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Abstract

The presented work proposes a system designed to run onboard a UAV (Unmanned Air Vehicle) and
capable of detecting and estimating the relative position of non-cooperative UAVs. The system utilizes
both LiDAR (Light Detection and Ranging) measurements and images from a camera to detect and
track nearby UAVs using a deep learning approach. Instead of manually labelling a dataset to train the
chosen object detector - YOLO (You Only Look Once), synthesized images were automatically created
and annotated using the open-source software AirSim. YOLO was trained with 4761 training and 530
validation images. YOLO outputs bounding box coordinates that are combined with measurements
given by the LiDAR to estimate the relative position of the encountered UAVs. Kalman Filtering is
used to smooth the obtained estimations. The system can be used in situations where conventional
localization systems are not a good solution such as sense and avoid.
Keywords: Camera, LiDAR, YOLO, AirSim, Kalman Filter

1. Introduction

As the technological capabilities of UAVs in-
crease, these aircraft are becoming more popular
due to their wide and various applications. These
vehicles present a robust solution for many indus-
tries and are capable of serving several commercial
and individual needs. However, UAVs still have lim-
itations in practical scenarios due to their lower pay-
load capacity, shorter endurance and operational
range. The potential of UAVs could be further
explored if autonomous operations were possible,
without the need for a human pilot. For this, UAVs
need to be equipped with AI algorithms capable of
handling difficult problems and reacting in complex
scenarios.

1.1. Project Overview

The proposed system is part of a research per-
formed at the CfAR (Centre for Aerospace Re-
search) of the University of Victoria. The task con-
sisted in continuing the work developed in the pre-
vious year by Daniel Justino [9] where a sensing sys-
tem detects and tracks potential intruder UAVs us-
ing a LiDAR and a Camera. A LiDAR can provide
3D point clouds with representations of the envi-
ronment at ranges over 100m at high update-rates
(5 − 20Hz) in low visibility conditions. However,
the 3D point clouds provided are sparse and detec-
tions worsen in the presence of rain, fog, snow or
dust. Cameras can provide rich texture-based and
colour-based information. By combining both mea-

surements from a LiDAR and Camera it is possible
to improve the deficiencies from each individual sys-
tem.

The system should fly onboard a UAV and be
used for integration with avoidance trajectory plan-
ning algorithms for sense and avoid applications.
Therefore, the method presented aims to continue
the previous work by estimating the relative posi-
tion of the encountered UAVs.

1.2. Related Work

Numerous approaches to vision-based UAV de-
tection and tracking have been presented in
the literature. Some of the most effective ap-
proaches utilise multi-stage-detection pipelines, ma-
chine learning and deep learning [8].

More recently, deep learning approaches have
been explored for the vision-based detection and
relative localization estimation of objects. In [19]
a single camera and the deep learning algorithm
YOLO [15], are used to estimate the distance to a
MAV (Micro Aerial Vehicle) given its known phys-
ical size. A similar approach is presented in [16]
where the algorithm can be used for a larger num-
ber of drones by training YOLO with a dataset that
is created while systematically flying a quadcopter
in front of a static camera and applying background
subtraction to the images. In [11], a monocular
camera and YOLO are used in a collision avoidance
system where a nested Kalman Filter is used to im-
prove the estimations of distance and velocity. All
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these methods use single cameras and require a pri-
ori information about the vehicles, so they cannot
be applied to non-cooperative UAVs.

An example of a LiDAR Obstacle Warning and
Avoidance System (LOWAS) employed in a sys-
tem for UAS (Unmanned Aerial System) sense and
avoid applications is presented in [14]. In [20], a
single camera and a LiDAR are used for the de-
tection of beacons, with results improving by using
information from both sensors. A neural network is
trained with data from the LiDAR and the camera
so that it could estimate the position of the encoun-
tered beacons. These estimations were compared
with LiDAR 3D point clouds and fuzzy logic was
used to compute the score of the final outputted
distance.

