
Solving Large Scale Arc Routing Problems

Diogo Miguel Ferreira de Oliveira
diogo.miguel.oliveira@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

December 2021

Abstract

The Capacitated Arc Routing Problem (CARP) is a very important combinatorial optimization problem with
a wide range of applications such as waste collection, road maintenance and winter gritting. In this thesis, we
propose an algorithm called Memetic Algorithm with Divide-and-Conquer Mutation (MADCoM) to solve the Mixed
Capacitated Arc Routing Problem (MCARP), a variant of CARP more suited to real-world street networks. An
emphasis is placed on solving large-scale instances, as most applications span an entire city. MADCoM is a genetic
algorithm with adaptive diversity control hybridized with efficient local search. We introduce a novel mutation
operator which consists of applying to a solution two state-of-the-art divide-and-conquer heuristics, Route Cutting
Off Decomposition and Hierarchical Decomposition. We demonstrate that it leads to improved performance of the
algorithm when coupled with local search, particularly for larger instances. Furthermore, Hierarchical Decomposition
is used as an initialization method. We show that it generates a diverse population with quality solutions. We define
one of its parameters to be dependent on the problem size, which leads to reduced computational time without
affecting solution quality. We test the performance of MADCoM on the classical benchmarks for CARP and MCARP,
as well as the more recent large-scale benchmarks. We find new best solutions for 8 instances of MCARP, 2 of which
are optimal solutions, and new best solutions for 12 large-scale CARP instances.
Keywords: Capacitated Arc Routing Problem, genetic algorithm, local search, divide-and-conquer

1. Introduction

The Capacitated Arc Routing Problem (CARP) is a com-
binatorial optimization problem that was first proposed
by Golden and Wong in 1981 [5]. It has the objective of
finding a set of routes with minimal distance that fulfill
the demand in a subset of edges of the problem network,
subject to constraints in the capacity of the vehicles. It
has a wide range of applications such as waste collection
[14], road maintenance [6], and winter gritting [3].

In this thesis, we solve a variant of CARP called the
Mixed Capacitated Arc Routing Problem (MCARP), pro-
posed by Belenguer et al. [1]. In the classical CARP, an
edge can be traversed by a vehicle in both directions, how-
ever, in real world street networks, most streets can only
be traversed in one direction. The MCARP is defined on
a mixed network, containing both edges and arcs. Edges
can be traversed by a vehicle in both directions, while arcs
only allow one direction. As most CARP and MCARP
applications span an entire city, we place an emphasis on
solving large-scale instances.

2. Background
2.1. Literature Review

The CARP has received considerable attention in the past
few decades, with numerous algorithms published. Since
the CARP is NP-Hard [5], exact methods are limited
to small and medium size problems. As a consequence,
heuristics and metaheuristics are often published in the
literature. One of the first heuristics for the CARP was
proposed by Ulusoy [12]. Instead of building routes one-
by-one, this method first builds a giant tour, a route with
infinite capacity that services all required edges. To trans-

form the giant tour into routes that do not violate the
capacity constraint, the Split procedure is applied. Split
takes as input a sequence of required links and using an
auxiliary Directed Acyclic Graph (DAG) divides it into
routes in an optimal way.

Currently, the state-of-the-art algorithms to solve
CARP are metaheuristic algorithms. In 2008, Polacek et
al. designed a simple and efficient Variable Neighborhood
Search (VNS) [8]. Tang et al. introduced a Memetic Algo-
rithm with Extended Neighborhood Search (MAENS) [10]
that uses Split as a large neighborhood move. In 2017, Vi-
dal published Unified Hybrid Genetic Search (UHGS) for
the CARP, a Memetic Algorithm (MA) with advanced di-
versity management and constant time local search move
evaluations, that is, independent of problem size, as was
the case with previous works. UHGS uses giant tours as
a chromosome representation and both the Split proce-
dure used and the local search moves decide optimally the
service direction. UHGS is currently the best performing
algorithm on the classical benchmarks.

