.

4.1 AirSim Setup

The simulations in AiSim were performed with QGroundControl and transmitted to AirSim by the PX4

controller. The UAV used was a DJI Inspire 1 (see Table 3.1) since this is one of the drones available at

CfAR.

The chosen environment for the flight simulation was different from the ones used to train YOLO so

that the results could be more realistic. A picture of the environment is presented in Figure 4.1(a) and it

is composed of a landscape with a clear sky, where a UAV should be easily detected and mountains sim-

ulating complex backgrounds with dark areas where it is difficult to see a UAV flying at large distances,

even for the human eye.

A UAV carrying a camera and a LiDAR stayed hovering at a fixed position while the other UAVs,

representing encountered non-cooperative flying vehicles, followed trajectories given by the QGround-

Control. The LiDAR was simulated using a built-in tool from AirSim (see Figure 4.1(b)) and presented

the same characteristics as the LiDAR available at CfAR: 8 detection layers, 420000 points per second, a

range of 60m, a horizontal FOV of 360◦ , a vertical FOV of 21◦ (+3◦ /−18◦) and 10 rotations per second.

Python code was developed to capture LiDAR measurements, ground truth and camera images

during the flights, using APIs. The trajectory was planned so that the maximum velocity of the flying

UAVs was equal to 4m/s. The camera was configured to output images of size 1280 × 720 since this is

the resolution of the camera available at CfAR. It presented a horizontal FOV of 90◦ and a vertical FOV

39

(a) Environment for the flight simulations. (b) Buil-in LiDAR reprojection points.

Figure 4.1: AirSim flight simulations.

of 50◦ . The simulations were configured to give a data rate of 20Hz.

The values of the thresholds used in the simulations were the following: LOSS THRESHOLD= 15

frames, DETECTION THRESHOLD=64 pixels and LIDAR TRESHOLD=15 pixels. Finally, the matrices Q(k)

and R(k) from the Kalman Filters implemented for the smoothing of both the distance and 3D coordinate

estimations are presented in Equations 4.1 and 4.2.

Distance Kalman Filtering

R(k) = 65, Q(k) =

5 0

0 5

 . (4.1)

3D Kalman Filtering

R(k) =


9 0 0

0 2 0

0 0 25

 , Q(k) =



5 0 0 0 0 0

0 0 0 0 0 0

0 0 5 0 0 0

0 0 0 10 0 0

0 0 0 0 10 0

0 0 0 0 0 10


. (4.2)

In Figure 4.2 it is presented the appearance of the simulated UAVs at different distances ranging

from 10m to 50m in pictures of size 416× 416 since this is the input size of YOLO. It is possible to notice

that for Z ≈ 40m and Z ≈ 50m the UAV appears very small and with a camera of resolution equal

to 720p it is expected that attitude variations will not influence the algorithm’s estimations as much as

for closer distances. In fact, for such values of Z, the distance estimation variations associated with the

quantization of the height of the bounding boxes (in pixels) will have a much larger impact on the position

estimations.

To test the developed algorithm with the data gathered in AirSim, it was necessary to estimate the

camera’s intrinsic and extrinsic parameters, discussed in section 2.3.

40

(a) UAV appearance at 10m. (b) UAV appearance at 20m. (c) UAV appearance at 30m.

(d) UAV appearance at 40m. (e) UAV appearance at 50m.

Figure 4.2: Appearance of the UAV at Z ranging from 10 to 50m with a 720p camera and in a ROI with
size 416× 416.

4.1.1 Camera Calibration

As mentioned throughout this document, the intrinsic and extrinsic camera parameters are necessary

for the following tasks:

• project the 3D points given by the LiDAR into the camera frame and create the ROI in which YOLO

will look for potentially encountered UAVs;

• transform the pixel coordinates of the bounding boxes returned by YOLO into distances and 3D

coordinates in the camera frame;

• change the 3D coordinates from the camera’s coordinate frame to the LiDAR’s coordinate frame.

The Camera Calibrator App from Matlab [68] was used for the estimation of the intrinsic parameters.

This app takes as input a set of images with a chessboard in different positions and the physical size of

each square in the real world and computes the camera parameters that best fit the given data.

It was necessary to create a chessboard in Unreal Engine and record images with it in different

positions and angles (see Figure 4.3).

The calibration app gave the results present in equation (4.3) which are close to the theoretical values

expected for a camera in AirSim.

41

(a) Chessboard simulated in Unreal Engine. (b) Results from the Camera Calibrator App.

Figure 4.3: Camera intrinsic calibration procedure.

K =


644.34 0 0

0 644.27 0

639.76 359.91 1


k1 = 0.0056, k2 = 0.0032, k3 = −0.0054

p1 = 0, p2 = 0

(4.3)

For the extrinsic calibration between the LiDAR and the camera, IPPE was used to estimate the

parameters. This algorithm was described in 2.3.5 and it was implemented using the Python library

OpenCV which has a function that computes the parameters based on a set of pairs of 3D points in the

real world and their correspondent 2D projections in the camera image. These points were gathered

manually by visual inspection of images taken with the simulated system. An example of a 3D-2D

projection after performing the camera calibration is presented in Figure 4.4.

Figure 4.4: Example of 3D-2D projection after the extrinsic calibration.

42

4.2 Yaw Simulation

This flight was simulated to study the influence of attitude variations in the algorithm’s predictions.

QGroundControl only allows to control the yaw of the flying UAV but the height of the bounding box

given by YOLO is influenced by roll and pitch as well. For this reason, the roll and pitch during the flight

will change according to the UAVs trajectory and influence the results obtained. Also, when the UAV

reaches a trajectory point in which it must change its yaw to the new designated value, yaw varies for a

short period time. Regardless, a simulation with well-defined yaw was already enough to infer several

conclusions regarding the influence of attitude variations.

For this flight, the relative position estimation was performed for just one UAV. It flew along the Z-axis

at positions ranging from 10 to 50m in intervals of 10m. In Figure 4.5(b) it is possible to see the trajectory

plan from above in QGroundControl. For each distance, the UAV follows the trajectory represented

in Figure 4.5(a), in the OXY plane, following the sequence A-B-C-D-B. Afterwards, the UAV flies at

constant pair of (X,Y) coordinates to the following value of Z and performs the same sequence.

The UAV presents yaw equal to 0◦ from point A to B and from point C to D and yaw equal to 90◦

from point B to C and D to B. Images representing the appearance of the UAV in these two cases is

presented in Figure 4.6. Notice that the height of the bounding box returned by YOLO is smaller when

the UAV presents a yaw of 90◦ .

(a) Trajectory followed in the OXY plane. (b) Trajectory followed in the OXZ plane.

Figure 4.5: Trajectory followed by the UAV for the yaw simulation.

4.2.1 Results

The results obtained in this flight test are presented in Table 4.1 and Figures 4.7 to 4.9. In these

figures, it is possible to distinguish values correspondent to the ground truth, given by AirSim, points

43

(a) UAV appearance with yaw of 0◦ at
Z ≈ 10m.