2. Background
2.1. Visual Object Detection

Humans are capable of looking at an image and
instantly know which objects are present and their
positions. One of the fundamental computer vision
problems is to completely understand an image by
trying to precisely estimate the concepts and loca-
tions of the objects contained in each image. The
current state-of-the-art deep learning object detec-
tor YOLO is a CNN (Convolutional Neural Net-
work) that can be trained to detect different classes
of objects in an image. The output of YOLO is a set
of predicted bounding boxes that consist of 5 pre-
dictions: x, y, w, h, and confidence. The (x, y) co-
ordinates represent the centre of the box and (w, h)
its width and height. YOLO keeps only the bound-
ing boxes with the highest confidence scores. Since
the release of the first version of YOLO, many im-
provements have been made to the object detector.
The presented work implements version 4 of YOLO
that corresponds to the one with the best perfor-
mance and higher speed.

2.2. Multi-Object Tracking

The objective of MOT (Multi-Object Tracking)
is to analyse videos to identify and track objects
without any prior knowledge about their appear-
ance and number.

Deep SORT (Simple Online and Realtime Track-
ing with a Deep Association) proposes a tracking-
by-detection framework for the MOT problem
which can be used for real-time applications. It
integrates appearance information to improve per-
formance and assumes the camera is not calibrated
and there is no ego information available. For each
new UAV assignment, the algorithm creates a new
track that stays in a tentative state until Amax con-
secutive associations are successful. Afterwards, the
track transitions into an active state. Otherwise,
the track is deleted. The track remains in an active
state for as long as observations keep being assigned

to them. When no associations are made, the track
transitions into a lost state where the Kalman Filter
from Deep SORT continues to predict the target po-
sition. If it associates one observation with a track,
this track transitions back to the active state, but if
no associations are made for N iterations, the track
is removed.

2.3. Geometric Camera Parameters
The pinhole perspective projection model is a

mathematically convenient and simple approxima-
tion of the imaging process. Let P denote a scene
point with coordinates (X,Y, Z), p denote its image
with coordinates (x, y, z) and O the ideal pinhole of
the camera, as shown in Fig. 1. Since p is a point

Figure 1: Collinearity of the point P , its image p,
and the pinhole O from which the perspective pro-
jection equations are derived. [6]

in the image plane, z = d and because p, P and O
are collinear yields,

x = λX

y = λY

d = λZ

⇔

{
x = dX

Z

y = dY
Z

. (1)

Consider a coordinate vector P to be (X,Y, Z)T

in R3 in some fixed world coordinate system. Its
homogeneous coordinate vector is P = (X,Y, Z, 1)T

in R4 and the correspondent vector p = (x, y, 1)T

of its image p in the camera’s reference frame are
related by the perspective projection equation [6],

p =
1

Z
MP, (2)

where M is the matrix that provides an algebraic
representation of the perspective projection process.

Consider a normalized image plane parallel to the
image plane but located at a distance d = 1 from
the pinhole, O. Let p̂ = (x̂, ŷ, 1)T be the homoge-
neous coordinates of the projection of point P into
the normalized image plane. Equation (1) can be
written as{

x̂ = X
Z

ŷ = Y
Z

⇔ p̂ =
1

Z

[
Id 0

]
P. (3)

The relation between the vector of homogeneous co-
ordinates in the image frame and the homogenous
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coordinates in the normalized image plane is ob-
tained through the intrinsic camera calibration ma-
trix K:

p = Kp̂ =

fx s cx
0 fy cy
0 0 1

 p̂, (4)

and, consequentially, equation (2) can be rewritten
as

p =
1

Z
K
[
Id 0

]
P. (5)

The pinhole model provides only a simple ap-
proximation and the effect of radial and tangen-
tial lens distortion should also be taken into ac-
count. The camera intrinsic calibration matrix can
be augmented with the radial and tangential distor-
tion coefficients k1, ..., kn, p1 and p2. Let K̃ be the
augmented matrix of K yields,

p =
1

Z
K̃
[
Id 0

]
P. (6)

Finally, extrinsic camera parameters are neces-
sary to transform the world coordinates to the cam-
era centred coordinate frame. Let CP denote the
vector of homogeneous coordinates of point P ex-
pressed in the camera coordinated frame, C and
WP the same vector expressed in the world coordi-
nate frame, W . It is possible to write

p =
1

Z
K̃
[
R t

]
WP, (7)

where R is a rotation matrix and t is a translation
vector.

