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Resumo

O Capacitated Arc Routing Problem (CARP) é um problema de otimização combinatória muito im-

portante com uma vasta gama de aplicações tais como recolha de resı́duos, manutenção de estradas e

espalhamento de sal para prevenir neve. Nesta tese, propomos um Algoritmo Memético com Mutação

por Divisão e Conquista (MADCoM) para resolver o Mixed Capacitated Arc Routing Problem (MCARP),

uma variante do CARP mais adequada às redes de estradas do mundo real. É dada ênfase à resolução

de instâncias de grande escala, uma vez que a maioria das aplicações abrange uma cidade inteira.

MADCoM é um algoritmo genético com controlo de diversidade adaptativo hibridizado com procura lo-

cal eficiente. Introduzimos um novo operador de mutação que consiste em aplicar a uma solução duas

heurı́sticas de dividir para conquistar, Route Cutting Off Decomposition e Hierarchical Decomposition.

Demonstramos que conduz a um melhor desempenho do algoritmo quando combinado com procura

local, principalmente para instâncias maiores. Além disso, Hierarchical Decomposition é utilizado como

um método de inicialização. Mostramos que gera uma população diversificada com soluções de qual-

idade. Definimos um dos seus parâmetros como dependente da dimensão do problema, o que leva a

uma redução do tempo computacional sem afectar a qualidade das soluções. Testamos o desempenho

do MADCoM nas referências clássicas para CARP e MCARP, bem como nas referências mais recentes

de grande dimensão. Encontramos novas melhores soluções para 8 instâncias de MCARP, 2 das quais

são soluções ótimas, e novas melhores soluções para 12 instâncias de grande dimensão do CARP.

Palavras-chave: Capacitated Arc Routing Problem, algoritmo genético, procura local, dividir

para conquistar
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Abstract

The Capacitated Arc Routing Problem (CARP) is a very important combinatorial optimization prob-

lem with a wide range of applications such as waste collection, road maintenance and winter gritting. In

this thesis, we propose an algorithm called Memetic Algorithm with Divide-and-Conquer Mutation (MAD-

CoM) to solve the Mixed Capacitated Arc Routing Problem (MCARP), a variant of CARP more suited

to real-world street networks. An emphasis is placed on solving large-scale instances, as most applica-

tions span an entire city. MADCoM is a genetic algorithm with adaptive diversity control hybridized with

efficient local search. We introduce a novel mutation operator which consists of applying to a solution

two state-of-the-art divide-and-conquer heuristics, Route Cutting Off Decomposition and Hierarchical

Decomposition. We demonstrate that it leads to improved performance of the algorithm when coupled

with local search, particularly for larger instances. Furthermore, Hierarchical Decomposition is used as

an initialization method. We show that it generates a diverse population with quality solutions. We define

one of its parameters to be dependent on the problem size, which leads to reduced computational time

without affecting solution quality. We test the performance of MADCoM on the classical benchmarks for

CARP and MCARP, as well as the more recent large-scale benchmarks. We find new best solutions for

8 instances of MCARP, 2 of which are optimal solutions, and new best solutions for 12 large-scale CARP

instances.

Keywords: capacitated arc routing problem, genetic algorithm, local search, divide-and-conquer
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Chapter 1

Introduction

1.1 Motivation

Nowadays, over 55% of the world’s population lives in cities. By 2050, the urban population is

expected to double, with two-thirds of the world living in urban areas [1]. To accommodate the growing

population, cities will expand both vertically and outwards. Total urban area is projected to nearly triple

until 2030, an increase of 1.2 million km2, equivalent to an area the size of South Africa [2].

Critical to a city’s expansion is the development of its infrastructure, to ensure continued economic

growth and quality of life for its citizens. As more housing and industry is built, the city’s road network

will expand and services such as waste collection and mail delivery will have an increasingly complex

task of providing for the entire city.

The latest advancements in technology have made it possible to collect enormous amounts of data.

The city of the future will be a smart city, where interconnectivity and sensor data will transform oper-

ations, with the end goal of improving the quality of the service provided and reducing costs. In waste

collection, for example, sensors installed in garbage bins allow for real-time monitoring of filling levels

that can be used to optimize collection routes and reduce carbon emissions [3].

Although access to real-time data will bring many benefits, it will also limit the computational time

budget available, as operations will become increasingly dynamic. Routing algorithms must become

more efficient at finding good solutions, and with ever-expanding cities route planning becomes more

complex, meaning an effort must be made to tackle large-scale problems.

1.2 Objectives and Contributions

The objective of this thesis is to develop a competitive algorithm to solve the Mixed Capacitated

Arc Routing Problem (MCARP). The MCARP is an extension of the Capacitated Arc Routing Problem

(CARP) that better models the street network of a city. An emphasis is placed on solving large-scale

problems, as the CARP and MCARP are used to model applications that span an entire city, such as

waste collection [4, 5], road maintenance [6], and winter gritting [7].
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We propose a new algorithm to solve large-scale MCARP called Memetic Algorithm with Divide-and-

Conquer Mutation (MADCoM). MADCoM combines two state-of-the-art methods: a genetic algorithm

with adaptive diversity control hybridized with efficient local search, and divide-and-conquer heuristics

tailored for large-scale CARP. The heuristics are expanded to MCARP and used in a novel divide-and-

conquer mutation operator. We show that it leads to improved performance of the algorithm when

coupled with local search. We also use one of the heuristics to initialize the population, and analyse its

effect on the quality and diversity of the population. We define one of its parameters to be dependent

on the problem size, which leads to reduced computational time and does not affect solution quality

significantly.

We test MADCoM on the classical benchmarks for CARP and MCARP, as well as the more recent

large-scale benchmarks. We find new best solutions for 8 instances of MCARP, 2 of which are optimal

solutions, as they match the best lower bound in the literature. We also find new best solutions for 12

large-scale CARP instances.

1.3 Thesis Outline

In this section, we give an outline of the remaining contents of this thesis, as a way to summarize

the contents of each chapter. In chapter 2, we start by describing the Mixed Capacitated Arc Routing

Problem and provide a mathematical formulation. Several variants of CARP and their applications are

also presented to demonstrates its applicability to real world problems. The chapter ends with a review

of solution methods used to solve MCARP.

In chapter 3, we describe in detail each component of MADCoM. The description is supplemented

with figures, schematics and examples to fully elucidate the concepts and algorithms.

Chapter 4 contains the results of MADCoM on the CARP and MCARP benchmarks, as well as an

analysis of the benefits of the large-scale heuristics for the algorithm.

Lastly, in Chapter 5 we review the obtained results and provide the next steps for further improving

this work.

2



Chapter 2

Capacitated Arc Routing Problems

2.1 Introduction

The Capacitated Arc Routing Problem (CARP) is a combinatorial optimization problem that was first

proposed by Golden and Wong in 1981 [8]. It is defined on an undirected weighted graph where each

edge can be traversed in two directions. A subset of the edges have a demand that is required to

be serviced by a vehicle. Each vehicle has a maximum capacity and the sum of the demands in the

vehicles’ route can not exceed it. The objective is to minimize the total distance travelled by all vehicles,

while servicing every required edge and respecting the vehicle’s capacity constraints.

To exemplify, Figure 2.1 shows the problem graph of instance C16 from the benchmark set bmcv. The

thicker connections between nodes represent the edges that need to serviced by a vehicle. The thinner

connections do not need to be serviced, but can still be traversed by a vehicle. The squared yellow node

represents the depot, a special node from where all vehicles must start and end their routes. In Figure

2.2, the optimal solution of instance C16 is shown. Each color illustrates a route performed by a vehicle.

The direction of each arrow shows in which direction the edge is traversed by the vehicle. Filled arrows

denote the edges serviced by the vehicle and the dashed and curved arrows represent the deadheading

links, that is, edges that are only traversed and where no service is performed by that vehicle.

The CARP is NP-hard, that is, one can not prove that a solution to the problem is optimal in polyno-

mial computational time. As a consequence, the objective shifts to finding quality solutions in a reason-

able amount of time. However, this becomes increasingly difficult with larger problems, as the solution

space increases exponentially with the number of required edges.

The CARP is similar to the Capacitated Vehicle Routing Problem (CVRP), their main difference lies

in where the demand is placed. In the CVRP the demand is associated to nodes of the problem graph

and in the CARP it is associated to edges. As such, the CARP is used to model applications where the

edge represents a street, the problem graph represents the street network of a city and the demand en-

compasses a limited quantity that must be collected, delivered or otherwise serviced. Some applications

include waste collection [4, 5], street mapping [9], road maintenance [6], meter reading [10] and winter

gritting [7].
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Figure 2.1: Problem graph of instance C16 from benchmark set bmcv.
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Figure 2.2: Optimal solution of instance C16.

Most of these applications do not use the CARP to model the problem being solved, but instead a

variant of it that introduces additional constraints or changes to the formulation. For example, in the

classical CARP, an edge can be traversed by a vehicle in both directions, however, in real world street

networks, most streets can only be traversed in one direction. For this reason, Belenguer et. al [11]
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proposed the Mixed Capacitated Arc Routing Problem (MCARP). The MCARP is defined on a mixed

graph, that is, a graph with both edges and arcs. Edges can be traversed by a vehicle in both directions,

while arcs only allow one direction. In the remainder of this thesis, we focus on solving this variant of

CARP, with an emphasis on problems with a large number of links. A mathematical formulation is given

in section 2.2.

2.2 Mathematical Formulation

The presented formulation is based on the MCARP formulation given by Constantino et. al in [12].

The Mixed Capacitated Arc Routing Problem (MCARP) is defined on a mixed network (N,AD, AR, ER)

which includes deadheading links, with no demand, and required links, with demand. N is the set of

nodes and all vehicles start and end their routes at a special node called the depot, which is given the

index 0. All deadheading links are represented by arcs in the set AD. The required links, also called

services or tasks, are represented by arcs and edges in the sets AR and ER respectively. Each link has

a traversal cost dij > 0. For required links there is also a demand qij > 0 and a service cost sij >= dij .

The initial network is transformed into a directed graph G = (N,A). The set of all arcs A is given by

A = AD ∪ R, where the set of required arcs R is defined as R = AR ∪ AER . The set AER , defined as

AER = {(i, j), (j, i) : {i, j} ∈ ER ∧ i < j}, is created by replacing each required edge by two opposite

arcs, one for each service direction, with the same costs and demand as the original edge. It is only

required to service one of these arcs, as they both represent the edge in the original network.

The fleet is composed of P identical vehicles, each with capacity Q. Each vehicle used incurs a

fixed cost F . For most benchmarks, there is no limit on the number of vehicles, which is equivalent to

setting P = |ER|+ |AR|, as one vehicle per required link is the maximum possible number of vehicles in

a solution.

A solution to MCARP consists of a set of routes that services each required link, uses a number

of vehicles smaller than the fleet size, and each route respects the capacity constraint. The optimal

solution minimizes the objective function, which is composed of the fixed cost of each vehicle, the cost

of servicing each required link and the cost of deadheading the links between services, that is, traversing

the links without servicing. To complete the mathematical formulation, the following variables are also

needed:

• xpij is a binary variable that equals 1 if the required arc (i, j) is serviced by vehicle route p and 0

otherwise.

• ypij is the number of times an arc (i, j) is deadheaded by route p.

• fpij is the flow in arc (i, j), related with the remaining demand in route p.

5



minimize

P∑
p=1

 ∑
(i,j)∈A

dijy
p
ij +

∑
(i,j)∈R

sijx
p
ij + F

∑
(0,j)∈A

yp0j

 (2.1a)

subject to

P∑
p=1

xpij = 1, ∀(i, j) ∈ AR, (2.1b)

P∑
p=1

(xpij + xpji) = 1, ∀(i, j) ∈ AER , (2.1c)

∑
j:(i,j)∈A

ypij +
∑

j:(i,j)∈R

xpij =
∑

j:(j,i)∈A

ypji +
∑

j:(j,i)∈R

xpji,∀i ∈ N, ∀p, (2.1d)

∑
(0,j)∈A

yp0j ≤ 1, ∀p, (2.1e)

∑
j:(j,i)∈A

fpji −
∑

j:(i,j)∈A

fpij =
∑

j:(j,i)∈R

qijx
p
ji, ∀i ∈ N \ {0},∀p, (2.1f)

∑
(0,j)∈A

fp0j =
∑

j:(j,i)∈R

qijx
p
ji, ∀p, (2.1g)

fpij ≤W (xpij + ypij) ∀(i, j) ∈ R,∀p, (2.1h)

fpij ≤W (ypij) ∀(i, j) ∈ AD,∀p, (2.1i)

xpij ∈ {0, 1} ∀(i, j) ∈ R,∀p, (2.1j)

ypij ≥ 0 and integer ∀(i, j) ∈ A,∀p, (2.1k)

fpij ≥ 0 ∀(i, j) ∈ A,∀p (2.1l)

The first term in the objective function (2.1a) is the cost of deadheading the arcs, the second term is

the cost of servicing the required arcs, and the third term is the fixed cost of the vehicles, where the term∑P
p=1

∑
(0,j)∈A y

p
0j is the number of vehicles used. Equations (2.1b)–(2.1c) ensure that every required

link is serviced by only one vehicle. Equation (2.1d) imposes the connectivity of routes at each node and

equation (2.1e) is needed to adequately charge the fixed cost in the objective function. (2.1f)–(2.1g) are

the flow conservation constraints and (2.1h)–(2.1i) are the linking constraints, which together guarantee

the connectivity of the routes. Equations (2.1h)–(2.1i) are the capacity constraints. (2.1j)–(2.1l) are the

domain constraints.

2.3 CARP Variants

In most real world situations, the CARP is not sufficient to model all the characteristics of a problem.