(b) Example of a UAV appearance when
transitioning from yaw of 0◦ to 90◦ at
Z ≈ 10m.

(c) UAV appearance with yaw of 90◦ at
Z ≈ 10m.

Figure 4.6: UAV appearance with yaw varying from 0◦ to 90◦ at Z ≈ 10m.

correspondent to the LiDAR measurements and points correspondent to positions estimated by the al-

gorithm when there are no LiDAR measurements. The output of the system is exactly the one presented

in the figures. The algorithm was tested on a Virtual Machine with 4 available INTEL(R) XEON(R) CPU

E5-1620 V4 of 3.5GHz and a Random Access Memory (RAM) equal to 8GB and in Google Colabora-

tory [69] with a TESLA P100-PCIE-16GB GPU in a high RAM environment.

By analysing Table 4.1 it is possible to conclude that both RMSE and MaxAE increase as Z increases.

The distance, d, presents the highest errors followed by the estimations along the Z-axis.

Table 4.1: RMSE and MaxAE results obtained for the yaw simulation.

RMSE[m] MaxAE[m]

X Y Z d X Y Z d

10m 0.43 0.19 0.80 0.86 1.25 0.39 1.93 2.19

20m 0.80 0.34 1.28 1.45 2.93 1.21 3.78 4.73

30m 2.00 1.13 3.56 4.17 5.53 3.67 10.27 12.18

40m 2.12 1.30 4.03 4.62 7.11 3.83 10.53 12.91

50m 4.35 1.58 7.36 8.60 16.94 5.99 23.21 28.76

Noticing also the graphics from Figure 4.7 it is possible to conclude that position estimations in the

OXY plane present good results, with RMSE values lower than 4.34m for estimations in X and 1.58m

for estimations in Y . Note that the UAV moved between −50m and +40m in X and between −12m

and +16m in Y , so the error associated with the Y -axis is smaller. The error in the Z-axis is the

most affected, presenting a MaxAE of 23.21m and a RMSE of 7.38m for Z ≈ 50m. Overall, it can be

concluded that the algorithm performs well for positions such that Z ≤ 40m but for higher values of Z

the estimates start to deviate significantly from the ground truth values. The fact that the estimates given

by the algorithm improve as the UAV comes closer to the system is desirable because the system will

have good estimates that can be used in avoidance algorithms for UAVs that are closer and that may be

potentially dangerous.

Noticing the distance estimation errors, it is possible to verify that the distance influences directly

44

the error of the 3D coordinates, because it is used to compute them. When the error in the estimated

distance increases, the error in each one of the three coordinates increases as well.

(a) Estimated X and Y at 10m. (b) Estimated X and Y at 20m.

(c) Estimated X and Y at 30m. (d) Estimated X and Y at 40m.

(e) Estimated X and Y at 50m.

Figure 4.7: Results obtained for the OXY plane in the yaw simulation.

45

It is possible to distinguish different coloured regions in the graphics of Figures 4.8 and 4.9, corre-

spondent to:

• Attitude Variation regions, where the attitude of the UAV is varying significantly in both yaw, pitch

and roll due to transitions between trajectory points and/or different attitudes;

• Complex background regions, where the UAV was flying against a complex background;

• Both regions, where the UAV was changing its attitude while flying against a complex background.

Also, the LiDAR measurements are represented in different colour. This is helpful because the

transitions between LiDAR measurements and the points estimated by the algorithm are directly related

to the moments where the value of the apparent physical size of the UAV, r, is updated. Attitude

variations after the last update of r and the quantization problem associated with the minimum unit of

measurement of the bounding boxes (1 pixel) are the two main sources of the errors associated with the

position estimation method.

For Z ≈ 10m (see Figure 4.8(a)) the value of r is updated for the first time at t = 2.65s while the

UAV is changing its yaw from 0◦ to 90◦ . Therefore, the value of r for t ≥ 3.5s corresponds to an attitude

different from the one the UAV presents. Since the height of the bounding boxes returned by YOLO is

smaller in the case of yaw equal to 90◦ (see Figure 4.6), the algorithm predicts that the UAV is further

than the ground truth value. However, because the UAV is at a close distance, 1-pixel variations in the

height of the bounding box correspond to small variations in the distance estimation. As a consequence,

the algorithm is capable of predicting the position of the UAV with an absolute error inferior to 1.93m.

From ts to t = 11s the UAV enters a region with a strong background and starts to vary its attitude

from 90◦ to 0◦ , changing to the attitude that it had when the last value of r was computed, at t = 2.5s.

The algorithm predicts values closer to the ground truth and the observed errors are mainly due to the

variations in the height of the bounding box. The value of r is updated again at t = 11.5s and the

UAV changes its attitude from 0◦ to 90◦ soon after. As a consequence, the system estimates a further

distance again. At t = 13.5s the value of r is updated and the estimations present values close to the

ground truth.

Regarding positions with Z ≈ 20m (see Figure 4.8(b)) the UAV starts with an attitude equal to 0◦

and changes it to 90◦ around t = 21.90s. It is possible to notice that the estimation error increases with

predictions further than the ground truth values, similarly to the case of Z ≈ 10m. The UAV is captured

by the LiDAR from t = 24s to t = 30s but estimations keep presenting larger values than the ground truth

due to height variations in the bounding boxes returned by YOLO. It is also possible to notice that the

estimations worsen after t = 31s although the value of r has just been updated. This happens due to

fact that the UAV is passing through an area with a strong background that worsens the detections and

correspondent bounding boxes. At t = 34.90s, the UAV changes its attitude back to 0◦ and because the

value of r was estimated for 90◦ the estimation gives a closer distance than the ground truth. Note that

since the last value of r was updated in an area with a complex background, where YOLO can output

bounding boxes that do not fit the UAV as well, some unpredictable behaviour could have happened in

46

(a) Results for Z ≈ 10m.

(b) Results for Z ≈ 20m.

(c) Results for Z ≈ 30m.

Figure 4.8: Estimation results for Z in the yaw simulation.

this area. However, YOLO was able to detect the UAV with bounding boxes coherent enough to perform

the expected behaviour regardless of the complex background. The UAV changes its attitude once again

at t = 41.90s but the UAV is captured by the LiDAR soon afterwards so the following errors are small.

For Z ≈ 30m (see Fig. 4.8(c)) it will be possible to conclude that attitude variations still influence

the estimations, but variations in the height of the bounding boxes become more significant than before.

The UAV changes its attitude from 0◦ to 90◦ at t = 54s and the behaviour of the algorithm is to estimate

distances further than the ground truth, as seen in the previous graphics. Comparing this graphic with

the ones presented for Z ≈ 10m and Z ≈ 20m, it is possible to see the same behaviour throughout the

flight. The estimations worsen when the UAV is in a complex background, with YOLO detecting the UAV

47

at a closer distance than for the previous values of Z at t = 69s. Although the graphics present the same

shape, it is clear that the errors for Z ≈ 30m are larger than the ones at Z ≈ 10m. The distance error

associated with a 1-pixel variation in the height of the bounding box increases and therefore, although

the attitude behaviour is the same, the results worsen.