With several metaheuristics capable of efficiently solv-
ing the classical instances, the focus has shifted to solving
large-scale instances. The latest algorithms solve large-
scale CARP by using a divide-and-conquer approach. In
2014, Mei et al. [7] published RDG-MAENS, a Coop-
erative Coevolution framework that iteratively uses the
best-so-far solution to decompose the problem into smaller
subproblems that are solved independently using MAENS.
The best solutions for each subproblem are then merged to
form a solution to the main problem. Tang et al. [11] pro-
posed a scalable approach based on Hierarchical Decompo-
sition (HD). They defined virtual tasks as a permutation of

1

required edges and cluster them based on a distance mea-
sure. The virtual tasks that belong to the same cluster
are joined into a new virtual task in an order decided by a
greedy heuristic. The process repeats until a single virtual
task is left, representing a giant tour. The authors em-
bedded HD into a individual-based search method called
SAHiD, that iteratively decomposes the routes of the cur-
rent solution to form a virtual task set for HD, thereby
generating a new solution which is then improved by lo-
cal search. Zhang and Mei improved both methods with
a new decomposition scheme, Route Cutting Off (RCO)
decomposition [15] that uses a task rank matrix to find
good and poor links to decompose the routes of a solution.
RCO-SAHiD and UHGS are currently the metaheuristics
with the best results on large-scale benchmarks.

2.2. Mathematical Formulation
The presented formulation is based on the MCARP for-
mulation given by Constantino et. al in [2].
The Mixed Capacitated Arc Routing Problem

(MCARP) is defined on a mixed network (N,AD, AR, ER)
which includes deadheading links, with no demand, and
required links, with demand. N is the set of nodes and all
vehicles start and end their routes at a special node called
the depot, which is given the index 0. All deadheading
links are represented by arcs in the set AD. The required
links, also called services or tasks, are represented by arcs
and edges in the sets AR and ER respectively. Each link
has a traversal cost dij > 0. For required links there is
also a demand qij > 0 and a service cost sij >= dij .
The initial network is transformed into a directed graph

G = (N,A). The set of all arcs A is given by A = AD ∪
R, where the set of required arcs R is defined as R =
AR ∪ AER

. The set AER
, defined as AER

= {(i, j), (j, i) :
{i, j} ∈ ER ∧ i < j}, is created by replacing each required
edge by two opposite arcs, one for each service direction,
with the same costs and demand as the original edge. It
is only required to service one of these arcs, as they both
represent the edge in the original network.
The fleet is composed of P identical vehicles, each with

capacity Q. Each vehicle used incurs a fixed cost F . For
most benchmarks, there is no limit on the number of vehi-
cles, which is equivalent to setting P = |ER|+ |AR|, as one
vehicle per required link is the maximum possible number
of vehicles in a solution.
A solution to MCARP consists of a set of routes that ser-

vices each required link, uses a number of vehicles smaller
than the fleet size, and each route respects the capacity
constraint. The optimal solution minimizes the objective
function, which is composed of the fixed cost of each vehi-
cle, the cost of servicing each required link and the cost of
deadheading the links between services, that is, traversing
the links without servicing. To complete the mathematical
formulation, the following variables are also needed:

• xp
ij is a binary variable that equals 1 if the required

arc (i, j) is serviced by vehicle route p and 0 otherwise.

• ypij is the number of times an arc (i, j) is deadheaded

by route p.

• fp
ij is the flow in arc (i, j), related with the remaining
demand in route p.

min

P∑
p=1

 ∑
(i,j)∈A

dijy
p
ij +

∑
(i,j)∈R

sijx
p
ij + F

∑
(0,j)∈A

yp0j

(1)

subject to

P∑
p=1

xp
ij = 1 ∀(i, j) ∈ AR (2)

P∑
p=1

(xp
ij + xp

ji) = 1 ∀(i, j) ∈ AER
(3)

∑
j:(i,j)∈A

ypij+
∑

j:(i,j)∈R

xp
ij =

∑
j:(j,i)∈A

ypji+
∑

j:(j,i)∈R

xp
ji ∀i ∈ N, ∀p

(4)∑
(0,j)∈A

yp0j ≤ 1 ∀p (5)

∑
j:(j,i)∈A

fp
ji −

∑
j:(i,j)∈A

fp
ij =

∑
j:(j,i)∈R

qijx
p
ji ∀i ∈ N \ {0}∀p

(6)∑
(0,j)∈A

fp
0j =

∑
j:(j,i)∈R

qijx
p
ji ∀p (7)

fp
ij ≤ W (xp

ij + ypij) ∀(i, j) ∈ R,∀p (8)

fp
ij ≤ W (ypij) ∀(i, j) ∈ AD,∀p (9)

xp
ij ∈ {0, 1} ∀(i, j) ∈ R,∀p (10)

ypij ≥ 0 and integer ∀(i, j) ∈ A,∀p (11)

fp
ij ≥ 0 ∀(i, j) ∈ A,∀p (12)