New constraints must be introduced which increase the complexity of the problem, but in turn provide

more adequate routing solutions. The new constraints originate new variants of the Capacitated Arc

Routing Problem and are detailed below.

Heterogeneous Fleets

In the classical CARP it is assumed that the fleet is homogeneous, that is, every vehicle has the
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same capacity. In reality, fleets are rarely homogeneous which increases the complexity of the

routing problem. With an heterogeneous fleet constraint, several vehicle types exist, each with a

different number of available vehicles, different capacities. The cost of a route is calculated based

on a fixed cost and a variable cost per distance travelled that are dependent on the vehicle type.

This variant has been extensively studied for the CVRP and most techniques are easily adaptable

to CARP. A literature review of heterogeneous techniques for the CVRP is available at [13].

Multiple Depots

The depot node usually represents a garage, from where vehicles start and end their routes.

However, in many applications several garages may exist and vehicles can start their routes from

more than one location. The Multi Depot Capacitated Arc Routing Problem (MD-CARP) considers

multiple depots, and the most common formulation is that a vehicle must start and end its route on

the same depot. An example is available at [14].

Periodic Routing

In periodic routing, a time horizon is considered and a set of routes must be found for each time

period. Each required edge has a demand generation and typically has to be serviced more

than once within the time horizon to ensure all demand is fulfilled. This situation arises often in

waste collection, where the collection is performed several times per week on a fixed schedule.

The objective is then to minimize the cost function over the entire time horizon. A mathematical

formulation and several algorithms are given by Chu et al. in [15].

Time Windows

The Capacitated Arc Routing Problem with Time Windows (CARPTW) introduces the additional

constraint that each edge must be serviced within a time interval. If the time window is hard, then

the service cannot occur outside of it; if it is soft then a penalty is incurred when not respecting the

time interval. In winter gritting [7], some streets must be serviced within a few hours originating

hard time windows, and in street mapping [9], taking pictures in the direction of the sun can lead

to unusable photographs, which can be modelled as a soft time window.

Stochastic Demands

In some applications, such as waste collection, the exact demand on a street might not be known

a priori. To model this, the Stochastic CARP (SCARP) was proposed by Fleury et. al [16], where

the demand on each edge is a random variable. A routing solution is not only evaluated in terms

of expected cost, but also in its robustness to variations in the demand.

2.4 Existing Approaches

2.4.1 Constructive Heuristics

Constructive heuristics were among the first algorithms proposed to solve the CARP. An heuristic is

an algorithm that is not guaranteed to find the optimal solution, but nevertheless finds a feasible solution
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in a short amount of time.

Two of the first heuristics developed were Augment-Merge [8], by Golden and Wong in 1981, and

Path-Scanning [17], by Golden, DeArmon and Baker in 1983. Augment-Merge is inspired by the Clarke

and Wright Heuristic [18] for the CVRP. The first phase, called Augment, starts by building a route for

each required edge and then joins two routes together if the required edge of the shortest route appears

in the longest route. After the Augment phase, follows the Merge phase, where two routes are merged

if it is beneficial. Path-Scanning builds routes one-by-one using a simple rule to decide which required

edge to add to the end of the route. Five different rules are used and the best solution among them

is returned. Both of these heuristics have been improved throughout the years and a comprehensive

review of heuristics for the CARP can be found in [19].

In 1985, Ulusoy [20] proposed a route-first, cluster-second method for the CARP. Instead of building

routes one-by-one, this method first builds a giant tour, a route with infinite capacity that services all

required edges. This giant tour is formed using a method to solve the Chinese Postman Problem (CPP),

the arc routing equivalent of the Travelling Salesman Problem (TSP), where the objective is to find a route

with minimal cost that traverses all edges of the problem graph. To transform the giant tour into routes

that do not violate the capacity constraint, the Split procedure is applied. Split takes as input a sequence

of required links and using an auxiliary Directed Acyclic Graph (DAG) divides it into routes in an optimal

way. The Split procedure has since become an essential building of block of several metaheuristics and

will be detailed in section 3.3.1.

More recently, Wøhlk proposed FastCARP [5], a heuristic specifically designed for large-scale CARP.

It starts by building a giant tour, partitions the graph into districts and builds routes for each district. From

there, adjacent districts are merged, the routes of the new district are optimized and the district is then

split again. This process continues iteratively until a time limit is reached.

A constructive heuristic’s biggest advantage is speed, thus for applications where the computational

budget is very limited, they can be the best method. However, if the computational budget is reasonable,

exact methods and metaheuristics can outperform constructive heuristics.

2.4.2 Exact Methods

Exact methods start by defining a Mixed Integer Programming (MIP) mathematical formulation and

applying algorithms like branch-and-bound to solve it. As opposed to heuristics and metaheuristics,

given enough time exact methods are guaranteed to find the optimal solution. Some approaches use

a mathematical formulation designed for the CARP, while others transform CARP into a CVRP. Several

transformations exist [21–23], but all of them increase the problem size, that is, a CARP with n required

edges is transformed into a CVRP with at least 2n + 1 nodes. The advantage of this transformation

is that techniques developed for the CVRP can be readily applied to solve the CARP. The recently

most successful algorithms are variants of branch-and-bound that implement cutting-plane and column-

generation methods.

Cutting-plane methods iteratively add cuts, i.e. linear inequalities, to the the mathematical formulation
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to refine the set of feasible solutions. When combined with branch-and-bound the method is called

branch-and-cut. This method was used by Baldacci and Maniezzo [22], where they transformed the

CARP into a CVRP, and Belenguer and Benavent [24] who applied it to a one-index formulation for the

CARP.

Column-generation methods exploit the idea that in large MIP problems, most variables in the opti-

mal solution will be zero and as a result only a subset of the variables will actually improve the objective

function. When combined with branch-and-bound this method is called branch-and-price. After trans-

forming to a CVRP, Longo, Poggi de Aragão and Uchoa [23] combined both cutting-planes and column-

generation into a branch-and-price-and-cut to solve the CARP. Bode and Irnich [25] also combined both

methods into a cut first branch-and-price second algorithm that leverages the sparsity of real world street

networks.

Exact methods have also been applied to solve several CARP variants [26]. In particular, Gouveia,

Mourão and Pinto [27] use flow variables to derive a compact formulation for the MCARP, which is

detailed in section 2.2.

The main drawback of exact methods is scalability: when the problem size increases, so does the

number of variables and constraints leading to very large MIP problems, that are too time consuming to

solve for most practical applications.

2.4.3 Metaheuristics

Metaheuristics are ”solution methods that orchestrate an interaction between local improvement pro-

cedures and higher level strategies to create a process capable of escaping from local optima and

performing a robust search of a solution space” [28]. Metaheuristics do not guarantee optimality, how-

ever, due do their architecture, they are capable of finding high quality solutions in a short amount of

time.

The first metaheuristics applied to CARP were a Simulated Annealing (SA) algorithm by Eglese [7]

in 1994 and a Tabu Search (TS) algorithm by Eglese and Li [29] in 1996. In 2000, Hertz, Laporte and

Mittaz proposed CARPET [30], a TS algorithm that encodes routes as a list of all edges traversed.

Since then, these and several other metaheuristics were applied to solve the CARP and its variants.

In 2008, Polacek et al. designed a simple and efficient Variable Neighborhood Search (VNS) [31] and

Brandão and Eglese [32] a very effective TS, similar to CARPET, but fully deterministic. Wøhlk [33]

proposed a SA algorithm called DYPSA that represents solutions as a giant tour and applies a Split

procedure with Flips, that is, a Split procedure that also optimally decides the best orientation to service

each required edge. Beullens et al. [34] designed a Guided Local Search (GLS) that represents the

network as a symmetric directed graph where each edge is replaced by two arcs, one for each service

orientation, and routes are encoded as a list of required arcs. In 2010, Santos et al. published an Ant

Colony Optimization (ACO) algorithm [35] where each ant builds a giant tour, that is transformed into a

full solution using a Split procedure, and afterwards undergoes local search.

Another metaheuristic extensively applied to CARP are Memetic Algorithms (MA). Memetic algo-
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rithms are hybrid metaheuristics that combine genetic algorithms with local search. Genetic algorithms

are a population based heuristic inspired by genetics, reproduction and natural selection. Solutions are

encoded as chromosomes and new solutions are formed by combining the chromosomes of other so-

lutions. Local search methods search for improvements to a solution in its neighborhood, where the

neighborhood is defined by a set of moves that alter a small part of the solution.

The first MA proposed for the CARP was by Lacomme, Prins and Ramdane-Chérif [36]. The chro-

mosome representation is a giant tour, which is then decoded using Split. In 2009, Tang, Mei and Tao

introduced a Memetic Algorithm with Extended Neighborhood Search (MAENS) [37] that uses Split as

a large neighborhood move. The chromosomes are obtained by concatenating the required arcs of

each route, separated by a copy of the depot. In 2014, Vidal et al. published Unified Hybrid Genetic

Search (UHGS), a MA with advanced diversity management that can solve a variety of CVRP variants.

In 2017, Vidal extended UHGS to CARP and introduced constant time local search move evaluations,

that is, independent of problem size, as was the case with previous works. UHGS also uses giant tours

as a chromosome representation and both the Split procedure used and the local search moves de-

cide optimally the service direction. UHGS is currently the best performing algorithm on the classical

instances.

With several metaheuristics capable of efficiently solving the classical instances, the challenge re-

mains for solving large-scale instances with thousands of required edges. The latest algorithms solve

large-scale CARP by using a divide-and-conquer approach. In 2014, Mei, Li and Yao [38] published

RDG-MAENS, a Cooperative Coevolution framework that iteratively uses the best-so-far solution to de-

compose the problem into smaller subproblems that are solved independently using MAENS. The best

solutions for each subproblem are then joined together to form a solution to the main problem. Tang et

al. [39] proposed a scalable approach based on Hierarchical Decomposition (HD). They defined virtual

tasks as a permutation of required edges and cluster them based on a distance measure. The virtual

tasks that belong to the same cluster are joined into a new virtual task in an order decided by a greedy

heuristic. The process repeats until a single virtual task is left, representing a giant tour. The authors

embedded HD into a individual-based search method called SAHiD, that iteratively decomposes the

routes of the current solution to form a virtual task set for HD, thereby generating a new solution which

is then improved by local search. Zhang and Mei improved both methods with a new decomposition

scheme, Route Cutting Off (RCO) decomposition [40] that uses a task rank matrix to find good and poor

links to decompose the routes of a solution. RCO-SAHiD is currently the metaheuristic with the best

results on large scale instances, alongside UHGS.
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Chapter 3

Solving Large-Scale MCARP

3.1 Introduction

To solve Large-Scale MCARP we propose a Memetic Algorithm with Divide-and-Conquer Mutation

(MADCoM). MADCoM combines the adaptive diversity control and efficient local search of UHGS with

the divide-and-conquer heuristics tailored for large-scale CARP of RCO-SAHiD.

The population of MADCoM is composed of individuals that each represent a solution to the MCARP

instance being solved. It is divided into two subpopulations: a feasible subpopulation containing feasible

solutions, and an infeasible population containing infeasible solutions used to guide the search towards

better solutions. At each iteration, a new individual is generated by mutation with probability PM , which

consists of applying RCO and HD to a randomly selected individual in the population, or by combining

two parent individuals using Order Crossover (OX). The Split procedure is applied to the new individual

to obtain the cost and routes of its solution. Then, the new individual undergoes local search with

probability pLS and is inserted into a subpopulation depending on its feasibility. If it is infeasible, it can

undergo a repair procedure with probability pR, that attempts to transform it into a feasible solution. If

a subpopulation reaches its maximum size, survivor selection is triggered and individuals are discarded

until the subpopulation is at its minimum size, resulting in a new generation. At the end of the iteration,

the penalty for infeasible solutions and the local search and repair probabilities may be adjusted. The

algorithm stops after reaching a time limit or ItNI iterations without improvement. The outline of the

algorithm is shown in Algorithm 1.

The remainder of this chapter will focus on the description of each element of MADCoM. In section

3.2 we detail the search space of CARP and the techniques used to reduce it. Section 3.3 focuses on

the particulars of the genetic algorithm and section 3.4 on the local search. Finally, section 3.5 details

the large-scale heuristics used when generating an individual by mutation, namely Route Cutting Off

Decomposition and Hierarchical Decomposition.
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Algorithm 1: MADCoM
Initialize sub-populations
while time < Tmax and number of iterations without improvement < ItNI do

Generate a random number r ∈ {0, 1}
if r < pM then

Select an individual based on cost and diversity
Apply RCO and HD to create an offspring

else
Select parents using binary tournament based on cost and diversity
Create an offspring using Order Crossover (OX)

Apply Split to obtain the routes and cost
Generate a random number s ∈ [0, 1]
if s < pLS then Improve the new individual using Local Search
if feasible then

Add to feasible sub-population
else

Add to infeasible sub-population
Generate a random number t ∈ [0, 1]
if t < pR then Repair the infeasible individual

Adjust penalty parameter ω
Adjust pLS and pR
if maximum sub-population size reached then

Select individuals for the next generation based on cost and diversity
if no improvement for Itdiv iterations then Diversify population

3.2 Search Space

An explicit solution to MCARP is a sequence of nodes for each route that represents the path in

the problem graph taken by each vehicle, as well as which links are serviced by each route. This

representation was used by some of the first metaheuristics [30], but recent algorithms use instead an

implicit representation by decomposing the search space of MCARP into four decision subsets [41]:

• ASSIGNMENT - Assign each services to a route

• SEQUENCING - Order the services in each route

• MODE CHOICE - Choose the service direction of each required link

• PATHS - Find the shortest paths between successive services

Each of these decision subsets leads to an exponential number of solutions. The larger the solution

space the more difficult it is for a search algorithm to find the optimal solution (or a near-optimal solution).