(a) Results for Z ≈ 40m.

(b) Results for Z ≈ 50m.

Figure 4.9: Remaining estimation results for Z in the yaw simulation.

Regarding the position with Z ≈ 40m and Z ≈ 50m in the Z-axis (see Fig. 4.9) it is possible to

notice that the curves do not present the same shape as the curves for Z ≤ 30m and that result from the

attitude variations throughout the flight. In fact, for Z ≥ 40m, the UAV appears very small and variations

in the attitude do not influence the errors significantly. The verified errors are mainly due to the variations

in the height of the bounding boxes. As seen in Section 3.5, for Z ≈ 40n a variation of 1 pixel in the

height of the bounding box corresponds to variations of 6.8m when using a camera with a resolution of

720p. Therefore, the estimation errors are expected to be large. The estimations presented for 40m are

smaller than 12.91m and it is concluded that the system performs well up until this point. For Z ≈ 50m,

the maximum error reaches 23.21m which is a significantly large error. Also, for Z ≈ 50m the UAV is so

small that YOLO cannot detect it when the background is complex and at t = 167s the UAV is lost, being

captured again by the LiDAR at t = 179s when flying against a clear sky background.

A simulation in the same conditions as this flight but with constant yaw was performed to study further

the impact of attitude variations in the proposed method. However, because the roll and pitch still varied

throughout the flight, although the results for Z between 10 and 30m were better, the improvements were

48

of the order of centimetres and it was not possible to infer significant conclusions.

Figures with the simulation results throughout the entire flight and not just for specific values of Z as

well as the error over time for X, Y , Z and d are presented in Appendix A.

YOLO Performance

The precision and recall of YOLO were equal to 100% and 93.50%, respectively. This means that

YOLO never identified a false positive in the created ROIs and that YOLO failed to detect the UAV in

242 ROIs of a total of 3721. This can cause problems if YOLO does not detect the target for more than

LOSS THRESHOLD frames. In this case, the UAV would be lost by the Deep SORT tracker and deleted

from the list of drones. Therefore, the UAV could only be acquired in the future by the LiDAR. However,

YOLO never missed the detection of the UAV for more than LOSS THRESHOLD consecutive frames for

positions with Z ≤ 40m so the Deep SORT tracker was able to continue to predict the positions of the

UAV in the upcoming frames. The UAV was lost at Z ≈ 50m for 10s which corresponds to 3.3% of the

flight.

The results for the number of empty frames are presented in Table 4.2. It was defined as the fraction

between the number of frames without a position estimation output and the number of total frames. A

frame without output is considered to be a frame for which no estimations were performed, neither with

LiDAR measurements nor with the camera. This happened because YOLO was not able to detect the

UAV in those frames.

Table 4.2: Empty frames as a function of Z for the yaw simulation.

10m 20m 30m 40m 50m

Empty frames[%] 0.33 8.84 9.93 1.29 17.70

The number of empty frames increases as the position of the UAV along with the Z-axis increases,

except for the case of Z ≈ 40m, since the UAV becomes smaller and harder to detect, especially when

flying against complex backgrounds. YOLO presented a speed of 1.73Hz when running with Central

Processing Unit (CPU) and a speed of 9.5Hz when running with Graphics Processing Unit (GPU). Real-

time capabilities are still to be explored in the future.

LiDAR Measurements

The results of the LiDAR measurements are presented in Table 4.3 where it is shown the RMSE

values, MaxAE and percentage of the output points correspondent to LiDAR measurements. The LiDAR

measurements are very close to the ground truth values, as expected because LiDARs have high accu-

racy. It is possible to notice that the number of LiDAR points decreases as the distance increases. This

is expected since the LiDAR beams are spaced by 3◦ in elevation, which corresponds to a larger height

as the distance in Z increases. In fact, as the position in Z increases, the number of LiDAR beams that

49

capture the UAV decreases. For example, at a position Z ≈ 50m, the UAV is captured only by one of the

beams of the LiDAR at a time.

Table 4.3: RMSE and MaxAE results for the LiDAR measurements of the yaw simulation.

RMSE[m] MaxAE[m] LiDAR
Points[%]

X Y Z d X Y Z d

10m 0.29 0.13 0.18 0.27 0.56 0.29 0.28 0.43 42.33

20m 0.29 0.25 0.16 0.22 0.56 0.60 0.26 0.40 36.83

30m 0.34 0.28 0.17 0.19 0.64 0.58 0.26 0.41 14.91

40m 0.37 0.26 0.18 0.20 0.64 0.60 0.25 0.35 8.37

40m 0.37 0.25 0.18 0.20 0.58 0.55 0.26 0.36 7.43

Taking into account that the results obtained in Table 4.1 are significantly worse than the ones cor-

respondent to LiDAR measurements only (present in Table 4.3) the decision of using the LiDAR points

directly whenever they are available is corroborated.

4.3 Camera Resolution Simulation

The results from section 4.2 are influenced mainly by two phenomena: attitude variations during

flight and variations in the height of the bounding boxes returned by YOLO. To study the impact of the

camera resolution, a flight simulation with a 1080p camera was performed. The objective is to verify if, by

increasing the number of pixels in the image, it is possible to achieve better results, especially for further

positions, where pixel variations correspond to larger distance errors.

The flight simulated presented the same trajectory of the flight from section 4.2 so that a comparison

between both flights could be performed and conclusions inferred. The trajectory was presented in

Figure 4.5 and only the size of the camera image was changed to 1920 × 1080 pixels. All the other

parameters regarding simulated hardware, velocity, data rate, thresholds and Kalman Filtering were

kept. The intrinsic and extrinsic calibration had to be performed again in such a way that it would not

improve or worsen the results.

In Figure 4.10, a comparison between ROIs cropped for a camera with resolution 1080p versus a

camera with resolution 1080p is presented. It is possible to see that since the number of pixels of the

ROI remained the same (416× 416) but the number of pixels in the images increased, the UAVs appear

closer and more clearly.

4.3.1 Results

The results obtained for this simulation are presented in Table 4.4 and Figures 4.11 to 4.13. When

comparing the results from Table 4.4 with the ones from Table 4.1 is possible to see that, overall, the

results for 1080p have a higher impact on the estimations of Z and d. For all the cases except Z ≈

40m, the estimations of Z and d present a smaller RMSE and MaxAE. In fact, for Z ≈ 50 the RMSE

50

(a) UAV appearance at 40m with a camera
of resolution 720p.

(b) UAV appearance at 40m with a camera
of resolution 1080p.

(c) UAV appearance at 50m with a camera
of resolution 720p.

(d) UAV appearance at 50m with a camera
of resolution 1080p.

Figure 4.10: UAV at Z approximately equal to 40 and 50m with a 720p and a 1080p camera in a ROI of
size 416× 416.

associated with d decreased from 8.60m to 7.80m and the MaxAE decreased from 28.76m to 18.36m,

which corresponds to a decrease of 9.3% and 36.16%, respectively.