2.4. LiDAR Principles
LiDAR sensors use information acquired by the

light emitted by a laser beam or pulse. The emitted
power must be kept within a safety envelope and an
adequate frequency must be selected to guarantee
safety in human environments [5]. Usually, a very
short but intense pulse of laser radiation is used to
compute distances by measuring its time of flight
accordingly with,

d =
c · (tr − tt)

2
, (8)

where d is the distance between the LiDAR and the
object, c is the speed of electromagnetic radiation
and tr and tt are the received and transmitted time
measurements, respectively.

The relationship between the distance measure-
ments and the LiDAR coordinate frame is given byXY

Z

 = d

cos(ψ) · cos(θ)
cos(ψ) · sin(θ)

sin(ψ)

 , (9)

where ψ and θ are the elevation and azimuth angles
of the emitted laser beam, respectively [18].

2.5. Kalman Filtering
Consider a linear, discrete-time system having

dynamics [7]

xk+1 = Akxk +Bkuk +Gkwk, t ≥ 0 (10a)

yk = Hkxk + vk (10b)

x0 = x0 (10c)

where xk, uk, yk, wk and vk represent the state,
control, measurements and measurements noise vec-
tors, respectively, and Ak, Bk, Gk and Hk represent
the system transition, input distribution, system
noise and observation matrices, respectively. wk

and vk are Gaussian, white noises processes satisfy-
ing

E{wk} = 0, E{vk} = 0, E{wkv
T
j } = 0,

E{wkw
T
j } =

{
0 k 6= j

Qk k = j
,

E{vkvTj } =

{
0 k 6= j

Rk k = j
,

(11)

and have covariance matrices Qk and Rk, respec-
tively, both positive definite [7].

The Kalman Filter performs two steps: predic-
tion, with x̂−k+1 representing the predicted estimate

and update, with x̂+k+1 representing the updated es-
timate.

Prediction Step:

x̂−k+1 = Akx̂
+
k +Bkuk, (12a)

P−
k+1 = AkP

+
k A

T
k +GkQkG

T
k . (12b)

Update Step:

x̂+k+1 = x̂−k+1 +Kk+1[yk+1 −Hk+1x̂
−
k+1], (13a)

P+
k+1 = [I −Kk+1Hk+1P

−
k+1], (13b)

where Kk+1 is given by

Kk+1 = P−
k+1H

T
k+1[Hk+1P

−
k+1H

T
k+1 +Rk+1]−1.

(14)
The Kalman filter only needs to remember the pre-
vious step making it computationally efficient.

2.6. Evaluation Metrics
The precision, P , translates the capacity to per-

form correct detections since it gives the relation-
ship between the number of objects detected versus
the total number of detections. It is defined as

P =
TP

TP + FP
, (15)

where TP and FP are equal to the number of true
positives and false positives detected, respectively.

The recall, R, translates the ability to find all the
objects in the scene since it gives the relationship
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between the number of objects detected versus the
total number of objects. It is defined as

R =
TP

TP + FN
, (16)

where FN corresponds to the number of false neg-
atives in a set.

The RMSE (Root Mean Squared Error) has been
used as a standard statistical metric to measure
model performance. It is a measure of accuracy
and it is always non-negative. It is defined as

RMSE =

√√√√ 1

N

N∑
n=1

(
x̂n − xn

)2
, (17)

where N is the total number of measurements, x̂n
is the estimated value of the nth predicted measure-
ment and xn is its correspondent actual value.

Finally, the MaxAE (Maximum Absolute Error)
is given by

MaxAE = max(|x̂n − xn|), (18)

where x̂n is the estimated value of the nth predicted
measurement and xn is its correspondent actual
value.

3. Implementation
3.1. Previous Work

The work presented carries on the work previ-
ously developed by Daniel Justino in [9] during his
time at CfAR. Therefore, an overview of the algo-
rithm that he developed for the task of detection
and tracking of non-cooperative UAV is presented.

Using an object detector such as YOLO to in-
spect a whole image and detect UAV is computa-
tionally expensive and can lead to the acquisition
of a large number of false positives. For this reason,
one of the largest contributions of the previously de-
veloped work was the generation of ROIs (Regions
of Interest) in the captured images, in which YOLO
searches for UAVs.

Figure 2: Previously proposed architecture. The
dashed line represents a link between consecutive
iterations [9].