However, we only need to define the ASSIGNMENT and SEQUENCING decision subsets to represent a

solution, because if they are known, the PATHS and MODE CHOICE can be derived via dynamic program-

ming algorithms. Although there is an added computational cost, the reduction in the solution space will

result in the algorithm finding better solutions in a shorter amount of time.

The PATHS decision subset can abstracted by using a distance matrix between arcs instead of the

original distance matrix between nodes of the problem graph. Each edge (i, j) ∈ ER is replaced by two

arcs (i, j) and (j, i), one for each mode, with the same cost as the original edge, deadheading arcs are
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no longer considered and the depot is represented by an arc that starts and ends at the depot node.

Each arc is given an id k and the depot arc is represented by the id 0. The distance d(k, l) between

two arcs k = (a, b) and l = (c, d) is defined as the distance of the shortest path between nodes b and

c. The shortest paths between nodes can be precomputed, using an all pairs shortest path algorithm

such as the Floyd-Warshall algorithm [42], and used to build d(k, l), avoiding the need to compute when

calculating the cost of a solution.

The MODE CHOICE can be derived in an optimal way from the SEQUENCING decision subset by

finding a shortest path in an auxiliary directed acyclic graph K [43]. Each service is given an id i, and

has a set Mi containing all modes associated with it. |Mi| = 2 if i is a required edge and |Mi| = 1 if i is

a required arc. The depot is represented by the id 0 and has only one mode M0 = (0). Let a route σ be

defined as a sequence of services σ = (0, σ(2), ..., σ(|σ| − 1), 0), starting and ending at the depot. The

auxiliary DAG K (Figure 3.1) can be constructed in the following way: a node is added for each mode

k ∈Mσ(i) of each service i in the route, including the depot; then, an arc is added from each mode k of

service σ(i) to each mode l of the next service in the sequence σ(i+ 1) with cost equal to the distance

d(k, l) between those modes. The shortest path from depot to depot gives the optimal MODE CHOICE of

each service of the route as well as its deadheading cost.

Figure 3.1 shows an example of the auxiliary DAG K used to find the optimal mode choice for each

service. The number next to each arc represents the distance between the modes that it connects, and

the number next to each node represents the cost of the shortest path up to that node. The thicker arcs

show the shortest path with total cost 47, and the nodes that are part of it are the optimal mode choice

for each service in the route.

D D

Figure 3.1: Example of the auxiliary DAG K used to compute the optimal mode choices for a route σ.

The total cost of a route is composed of three elements, the distances between the mode choices

for each service, the service costs and the fixed cost F of the vehicle. Let ρ = (0, ρ(1), . . . , ρ(|ρ| − 1), 0)

be the set of mode choices for each service σ(i) of route σ. Then, the route cost C(σ) is expressed by

equation 3.1.

C(σ) = F +

|σ|∑
i=1

si +

|σ|−1∑
i=1

d(ρ(i), ρ(i+ 1)) (3.1)

From the set of possible routes, only a subset will be part of a feasible solution to MCARP, those
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whose total demand is smaller or equal to the vehicle capacity Q. The remaining routes are infeasible,

but instead of being discarded, they are used to guide the search towards better feasible solutions. The

optimal solution to an optimization problem often lies close to the boundary of feasibility, as those are

the solutions that use the resources available more efficiently. Infeasible routes are penalized using

equation 3.2, where Q(σ) is the sum of the demands of the required links serviced by route σ and ω is

the penalty parameter. Algorithm 2 details the calculation of the penalized cost CP (σ) of route σ, with

optimal mode choices. The auxiliary DAG K is not generated explicitly and during execution only the

cost is needed, so the mode choice for each service is left implicit.

CP (σ) = C(σ) + ωmax {0, Q(σ)−Q} (3.2)

Algorithm 2: Route Cost
Data: Route σ, arc distance matrix d(k, l), demands q, service costs s, vehicle capacity Q, fixed

cost F , penalty ω
Result: routeCost
load← 0
serviceCosts← 0
PrevLabels← [(0, 0)] /* (cost,mode) */

for i ∈ σ do
load← load+ qi
serviceCosts← serviceCosts+ si
NewLabels← [ ]
for l ∈Mi do

newCost←∞
for prevCost, k ∈ PrevLabels do

if prevCost+ d(k, l) < newCost then
newCost← prevCost+ d(k, l)

Append (newCost, l) to NewLabels

PrevLabels← NewLabels

routeCost← PrevLabels[0][0] + serviceCosts+ F + ωmax(0, load−Q)

The ASSIGNMENT and SEQUENCING decision subsets constitute the solution space that MADCoM

must search. In the genetic algorithm, the ASSIGNMENT decision subset is left implicit as each solution

is represented by a giant tour, a permutation of the service ids, reducing the search space to n!, where

n = |ER|+ |AR|. The Split procedure is then applied to obtain the cost and routes of the solution. During

local search, the ASSIGNMENT and SEQUENCING are explicit, as this representation allows for faster

move evaluations in O(1).

3.3 Genetic Algorithm

3.3.1 Chromosome Encoding and Decoding

In genetic algorithms, a solution to an optimization problem is encoded as a chromosome. The

chromosome representations of two individuals are combined to create a new individual that shares
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genetic information from both parents. As such, the chromosome representation is one of the most

important parts of a genetic algorithm. As discussed in section 3.2, it also constitutes the solution space

that the algorithm must explore to find the optimal solution.

MADCoM uses a compact representation known as a giant tour, a route with infinite capacity that

services all required links. The giant tour is essentially a permutation of the indices assigned to each

required link. To obtain a solution and its cost, the chromosome must be decoded using the Split

procedure.

Given a giant tour as input, Split segments the permutation into routes that respect the capacity

constraint in an optimal way, that is, from all possible ways to divide the permutation while keeping the

order, Split finds the division that originates the solution with the lowest cost. This property assures

that the chromosome representation is complete, as any solution that could be represented by the

permutation either has a higher cost and therefore is not the optimal solution to the problem, or is the

solution returned by Split.

Let δi be the ith service in giant tour δ. Split defines an auxiliary DAG H with n + 1 nodes, indexed

from 0 to n. An arc from node i to node j > i represents a route starting from the depot, fulfilling the

demand in services δi+1 to δj and returning to the depot. The cost of this arc is equal to the penalized

cost of the route. The arc only exists if the capacity of the route does not exceed the maximum capacity

Qmax = 1.5Q, where any solution that contains a route exceeding the vehicle capacity Q is deemed

infeasible and is penalized. The shortest path in graph H from node 0 to node n gives the optimal

segmentation of δ into routes.

Figure 3.2 shows an example of Split. The problem graph is shown in figure 3.2(a), with a total of

5 services and the deadheading cost of each link is displayed next to it. The vehicle capacity Q = 20,

therefore Qmax = 30, the penalty is ω = 5 and F = 0. The giant tour that is the input to Split is

δ = (1, 2, 3, 4, 5), which leads to the auxiliary DAG H in Figure 3.2(b). Each arc represents an allowed

route, with its respective cost shown below the arc. Infeasible routes have their cost highlighted in red.

The thicker arcs show the shortest path from node 0 to node n, with total cost 150, that corresponds to

routes σ1 = (0, 1, 2, 0), σ2 = (0, 3, 0) and σ3 = (0, 4, 5, 0).

The time complexity of Split is O(m), where m is the number of arcs in H. In the worst case m =

n(n+ 1)/2 = O(n2), however a more accurate can complexity can be achieved by considering that each

route contains at most b = bQmax/qminc services, where qmin is the minimum demand of a required link,

and therefore each node has at most b outgoing arcs and the complexity of Split becomes O(nb).

The optimal MODE CHOICE for each service can also be derived in parallel with the Split Procedure.

This variant is called Split with Flips and has the same time complexity of the standard Split. Since H is

a DAG, a linear time shortest path algorithm can be used [42], which evaluates the nodes in increasing

order and relaxes every outgoing arc from a node i before advancing to node i + 1. In Split, each of

the outgoing arcs is evaluated in order from the smallest to the largest. From one arc to the next, the

only difference is the addition of another service at the end of the route. Therefore, if we calculated the

optimal mode choice for route ci+1 to cj , we can calculate the optimal mode choices for route ci+1 to cj+1

by continuing the computation of the shortest path in the auxiliary graph K from the modes of service cj
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(a) Problem Graph
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(b) Auxiliary DAG

Figure 3.2: Example of Split Procedure.

instead of restarting from the depot node. This trick is possible due to Bellman’s Principle of Optimality.

The pseudocode of Split with Flips is available in Algorithm 3. The first loop in the algorithm corre-

sponds to the calculation of the shortest path from 0 to n without explicitly building the auxiliary DAG H,

where the array p stores the distance of the shortest path to each node in the graph. At each iteration,

the algorithm computes the penalized cost of route σ = (0, δt+1, . . . , δi, 0), using algorithm 2 and taking

advantage of the trick previously mentioned. It then tries to relax the arc to see if it a new shortest path

to node i has been found. In the second loop, the routes are retrieved using a system of predecessors,

where the array pred stores the previous node in the shortest path to each node in the DAG. If the cur-

rent node is j and the predecessor of j in the shortest path is b, then we know by definition that the arc

(b, j) represents a route servicing δb+1 to δj . Array e stores the excess load of each route of the optimal

solution and is used to check its feasibility.

3.3.2 Fitness

An individual I is composed of two parts: the giant tour δI and the set of routes RI . The cost C(I) of

the solution that individual I represents is given by the sum of the penalized costs of each of its routes

(equation 3.3).
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Algorithm 3: Split with Flips
Data: Giant tour δ, arc distance matrix d(k, l), demands q, service costs s, vehicle capacity Q,

fixed cost F , penalty ω
Result: Routes, solutionCost, feasible
p[0]← 0
pred[0]← 0
e[0]← False
for t = 1 to n do

p[t]←∞
pred[t]← 0
f [t]← False

Qmax ← 1.5Q
for t = 0 to n− 1 do

load← 0
serviceCosts← 0
PrevLabels← [(0, 0)] /* (cost,mode) */

i← t+ 1
while i ≤ n and load+ qδi ≤ Qmax do

load← load+ qδi
serviceCosts← serviceCosts+ sδi
NewLabels← [ ]
for l ∈Mδi do

newCost←∞
for prevCost, k ∈ PrevLabels do

if prevCost+ d(k, l) < newCost then
newCost← prevCost+ d(k, l)

Append (newCost, l) to NewLabels

routeCost←∞
for newCost, l ∈ NewLabels do

if newCost+ d(l, 0) < routeCost then
routeCost← newCost+ d(l, 0)

excessLoad← max(0, load−Q)
routeCost← routeCost+ serviceCosts+ F + ω × excessLoad
if d[t] + routeCost < d[i] then

d[i]← d[t] + routeCost
pred[i]← t
e[i]← excessLoad

i← i+ 1
PrevLabels← NewLabels

Routes← [ ]
solutionCost← 0
feasible← True
j ← n
while j > 0 do

b← pred[j]
Route← (0, δb+1, . . . , δj , 0)
solutionCost← solutionCost+ d[j]− d[b]
if e[j] > 0 then feasible← False
Append Route to Routes
j ← b
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C(I) =
∑
σ∈RI

CP (σ) (3.3)

The fitness BF (I) of an individual I is based on two factors: the cost of the solution computed

according to equation 3.3 and the diversity contribution of the individual with respect to the rest of the

subpopulation.

The diversity contribution of an individual I is calculated as the average distance to its nclose closest

neighbors. The distance between two individuals A and B is given by the broken pairs distance [44].

The distance dBP(A,B) is equal to the number of adjacent services in A that are no longer adjacent in

B. For example, if the giant tours of A and B are δA = (1, 2, 3, 4, 5, 6) and δB = (6, 4, 5, 3, 1, 2), then

dBP(A,B) = 3, as the pairs (2, 3), (3, 4) and (5, 6) were broken. This distance measure takes integer

values between 0 and n− 1 and can be computed in O(n).

Let fit(I), with values in 1, ..., nind, be the rank of an individual I with respect to its penalized cost in

a subpopulation with nind individuals. The solution with the smallest penalized cost has rank 1 and the

one with the largest cost has rank nind. Similarly, let dc(I) be the rank of an individual I with respect to

its diversity contribution, where the solution with the largest diversity contribution has rank 1. Then the

biased BF (I) of individual I is given by equation 3.4, where nelite is the number of elite individuals.

BF (I) = fit(I) +

(
1− nelite

nind

)
dc(I) (3.4)

The diversity contribution and the biased fitness are recalculated for every individual anytime an

individual is added or removed from a subpopulation.

3.3.3 Parent Selection and Offspring Generation

In MADCoM, there are two ways to generate an offspring: selecting two parents and applying

crossover or selecting an individual and mutating it by applying RCO and HD. The individuals that can

be selected are always chosen at random from both subpopulations.

The individual that will undergo HD and RCO is selected by tournament selection, with a tournament

size of 20, which selects at random 20 individuals and chooses the one with the smallest biased fitness.

The large tournament size will frequently select the same solutions, however since HD and RCO are

both random, it will not repeatedly generate the same solutions. Also, as selection is based on cost and

diversity, if the same solution is selected several times for mutation its diversity will drop, resulting in a

higher fitness and less of a chance to be selected for mutation.