However, for Z ≈ 40m the RMSE of the estimated distance increases from 4.62m to 6.34m and

the MaxAE increases from 12.91m to 14.76m which corresponds to a growth of 37.23% and 14.33%,

respectively. These results do not follow the trend presented by the other values of Z. Comparing Figure

4.9(a) with 4.13(a), it is possible to notice that the curves do not present a similar shape, especially in the

beginning. At t = 98s the algorithm estimates a value of Z further than the ground truth for 1080p and for

720p it estimated a value of Z that was closer. This difference is related to the height of the bounding box

predicted by YOLO at the time of the last LiDAR measurement. When comparing the curves obtained for

Z approximately 10, 20, 30 and 50m for both 1080p and 720p, the shapes are identical. This indicates that

the execution of the algorithm was more similar for these values of Z. For this reason, when comparing

the results from both simulations, conclusions regarding values of Z different from 40m will be taken

more into account. Consequently, it is concluded that the 1080p camera provides overall better results

than the 720p.

When comparing Figure 4.9(b) and 4.13(b) it is possible to notice that the UAV is no longer lost

51

Table 4.4: RMSE and MaxAE results obtained for the 1080p simulation.

RMSE[m] MaxAE[m]

X Y Z d X Y Z d

10m 0.44 0.18 0.65 0.71 0.96 0.42 1.73 1.81

20m 0.83 0.48 0.97 1.23 2.05 1.65 2.83 3.50

30m 1.40 0.84 1.94 2.36 4.06 2.68 7.28 8.49

40m 2.60 1.04 5.86 6.34 6.80 3.91 14.05 14.76

50m 3.56 1.00 7.01 7.80 12.55 4.07 16.34 18.36

at t = 167s, when using a camera with a 1080p resolution. The UAV is tracked throughout the entire

simulation without ever being lost for more than LOSS THRESHOLD frames. Since the camera has a

better resolution, the UAVs appear more clearly for further distances and YOLO is capable of detecting

the UAVs during a larger number of frames.

YOLO Performance

YOLO continued to present precision of 100% and recall improved to 94.42%. This means that YOLO

never detected a false positive in the searched ROIs and failed to detect the UAV in 212 of a total of 3800

ROIs. The percentage of empty frames as a function of Z is presented in Table 4.5. When comparing

these results with the ones obtained previously, it is possible to notice improvements for Z equal to 10,

20, 30 and 50m. However, once again, for Z ≈ 40m the number of empty frames worsened.

YOLO presented a frequency of 1.64Hz when running with CPU and 11.92Hz when running with

GPU. Since the size of the ROI remained the same (416 × 416) the processing time of YOLO should

not be affected by the fact that images of higher resolution are being analysed. However, the algorithm

execution can be delayed since uploading an image with a 1080p resolution is computationally more

expensive than uploading one with 720p.

Table 4.5: Empty frames as a function of Z for the 1080p simulation.

10m 20m 30m 40m 50m

Empty frames[%] 0.00 0.59 8.03 11.39 3.62

LiDAR Measurements

The LiDAR measurements were given by AirSim and therefore present RMSE and MaxAE values

very close to the ground truth values and to the errors obtained for 720p (see Table 4.3), since the LiDAR

specifications were not modified. It is possible to notice that the number of LiDAR points decreases as

the distance increases, as expected.

The percentage of LiDAR measurements during the flight is inferior to the 720p case, but this is

because a new extrinsic calibration had to be performed. The fact that the number of measurements is

52

(a) Estimated values at 10m. (b) Estimated values at 20m.

(c) Estimated values at 30m. (d) Estimated values at 40m.

(e) Estimated values at 50m.

Figure 4.11: Estimations results in the OXY plane for the 1080p simulation.

inferior than before could only worsen the results, not improve them, so it does not present a problem to

the analysis of the results.

53

(a) Results for Z ≈ 10m.

(b) Results for Z ≈ 20m.

(c) Results for Z ≈ 30m.

Figure 4.12: Estimation results for Z in the 1080p simulation.

Table 4.6: RMSE and MaxAE results for the LiDAR measurements of the 1080p simulation.

RMSE[m] MaxAE[m] LiDAR
Points[%]

X Y Z d X Y Z d

10m 0.36 0.18 0.18 0.26 0.62 0.36 0.34 0.42 39.87

20m 0.32 0.25 0.17 0.22 0.81 0.60 0.28 0.40 28.66

30m 0.32 0.26 0.17 0.22 0.65 0.58 0.25 0.42 14.05

40m 0.25 0.27 0.17 0.19 0.41 0.55 0.25 0.29 5.70

40m 0.36 0.28 0.17 0.20 0.68 0.57 0.24 0.31 5.13

54

(a) Results for Z ≈ 40m.

(b) Results for Z ≈ 50m.

Figure 4.13: Remaining results for Z in the 1080p simulation.

Figures with the simulation results throughout the entire flight and not just for specific values of Z as

well as the error over time for X, Y , Z and d are presented in Appendix A.

4.4 Multi-UAV Simulation

A simulated flight with two UAVs was performed to exemplify the response of the algorithm when

more than one UAV is present in the scene. This simulation was carried out with the 720p camera since

this is the specifications of the camera available at CfAR.

The trajectory followed by UAV 1 is presented in Figure 4.14. The UAV started at the point that

presented the furthest value of Z and got closer to the camera as the simulation time increased. On the

OXY plane, the UAV moved between points accordingly with the sequence A-B-C-D-A, as presented

in Figure 4.14(a). The yaw was configured to be kept constant and equal to 0◦ during the entire flight

but since the roll and pitch vary, these variations will be identified in the results to provide a better

understanding of them.

The trajectory followed by UAV 2 is presented in Figure 4.15. This UAV also started at the point that

presented the furthest value of Z and got closer to the camera as the simulation time increased. On

the OXY plane, the UAV moved between points accordingly with the sequence A-B-C-B-A presented in

Figure 4.15(a). The yaw was defined in the same way as explained for UAV 1.

55

(a) Trajectory followed in the OXY plane. (b) Trajectory followed in the OXZ plane.

Figure 4.14: Trajectory followed by UAV 1 for the multi-UAV simulation.

The minimum distance between the two UAVs was 50 pixels, which is smaller than the DETEC-

TION THRESHOLD defined previously for the simulation (64 pixels). The correspondent frame is pre-

sented in Figure 4.16.

(a) Trajectory followed in the OXY plane. (b) Trajectory followed in the OXZ plane.

Figure 4.15: Trajectory followed by UAV 2 for the multi-UAV simulation.

Figure 4.16: Minimum distance between UAVs during the multi-UAV simulation.

56

4.4.1 Results

The results of the multi-UAV flight are presented in Table 4.7 and Figures 4.17 and 4.18. The assign-

ment of the UAVs in the frames in which YOLO was able to detect them was always performed correctly,

even when the UAVs were flying at a close distance of 50 pixels.