Note the scheme present in Fig. 2. The LiDAR
acquires a UAV by giving a 3D point cloud that

is clustered and filtered by the algorithm to obtain
just the points relative to the encountered UAV.
These points are projected into the 2D image us-
ing the geometric camera parameters and equation
(7). Afterwards, a ROI centred in the 2D projected
point is created with a fixed size of 128x128 pix-
els. The object detector YOLOv3 scans this ROI
and tries to detect the UAV inside it. If a UAV
is detected, the tracking algorithm based on Deep
SORT is used to predict the position of the UAV
in the following frame. For this reason, in the next
frame YOLO will be inspecting ROIs created by
the LiDAR 3D-2D projection and ROIs predicted
by the modified Deep SORT. The modified Deep
SORT tracker is especially important when LiDAR
measurements are not available. Deep SORT was
planned for the tracking of pedestrians, where CNN
appearance descriptors add value to the algorithm
but, for the specific case of small UAVs, the appear-
ance descriptors were discarded and the algorithm
is called modified Deep SORT.

This architecture detects and tracks UAVs in an
image but is not capable of providing relative posi-
tion estimations of the detected UAV, (X,Y, Z), in
the world coordinate frame. The work presented in
this thesis aims to continue the work discussed thus
far and find a solution for the problem of relative
position estimation of non-cooperative UAVs using
a LiDAR and a camera.

3.2. System Overview
The method proposed can be divided into two

different steps: detection and relative localization
estimation, as presented in Figure 3.

For the detection task, most of the work previ-
ously developed was kept. For each frame, the 3D
point cloud given by the LiDAR is filtered and clus-
tered. When there are points likely to be related to
an encountered UAV, a ROI is created using the
3D-2D projection. YOLO looks for UAVs in the
ROIs created by the projection and by the modi-
fied Deep SORT tracker. If for a specific frame no
ROI is created, the output of that frame is empty.
The same happens if YOLO does not detect a UAV
in any of the ROIs created for that frame. The mod-
ified Deep SORT is used to predict the position of
the UAV in the following frames. The algorithm
constructs a track with the previous detections and
uses this information to predict the position of the
UAV in the following frame.

The main work is focused on the second task,
relative localization estimation. The position of
the UAV is estimated with two different methods.
When YOLO detects a UAV with a correspondent
LiDAR measurement, i.e., if there is a LiDAR 2D
projection inside the bounding box returned by
YOLO, the correspondent LiDAR 3D coordinates
are used directly. If there are no correspondent Li-
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Figure 3: Diagram of the proposed system.

DAR points for the detected UAV, position estima-
tion is performed using the camera.

Because the LiDAR 3D point clouds are sparse,
most of the estimations will be based on information
from the camera.

To estimate the UAV’s position with the camera,
it is necessary to estimate its relative distance first.
The method used to achieve this requires knowing
the apparent physical size of the target, r, which
will be discussed in detail later, the bounding boxes
returned by YOLO and the geometric camera pa-
rameters. The value of r is called apparent since it
changes accordingly with variations in the attitude
of the UAV. A Kalman Filter is used to smooth the
estimates of the distance that afterwards is used to
compute the relative 3D coordinates of the UAV in
the LiDAR’s coordinate frame.

The proposed system works for any number of
UAVs present in the scene and without any a priori
information or assumption.

4. Detection Task
For the detection task, some key updates were

implemented. Firstly, YOLO was updated to the
last released version at the time of the training,
YOLOv4 [2], since this version was computationally
faster and provided better detection results. Also,
the size of the ROI was changed to 416×416 pixels,
which is the standard size of the input images of
YOLOv4.

The Deep SORT tracker was configured to keep a

new track in the tentative state until Amax = 3 con-
secutive associations are successful and to remove
this track if no associations are made for N = 9
iterations.

The coordinates of the bounding boxes returned
by YOLO are used in the estimation of distance and
3D coordinates when using only the camera. These
bounding boxes need to fit around the target almost
perfectly to achieve good results. For this reason, it
was necessary to create a dataset that satisfied this
requirement. The open-source software AirSim [17]
was used to this end.

4.1. AirSim

AirSim [17] is an open-source simulator that en-
ables the development and testing of algorithms for
autonomous vehicles and facilitates the collection of
annotated data for the training of object detectors
such as YOLO. AirSim was built on Unreal En-
gine [10] which offers realistic simulations, enabling
the realization of Software-in-the-loop (SITL) and
Hardware-in-the-loop (HITL) experiments.