The selection of the parents for crossover is done through binary tournament. To determine each

parent, two individuals are selected randomly and the one with the smallest biased fitness is chosen. The

offspring is generated using Order Crossover (OX), a crossover method suited to permutation schemes

that seeks to transmit the relative order of the services from the parents to the offspring. The first step

in OX is to choose at random two crossover points and copy the segment between them from one of the

parents to the offspring. Then, starting from the second crossover point in the other parent, copy the
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remaining services in the order that they appear in the second parent, wrapping around when reaching

the end of the permutation. The procedure is exemplified in Figure 3.3.

PARENT 1

PARENT 2

OFFSPRING

1 2 3 4 5 6 7 8 9

9 3 7 8 2 6 5 1 4

3 8 2 4 5 6 7 1 9

Figure 3.3: Example of Order Crossover (OX).

After the offspring is generated, Split must be applied to determine the cost and routes of the so-

lution. It then undergoes local search with probability pLS if its cost is at most 110% of the best-so-far

solution. Afterwards it is added to the correct subpopulation depending on its feasibility. If the offspring

is infeasible, it can be repaired with probability pR to attempt to transform it into a feasible solution. If the

solution generated after mutation or crossover improves the best feasible or infeasible solution found so

far, it will always undergo local search, and be repaired if it is still infeasible after local search.

The repair operator consists of applying local search with a penalty parameter of 10 times its current

value. If the resulting individual is still infeasible, the process is repeated but with a penalty parameter

of 100 times its current value. If the repair operator is successful, the repaired offspring is added to the

feasible subpopulation. By increasing the penalties for infeasible routes, the local search will prioritize

moves that respect the vehicle capacity, as the reduction in cost from infeasible routes will not offset the

increased penalties.

3.3.4 Survivor Selection

The size of a subpopulation nind is kept between µ and µ + λ individuals, where µ is the minimum

population size and λ is the number of offspring per generation. When a subpopulation reaches the

maximum size µ+ λ, survivor selection occurs.

Survivor selection chooses µ individuals from the initial µ+λ to remain in the population and continue

to the next generation. At each iteration, the individual with the largest biased fitness is eliminated

from the subpopulation, and, to favour a diverse population, individuals that share the same penalized

solution cost, denominated clones, are eliminated first. In addition, the nelite best individuals in terms of

penalized solution cost are guaranteed to proceed to the next generation, due to the definition of biased

fitness [45]. A pseudocode of survivor selection is displayed in Algorithm 4.

3.3.5 Population Initialization

The population is initialized by generating 4µ individuals and assigning to each subpopulation de-

pending on their feasibility. Of these individuals, a fraction fHD = 0.20 are generated using Hierarchical

Decomposition, producing quality solutions. Following the same rules of offspring generation (subsec-

tion 3.3.3), these solutions can also undergo local search and be repaired. The remaining individuals
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Algorithm 4: Survivor Selection
Data: A subpopulation with nind individuals
nind ← number of individuals in the subpopulation
while nind > µ do

X ← all individuals having a clone
if X = ∅ then

Remove I ∈ X with maximum Biased Fitness
else

Remove I with maximum Biased Fitness

nind ← nind − 1
Update the diversity contribution of each individual
Recalculate the Biased Fitness of each individual

are generated randomly to introduce diversity into the population. These solutions do not undergo local

search or repair unless they improve on the best feasible or infeasible solution found so far, as it is not

beneficial in terms of time or solution quality when compared to improving solutions generated using

Hierarchical Decomposition. Section 4.3 demonstrates this result.

3.3.6 Diversification Phase

One of the main problems with genetic algorithms is the premature convergence of the population,

that is, when the individuals become very similar to each other and as a result the new offspring will not

be very different from their parents and it becomes very difficult for the algorithm to improve the best-

so-far solution. Using the biased fitness that promotes diversity mitigates this problem, but does not

eliminate it completely. For that reason, MADCoM performs a diversification phase when the best-so-far

solution has not been improved for Itdiv iterations. The diversification phase consists of keeping the µ/3

individuals with the smallest penalized cost of each subpopulation and generating 4µ new individuals in

the same way as when the population is initialized. The new individuals are added to their respective

subpopulation and survivor selection is triggered to reduce each subpopulation to its minimum size.

3.3.7 Parameter Adjustment

The penalty parameter ω is initially set to ω = c/q, where c is the average minimum cost between

two services and q is the average demand. Every 100 iterations, ω is adjusted with the objective of

achieving a target proportion ξREF of feasible individuals. By reducing penalties, the generation of

infeasible solutions is promoted and vice-versa. Whenever the penalty ω is changed, the penalized

costs of infeasible individuals are recalculated using the new penalty value. Let ξ be the number of

feasible individuals in the last 100 iterations, then ω is adjusted in the following way:

• If ξ ≤ ξREF + 0.05, then ω = ω × 1.2

• If ξ ≥ ξREF − 0.05, then ω = ω × 0.85

The local search and repair probabilities, pLS and pR respectively, are adjusted using a different

strategy. Both pLS and pR are initialized at 0.05 and every ItLS iterations without improvement they
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are increased by 0.10. If an improvement is found, pLS and pR are reduced by 0.10. By starting with

a small value, the algorithm performs more exploration of the solution space as opposed to exploiting

the solutions in the vicinity of the best-so-far solution. When an improvement is found, it is a local

minimum, most likely in an area of the solution space with few chances for improvement and therefore

the probabilities are reduced to increase exploration.

3.4 Local Search

3.4.1 Local Search Moves

The objective of local search is to improve a solution by exploring the neighborhood of solutions

around it. The neighborhood is defined by a set of local search moves that alter a small part of the

solution. In MADCoM, we consider 4 local search move types, exemplified in figure 3.4:

• SWAP - Swap two disjoint subsequences containing 1 or 2 services from the same route or from

different routes.

• RELOCATE - Relocate a subsequence containing 1 or 2 services to another position in the same

route or to another route.

• 2-OPT - Reverse a subsequence with at most 5 services.

• 2-OPT* - Swap two subsequences that end at the depot from different routes.

0 13 4 67 51 43 0

0 6 7 11 2 59 5 17 28 0

SWAP

0 13 4

67

51 43 0

0 6 7 11 2

59 5

17 28 0

0 6 7 11 2 59 5 17 28 0 0 6 7 112 59 5 17 28 0RELOCATE

0 6 7 11 2 59 5 17 28 02-OPT 0 6 7 11 2595 17 28 0

2-OPT*

0

0 13 4 67 51 43 0

0 6 7 11 2 59 5 17 28 0

0 13 4 67 51

0 6 7 11 2 59 5

17 28 0

43 0

Figure 3.4: Examples of each local search move type.

Considering every possible move from each of the move types would lead to a neighborhood size

of O(n2). Most of these moves would not lead to an improvement of the solution and for large-scale
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problems, the quadratic neighborhood size quickly becomes intractable. For these reasons, we only

consider moves that originate a promising connection, that is, moves that place in sequence services

that are close to each other. For a service u, local search will attempt to improve the solution with every

move that places a service v ∈ Γ(u) after u, where Γ(u) is the set of services with the smallest minimum

distance from u. With this restriction, the neighborhood size becomes O(|Γ|n), where |Γ| = 40 is the

size of the set Γ(u).

3.4.2 Move Evaluations by Concatenation

To evaluate a local search move, the cost of the resulting routes needs to be computed. Also, as the

mode choice for each service is not explicit, optimal mode choices need to be computed using algorithm

2, leading to a complexity of O(n) for a move evaluation. However, this complexity can be reduced to

O(1) by computing the shortest path problem on a reduced graph ( Figure 3.5).

D D

D D

Shortest path  
problem

Shortest path  
problem on  
a reduced graph 

Figure 3.5: Reduced graph K for faster move evaluation with optimal mode choices.

The routes created by a local search move can be expressed in terms of K subsequences of the

original routes, as exemplified by the right side of figure 3.4. The shortest path along a subsequence

σ̄ ⊂ σ from each mode k of service σ̄(1) to each mode l of service σ̄(|σ̄|) can be preprocessed and stored

in the auxiliary data structure C(σ̄)[k, l], along with the demand Q(σ̄) of the services in the subsequence.

To evaluate the shortest path in the reduced graph, we concatenate the K subsequences that make up

route σ = σ1⊕· · ·⊕σK by applying equations 3.5 and 3.6 K− 1 times. This way, we skip the calculation

of the shortest path for the services in each subsequence and compute the cost of the route in O(1).

After the cost of the route is computed, the fixed cost F is added and if it exceeds the vehicle capacity

Q it is penalized according to equation 3.2.

C(σ1 ⊕ σ2)[k, l] = min
x∈Mσ1(|σ1|)

{
min

y∈Mσ2(1)

{C(σ1)[k, x] + d(x, y) + C(σ2)[y, l]}
}

(3.5)

Q(σ1 ⊕ σ2) = Q(σ1) +Q(σ2) (3.6)

To compute the costs C(σ̄)[k, l] we start with sequences containing only one service, σ̄ = (i) and

assign C(σ̄)[k, l] = si if k = l, where si is the service cost of i, and C(σ̄)[k, l] = +∞ if k 6= l. From
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there, the remaining subsequences are computed by concatenation using equations 3.5 and 3.6. This

preprocessing step is applied every time the solution changes, so, to avoid excessive computation, we

only compute subsequences that start or end at the depot, or with size smaller than 10. By using

sequences that start or end at the depot, inter-route moves have at most 3 sequences, speeding up the

calculating of these moves.

3.4.3 Lower Bounds on Move Evaluations

To speed up local search, we also filter moves using a lower bound on the cost of the new routes. A

local search move changes at most two routes of the solution. Let CLB(σ′) be the lower bound on the

cost of a new route σ′. Consider a local search move that changes routes σ1 and σ2 into routes σ′1 and

σ′2. Then if CLB(σ′1)+CLB(σ′2) ≥ C(σ1)+C(σ2), the move is discarded as it is guaranteed to not improve

the solution.

Let CMIN(σ), given by equation 3.7, be the minimum distance of a shortest path of subsequence

σ among all modes k and l, and let cMIN
ij , defined by equation 3.8, be the minimum distance between

services i and j, among all possible mode choices of services i and j. The lower bound for a new route

σ′ = σ1 ⊕ · · · ⊕ σK composed of K subsequences can be computed according to equation 3.9.

CMIN(σ) = min
k∈Mσ(1)

{
min

l∈Mσ(|σ|)
{C(σ)[k, l]}

}
(3.7)

cMIN
ij = min

k∈Mi

{
min
l∈Mj

{d(k, l)}
}

(3.8)

CLB(σ1 ⊕ · · · ⊕ σK) =

K∑
j=1

CMIN(σj) +

K−1∑
j=1

cMIN
σj(|σj |)σj+1(1)

(3.9)

The minimum subsequence costs CMIN(σ) can be computed simultaneously with C(σ)[k, l], while

cMIN
ij can be preprocessed at the same time as the distance matrix.

The pseudocode of local search is presented in Algorithm 5. For every service u, chosen in random

order, the local search tries to place v ∈ Γ(u) next to u, as discussed in subsection 3.4.1. The lower

bound is calculated for every move that accomplishes this, and non-improving moves are discarded. For

moves with a chance for improvement, the costs of the resulting routes are calculated as in subsection

3.4.2. The move that produces the largest improvement of the solution is applied and the auxiliary data

structures C(σ)[k, l], CMIN(σ) and Q(σ) are recomputed for the changed routes. The algorithm stops

when an improving move can not be found, reaching a local minimum.
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Algorithm 5: Local Search
Data: Individual I
LocalMinimum← False
while LocalMinimum = False do

MoveApplied← False
LocalMinimum← True
Update auxiliary data structures
for each service u do

for each service v ∈ Γ(u) do
zBEFORE ← sum of the costs of the routes containing u and v
PM ← ∅
for every move φ that places v after u do

Calculate the sequences produced by the move φ, (σ1 ⊕ · · · ⊕ σK) and
(σ′1 ⊕ · · · ⊕ σ′L)
zLB ← CLB(σ1 ⊕ · · · ⊕ σK) + CLB(σ′1 ⊕ · · · ⊕ σ′L)
if zLB < zBEFORE then

Add the sequences of φ to PM

if PM = ∅ then
continue (to the next service v)

φBEST ← None
zBEST ← zBEFORE

for every move φ ∈ PM do
zAFTER ← C(σ1 ⊕ · · · ⊕ σK) + C(σ′1 ⊕ · · · ⊕ σ′L)
if zAFTER < zBEST then

φBEST ← φ
zBEST ← zAFTER

if zBEST < zBEFORE then
Apply φBEST

MoveApplied← True
break

if MoveApplied = True then
LocalMinimum← False
break

Update the giant tour δI by concatenating the improved routes

3.5 Large-Scale Heuristics

3.5.1 Introduction

A divide-and-conquer heuristic will divide the problem into smaller subproblems that are easier to

solve due to their reduced size. After solving each subproblem, the solution to the original problem is

found by merging the solutions of each subproblem.

The mutation operator of MADCoM consists of applying two divide-and-conquer heuristics to a solu-

tion in order to generate an offspring. The division is accomplished by Route Cutting Off Decomposition

(RCO). RCO will segment a solutions’ routes, outputting a virtual task set. Then, Hierarchical Decompo-

sition (HD) takes as input the virtual task set and joins it together to form a giant tour, thereby generating

an offspring. While forming the giant tour, the virtual tasks are ordered, which can be thought of as

solving the subproblems. The mutation operator is outlined in algorithm 6. Sometimes, applying both
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heuristics can generate a clone of the parent. When that happens, we double the cutting probabilities of

RCO and repeat the process. We impose a limit of 10 iterations to avoid an infinite loop, which is very

rarely reached.