When analysing Table 4.7 it is possible to notice that the RMSE and MaxAE are concordant with the

values obtained in the previous simulations. It is also presented the percentage of empty frames and

the precision and recall of YOLO for each UAV. It is possible to notice that YOLO continues to present

precision of 100%. The precision results could worsen in the case of pictures of non-simulated flight

tests, with the presence of birds and other real-world objects that could be mistaken as flying UAVs.

The recall of YOLO for UAV 1 is equal to 92.00% and 92.18% which is smaller than the values obtained

before, but still high enough to be considered a good result.

Table 4.7: Results for the multi-UAV simulation.

RMSE[m] MaxAE[m] Empty
Frames[%]

YOLO[%]

X Y Z d X Y Z d P R

UAV 1 1.19 0.40 3.85 4.02 4.24 1.11 12.81 13.51 9.07 100 92.00

UAV 2 1.16 0.58 3.12 3.36 5.63 2.62 13.59 14.60 9.47 100 92.18

(a) Results for UAV 1. (b) Results for UAV 2.

Figure 4.17: Results in the OXY plane for the multi-UAV simulation.

Analysing Figure 4.18(b) it is possible to identify that at instant t = 8.75s YOLO was not capable of

detecting the UAV for more than LOSS THRESHOLD since the following frames are empty. The UAV is

captured by the LiDAR again at t = 9.85s. It is also possible to notice that, during this flight, the LiDAR

was able to acquire the UAVs in a larger number of frames, because these UAVs presented trajectories

that intersected more times the LiDAR beams. As a consequence, the position outputted by the system

is very accurate even for positions in which the UAV is flying in an area with complex background, such

57

(a) Results for UAV 1.

(b) Results for UAV 2.

Figure 4.18: Results in the OXZ plane for the multi-UAV simulation.

as from t = 25s to t = 33s.

Since the UAV kept its yaw constant throughout the flight, the errors presented in the curves of

Figure 4.18 result from variations in pitch and roll and the variations in the height of the bounding boxes

outputted by YOLO.

The results from this flight test show that the algorithm makes no assumption regarding the number

of UAVs present in the scene and is capable of solving the assignment problem between UAVs from

different frames, even when the encountered UAVs are flying at close distances.

4.5 Discussion

In this chapter, three simulations were presented. The first one permitted to study the influence of

attitude variations and pixel quantization in the estimations performed by the algorithm. The second

simulation studied the influence of the camera resolution by simulating the same flight with a camera of

1080p instead of a camera of 720p. Finally, a multi-UAV simulation was used to study the capabilities of

the algorithm when more than one UAV is present in the scene.

Overall, it is shown that the attitude influences the estimations for distances along the Z-axis up

58

to 30m. For further values of Z, the UAV appearance is too small and the results are mostly affected

by variations in the height of the bounding box. There is a quantization associated with the smallest

measurement unit - 1 pixel - and the error in distance associated with a variation of 1 pixel increases as

the distance increases. Therefore, for further distances, the errors associated with height variations also

increase.

A maximum RMSE value of 4.62m is obtained for the distance, d, when the UAV is at Z ≈ 40m. For

Z ≈ 50m the RMSE increased to 8.60m. Both these results are promising, however, even though the

MaxAE for Z ≈ 40m is equal to 12.91m, for Z ≈ 50m it is equal to 28.76m which is a significantly high

error. For this reason, it is concluded that the system performs well for positions with Z ≤ 40m.

When comparing the results obtained with a camera of resolution equal to 1080p, it is concluded that

the results improve for all the values of Z except for Z ≈ 40m. This happened because the execution

of the algorithm for 40m was considerably different. Since the execution for the other values of Z was

closer in both cases, it was concluded that the system’s results improved when using a camera with

higher resolution and the system can be used to estimate the position of UAVs that are at positions with

Z ≤ 50m.

The system was capable of detecting and tracking multiple UAVs in the frames of the multi-UAV

simulation without ever failing to assign the two UAVs correctly, even when they were at distances inferior

to the pre-defined DETECTION THRESHOLD.

In conclusion, the system behaved as expected. Further improvements that can be implemented in

the system will be discussed in the next chapter.

59

60

Chapter 5

Conclusions and Future Work

This chapter presents the main conclusions of this thesis work, its contributions and possible future

work approaches that might improve the system and its capabilities.

5.1 Conclusions

The presented work proposes a system for the detection and relative position estimation of non-

cooperative UAVs using a deep learning approach and data from a LiDAR and a Camera.

The system uses the state-of-the-art object detector YOLO to detect nearby UAVs in images taken

with an EO camera. LiDAR measurements are used to acquire the UAV and create ROIs of size 416×416

pixels in which YOLO searches for the flying objects. Distance and position estimations are computed by

processing the LiDAR measurements or by using the bounding boxes returned by YOLO and previous

LiDAR data. The system is capable of detecting and estimating the relative position of any number of

encountered UAVs without any a priori knowledge. Furthermore, the system can be expanded to any

type of class, including pedestrians and automotive vehicles.

Simulations were performed to study the influence of attitude variations and pixel quantization in

the estimations performed by the algorithm, the influence of the camera resolution and the system’s

capabilities to detect and track multiple UAVs simultaneously.

Overall, the system provided good estimation results for values of Z up to 40m whenever using a

camera with a resolution of 720p and up to 50m when using a camera with 1080p. The maximum RMSE

value obtained for Z ≈ 40m and a camera with 720p was equal to 4.62m, with correspondent MaxAE

equal to 12.91m. For the case of the camera with 1080p, the maximum RMSE obtained for Z ≈ 50m was

7.80m with correspondent MaxAE 18.36m.

For the multi-UAV simulation, the system was capable of detecting and tracking multiple UAVs in the

same frame without ever failing to assign the two UAVs correctly.

61

5.2 Contributions

The method presented can provide not only detections but also relative positions of encountered

UAVs using a LiDAR and a camera. The system can be used in sense and avoid applications, relative

stabilization of several UAVs in a formation or swarm-like behaviour and the detection and tracking of

intrusive UAVs.

In addition, a labelled dataset of synthesized images with 4761 training and 530 validation images is

developed in the YOLO Darknet format, for the training of the object detector YOLO.

A demonstration of the procedure necessary to use the open-source software AirSim to create a

dataset to train an object detector is included. It is also presented the procedure necessary to find

AirSim’s camera intrinsic parameters and the extrinsic calibration parameters between the LiDAR and

camera sensors.

5.3 Future Work

Several improvements can be implemented in the system. Regarding the detection task, YOLO can

be trained for a larger number of UAVs and for different classes, such as birds and other objects that are

similar to small UAVs. Another interesting addition would be to train YOLO with images of size 416× 416

pixels since this is the input size of the ROIs the algorithm creates. This could provide better detection

results, increasing the recall of the object detector.

Regarding relative position estimation, some possibilities could be explored for the update of the ap-

parent physical size, r. One of them would be to consider the implementation of appearance descriptors

to detect attitude variations. The system could detect instants with strong attitude variations and move

to an extra layer of decision.