The first term in the objective function (1) is the cost of
deadheading the arcs, the second term is the cost of servic-
ing the required arcs, and the third term is the fixed cost
of the vehicles, where the term

∑P
p=1

∑
(0,j)∈A yp0j is the

number of vehicles used. Equations (2)–(3) ensure that
every required link is serviced by only one vehicle. Equa-
tion (4) imposes the connectivity of routes at each node
and equation (5) is needed to adequately charge the fixed
cost in the objective function. (6)–(7) are the flow conser-
vation constraints and (8)–(9) are the linking constraints,
which together guarantee the connectivity of the routes.
Equations (8)–(9) are the capacity constraints. (10)–(12)
are the domain constraints.

2

3. Implementation
To solve Large-Scale MCARP we propose a Memetic Al-
gorithm with Divide-and-Conquer Mutation (MADCoM).
MADCoM combines the adaptive diversity control and ef-
ficient local search of UHGS with the divide-and-conquer
heuristics tailored for large-scale CARP of RCO-SAHiD.
The population of MADCoM is composed of individu-

als that each represent a solution to the MCARP instance
being solved. It is divided into two subpopulations: a fea-
sible subpopulation containing feasible solutions, and an
infeasible population containing infeasible solutions used
to guide the search. At each iteration, a new individ-
ual is generated by mutation with probability PM , which
consists of applying RCO and HD to a randomly selected
individual in the population, or by combining two parent
individuals using Order Crossover (OX). The Split pro-
cedure is applied to the new individual to obtain the cost
and routes of its solution. Then, the new individual under-
goes local search with probability pLS and is inserted into
a subpopulation depending on its feasibility. If it is infea-
sible, it can undergo a repair procedure with probability
pR, that attempts to transform it into a feasible solution.
If a subpopulation reaches its maximum size, survivor se-
lection is triggered and individuals are discarded until the
subpopulation is at its minimum size, resulting in a new
generation. At the end of the iteration, the penalty for
infeasible solutions and the local search and repair proba-
bilities may be adjusted. The algorithm stops after reach-
ing a time limit or ItNI iterations without improvement.
A flowchart of the algorithm is shown in Figure 1.

 DIVERSITY MANAGEMENT
Survivor Selection

Diversification Phase

RANDOM
INDIVIDUALS

HIERARCHICAL
DECOMPOSITION

INDIVIDUALS

SELECTION

Tournament Size of

SELECTION
Binary Tournarment based

on cost & diversity

LOCAL SEARCH

With probability

ORDER
CROSSOVER

SPLIT

To obtain the routes and
cost of the solution

LOCAL SEARCH

With probability

REPAIR

With probability

MUTATION
Using RCO & HD

ADJUST PARAMETERS
Probabilities and

Penalty parameter

INITIAL
POPULATION

ADD TO
SUBPOPULATION

RETURN BEST
SOLUTION

Termination
condition met?

No

Yes

Feasible

Infeasible

Figure 1: Flowchart of MADCoM.

3.1. Search Space
An explicit solution to MCARP is a sequence of nodes for
each route that represents the path in the problem graph
taken by each vehicle, as well as which links are serviced by

each route. This representation was used by some of the
first metaheuristics, but recent algorithms use instead an
implicit representation by decomposing the search space
of MCARP into four decision subsets [13]:

• Assignment - Assign each services to a route

• Sequencing - Order the services in each route

• Mode Choice - Choose the service direction of each
required link

• Paths - Find the shortest paths between successive
services

Each of these decision subsets leads to an exponential
number of solutions. The larger the solution space the
more difficult it is for a search algorithm to find the op-
timal solution (or a near-optimal solution). However, we
only need to define theAssignment and Sequencing de-
cision subsets to represent a solution, because if they are
known, the Paths and Mode Choice can be derived via
dynamic programming algorithms. Although there is an
added computational cost, the reduction in the solution
space will result in the algorithm finding better solutions
in a shorter amount of time.