Algorithm 6: Mutation Operator
Data: Parent Individual I
Result: Offspring O
i = 0
while i < 10 do

i+ = 1
Apply RCO to I to obtain a virtual task set V T
Form a giant tour δO by applying HD to V T
if δO = δI then

Double the cutting probabilities of RCO
else

Break

3.5.2 Route Cutting Off Decomposition

Route Cutting Off Decomposition segments a route into virtual tasks by cutting a link. Here, a link is

defined as a sequence of two services (i, j) and cutting a route σ = (0, σ1, . . . , i, j, . . . σ|σ|−1, 0) means

generating two subsequences (σ1, . . . , i) and (j, . . . σ|σ|−1), where the depot dummy services were dis-

carded as the objective is to form a giant tour δ with Hierarchical Decomposition.

To choose which link to cut, RCO uses a task rank matrix Θ to evaluate the quality of each link and

compares it to the average task rank θ̄(S) of the solution S. Every row i of Θ contains the ranks of every

link (i, j), with j 6= i, where the rank is calculated from the minimum distances between services cMIN
ij .

This means that Θib = 1 if the service b is the closest service to i, i.e., the link (i, b) has the lowest cMIN
ij

for all j. The task rank matrix is not symmetric, even though cMIN
ij = cMIN

ji the ranks can be different as

they are dependent on the other links in the row. By using ranks, Θij represents the relative quality of

having service j after service i in a route, compared to every other service.

It is important to note that the original authors used the average distance between the nodes of

services i and j to define the distance between them. Here we use cMIN
ij instead, the reason being that

for arc services this distance will be skewed, as the path to one of the nodes will pass by the other and

since we have optimal mode evaluations, the distance between services i and j in a route will more

often than not be cMIN
ij .

A good link is defined as a link whose task rank is smaller than the average task rank θ̄(S) of the

solution S, calculated from all the links in each route. Similarly, a poor link (i, j) is defined as a link

with Θij > θ̄(S). For every route of a solution S, RCO identifies the good and poor links. Then, with

probability pgl = 0.05 cuts one random good link and with probability ppl = 0.20 cuts one random poor

link. The values of pgl and ppl are kept equal to those of the original paper [40]. The pseudocode of

RCO is shown in algorithm 7.
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Algorithm 7: Route Cutting Off Decomposition
Data: Solution S, task rank matrix Θ, cutting probabilities pgl and ppl
Result: Virtual task set V T
V T ← ∅
Calculate the average task rank θ̄(S) of the solution S based on Θ
for each route σ ∈ S do

GL← ∅
PL← ∅
for each link (σi, σi+1) of σ do

if Θσiσi+1 < θ̄(S) then
GL← GL ∪ (σi, σi+1)

else
PL← PL ∪ (σi, σi+1)

gl← None
pl← None
Randomly generate two numbers r1, r2 ∈ [0, 1]
if r1 < pgl then

Randomly select a good link gl from GL

if r2 < ppl then
Randomly select a poor link pl from PL

Cut off gl and pl to obtain virtual tasks (V T1, . . . )
V T ← V T ∪ (V T1, . . . )

3.5.3 Hierarchical Decomposition

Hierarchical Decomposition (HD) seeks to form a giant tour from an initial virtual task set V T , where

a virtual task τ li is a permutation of several services. HD constructs a hierarchical structure (Figure 3.6)

where the initial virtual task set forms the bottom layer and the next layer is formed by grouping them.

The virtual tasks of each group are ordered and concatenated to form a new virtual task τ2i for layer 2.

The procedure continues until only one virtual task remains, a giant tour δ.

Figure 3.6: Hierarchical Structure of HD.

To form layer l + 1, HD selects a random number of clusters Kl+1 ∈ [1, βKl], where β = 0.1 and

KL = |V Tl| is the number of virtual tasks at layer l, and then forms Kl+1 groups using a clustering
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algorithm. Equation 3.10 defines the distance measure between two virtual tasks τ li = (p, . . . , q) and

τ lj = (r, . . . , s) that will be used by the clustering algorithm to derive the clusters.

d(τ li , τ
l
j) =

1

2

(
cMIN
qr + cMIN

sp

)
(3.10)

It is important to note that the original authors of HD used as a distance measure the average

distance between the start and end vertices of each virtual task. Using that distance measure would

require storing another distance matrix, where as cMIN
ij is already stored as it is essential for local search.

Furthermore, the reasoning given in section 3.5.2 for using cMIN
ij in RCO also applies here, as the

distance between virtual tasks is calculated using the distance between services of each virtual task.

The clustering algorithm used is k-medoids with random sampling initialization based on the paper

by Schubert and Rousseeuw [46]. K-medoids is similar to k-means, the main difference being that the

center of each cluster is chosen to be one of the data points, denominated medoid. Since only a distance

matrix is available, the center of a cluster can not be chosen as a point in a coordinate space and we

must choose instead one of the data points. K-medoids has a time complexity of O(n(n − k)), where n

is the number of data points, in this case n = |V Tl| and k is the number of clusters.

Once the virtual tasks are grouped into clusters, they are ordered using the Best Insertion Heuristic

(BIH) and then concatenated to form a new virtual task. BIH starts by choosing the virtual task whose

first service is closest to the depot and then chooses the virtual task whose first service is closest to the

last service of the last virtual task chosen.

Hierarchical Decomposition can also be used as an initialization method, by having the initial virtual

task set be the set of all services. The solutions generated like this are typically of high quality, as shown

in section 4.3.

The pseudocode of Hierarchical Decomposition is available in algorithm 8.

Algorithm 8: Hierarchical Decomposition
Data: Virtual task set V T , minimum distance matrix cMIN

ij , parameter β
Result: Giant tour δ
repeat

Randomly choose the cluster number Kl+1 ∈ [1, β|V Tl|]
Build the distance matrix d(τ li , τ

l
j)

Divide V T into Kl+1 groups using k-medoids
Order the virtual tasks in each group using BIH to form new virtual task set NV T
V T ← NV T

until |V T | = 1
δ ← V T (1)
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Chapter 4

Results

4.1 Experimental Setup

MADCoM was implemented in Python 3.9.7 with the help of the library DEAP [47] for the implemen-

tation of the genetic algorithm, and the graph algorithms of the library networkx [48]. To run MADCoM

we used a E2ds v4 virtual machine from Azure running Windows Server 2019 Datacenter, with 16 GB

of RAM and a Intel(R) Xeon(R) Platinum 8272CL processor with a frequency of 2.60 GHz.

To evaluate the performance of MADCoM and compare it to existing algorithms, the benchmarks

available in the literature will be used. Table 4.1 gives the characteristics of the instances in the classical

benchmarks and Table 4.2 the characteristics of the more recent large-scale benchmarks. For each

benchmark, column # gives the number of instances and column |N | is the minimum and maximum

number of nodes. Likewise, ER is the number of required edges, AR is the number of required arcs and

n is the number of services, i.e., the problem size.

Table 4.1: Characteristics of the instances in the classical benchmarks.
Benchmark # |N | ER AR n Description

GDB [17] 23 [7,27] [11,55] 0 [11,55] Random graphs; Only required edges
VAL [49] 34 [24,50] [34,97] 0 [34,97] Random graphs; Only required edges
BMCV [34] 100 [26,97] [28,121] 0 [28,121] Intercity road network in Flanders
EGL [50] 24 [77,140] [51,190] 0 [51,190] Winter-gritting application in Lancashire
MVAL [11] 34 [24,50] [12,44] [25,106] [43,138] Adapted to MCARP from the VAL benchmark

LPR [11] 15 [28,401] [0,387] [11,764] [50,806] Random graphs that mimic the shape of street
networks

Table 4.2: Characteristics of the instances in the large-scale benchmarks.
Benchmark # |N | ER AR n Description

EGL-L [32] 10 255 [347,375] 0 [347,355] Larger winter-gritting application
Hefei [39] 10 850 [121,1212] 0 [121,1212] Generated from the road network of Hefei, China

Beijing [39] 10 2820 [358,3584] 0 [358,3584] Generated from the road network of Beijing,
China

KW [4] 12 [788,6149] [686,3797] 0 [686,3797] Based on real-life networks and waste data from
five areas in Denmark
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4.2 Parameter Tuning

Parameter tuning is a crucial step in the development of metaheuristics. The parameters of meta-

heuristics can greatly influence its performance on a given instance and, more importantly, its generality,

that is, its performance across instances with different sizes and characteristics.

The objective in parameter tuning is to find a configuration of parameters that maximizes some

performance measure. Since MADCoM has inherent randomness, the result of two different runs will

probably be different. Additionally, the relationship between parameter values and the performance of a

configuration is unknown and can’t be derived. Therefore, parameter tuning is a stochastic black-box op-

timization problem [51], where the black-box function we want to maximize is the expected performance

of a configuration γ.

Based on the approach used in [52], we use the estimator µ̂γ (equation 4.1) to estimate the perfor-

mance of a configuration γ. A run of 20 minutes is performed on each instance i ∈ I and the gap from

the best solution found ci to the best-known solution cBKS
i is computed according to equation 4.2. The

expected performance of a configuration is calculated by averaging the gaps across all instances in set

I, which is detailed in table 4.3.

µ̂γ = − 1

|I|

∑
i∈I

GAPi(ci) (4.1)

GAPi(ci) =
ci − cBKS

i

cBKS
i

(4.2)

Table 4.3: Characteristics of the instances used for parameter tuning.

Instance Benchmark |N | ER AR n

egl-s4-C EGL 140 190 0 190
egl-g2-E EGL-L 255 375 0 375
Lpr-c-04 LPR 277 362 142 504
Hefei-6 Hefei 850 727 0 727
F1 g-4 KW 812 780 0 780

Beijing-3 Beijing 2820 1075 0 1075

To search for the configuration with the best performance, we apply Bayesian Optimization using the

implementation in the library bayesian-optimization [53]. Bayesian optimization constructs a posterior

distribution of functions that describes the function being maximized. The posterior distribution is then

used at each iteration to sample the next configuration to evaluate, meaning each configuration tested

informs the search for better configurations.

MADCoM has several parameters that need to be set, related to the genetic algorithm and the divide-

and-conquer heuristics used in mutation. We focus on the most important parameters of its genetic

algorithm component, described in Table 4.4. For the parameters of HD and RCO, we use the values

that showed best performance in the original papers. After 75 iterations of Bayesian optimization, we

settled on the parameters in Table 4.4 by averaging the best configurations found.
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Table 4.4: Tuned parameters of MADCoM.

Parameter Description Value

µ Minimum population size 20
λ Number of offspring until survivor selection 30

nelite Number of elite individuals 5
nclose Number of individuals used for diversity contribution 5
ItLS Number of iterations until pLS and pR are updated 60
pM Mutation probability 0.25

4.3 Comparison of Initialization Methods

When using Hierarchical Decomposition as an initialization method, the size of the initial virtual task

set is equal to the problem size n. Given the quadratic complexity of the clustering algorithm, HD can be

computationally expensive for larger problems, especially because it requires clustering several times.

In the original paper, it was observed that for larger instances the parameter β, that sets the maximum

number of clusters in a layer, did not influence significantly the performance of SAHiD. For these reasons,

we experiment with imposing a limit on the maximum number of clusters using two alternative variants:

• Maximum of 10 clusters per layer. With β = 0.1 this results in having only two layers regardless of

the problem size, as the second layer will simply order the virtual task set to form the giant tour.

• Maximum of
√
n clusters per layer. This will generate few layers, as the number of clusters per

layer is randomly selected from [1,min(β|V T |,
√
n)].

For control purposes, we also include the classical HD where no limit is imposed, i.e., the number

of clusters in each layer is selected from [1, β|V T |], where |V T | is the size of the virtual task set at the

layer and β = 0.1. A population of 100 individuals was generated using each method for four instances

of different sizes. Figure 4.1 shows the boxplots of the time to generate an individual, for all methods

across the four instances. Figure 4.2 shows the boxplots of the gap to the best known solution.

As can be observed, without a limit on the maximum number of clusters, the execution time of HD

can be much larger than when a limit is imposed. Also, it presents a higher variability and the larger

the instance the more pronounced the effect becomes. In terms of solution quality, not imposing a limit

leads to higher variability and on average worse solutions. While for the smallest instance, all variants

demonstrate similar performance, it is clear that for larger instances imposing a limit results in a reduction

of execution time and an improvement of solution quality.

Another important factor is the diversity of the population. By imposing a limit on the number of

clusters in a layer, the number of outcomes of HD is also reduced. Table 4.5 displays the number of

individuals that have a clone in the population, for each method and instance. With a maximum of

10 clusters, regardless of the problem size, most solutions will be duplicated. For the other variants

the number of clones is smaller, but still larger than zero, indicating that using only HD to initialize the

population would likely lead to wasted computational effort.
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Figure 4.1: Boxplots of the time to generate an individual using different variants of HD.
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Figure 4.2: Boxplots of the gap to the best known solution using different variants of HD.

Table 4.5: Number of clones generated by each variant of HD.

Instance Maximum of 10 Clusters Maximum of
√
n Clusters No Maximum

Hefei-1 97 97 93
egl-g2-E 96 53 16
Hefei-6 93 49 13

Beijing-3 87 39 10
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While generating the initial population, some individuals will undergo local search. To compare the

performance of each variant when combined with local search, the individuals previously generated with

HD were improved. For control purposes, a population of random individuals improved by local search

was also generated. Figure 4.3 shows the boxplots of the total time to generate an individual and Figure

4.4 shows the solution quality. The boxplots of the solution quality of each HD variant was also included

for easier comparison.
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Figure 4.3: Boxplots of the total time to generate an individual using different variants of HD combined
with local search.