Amongst other functionalities, it is possible to
modify the vehicles and onboard sensors, interact
with the vehicle programmatically, using Python
code or use external controllers such as PX4 [13].
For trajectory planning, it is possible to integrate
software such as QGroundControl [1].

Two UAVs flew in every simulation so that the
first UAV (carrying one camera) could record im-
ages of the second UAV in 4 different environments.
It was decided to train YOLO with images of two
UAVs: DJI Inspire 1 and Mavic Pro considering
that these were the drones available at CfAR and
used in the experiments of previous years. The
specifications of these drones can be found in Table
1.

Several flights were performed to capture the
drones with different attitudes and at different dis-
tances. The camera images were programmed to
have 1920×1080 pixels, a horizontal FOV (Field of
View) of 90◦ and a vertical FOV of 50.6◦. Along-
side the scene camera frames, segmented images
were collected. A Python code was created to
change the colours of the segmentation images so
that every object in the environment would appear
black and only the drones in white. This facilitated
the process of finding the bounding boxes of the
drones present in the image, using the Python li-
brary OpenCV [3]. These points were written to a
text file accordingly to the YOLO darknet format.
A total of 4761 training images and 530 validation
images were gathered to train the object detector.

5. Relative Localization Estimation

LiDARs are capable of giving 3D point clouds
with high accuracy and at high frame rates but
these point clouds are sparse and the UAVs are not
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Table 1: Properties of the vehicles used in the AirSim simulations.

Dimensions [cm] Weight [g] Nº of Motors Autonomy [min]
DJI Inspire 1 44× 45× 30 2, 845 4 18
DJI Mavic Pro 32× 24× 81 734 4 21

(a) Scene image from Land-
scape Mountains.

(b) Boundary points of the
UAV in (b).

Figure 4: Process for the creation of a dataset in
the YOLO Darknet format.

detected when flying between the LiDAR beams.
In addition, LiDAR beams can have small ranges.
Cameras can capture sequenced frames in which the
UAV is always visible and YOLO can always per-
form detections in these frames. However, single
camera position estimation state-of-the-art meth-
ods require an a priori knowledge of the encoun-
tered UAVs and are usually used in cooperative
UAV missions. By using information from the pre-
vious LiDAR detections as the necessary a priori
knowledge for the implementation of single camera
methods, these can be expanded to non-cooperative
flying vehicles.

5.1. Position Estimation Using LiDAR

LiDAR measurements are used directly whenever
available and validated by YOLO, i.e., if the LiDAR
3D-2D projection results in points that are inside
the bounding box returned by YOLO. For this rea-
son, the algorithm presented is fully dependent on
the detections performed by YOLO. This decision
was made taking into account that only an object
detector can distinguish a UAV from a bird or the
tip of a tree.

5.2. Position Estimation Using Camera

Whenever there are no measurements from the
LiDAR, the relative position estimation is com-
puted using only the camera. This task can be
divided into two phases: distance estimation and
3D coordinate estimation.

It is possible to notice from Fig. 5 that the dis-
tance d, from the centre of the UAV and the origin
of the camera coordinate system, Oc, is estimated
from the angle α which corresponds to the angle be-
tween vectors a1 and a2. These are directional vec-
tors of 3D lines intersecting with Oc and the centres
of the horizontal edges of the bounding box of the

detected UAV.

Figure 5: Projection of the UAV in the camera pro-
jection plane, P . The UAV is specified by the phys-
ical size r.

The angle α between vectors a1 and a2 is given
by

α = acos

(
a1 · a2
‖a1‖ · ‖a2‖

)
, (19)

and the approximate distance, d, to the detected
object is given by

d =
r

tan(α/2)
, (20)

where r is the estimated physical size of the UAV.
Since the system should work for any non-

cooperative UAV, it is necessary to find a way to
estimate the target’s physical dimension, r. To ac-
complish this, the last LiDAR measurement before
losing the LiDAR information is used. Since the
distance given by the LiDAR from frame t− 1 and
the corresponding bounding box returned by YOLO
at t− 1 are known, yields,

r(t− 1) = d(t− 1) · tan(α(t− 1)/2). (21)

In subsequent camera frames, at t, t + 1 and so
on, it is assumed r constant and equal to the last
estimate, until a new LiDAR measurement occurs
and the value of r is updated. The performance of
the distance estimation improves as the number of
LiDAR measurements increases since the value of r
is updated more often and the algorithm takes into
account more changes in the UAV’s attitude.