The assignment problem could be improved by complementing the distance metric used with others,

such as the cosine distance, for example. In addition, whenever two or more UAVs are very close, a

second layer of decision could be implemented, to guarantee a more reliable assignment between the

UAVs. It would be interesting to investigate if Deep SORT could also be used in the assignment problem

since it performs its own assignments throughout the execution of the algorithm.

An important task for future work is to estimate the velocities of the encountered UAVs since these

are necessary for the integration with collision-avoidance trajectory planning algorithms. Once this is

achieved, the algorithm could use the estimated velocity of the UAV and the frame rate of the camera

to automatically update the values of the thresholds defined throughout this thesis. In this case, each

flying UAV would have its own LOSS THRESHOLD and DETECTION THRESHOLD.

Finally, algorithm optimization and evaluation on an onboard computer would be needed to study

potential real-time capabilities.

62

Bibliography

[1] J. Qi, D. Song, H. Shang, N. Wang, C. Hua, C. Wu, X. Qi, and J. Han. Search and Rescue Rotary-

Wing UAV and Its Application to the Lushan Ms 7.0 Earthquake. Journal of Field Robotics, 33(3):

290–321, 2016. ISSN 15564959. doi: 10.1002/rob.21615.

[2] W. H. Maes and K. Steppe. Perspectives for Remote Sensing with Unmanned Aerial Vehicles

in Precision Agriculture. Trends in Plant Science, 24(2):152–164, 2019. ISSN 13601385. doi:

10.1016/j.tplants.2018.11.007.

[3] J. A. Gonçalves and R. Henriques. UAV photogrammetry for topographic monitoring of coastal

areas. ISPRS Journal of Photogrammetry and Remote Sensing, 104:101–111, 2015. ISSN

09242716. doi: 10.1016/j.isprsjprs.2015.02.009.

[4] Y. Ham, K. K. Han, J. J. Lin, and M. Golparvar-Fard. Visual monitoring of civil infrastructure systems

via camera-equipped Unmanned Aerial Vehicles (UAVs): a review of related works. Visualization

in Engineering, 4(1):1–8, 2016. ISSN 22137459. doi: 10.1186/s40327-015-0029-z.

[5] A. Simpson and J. Stoker. Safety challenges in flying UAVS (unmanned aerial vehicles) in non

segregated airspace. pages 81–88, 2006. doi: 10.1049/cp:20060206.

[6] M. Correa, J. B. Camargo, M. A. Rossi, and J. R. Almeida. Improving the resilience of UAV in non-

segregated airspace using multiagent paradigm. Proceedings - 2012 2nd Brazilian Conference on

Critical Embedded Systems, CBSEC 2012, pages 88–93, 2012. doi: 10.1109/CBSEC.2012.21.

[7] H.-w. Warnke. Reconnaissance of LSS-UAS with Focus on EO-Sensors. Military Sensing Sympo-

sium, 2017.

[8] Mercedes-Benz Innovation: Autonomous. URL https://www.mercedes-benz.com/en/

innovation/autonomous/.

[9] Autopilot — Tesla. URL https://www.tesla.com/autopilot.

[10] A. Rozantsev, V. Lepetit, and P. Fua. Detecting Flying Objects Using a Single Moving Camera. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 39(5):879–892, 2017. ISSN 0162-8828.

doi: 10.1109/TPAMI.2016.2564408.

63

https://www.mercedes-benz.com/en/innovation/autonomous/
https://www.mercedes-benz.com/en/innovation/autonomous/
https://www.tesla.com/autopilot

[11] M. Skowron, W. Chmielowiec, K. Glowacka, M. Krupa, and A. Srebro. Sense and avoid for small

unmanned aircraft systems: Research on methods and best practices. Proceedings of the Insti-

tution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233(16):6044–6062,

2019. ISSN 20413025. doi: 10.1177/0954410019867802.

[12] X. Prats, L. Delgado, J. Ramı́rez, P. Royo, and E. Pastor. Requirements, issues, and challenges

for sense and avoid in unmanned aircraft systems. Journal of Aircraft, 49(3):677–687, 2012. ISSN

15333868. doi: 10.2514/1.C031606.

[13] P. Andraši, T. Radišić, M. Muštra, and J. Ivošević. Night-time Detection of UAVs using Thermal

Infrared Camera. Transportation Research Procedia, 28:183–190, 2017. ISSN 23521465. doi:

10.1016/j.trpro.2017.12.184.

[14] P. Zhao, C. X. Lu, B. Wang, N. Trigoni, and A. Markham. 3-D motion capture of an unmodified

drone with single-chip millimeter wave radar. arXiv, 2020. ISSN 23318422.

[15] T. Multerer, A. Ganis, U. Prechtel, E. Miralles, A. Meusling, J. Mietzner, M. Vossiek, M. Loghi, and

V. Ziegler. Low-cost jamming system against small drones using a 3D MIMO radar based tracking.

European Microwave Week 2017: ”A Prime Year for a Prime Event”, EuMW 2017 - Conference

Proceedings; 14th European Microwave Conference, EURAD 2017, 2018-Janua:299–302, 2017.

doi: 10.23919/EURAD.2017.8249206.

[16] L. R. Sahawneh, J. Mackie, J. Spencer, R. W. Beard, and K. F. Warnick. Airborne radar-based

collision detection and risk estimation for small unmanned aircraft systems. Journal of Aerospace

Information Systems, 12(12):756–766, 2015. ISSN 23273097. doi: 10.2514/1.I010284.

[17] S. Ramasamy, R. Sabatini, and A. Gardi. Avionics sensor fusion for small size unmanned

aircraft Sense-and-Avoid. 2014 IEEE International Workshop on Metrology for Aerospace,

MetroAeroSpace 2014 - Proceedings, pages 271–276, 2014. doi: 10.1109/MetroAeroSpace.2014.

6865933.

[18] D. Justino. LiDAR and Camera Sensor Fusion for Onboard sUAS Detection and Tracking. PhD

thesis, Instituto Superior Técnico, 2021.

[19] J. James, J. J. Ford, and T. L. Molloy. Learning to Detect Aircraft for Long-Range Vision-Based

Sense-and-Avoid Systems. IEEE Robotics and Automation Letters, 3(4):4383–4390, 2018. ISSN

23773766. doi: 10.1109/LRA.2018.2867237.

[20] J. Lai, J. J. Ford, L. Mejias, and P. O’Shea. Characterization of Sky-region Morphological-temporal

Airborne Collision Detection. Journal of Field Robotics, 30(2):171–193, mar 2013. ISSN 1556-

4959. doi: 10.1002/rob.21443.

[21] S. Petridis, C. Geyer, and S. Singh. Learning to detect aircraft at low resolutions. Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

64

Bioinformatics), 5008 LNCS:474–483, 2008. ISSN 03029743. doi: 10.1007/978-3-540-79547-6

46.