Imposing a limit reduces the total time to generate an individual and the solutions are better on av-

erage. In fact, for the largest instance, solutions generated only with HD are significantly better than

random solutions improved by local search, demonstrating the benefits of using HD as an initialization

method. When no limit is imposed, the time to generate an individual is larger and the added computa-

tional effort does not translate into better solutions on average.

Figure 4.5 shows the boxplots of the diversity contribution of each individual in the population, nor-

malized by the maximum diversity n − 1. With local search, the populations no longer have clones

due to its inherent randomness. The populations generated with HD are not as diverse as the random

individuals, especially for smaller instances.

Summarizing, imposing a limit on the number of clusters reduces the computational effort of HD with

no significant reduction on solution quality. In MADCoM, we choose the limit
√
n as it is similar in time

and quality to the limit of 10, but generates a more diverse population. Additionally, HD combined with

local search generates solutions with higher quality in shorter time than random solutions improved with

local search.
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Figure 4.4: Boxplots of the gap to the best known solution using different variants of HD combined with
local search.
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Figure 4.5: Boxplots of the diversity contribution of each individual in the population generated using
different variants of HD combined with local search.

4.4 Results on Classical Benchmarks

In this section, we present the results of MADCoM on the classical CARP and MCARP benchmarks

in Table 4.1. We performed five runs of 30 minutes on each instance. For comparison, we also present

the results of other algorithms in the literature, whose acronyms and references are available in Table

4.6.
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Table 4.6: Algorithms for comparison in the classical benchmarks.

Acronym Name

UHGS Unified Hybrid Genetic Search [41]
MAENS Memetic Algorithm with Extended Neighborhood Search [37]
VNS Variable Neighborhood Search [31]
MABBLP Memetic Algorithm by Belenguer et. al [11]

Due to the large number of instances, we only present the summarized results in Table 4.6. The

results for each instance are available in appendix B. For each algorithm, the column ”Best(%)” displays

the average across all instances of the percentage gap to the best known solution of the best solution

found in the five runs, and column ”Mean(%)” is the average gap to the best known solution across all

instances. For each algorithm, the column ”Best(%)” displays the percentage gap of the best solution in

the five runs, calculated according to equation 4.2 and averaged across all instances in the benchmark

set. Column ”Mean(%)” is the percentage gap of the mean of the five runs, averaged across all instances

in the benchmark set. In column ”Nº BKS”, we display the number of instances in the benchmark for

which the algorithm found a solution equal or better than the best known solution.

On the classical CARP benchmarks, MADCoM performs worse than the all algorithms, with a maxi-

mum difference in the gap of 0.502 % when compared to the best algorithm. On the MVAL benchmark

set, MADCoM outperforms MABBLP, and manages to find new best solutions for 8 instances, 2 of which

are optimal solutions as they match the best lower bound in the literature. On the LPR benchmark, which

contains larger MCARP instances, MADCoM performs worse than MABBLP.

4.5 Results on Large-Scale Benchmarks

In this section, we present the results of MADCoM on the large-scale benchmarks in Table 4.2. Five

runs of 30 minutes were performed on each instance. For comparison, we also present the results of

other algorithms in the literature, whose acronyms and references are available in Table 4.8.

The results of MADCoM on the large-scale benchmarks sets (4.2) are available in Tables 4.9-4.12.

In each table, n denotes the problem size and BKS the best known solution for each instance. For each

comparing algorithm, Best denotes the cost of the best solution found across all runs and Mean the

average cost of the best solution found in each run. For MADCoM, we also report the percentage gap

to the best known solution of both the best solution found and the mean. A value is in bold if it has

the minimal cost among all algorithms, and it is underlined if it is larger than the corresponding value of

MADCoM.

Table 4.9 shows the results on the EGL-L benchmark set. MADCoM performs worse than all of

the comparing algorithms across all instances. Another observation is the performance of MADCoM

is significantly different among instances with the same problem size. The main difference between

these instances lies in the number of vehicles. On instances with a larger fleet size, MADCoM performs

worse. Since the Split procedure is optimal, this points to a weakness in the local search, in particular
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Table 4.7: Summarized results on classical benchmarks.
Benchmark n Algorithm Best(%) Mean(%) Nº BKS

GDB [11,55]
MAENS 0.000% 0.009% 23/23
UHGS 0.000% 0.000% 23/23
MADCoM 0.077% 0.123% 22/23

VAL [34,97]
UHGS 0.013% 0.041% 32/34
MADCoM 0.051% 0.073% 31/34

BMCV [28,121]
UHGS 0.003% 0.013% 99/100
MADCoM 0.035% 0.073% 92/100

EGLESE [51,190]

VNS 0.174% 0.624% 14/24
MAENS 0.211% 0.651% 12/24
UHGS 0.047% 0.139% 19/24
MADCoM 0.483% 0.641% 11/24

MVAL [43,138]
MABBLP 0.000% 0.202% 34/34
MADCoM -0.238% -0.185% 34/34

LPR [50,806]
MABBLP 0.000% 0.090% 15/15
MADCoM 0.551% 0.703% 5/15

Table 4.8: Algorithms for comparison in the large-scale benchmarks.

Acronym Name

RDG-MAENS Route Distance Grouping combined with MAENS
UHGS Unified Hybrid Genetic Search [41]
RCO-RDG-MAENS Route Cutting Off Decomposition combined with RDG-MAENS [14]
RCO-SAHiD Route Cutting Off Decomposition combined with SAHiD [14]
FastCARP FastCARP [5]
PS Path-Scanning [17]

the inter-route moves.

Table 4.9: Results on the EGL-L benchmark set.
MADCoM

RDG-MAENS UHGS RCO-RDG-MAENS Best Mean

Instance n BKS Best Mean Best Mean Best Mean Cost Gap Cost Gap

egl-g1-A 347 991176 998405 1007368 992227 993127 998763 1005870 1010493 1.95 % 1019633 2.87 %
egl-g1-B 347 1109656 1118030 1123369 1112149 1116617 1118030 1121529 1135636 2.34 % 1144064 3.10 %
egl-g1-C 347 1230155 1242897 1251029 1232501 1236062 1243096 1250070 1268701 3.13 % 1277029 3.81 %
egl-g1-D 347 1361862 1375583 1384902 1365393 1370963 1375319 1383355 1409894 3.53 % 1418436 4.15 %
egl-g1-E 347 1501801 1518694 1527631 1503467 1511572 1513589 1526503 1559785 3.86 % 1569198 4.49 %
egl-g2-A 375 1086932 1097581 1106082 1087353 1090396 1097291 1106843 1115394 2.62 % 1127162 3.70 %
egl-g2-B 375 1196873 1211805 1223706 1198633 1202901 1211789 1220454 1239375 3.55 % 1245825 4.09 %
egl-g2-C 375 1330744 1344228 1353819 1333430 1336104 1344353 1352802 1377353 3.50 % 1387605 4.27 %
egl-g2-D 375 1468310 1482216 1492745 1471783 1476285 1482345 1490704 1528559 4.10 % 1533628 4.45 %
egl-g2-E 375 1602229 1622927 1633192 1610919 1616556 1621354 1631378 1675262 4.56 % 1683165 5.05 %

The results on benchmark set Hefei are available in Table 4.10. MADCoM performs worse than
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UHGS across all instances and only outperforms RCO-SAHiD on the smallest instance Hefei-1, but finds

better solutions than RDG-MAENS in 4 out of 10 instances. Also, MADCoM performs on average better

than RDG-MAENS on 7 out of 10 instances. On the Beijing benchmarks set, in Table 4.11, MADCoM

performs worse than UHGS and RCO-SAHiD on all instances, but performs better than RDG-MAENS

on all instances, both on average and in the best solution found.

Table 4.10: Results on the Hefei benchmark set.
MADCoM

RDG-MAENS UHGS RCO-SAHiD Best Mean

Instance n BKS Best Mean Best Mean Best Mean Cost Gap Cost Gap

Hefei-1 121 245596 246221 247341 245596 245596 246571 247351 246161 0.23 % 246501 0.37 %
Hefei-2 242 433648 436020 441539 433648 433807 436031 437631 437431 0.87 % 438778 1.18 %
Hefei-3 364 572545 583050 589152 572545 573737 582839 586795 588239 2.74 % 590044 3.06 %
Hefei-4 485 737730 754855 761351 737730 740404 750687 753859 764430 3.62 % 767514 4.04 %
Hefei-5 606 941278 980153 991813 941278 946574 961376 967045 982810 4.41 % 993578 5.56 %
Hefei-6 727 1068035 1119584 1132063 1068035 1072864 1092667 1098915 1119480 4.82 % 1124864 5.32 %
Hefei-7 848 1266931 1329745 1361125 1266931 1272880 1299360 1305057 1334139 5.30 % 1337509 5.57 %
Hefei-8 970 1427531 1526453 1550509 1427531 1436048 1469819 1478098 1498918 5.00 % 1510409 5.81 %
Hefei-9 1091 1598203 1705381 1749079 1598203 1605554 1645841 1656147 1676545 4.90 % 1681245 5.20 %
Hefei-10 1212 1748829 1837767 1923264 1748829 1754889 1799158 1810301 1839707 5.20 % 1846897 5.61 %

Table 4.11: Results on the Beijing benchmark set.
MADCoM

RDG-MAENS UHGS RCO-SAHiD Best Mean

Instance n BKS Best Mean Best Mean Best Mean Cost Gap Cost Gap

Beijing-1 358 760578 812647 829406 760578 760578 765538 770199 771892 1.49 % 780293 2.59 %
Beijing-2 717 1129810 1303570 1337954 1129810 1132987 1148259 1163978 1190494 5.37 % 1210427 7.14 %
Beijing-3 1075 1534878 1777852 1847922 1534878 1542405 1563874 1577027 1628115 6.07 % 1648438 7.40 %
Beijing-4 1434 1836866 2126151 2193399 1836866 1847355 1879617 1896581 1963803 6.91 % 1989004 8.28 %
Beijing-5 1792 2199275 2581910 2639458 2199275 2210443 2234352 2255386 2347314 6.73 % 2361021 7.35 %
Beijing-6 2151 2561113 2968102 3047295 2561113 2571748 2632250 2650420 2737955 6.90 % 2767488 8.06 %
Beijing-7 2509 2851602 3331900 3388263 2851602 2871881 2925015 2952809 3066896 7.55 % 3088432 8.31 %
Beijing-8 2868 3136727 3584696 3697025 3136727 3150688 3203032 3233296 3360983 7.15 % 3386317 7.96 %
Beijing-9 3226 3462953 3934270 4061793 3462953 3485819 3541842 3575671 3719620 7.41 % 3732243 7.78 %
Beijing-10 3584 3765614 4206005 4353966 3765614 3785520 3852428 3884308 4047304 7.48 % 4061605 7.86 %

Table 4.12 shows the results of MADCoM on the KW benchmark set. MADCoM finds better solu-

tions for all instances, with improvements ranging from 0.56 % to 6.94 % of the previous best known

solution. These instances have previously only been solved by constructive heuristics, which explains

the significant improvements on some instances.

4.6 Comparison with Simpler Versions

MADCoM is an algorithm that integrates two main components: the local search of UHGS and large-

scale heuristics, RCO and HD. It is important to show that it is the combination of these components

that leads to better results and not simply one of them. For this reason, we compare the performance

of MADCoM with simpler versions without one of the components. The parameters used for each alter-

native version are the same as those of MADCoM. Each alternative version is tested on 5 runs of 30

minutes on the instances of Table 4.3.

To analyse the performance of the large scale heuristics, we tested simpler versions without the
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Table 4.12: Results on the KW benchmark set.
MADCoM

FastCARP PS Best Mean

Instance n BKS Best Best Cost Gap Cost Gap

F1 g-4 780 768209 768209 843418 727490 -5.30 % 731891 -4.73 %
F1 g-6 780 474809 474809 530687 460267 -3.06 % 461224 -2.86 %
F1 p-2 728 261743 261743 287581 249859 -4.54 % 251383 -3.96 %
F1 p-6 728 162376 162376 182656 151105 -6.94 % 152147 -6.30 %
F9 g-4 686 718145 718145 795868 683088 -4.88 % 686199 -4.45 %
F9 g-6 686 444369 444369 496164 430558 -3.11 % 431320 -2.94 %
S1 g-1 3797 3624502 3624502 3987605 3582342 -1.16 % 3594765 -0.82 %
S1 g-6 3797 1470679 1478193 1886632 1452374 -1.24 % 1458265 -0.84 %
S2 g-1 3797 3459811 3459811 3822136 3405300 -1.58 % 3418296 -1.20 %
S2 g-6 3797 1439140 1478328 1851578 1431048 -0.56 % 1441136 0.14 %
S5 g-2 3732 2191441 2197632 2588801 2157168 -1.56 % 2165719 -1.17 %
S5 g-6 3732 1413134 1443084 1841206 1402146 -0.78 % 1405855 -0.52 %

divide-and-conquer mutation, by setting pM = 0, and without initialization using HD, by setting fHD = 0.

The effect of using HD as initialization method was analysed in section 4.3, however only in terms of

solution quality. It is possible that it only improves the quality of the initial population but it impacts

negatively the evolution, especially since the population is less diverse. Table 4.13 shows the gap to the

best known solution of the best solution found among the 5 runs and the average of the 5 runs. The best

solution found and best mean value for each instance are highlighted in bold.