Vectors a1 and a2 are directional vectors with ori-
gin in the camera coordinated frame (xc, yc, zc) and
end in the image plane. Thus far, the only informa-
tion available is the coordinates p = (x, y) of the
two points of the horizontal edges of the bound-
ing boxes. To use this method to compute the 3D
coordinates in the world coordinate frame, it is nec-
essary to know the value of the coordinate z as well.
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However, it is impossible to calculate this value be-
cause the distance from the image plane to the cam-
era origin, Oc, is unknown. For this reason, vectors
a1 and a2 are obtained from the normalized image
plane, which is at the known distance ẑ = 1. The
relation between the vector of homogeneous coordi-
nates in the image frame and the homogeneous co-
ordinates in the normalized image plane was given
by equation (6) and therefore, the points in the nor-
malized plane can be obtained using it.

The position of the encountered UAV, in 3D coor-
dinates and relative to the camera coordinate frame,
is obtained using vectors a1, a2 and distance, d. Let
vector ac be the vector from the camera origin to-
wards the centre of the detected UAV, C, yields:

ac =
a1 + a2

2
, C = d

ac
‖ac‖

. (22a)

The coordinates of point C are given with respect
to a coordinate system centred in the camera. It
is necessary to transform these coordinates to the
LiDAR coordinate frame using the extrinsic camera
parameters.

5.3. Method Limitations
The bounding boxes returned by YOLO can vary

sudden and significantly in size because the bound-
ing box does not always fit around the detected
UAV in the same way, inducing a random and un-
predictable error. In addition, changes in the atti-
tude of the UAV during its flight can lead to estima-
tion errors. In some cases, with very complex back-
grounds, YOLO can detect only a part of the UAV,
not bounding its body entirely. Since the distance
estimation is dependent on the height of the bound-
ing box returned by YOLO, which is given in pixels,
there exists a quantization phenomenon associated
with the smallest measurement unit - 1 pixel. For
distances of 10m, a variation of 1 pixel corresponds
to an absolute error in distance of 30cm but for a
distance of 40m, a variation of 1 pixel corresponds
to an absolute error of 6.8m in distance, which is
significantly larger. Kalman Filtering was imple-
mented to smooth all the estimation variations that
might occur due to the phenomena discussed.

5.4. Kalman Filtering
For the distance estimation, it was considered

a very simple linear, discrete-time system having
dynamics given by equation (10). The considered
state transition matrix is based on a linear velocity
model,

Ak =

[
1 ∆t
0 1

]
2×2

, (23)

and the input u = 0 since there are no control in-
puts. The Kalman Filter is initialized with esti-
mates of x̂0, and predicted (a priori) estimate co-

variance, P0, given by

x̂0 =

[
dt=0

ḋt=0

]
2×1

, P0 =

[
1 0
0 1

]
2×2

, (24a)

where dt=0 is computed with the last available Li-
DAR measurement and Hk =

[
1 0

]
1×2

. The co-
variance of the measurements noise matrix, Rk, and
the process noise matrix, Qk, were tuned manually.

For the 3D coordinates stabilization, it was also
used a linear, discrete-time system of the form pre-
sented in Equation 10. The state transition matrix
is based, once again, in a linear velocity model with
no control inputs (u = 0). The Kalman Filter is
initialized with estimates of x̂0, and predicted (a
priori) estimate covariance, P0, given by

x̂0 =
[
xt=0 yt=0 zt=0 ẋt=0 ẏt=0 żt=0

]T
6×1

,

(25a)

P0 =

1 . . . 0
...

. . .

0 1


6×6

, (25b)

where xt=0, yt=0 and zt=0 are given by the last
available LiDAR measurement and

Hk =

1 . . . 0 . . . 0
...

. . .
...

...
0 1 . . . 0


3×6

. (26)

Matrices Qk and Rk were tuned manually.

6. Implementation for Multi-UAV
To detect and estimate the position of several

UAVs in a sequence of images, it is necessary to
find a method to associate each detected UAV in
a new frame with its previous detection in the last
frame. This is an assignment problem that will be
solved using a simple distance metric.