[22] A. Nussberger, H. Grabner, and L. Van Gool. Aerial object tracking from an airborne platform. 2014

International Conference on Unmanned Aircraft Systems, ICUAS 2014 - Conference Proceedings,

pages 1284–1293, 2014. doi: 10.1109/ICUAS.2014.6842386.

[23] M. Vrba, D. Hert, and M. Saska. Onboard Marker-Less Detection and Localization of Non-

Cooperating Drones for Their Safe Interception by an Autonomous Aerial System. IEEE Robotics

and Automation Letters, 4(4):3402–3409, 2019. ISSN 23773766. doi: 10.1109/LRA.2019.2927130.

[24] M. Vrba and M. Saska. Marker-Less Micro Aerial Vehicle Detection and Localization Using Con-

volutional Neural Networks. IEEE Robotics and Automation Letters, 5(2):2459–2466, 2020. ISSN

23773766. doi: 10.1109/LRA.2020.2972819.

[25] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object

detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 2016-Decem:779–788, 2016. ISSN 10636919. doi: 10.1109/CVPR.2016.91.

[26] F. Schilling, F. Schiano, and D. Floreano. Vision-Based Drone Flocking in Outdoor Environments.

IEEE Robotics and Automation Letters, 6(2):2954–2961, apr 2021. ISSN 23773766. doi: 10.1109/

LRA.2021.3062298.

[27] Q. Lim, Y. He, and U.-X. Tan. Real-Time Forward Collision Warning System Using Nested Kalman

Filter for Monocular Camera. In 2018 IEEE International Conference on Robotics and Biomimetics

(ROBIO), pages 868–873. IEEE, dec 2018. ISBN 978-1-7281-0377-8. doi: 10.1109/ROBIO.2018.

8665220.

[28] S. Ramasamy, R. Sabatini, A. Gardi, and J. Liu. LIDAR obstacle warning and avoidance system

for unmanned aerial vehicle sense-and-avoid. Aerospace Science and Technology, 55:344–358,

2016. ISSN 12709638. doi: 10.1016/j.ast.2016.05.020.

[29] P. Wei, L. Cagle, T. Reza, J. Ball, and J. Gafford. LiDAR and camera detection fusion in a real-time

industrial multi-sensor collision avoidance system. Electronics (Switzerland), 7(6), 2018. ISSN

20799292. doi: 10.3390/electronics7060084.

[30] Z. Q. Zhao, P. Zheng, S. T. Xu, and X. Wu. Object detection with deep learning: A review. arXiv, 30

(11):3212–3232, 2018. ISSN 23318422.

[31] W. Pitts and W. S. McCulloch. How we know universals the perception of auditory and visual forms.

The Bulletin of Mathematical Biophysics, 9(3):127–147, 1947. ISSN 00074985. doi: 10.1007/

BF02478291.

[32] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object

detection and semantic segmentation. Proceedings of the IEEE Computer Society Conference

65

on Computer Vision and Pattern Recognition, pages 580–587, 2014. ISSN 10636919. doi:

10.1109/CVPR.2014.81.

[33] J. Redmon and A. Farhadi. YOLO9000: Better, faster, stronger. Proceedings - 30th IEEE Con-

ference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-Janua:6517–6525, 2017.

doi: 10.1109/CVPR.2017.690.

[34] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing

internal covariate shift. 32nd International Conference on Machine Learning, ICML 2015, 1:448–

456, 2015.

[35] J. Redmon and A. Farhadi. YOLOv3: An Incremental Improvement. 2018.

[36] X. Li, T. Lai, S. Wang, Q. Chen, C. Yang, and R. Chen. Weighted feature pyramid networks for

object detection. Proceedings - 2019 IEEE Intl Conf on Parallel and Distributed Processing with

Applications, Big Data and Cloud Computing, Sustainable Computing and Communications, So-

cial Computing and Networking, ISPA/BDCloud/SustainCom/SocialCom 2019, pages 1500–1504,

2019. doi: 10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00217.

[37] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao. YOLOv4: Optimal Speed and Accuracy of Object

Detection. apr 2020. ISSN 2331-8422.

[38] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The

PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-

network.org/challenges/VOC/voc2012/workshop/index.html, 2012.

[39] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. L.

Zitnick, and P. Dollár. Microsoft coco: Common objects in context, 2015.

[40] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and B. Lee. A Survey of Modern Deep

Learning based Object Detection Models. pages 1–18, 2021.

[41] G. Ciaparrone, F. Luque Sánchez, S. Tabik, L. Troiano, R. Tagliaferri, and F. Herrera. Deep learning

in video multi-object tracking: A survey. Neurocomputing, 381:61–88, 2020. ISSN 18728286. doi:

10.1016/j.neucom.2019.11.023.

[42] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft. Simple online and realtime tracking. Proceed-

ings - International Conference on Image Processing, ICIP, 2016-Augus:3464–3468, 2016. ISSN

15224880. doi: 10.1109/ICIP.2016.7533003.

[43] N. Wojke, A. Bewley, and D. Paulus. Simple online and realtime tracking with a deep association

metric. In 2017 IEEE International Conference on Image Processing (ICIP), pages 3645–3649.

IEEE, sep 2017. ISBN 978-1-5090-2175-8. doi: 10.1109/ICIP.2017.8296962.

[44] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice Hall, 2 edition, 2003.

ISBN 978-0-13-085198-7.

66

[45] J. Heikkila and O. Silven. A four-step camera calibration procedure with implicit image correction.

Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

147:1106–1112, 2019. ISSN 03783839. doi: 10.1109/CVPR.1997.609468.

[46] T. Collins and A. Bartoli. Infinitesimal plane-based pose estimation. International Journal of Com-

puter Vision, 109(3):252–286, 2014. ISSN 15731405. doi: 10.1007/s11263-014-0725-5.

[47] C. V. Dolph, M. J. Logan, L. J. Glaab, T. L. Vranas, R. G. McSwain, Z. R. Johns, and K. Severance.

Sense and avoid for small unmanned aircraft systems. AIAA Information Systems-AIAA Infotech at

Aerospace, 2017, (10), 2017. doi: 10.2514/6.2017-1151.

[48] C. Mallet and F. Bretar. Full-waveform topographic lidar: State-of-the-art. ISPRS Journal of Pho-

togrammetry and Remote Sensing, 64(1):1–16, 2009. ISSN 09242716. doi: 10.1016/j.isprsjprs.

2008.09.007.

[49] J. Shan and C. Toth. Topographic Laser Ranging and Scanning: Principles and Processing, Second

Edition. CRC Press, 2018. ISBN 9781351650427. URL https://books.google.ca/books?id=N_

ErDwAAQBAJ.

[50] R. E. Kalman. A new approach to linear filtering and prediction problems. Journal of Fluids Engi-

neering, Transactions of the ASME, 82(1):35–45, 1960. ISSN 1528901X. doi: 10.1115/1.3662552.

[51] G. F. Franklin, M. L. Workman, and D. Powell. Digital Control of Dynamic Systems. Addison-Wesley

Longman Publishing Co., Inc., USA, 3rd edition, 1997. ISBN 0201820544.