Table 4.13: Performance of the large-scale heuristics.
pM = 0 pM = 0 pM = 0.25 pM = 0.25

fHD = 0 fHD = 0.20 fHD = 0 fHD = 0.20

Instance n BKS Best Mean Best Mean Best Mean Best Mean

egl-s4-C 190 20461 1.89 % 2.24 % 1.63 % 2.13 % 1.67 % 1.99 % 1.57 % 1.74 %
egl-g2-E 375 1602229 4.89 % 5.55 % 4.96 % 5.34 % 4.75 % 5.59 % 4.56 % 5.05 %
Lpr-c-04 504 169254 1.41 % 1.60 % 0.64 % 0.84 % 0.91 % 1.08 % 0.61 % 0.82 %
Hefei-6 727 1068035 5.60 % 7.35 % 6.24 % 6.42 % 5.53 % 6.27 % 4.82 % 5.32 %
F1 g-4 780 768209 -4.29 % -4.07 % -5.00 % -4.64 % -4.69 % -4.45 % -5.30 % -4.73 %
Beijing-3 1075 1534878 24.87 % 28.17 % 12.09 % 15.70 % 7.04 % 7.95 % 6.07 % 7.40 %

Without the large-scale heuristics, the performance is worse across all instances, and for larger

instances it is significantly worse, showing the importance of the large-scale heuristics in MADCoM. Al-

though the initialization is beneficial, especially for larger instances, it can also be observed that between

initialization and mutation, the mutation is more valuable. Combining the two shows the best results.

To analyse the performance of local search, we ran MADCoM without local search. The repair

operator, which is essentially local search, was replaced by a Split procedure with Qmax = Q, which

always results in a feasible solution. The repair probability was set to pR = 0.5 and the values of the

remaining parameters are the same as in MADCoM. We also compare with a genetic algorithm without

local search and without the large-scale heuristics and with the previous version with just local search.

The results are available in Table 4.14, which has the same table format as Table 4.13.
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Table 4.14: Performance of local search.
Without Heuristics With Heuristics Without Heuristics With Heuristics

Without Local Search Without Local Search With Local Search With Local Search

Instance n BKS Best Mean Best Mean Best Mean Best Mean

egl-s4-C 190 20461 28.93 % 30.32 % 4.88 % 5.90 % 1.89 % 2.24 % 1.57 % 1.74 %
egl-g2-E 375 1602229 77.21 % 79.23 % 11.34 % 12.28 % 4.89 % 5.55 % 4.56 % 5.05 %
Lpr-c-04 504 169254 26.48 % 27.39 % 2.85 % 2.95 % 1.41 % 1.60 % 0.61 % 0.82 %
Hefei-6 727 1068035 234.09 % 242.61 % 14.75 % 15.36 % 5.60 % 7.35 % 4.82 % 5.32 %
F1 g-4 780 768209 72.94 % 73.34 % 5.85 % 6.71 % -4.29 % -4.07 % -5.30 % -4.73 %
Beijing-3 1075 1534878 791.84 % 803.44 % 20.57 % 21.55 % 24.87 % 28.17 % 6.07 % 7.40 %

The simpler version with neither heuristics nor local search performs significantly worse, regardless

of the problem size. On all but the largest instance, the version with just local search performs better

than the version with just heuristics. Looking at figure 4.4, we can observe that for instance Beijing-3,

the initial solutions generated using HD are of better than quality than random solutions improved by

local search, which could explain this result. Once again, combining local search and the large-scale

heuristics leads to the best results.
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Chapter 5

Conclusions

5.1 Concluding Remarks

The main objective was accomplished as MADCoM is competitive on solving MCARP. We found new

best solutions for 8 MCARP benchmark instances, 2 of which are optimal, and new best solutions on all

the instances of the KW benchmark set. On the classical benchmarks, MADCoM performs on average at

most 0.502 % than the best algorithm. On the large scale instances, although our algorithm outperforms

RDG-MAENS on several instances, further work is required to achieve the best known solutions. The

comparisons with state-of-the-art are not straightforward, as they have been implemented in a different

programming language, ran on different processors and with varied termination conditions.

We show that the novel mutation operator is beneficial, increasing the performance significantly,

especially for larger instances. Coupling it with local search is essential to achieve the best performance,

as the mutation operator identifies the promising parts of the solution based on their relative quality and

not their absolute quality. Therefore, if the solutions being mutated do not contain useful patterns, the

algorithm will be slower at finding quality solutions.

We also demonstrate that Hierarchical Decomposition can be used as an initialization method, gen-

erating a diverse population with quality solutions. When combined with local search it outperforms

random solutions improved by local search on both time and quality. Furthermore, our technique that

limits the maximum number of clusters based on the problem size reduces the computational effort

without impacting solution quality.

5.2 Future Work

The performance of MADCoM could be improved in several ways. First of all, further exploration of

parameters values is necessary, especially the influence of the parameters of HD and RCO during the

evolution. Secondly, it was observed that the local search is not as effective for problems with a larger

number of vehicles, indicating a weakness with inter-route moves. A neighborhood move with larger

step size, such as ejection chains [54], could help mitigate this. Lastly, MADCoM would benefit from
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a faster implementation in C++. It would also allow for the direct integration with the source code of

UHGS and Route Cutting Off Decomposition and result in a fairer comparison between both methods

and MADCoM.

Another next step would be to generalize MADCoM to solve other CARP variants for which a giant

tour representation can be used, such as heterogeneous fleets [44] and multiple depots [45]. This

generalization can be accomplished without changing the mutation operator or the initialization method,

since both use a giant tour representation. It would only require adapting the Split procedure and local

search to the specific variant.
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Appendix A

Flowcharts

A.1 MADCoM
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Figure A.1: Flowchart of MADCoM.
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Appendix B

Extended Results on Classical

Benchmarks

B.1 Table Format

In each table, n denotes the problem size and BKS the best known solution for each instance. The

BKS is accompanied by an asterisk if it is a proven optimal solution. In the tables of the benchmark

sets GDB and VAL, all instances have been solved to optimality, therefore BKS is replaced with Optimal,

which stands for the cost of the optimal solution. In the table of the benchmark set MVAL, we include

the lower bounds reported by Gouveia et al. [27], to prove that it is in fact the optimal solution. For each

comparing algorithm, Best denotes the cost of the best solution found across all runs and Mean the

average cost of the best solution found in each run. For MADCoM, we also report the percentage gap

to the best known solution of both the best solution found and the mean. A value is in bold if it is equal

to the minimal cost among all algorithms, and it is underlined if it is larger than the corresponding value

of MADCoM.

B.2 Comparison Algorithms

The results of MADCoM are compared with several algorithms in the literature. The acronyms and

references for each one are available in table B.1

Table B.1: Algorithms for comparison in the classical benchmarks.

Acronym Name

UHGS Unified Hybrid Genetic Search [41]
MAENS Memetic Algorithm with Extended Neighborhood Search [37]
VNS Variable Neighborhood Search [31]
MABBLC Memetic Algorithm by Belenguer et. al [11]
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B.3 GDB

Table B.2: Results on the GDB benchmark set.
MADCoM

MAENS UHGS Best Mean

Instance n Optimal Best Mean Best Mean Cost Gap Cost Gap

gdb1 22 316 316 316 316 316 316 0.00 % 316 0.00 %
gdb2 26 339 339 339 339 339 345 1.77 % 345 1.77 %
gdb3 22 275 275 275 275 275 275 0.00 % 275 0.00 %
gdb4 19 287 287 287 287 287 287 0.00 % 287 0.00 %
gdb5 26 377 377 377 377 377 377 0.00 % 381 1.06 %
gdb6 22 298 298 298 298 298 298 0.00 % 298 0.00 %
gdb7 22 325 325 325 325 325 325 0.00 % 325 0.00 %
gdb8 46 348 348 349 348 348 348 0.00 % 348 0.00 %
gdb9 51 303 303 303 303 303 303 0.00 % 303 0.00 %
gdb10 25 275 275 275 275 275 275 0.00 % 275 0.00 %
gdb11 45 395 395 395 395 395 395 0.00 % 395 0.00 %
gdb12 23 458 458 458 458 458 458 0.00 % 458 0.00 %
gdb13 28 536 536 536 536 536 536 0.00 % 536 0.00 %
gdb14 21 100 100 100 100 100 100 0.00 % 100 0.00 %
gdb15 21 58 58 58 58 58 58 0.00 % 58 0.00 %
gdb16 28 127 127 127 127 127 127 0.00 % 127 0.00 %
gdb17 28 91 91 91 91 91 91 0.00 % 91 0.00 %
gdb18 36 164 164 164 164 164 164 0.00 % 164 0.00 %
gdb19 11 55 55 55 55 55 55 0.00 % 55 0.00 %
gdb20 22 121 121 121 121 121 121 0.00 % 121 0.00 %
gdb21 33 156 156 156 156 156 156 0.00 % 156 0.00 %
gdb22 44 200 200 200 200 200 200 0.00 % 200 0.00 %
gdb23 55 233 233 233 233 233 233 0.00 % 233 0.00 %
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B.4 VAL

Table B.3: Results on the VAL benchmark set.
MADCoM

UHGS Best Mean

Instance n Optimal Best Mean Cost Gap Cost Gap

1A 39 173 173 173 173 0.00 % 173 0.00 %
1B 39 173 173 173 173 0.00 % 173 0.00 %
1C 39 245 245 245 245 0.00 % 245 0.00 %
2A 34 227 227 227 227 0.00 % 227 0.00 %
2B 34 259 259 259 259 0.00 % 259 0.00 %
2C 34 457 457 457 457 0.00 % 457 0.00 %
3A 35 81 81 81 81 0.00 % 81 0.00 %
3B 35 87 87 87 87 0.00 % 87 0.00 %
3C 35 138 138 138 138 0.00 % 138 0.00 %
4A 69 400 400 400 400 0.00 % 400 0.00 %
4B 69 412 412 412 412 0.00 % 412 0.00 %
4C 69 428 428 428 428 0.00 % 428 0.00 %
4D 69 528 528 530 530 0.38 % 530 0.38 %
5A 65 423 423 423 423 0.00 % 423 0.00 %
5B 65 446 446 446 446 0.00 % 446 0.00 %
5C 65 474 474 474 474 0.00 % 474 0.00 %
5D 65 575 575 576 575 0.00 % 577 0.35 %
6A 50 223 223 223 223 0.00 % 223 0.00 %
6B 50 233 233 233 233 0.00 % 233 0.00 %
6C 50 317 317 317 317 0.00 % 317 0.00 %
7A 66 279 279 279 279 0.00 % 279 0.00 %
7B 66 283 283 283 283 0.00 % 283 0.00 %
7C 66 334 334 334 334 0.00 % 334 0.00 %
8A 63 386 386 386 386 0.00 % 386 0.00 %
8B 63 395 395 395 395 0.00 % 395 0.00 %
8C 63 521 521 521 521 0.00 % 521 0.00 %
9A 92 323 323 323 323 0.00 % 323 0.00 %
9B 92 326 326 326 326 0.00 % 326 0.00 %
9C 92 332 332 332 332 0.00 % 332 0.00 %
9D 92 388 389 391 391 0.77 % 391 0.77 %
10A 97 428 428 428 428 0.00 % 428 0.00 %
10B 97 436 436 436 436 0.00 % 437 0.23 %
10C 97 446 446 446 446 0.00 % 446 0.00 %
10D 97 525 526 526 528 0.57 % 529 0.76 %
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B.5 BMCV

Table B.4: Results on the C instances of the BMCV benchmark set.
MADCoM

UHGS Best Mean

Instance n BKS Best Mean Cost Gap Cost Gap

C01 79 *4150 4150 4150 4150 0.00 % 4160 0.24 %
C02 53 *3135 3135 3135 3135 0.00 % 3135 0.00 %
C03 51 *2575 2575 2575 2575 0.00 % 2575 0.00 %
C04 72 *3510 3510 3510 3510 0.00 % 3510 0.00 %
C05 65 *5365 5365 5365 5365 0.00 % 5369 0.07 %
C06 51 *2535 2535 2535 2535 0.00 % 2535 0.00 %
C07 52 *4075 4075 4075 4075 0.00 % 4075 0.00 %
C08 63 *4090 4090 4090 4090 0.00 % 4090 0.00 %
C09 97 5260 5260 5260 5260 0.00 % 5274 0.27 %
C10 55 *4700 4700 4700 4700 0.00 % 4737 0.79 %
C11 94 4630 4630 4636 4640 0.22 % 4645 0.32 %
C12 72 *4240 4240 4240 4240 0.00 % 4240 0.00 %
C13 52 *2955 2955 2955 2955 0.00 % 2955 0.00 %
C14 57 *4030 4030 4030 4030 0.00 % 4030 0.00 %
C15 107 4940 4940 4940 4965 0.51 % 4986 0.93 %
C16 32 *1475 1475 1475 1475 0.00 % 1478 0.20 %
C17 42 *3555 3555 3555 3555 0.00 % 3555 0.00 %
C18 121 5605 5620 5626 5640 0.62 % 5649 0.79 %
C19 61 *3115 3115 3115 3115 0.00 % 3119 0.13 %
C20 53 *2120 2120 2120 2120 0.00 % 2120 0.00 %
C21 76 *3970 3970 3970 3970 0.00 % 3970 0.00 %
C22 43 *2245 2245 2245 2245 0.00 % 2245 0.00 %
C23 92 4085 4085 4085 4085 0.00 % 4093 0.20 %
C24 84 *3400 3400 3400 3400 0.00 % 3402 0.06 %
C25 38 *2310 2310 2310 2310 0.00 % 2310 0.00 %
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Table B.5: Results on the D instances of the BMCV benchmark set.
MADCoM