The algorithm creates a list containing the in-
formation of all the UAVs present in the scene.
For each frame, the algorithm searches for UAVs
in the list that have been lost for more than
loss threshold frames and removes them.

For each ROI, YOLO tries to detect UAVs. If
a new detection is confirmed, the algorithm checks
if the list of UAV is empty. When it is, the new
detected UAV is added to the list, if not, the al-
gorithm tries to assign the detected UAV with the
ones already present in the list.

The assignment is performed based on the coor-
dinates of the centre of the bounding box returned
by YOLO, (cx, cy), in pixels. These coordinates are
compared to the centres of the bounding boxes of
all the other UAVs present in the list, according to

s =
√

(cx − cix)2 + (cy − ciy)2, (27)
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where (cix, c
i
y) represents the centre of the bounding

box of the UAV with correspondent index i in the
list of vectors. The algorithm chooses the UAV cor-
respondent to the smallest value of s and if s ≤ de-
tection threshold, the assignment is validated.
If not, the detection is considered to be a new UAV
that just entered the scene and is added to the list.
Because the ROIs have a size of 416 × 416 pixels,
they may capture more than one UAV. Therefore,
after the assignment, the algorithm verifies if the
UAV has already been updated for that frame and
if so, chooses the estimation that presents the clos-
est distance.

The algorithm only needs to store information
regarding the last detection (for each UAV) making
it computationally inexpensive.

7. Simulations
7.1. AirSim Setup

The simulations in AiSim were planned using
QGroundControl and transmitted to AirSim by the
PX4 controller. The UAV used was a DJI Inspire
1. The chosen environment was different from the
ones used to train YOLO and it is composed of a
landscape with a clear sky, where a UAV should be
easily detected and mountains simulating complex
backgrounds.

A UAV carrying a camera and a LiDAR stayed
hovering at a fixed position while the other rep-
resented a non-cooperative encountered UAV. The
LiDAR was simulated using a built-in tool from
AirSim and presented 8 detection layers, 420000
points per second, a range of 60m, a horizontal
FOV of 360◦, a vertical FOV of 21◦ (+3◦/ − 18◦)
and 10 rotations per second. Python code was de-
veloped to capture LiDAR measurements, ground
truth and camera images during the flights, using
APIs. The trajectory was planned so that the max-
imum velocity of the flying UAV was equal to 4m/s.
The camera was configured to output images of size
1280×720 since this is the resolution of the camera
available at CfAR. It presented a horizontal FOV
of 90◦ and a vertical FOV of 50◦. The simulations
were configured to give a data rate of 20Hz.

It was necessary to estimate the camera’s intrin-
sic and extrinsic parameters using the Calibrator
App from Matlab [12]. For the extrinsic calibra-
tion between the LiDAR and the camera, IPPE
(Infinitesimal Plane-based Pose Estimation) [4] was
used with points gathered manually.

7.2. Yaw Simulation

This first flight was simulated to study the influ-
ence of attitude variations in the algorithm’s predic-
tions. QGroundControl only allows to control the
yaw of the flying UAVs but the results were already
enough to infer several conclusions regarding the in-
fluence of attitude variations. The UAV flew along

the Z-axis at positions ranging from 10 to 50m in
intervals of 10m. For each distance, the UAV fol-
lows the trajectory represented in Figure 6(a), in
the OXY plane, following the sequence A-B-C-D-
B.

(a) Trajectory followed in the OXY
plane.

Figure 6: Trajectory followed by the UAV for the
yaw simulation.

The UAV presented yaw equal to 0◦ from point
A to B and from point C to D and yaw equal to 90◦

from point B to C and D to B.
Position estimations in the OXY plane present

good results, with RMSE values lower than 4.34m
for estimations in X and 1.58m for estimations in
Y . The error in the Z-axis is the most affected, pre-
senting a MaxAE of 23.21m and a RMSE of 7.38m
for Z ≈ 50m. Overall, it can be concluded that
the algorithm performs well for positions such that
Z ≤ 40m but for higher values of Z the estimates
start to deviate significantly from the ground truth
values. It was concluded that the attitude of the
UAV influences the estimations for distances along
the Z-axis up to 30m. For further values of Z, the
UAV is too small and the results are mostly affected
by variations in the height of the bounding box.