[52] R. Padilla, S. L. Netto, and E. A. Da Silva. A Survey on Performance Metrics for Object-Detection

Algorithms. International Conference on Systems, Signals, and Image Processing, 2020-July(July):

237–242, 2020. ISSN 21578702. doi: 10.1109/IWSSIP48289.2020.9145130.

[53] A. Botchkarev. Performance Metrics (Error Measures) in Machine Learning Regression, Forecast-

ing and Prognostics: Properties and Typology. pages 1–37, 2018.

[54] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The Pascal Visual

Object Classes (VOC) Challenge. International Journal of Computer Vision, 88(2):303–338, 2010.

ISSN 0920-5691. doi: 10.1007/s11263-009-0275-4. URL http://link.springer.com/10.1007/

s11263-009-0275-4.

[55] M. Daszykowski and B. Walczak. Density-Based Clustering Methods. Comprehensive Chemomet-

rics, 2:635–654, 2009. doi: 10.1016/B978-044452701-1.00067-3.

[56] S. Shah, D. Dey, C. Lovett, and A. Kapoor. AirSim : High-Fidelity Visual and Physical. pages 1–14.

[57] D. Chuan-En Lin, L. Lai, I. Ibrahimli, and A. Kinsman. Drone-net: 2664 images of drones, labeled.

URL https://github.com/chuanenlin/drone-net.

[58] B. Karis. Real shading in unreal engine 4 by. 2013.

67

https://books.google.ca/books?id=N_ErDwAAQBAJ
https://books.google.ca/books?id=N_ErDwAAQBAJ
http://link.springer.com/10.1007/s11263-009-0275-4
http://link.springer.com/10.1007/s11263-009-0275-4
https://github.com/chuanenlin/drone-net

[59] F. Pezoa, J. L. Reutter, and F. Suarez. Foundations of JSON Schema. pages 263–273, 2016.

[60] L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys. PIXHAWK : A System for Autonomous

Flight using Onboard Computer Vision. pages 2992–2997, 2011.

[61] QGC - QGroundControl - Drone Control. URL http://qgroundcontrol.com/.

[62] N. Koenig and A. Howard. Design and use paradigms for Gazebo, an open-source multi-robot

simulator. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 3:

2149–2154, 2004. doi: 10.1109/iros.2004.1389727.

[63] L. Meier. MAVLink Developer Guide, 2009. URL https://mavlink.io/en/.

[64] G. Couppey. DJI INSPIRE 2 with ZENMUSE X5S, 2016. URL https://sketchfab.com/

3d-models/dji-inspire-2-with-zenmuse-x5s-3979efe28b3a4221bdd462638582d0a6.

[65] DJI Mavic 2 Pro Photogrammetry, 2018. URL https://sketchfab.com/3d-models/

dji-mavic-2-pro-photogrammetry-4496df7bf13841698f9a2a150a49cbfd.

[66] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[67] M. A. Mittet, H. Nouira, X. Roynard, F. Goulette, and J. E. Deschaud. Experimental assessment of

the quanergy M8 LiDAR sensor. International Archives of the Photogrammetry, Remote Sensing

and Spatial Information Sciences - ISPRS Archives, 41:527–531, 2016. ISSN 16821750. doi:

10.5194/isprsarchives-XLI-B5-527-2016.

[68] MATLAB. 9.6.0.1072779 (R2019a). The MathWorks Inc., Natick, Massachusetts, 2010.

[69] Google Colaboratory, 2017. URL https://colab.research.google.com/.

68

http://qgroundcontrol.com/
https://mavlink.io/en/
https://sketchfab.com/3d-models/dji-inspire-2-with-zenmuse-x5s-3979efe28b3a4221bdd462638582d0a6
https://sketchfab.com/3d-models/dji-inspire-2-with-zenmuse-x5s-3979efe28b3a4221bdd462638582d0a6
https://sketchfab.com/3d-models/dji-mavic-2-pro-photogrammetry-4496df7bf13841698f9a2a150a49cbfd
https://sketchfab.com/3d-models/dji-mavic-2-pro-photogrammetry-4496df7bf13841698f9a2a150a49cbfd
https://colab.research.google.com/

Appendix A

Simulation Results

The results presented in Chapter 4 for the yaw and camera resolution simulations were divided for

each value of Z. In this appendix, the results obtained throughout the entire simulations are presented.

A.1 Yaw Simulation

Figure A.1: Yaw simulation results for X over time.

69

Figure A.2: Yaw simulation results for Y over time.

Figure A.3: Yaw simulation results for Z over time.

70

Figure A.4: Yaw simulation results for d over time.

A.2 Camera Resolution Simulation

Figure A.5: Camera resolution simulation results for X over time.

71

Figure A.6: Camera resolution simulation results for Y over time.

Figure A.7: Camera resolution simulation results for Z over time.

72

Figure A.8: Camera resolution simulation results for d over time.

73

74

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	List of Acronyms
	1 Introduction
	1.1 Context and Motivation
	1.1.1 Sense and Avoid

	1.2 Project Overview
	1.3 Related Work
	1.4 Objectives
	1.5 Thesis Outline

	2 Theoretical Background
	2.1 Visual Object Detection
	2.1.1 Object Detection With Deep Learning
	2.1.2 YOLO
	2.1.3 YOLO Frameworks

	2.2 Multi-Object Tracking
	2.2.1 Deep SORT

	2.3 Geometric Camera Parameters
	2.3.1 Pinhole Respective Projection Model
	2.3.2 Homogeneous Coordinates
	2.3.3 Intrinsic Parameters
	2.3.4 Extrinsic Parameters
	2.3.5 The PnP Problem

	2.4 LiDAR Principles
	2.5 Kalman Filtering
	2.5.1 Discrete Kalman Filter

	2.6 Evaluation Metrics
	2.6.1 Object Detection
	2.6.2 Model Performance

	3 Methodology
	3.1 Previous Work
	3.1.1 LiDAR Point Cloud Filtering and Clustering
	3.1.2 Modified Deep SORT

	3.2 System Overview
	3.3 Detection Task
	3.3.1 AirSim Overview
	3.3.2 AirSim Simulation

	3.4 Relative Localization Estimation
	3.4.1 Position Estimation Using LiDAR
	3.4.2 Position Estimation Using Camera

	3.5 Method Limitations
	3.6 Kalman Filtering
	3.6.1 Distance Stabilization
	3.6.2 3D Coordinates Stabilization

	3.7 Implementation for Multi-UAV

	4 Simulations and Results
	4.1 AirSim Setup
	4.1.1 Camera Calibration

	4.2 Yaw Simulation
	4.2.1 Results

	4.3 Camera Resolution Simulation
	4.3.1 Results

	4.4 Multi-UAV Simulation
	4.4.1 Results

	4.5 Discussion

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Contributions
	5.3 Future Work

	Bibliography
	A Simulation Results
	A.1 Yaw Simulation
	A.2 Camera Resolution Simulation