UHGS Best Mean

Instance n BKS Best Mean Cost Gap Cost Gap

D01 79 *3215 3215 3218 3230 0.47 % 3233 0.56 %
D02 53 *2520 2520 2520 2520 0.00 % 2520 0.00 %
D03 51 *2065 2065 2065 2065 0.00 % 2065 0.00 %
D04 72 *2785 2785 2785 2785 0.00 % 2785 0.00 %
D05 65 *3935 3935 3935 3935 0.00 % 3935 0.00 %
D06 51 *2125 2125 2125 2125 0.00 % 2125 0.00 %
D07 52 *3115 3115 3115 3115 0.00 % 3115 0.00 %
D08 63 *3045 3045 3045 3045 0.00 % 3045 0.00 %
D09 97 *4120 4120 4120 4120 0.00 % 4120 0.00 %
D10 55 *3340 3340 3340 3340 0.00 % 3340 0.00 %
D11 94 *3745 3745 3745 3745 0.00 % 3754 0.24 %
D12 72 *3310 3310 3310 3310 0.00 % 3310 0.00 %
D13 52 *2535 2535 2535 2535 0.00 % 2536 0.04 %
D14 57 *3280 3280 3280 3280 0.00 % 3280 0.00 %
D15 107 *3990 3990 3990 3990 0.00 % 3996 0.15 %
D16 32 *1060 1060 1060 1060 0.00 % 1060 0.00 %
D17 42 *2620 2620 2620 2620 0.00 % 2620 0.00 %
D18 121 *4165 4165 4165 4165 0.00 % 4167 0.05 %
D19 61 *2400 2400 2400 2400 0.00 % 2400 0.00 %
D20 53 *1870 1870 1870 1870 0.00 % 1870 0.00 %
D21 76 3050 3050 3050 3050 0.00 % 3055 0.16 %
D22 43 *1865 1865 1865 1865 0.00 % 1865 0.00 %
D23 92 3130 3130 3130 3130 0.00 % 3130 0.00 %
D24 84 *2710 2710 2710 2710 0.00 % 2710 0.00 %
D25 38 *1815 1815 1815 1815 0.00 % 1815 0.00 %
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Table B.6: Results on the E instances of the BMCV benchmark set.
MADCoM

UHGS Best Mean

Instance n BKS Best Mean Cost Gap Cost Gap

E01 85 4910 4910 4910 4910 0.00 % 4910 0.00 %
E02 58 *3990 3990 3990 3990 0.00 % 3990 0.00 %
E03 47 *2015 2015 2015 2025 0.50 % 2025 0.50 %
E04 77 *4155 4155 4155 4155 0.00 % 4155 0.00 %
E05 61 *4585 4585 4585 4585 0.00 % 4674 1.94 %
E06 43 *2055 2055 2055 2055 0.00 % 2055 0.00 %
E07 50 *4155 4155 4155 4155 0.00 % 4155 0.00 %
E08 59 *4710 4710 4710 4710 0.00 % 4710 0.00 %
E09 103 5810 5810 5810 5810 0.00 % 5858 0.83 %
E10 49 *3605 3605 3605 3605 0.00 % 3605 0.00 %
E11 94 *4650 4650 4655 4670 0.43 % 4670 0.43 %
E12 67 *4180 4180 4190 4190 0.24 % 4194 0.33 %
E13 52 *3345 3345 3345 3345 0.00 % 3345 0.00 %
E14 55 *4115 4115 4115 4115 0.00 % 4115 0.00 %
E15 107 *4205 4205 4219 4225 0.48 % 4225 0.48 %
E16 54 *3775 3775 3775 3775 0.00 % 3783 0.21 %
E17 36 *2740 2740 2740 2740 0.00 % 2740 0.00 %
E18 88 3835 3835 3835 3835 0.00 % 3835 0.00 %
E19 66 *3235 3235 3235 3235 0.00 % 3235 0.00 %
E20 63 *2825 2825 2825 2825 0.00 % 2825 0.00 %
E21 72 *3730 3730 3730 3730 0.00 % 3732 0.05 %
E22 44 *2470 2470 2470 2470 0.00 % 2470 0.00 %
E23 89 3710 3710 3713 3710 0.00 % 3733 0.62 %
E24 86 *4020 4020 4020 4020 0.00 % 4020 0.00 %
E25 28 *1615 1615 1615 1615 0.00 % 1615 0.00 %
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Table B.7: Results on the F instances of the BMCV benchmark set.
MADCoM

UHGS Best Mean

Instance n BKS Best Mean Cost Gap Cost Gap

F01 85 *4040 4040 4040 4040 0.00 % 4040 0.00 %
F02 58 *3300 3300 3300 3300 0.00 % 3300 0.00 %
F03 47 *1665 1665 1665 1665 0.00 % 1665 0.00 %
F04 77 *3485 3485 3485 3485 0.00 % 3490 0.14 %
F05 61 *3605 3605 3605 3605 0.00 % 3605 0.00 %
F06 43 *1875 1875 1875 1875 0.00 % 1875 0.00 %
F07 50 *3335 3335 3335 3335 0.00 % 3335 0.00 %
F08 59 *3705 3705 3705 3705 0.00 % 3705 0.00 %
F09 103 *4730 4730 4730 4730 0.00 % 4730 0.00 %
F10 49 *2925 2925 2925 2925 0.00 % 2925 0.00 %
F11 94 *3835 3835 3835 3835 0.00 % 3835 0.00 %
F12 67 *3395 3395 3395 3395 0.00 % 3408 0.38 %
F13 52 *2855 2855 2855 2855 0.00 % 2855 0.00 %
F14 55 *3330 3330 3330 3330 0.00 % 3330 0.00 %
F15 107 *3560 3560 3560 3560 0.00 % 3560 0.00 %
F16 54 *2725 2725 2725 2725 0.00 % 2725 0.00 %
F17 36 *2055 2055 2055 2055 0.00 % 2055 0.00 %
F18 88 3075 3075 3075 3075 0.00 % 3075 0.00 %
F19 66 2525 2525 2525 2525 0.00 % 2525 0.00 %
F20 63 *2445 2445 2445 2445 0.00 % 2447 0.08 %
F21 72 *2930 2930 2930 2930 0.00 % 2930 0.00 %
F22 44 *2075 2075 2075 2075 0.00 % 2075 0.00 %
F23 89 3005 3005 3005 3005 0.00 % 3008 0.10 %
F24 86 *3210 3210 3210 3210 0.00 % 3212 0.06 %
F25 28 *1390 1390 1390 1390 0.00 % 1390 0.00 %
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B.6 EGLESE

Table B.8: Results on the EGLESE benchmark set.
MADCoM

VNS MAENS UHGS Best Mean

Instance n BKS Best Mean Best Mean Best Mean Cost Gap Cost Gap

egl-e1-A 51 *3548 3548 3548 3548 3548 3548 3548 3548 0.00 % 3548 0.00 %
egl-e1-B 51 *4498 4498 4522 4498 4516 4498 4498 4498 0.00 % 4498 0.00 %
egl-e1-C 51 *5595 5595 5608 5595 5602 5595 5595 5595 0.00 % 5595 0.00 %
egl-e2-A 72 *5018 5018 5024 5018 5018 5018 5018 5018 0.00 % 5018 0.00 %
egl-e2-B 72 6317 6317 6335 6317 6341 6317 6321 6317 0.00 % 6318 0.02 %
egl-e2-C 72 *8335 8335 8356 8335 8356 8335 8335 8335 0.00 % 8335 0.00 %
egl-e3-A 87 *5898 5898 5898 5898 5899 5898 5898 5898 0.00 % 5898 0.00 %
egl-e3-B 87 7775 7775 7806 7775 7803 7775 7776 7777 0.03 % 7779 0.05 %
egl-e3-C 87 10292 10292 10322 10292 10322 10292 10292 10292 0.00 % 10316 0.23 %
egl-e4-A 98 6444 6446 6459 6456 6475 6444 6444 6458 0.22 % 6462 0.28 %
egl-e4-B 98 8961 8996 9016 8998 9023 8961 8985 9012 0.57 % 9035 0.83 %
egl-e4-C 98 11529 11618 11750 11561 11646 11529 11563 11606 0.67 % 11627 0.85 %
egl-s1-A 75 *5018 5018 5018 5018 5040 5018 5018 5018 0.00 % 5018 0.00 %
egl-s1-B 75 *6388 6388 6388 6388 6433 6388 6388 6388 0.00 % 6388 0.00 %
egl-s1-C 75 *8518 8518 8518 8518 8518 8518 8518 8518 0.00 % 8518 0.00 %
egl-s2-A 147 9875 9895 9998 9895 9959 9875 9886 9927 0.53 % 9965 0.91 %
egl-s2-B 147 13057 13100 13176 13147 13232 13081 13102 13252 1.49 % 13301 1.87 %
egl-s2-C 147 *16425 16425 16552 16430 16510 16425 16440 16585 0.97 % 16600 1.07 %
egl-s3-A 159 10201 10221 10291 10257 10313 10221 10240 10297 0.94 % 10355 1.51 %
egl-s3-B 159 13682 13682 13829 13749 13877 13682 13694 13757 0.55 % 13836 1.13 %
egl-s3-C 159 *17188 17259 17328 17207 17306 17188 17191 17338 0.87 % 17374 1.08 %
egl-s4-A 190 12216 12292 12440 12341 12419 12273 12288 12390 1.42 % 12434 1.78 %
egl-s4-B 190 16214 16321 16410 16337 16441 16230 16284 16500 1.76 % 16543 2.03 %
egl-s4-C 190 20461 20582 20732 20538 20767 20500 20591 20782 1.57 % 20817 1.74 %
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B.7 MVAL

Table B.9: Results on the MVAL benchmark set.
MADCoM

MABBLC Best Mean

Instance n LB BKS Best Mean Cost Gap Cost Gap

mval1A 55 230 *230 230 230 230 0.00 % 230 0.00 %
mval1B 51 261 *261 261 261 261 0.00 % 261 0.00 %
mval1C 53 309 315 315 315 309 -1.90 % 310 -1.59 %
mval2A 44 324 *324 324 324 324 0.00 % 324 0.00 %
mval2B 52 395 *395 395 395 395 0.00 % 395 0.00 %
mval2C 49 521 526 526 526 526 0.00 % 526 0.00 %
mval3A 48 115 *115 115 115 115 0.00 % 115 0.00 %
mval3B 45 142 *142 142 142 142 0.00 % 142 0.00 %
mval3C 43 166 *166 166 166 166 0.00 % 166 0.00 %
mval4A 95 580 *580 580 580 580 0.00 % 580 0.00 %
mval4B 102 650 *650 650 650 650 0.00 % 650 0.00 %
mval4C 103 630 *630 630 631 630 0.00 % 630 0.00 %
mval4D 104 746 770 770 776 750 -2.60 % 752 -2.34 %
mval5A 96 597 *597 597 597 597 0.00 % 597 0.00 %
mval5B 91 613 *613 613 615 613 0.00 % 613 0.00 %
mval5C 98 697 *697 697 697 697 0.00 % 697 0.00 %
mval5D 92 719 739 739 757 729 -1.35 % 731 -1.08 %
mval6A 69 326 *326 326 326 326 0.00 % 326 0.00 %
mval6B 66 317 *317 317 317 317 0.00 % 317 0.00 %
mval6C 68 365 371 371 375 370 -0.27 % 371 0.00 %
mval7A 86 364 *364 364 364 364 0.00 % 364 0.00 %
mval7B 91 412 *412 412 412 412 0.00 % 412 0.00 %
mval7C 90 424 426 426 428 426 0.00 % 426 0.00 %
mval8A 96 581 *581 581 581 581 0.00 % 581 0.00 %
mval8B 91 531 *531 531 531 531 0.00 % 531 0.00 %
mval8C 83 617 638 638 638 632 -0.94 % 632 -0.94 %
mval9A 132 458 *458 458 458 458 0.00 % 458 0.00 %
mval9B 120 453 *453 453 453 453 0.00 % 453 0.00 %
mval9C 125 428 429 429 434 428 -0.23 % 429 0.00 %
mval9D 131 514 520 520 520 519 -0.19 % 519 -0.19 %
mval10A 138 634 *634 634 634 634 0.00 % 634 0.00 %
mval10B 134 661 *661 661 662 661 0.00 % 661 0.00 %
mval10C 136 623 *623 623 624 623 0.00 % 624 0.16 %
mval10D 129 643 649 649 650 645 -0.62 % 647 -0.31 %
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B.8 LPR

Table B.10: Results on the LPR benchmark set.
MADCoM

MABBLC Best Mean

Instance n BKS Best Mean Cost Gap Cost Gap

Lpr-a-01 52 *13484 13484 13484 13484 0.00 % 13484 0.00 %
Lpr-a-02 104 *28052 28052 28052 28052 0.00 % 28063 0.04 %
Lpr-a-03 304 76155 76155 76155 76500 0.45 % 76614 0.60 %
Lpr-a-04 503 127352 127352 127930 128532 0.93 % 128929 1.24 %
Lpr-a-05 806 205499 205499 206086 208643 1.53 % 209138 1.77 %
Lpr-b-01 50 *14835 14835 14835 14835 0.00 % 14835 0.00 %
Lpr-b-02 101 *28654 28654 28654 28654 0.00 % 28654 0.00 %
Lpr-b-03 305 77878 77878 77878 78511 0.81 % 78594 0.92 %
Lpr-b-04 501 127454 127454 127454 128578 0.88 % 129368 1.50 %
Lpr-b-05 801 211771 211771 212279 214954 1.50 % 215798 1.90 %
Lpr-c-01 50 *18639 18639 18639 18639 0.00 % 18639 0.00 %
Lpr-c-02 100 *36339 36339 36339 36342 0.01 % 36363 0.07 %
Lpr-c-03 302 111632 111632 111632 112242 0.55 % 112323 0.62 %
Lpr-c-04 504 169254 169254 169487 170286 0.61 % 170638 0.82 %
Lpr-c-05 803 259937 259937 260538 262448 0.97 % 262732 1.08 %
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