The precision and recall of YOLO were equal
to 100% and 93.50%, respectively. YOLO never
missed the detection of the UAV for more than
loss threshold consecutive frames for positions
with Z ≤ 40m but it was lost at Z ≈ 50m for 10s
which corresponds to 3.3% of the flight. An empty
frame was defined as the fraction between the num-
ber of frames without a position estimation output
and the number of total frames. YOLO presented
a speed of 1.73Hz when running with CPU and a
speed of 9.5Hz when running with GPU.

7.3. Camera Resolution Simulation
To study the impact of the camera resolution

in the algorithm’s estimations, a flight simulation
with a 1080p camera was performed. The simulated
flight presented the same trajectory as the yaw sim-
ulation. When comparing the results obtained with
a camera of resolution equal to 1080p, it is con-
cluded that the results improve for all the values
of Z except for Z ≈ 40m. It was concluded that
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Table 2: RMSE and MaxAE results obtained for the yaw simulation with a 720p camera.

RMSE[m] MaxAE[m]
Empty Frames[%]

X Y Z d X Y Z d
10m 0.43 0.19 0.80 0.86 1.25 0.39 1.93 2.19 0.33
20m 0.80 0.34 1.28 1.45 2.93 1.21 3.78 4.73 8.84
30m 2.00 1.13 3.56 4.17 5.53 3.67 10.27 12.18 9.93
40m 2.12 1.30 4.03 4.62 7.11 3.83 10.53 12.91 1.29
50m 4.35 1.58 7.36 8.60 16.94 5.99 23.21 28.76 17.70

(a) Results in the OXY plane. (b) Results in the OXZ plane.

Figure 7: Estimation results for the yaw simulation at Z ≈ 10m.

(a) Results in the OXY plane. (b) Results in the OXZ plane.

Figure 8: Estimation results for the yaw simulation at Z ≈ 50m.

the system’s results improved when using a cam-
era with higher resolution and used to estimate the
position of UAVs up to Z ≤ 50m.

YOLO continued to present precision of 100%
and recall improved to 94.42%. It presented a fre-
quency of 1.64Hz when running with CPU (Central
Processing Unit) and 11.92Hz when running with
GPU (Graphics Processing Unit).

7.4. Multi-UAV Simulation

A simulated flight with two UAVs was per-
formed to exemplify the response of the algorithm
when more than one UAV is present in the scene.
The minimum distance between the two UAVs
was 50 pixels, which is smaller than the detec-
tion threshold defined (64 pixels). The sys-
tem was capable of detecting and tracking multiple
UAVs in the frames without ever failing to assign
the two UAVs correctly.

8. Conclusions

The presented work proposes a system for the
detection and relative position estimation of non-
cooperative UAVs using the state-of-the-art object
detector YOLO and data from a LiDAR and an EO
camera. The system is capable of detecting and
estimating the relative position of any number of
encountered UAVs without any a priori knowledge.
Overall, the system provided good estimation re-
sults for values of Z up to 40m whenever using a
camera with a resolution of 720p and up to 50m
when using a camera with 1080p. The maximum
RMSE value obtained for Z ≈ 40m and a camera
with 720p was equal to 4.62m, with correspondent
MaxAE equal to 12.91m. For the case of the cam-
era with 1080p, the maximum RMSE obtained for
Z ≈ 50m was 7.80m with correspondent MaxAE
18.36m. For the multi-UAV simulation, the sys-
tem was capable of detecting and tracking multiple

9



Table 3: Results obtained for the 1080p camera simulation.

RMSE[m] MaxAE[m]
Empty Frames[%]

X Y Z d X Y Z d
10m 0.44 0.18 0.65 0.71 0.96 0.42 1.73 1.81 0.00
20m 0.83 0.48 0.97 1.23 2.05 1.65 2.83 3.50 0.59
30m 1.40 0.84 1.94 2.36 4.06 2.68 7.28 8.49 8.03
40m 2.60 1.04 5.86 6.34 6.80 3.91 14.05 14.76 11.39
50m 3.56 1.00 7.01 7.80 12.55 4.07 16.34 18.36 3.62

UAVs in the same frame without ever failing to as-
sign the two UAVs correctly.
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