The Paths decision subset can abstracted by using a
distance matrix between arcs instead of the original dis-
tance matrix between nodes of the problem graph. Each
edge (i, j) ∈ ER is replaced by two arcs (i, j) and (j, i),
one for each mode, with the same cost as the original edge,
deadheading arcs are no longer considered and the depot
is represented by an arc that starts and ends at the de-
pot node. Each arc is given an id k and the depot arc is
represented by the id 0. The distance d(k, l) between two
arcs k = (a, b) and l = (c, d) is defined as the distance
of the shortest path between nodes b and c. The short-
est paths between nodes can be precomputed and used to
build d(k, l), avoiding the need to compute it when calcu-
lating the cost of a solution.

The Mode Choice can be derived in an optimal way
from the Sequencing decision subset by finding a short-
est path in an auxiliary directed acyclic graph K [9].
Each service is given an id i, and has a set Mi contain-
ing all modes associated with it. |Mi| = 2 if i is a re-
quired edge and |Mi| = 1 if i is a required arc. The de-
pot is represented by the id 0 and has only one mode
M0 = (0). Let a route σ be defined as a sequence of ser-
vices σ = (0, σ(2), ..., σ(|σ| − 1), 0), starting and ending at
the depot. The auxiliary DAG K can be constructed in the
following way: a node is added for each mode k ∈ Mσ(i)

of each service i in the route, including the depot; then,
an arc is added from each mode k of service σ(i) to each
mode l of the next service in the sequence σ(i + 1) with
cost equal to the distance d(k, l) between those modes.
The shortest path from depot to depot gives the optimal
Mode Choice of each service of the route as well as its
deadheading cost.

3

The total cost of a route is composed of three elements,
the distances between the mode choices for each service,
the service costs and the fixed cost F of the vehicle. Let
ρ = (0, ρ(1), . . . , ρ(|ρ| − 1), 0) be the set of mode choices
for each service σ(i) of route σ. Then, the route cost C(σ)
is expressed by equation 13.

C(σ) = F +

|σ|∑
i=1

si +

|σ|−1∑
i=1

d(ρ(i), ρ(i+ 1)) (13)

From the set of possible routes, only a subset will be
part of a feasible solution to MCARP, those whose total
demand is smaller or equal to the vehicle capacity Q. The
remaining routes are infeasible and are penalized using
equation 14, where Q(σ) is the sum of the demands of the
required links serviced by route σ and ω is the penalty
parameter.

CP (σ) = C(σ) + ωmax {0, Q(σ)−Q} (14)

The Assignment and Sequencing decision subsets
constitute the solution space that MADCoM must search.
In the genetic algorithm, the Assignment decision subset
is left implicit as each solution is represented by a giant
tour, a permutation of the service ids, reducing the search
space to n!, where n = |ER|+ |AR|. The Split procedure is
then applied to obtain the cost and routes of the solution.
During local search, the Assignment and Sequencing
are explicit, as this representation allows for faster move
evaluations in O(1).

3.2. Genetic Algorithm
3.2.1. Chromosome Encoding and Decoding

In genetic algorithms, a solution to an optimization prob-
lem is encoded as a chromosome. The chromosome rep-
resentations of two individuals are combined to create a
new individual that shares genetic information from both
parents. As such, the chromosome representation is one
of the most important parts of a genetic algorithm.

MADCoM uses a compact representation known as a
giant tour, a route with infinite capacity that services all
required links. The giant tour is essentially a permutation
of the indexes assigned to each required link. To obtain
a solution and its cost, the chromosome must be decoded
using the Split procedure.
Given a giant tour as input, Split segments the permu-

tation into routes that respect the capacity constraint in
an optimal way, that is, from all possible ways to divide
the permutation while keeping the order, Split finds the
division that originates the solution with the lowest cost.
Let δi be the ith service in giant tour δ. Split defines

an auxiliary DAG H with n+ 1 nodes, indexed from 0 to
n. An arc from node i to node j > i represents a route
starting from the depot, fulfilling the demand in services
δi+1 to δj and returning to the depot. The cost of this arc
is equal to the penalized cost of the route calculated with

optimal mode choices. The arc only exists if the capac-
ity of the route does not exceed the maximum capacity
Qmax = 1.5Q, where any solution that contains a route
exceeding the vehicle capacity Q is deemed infeasible and
is penalized. The shortest path in graph H from node 0
to node n gives the optimal segmentation of δ into routes.

3.2.2. Fitness

An individual I is composed of two parts: the giant tour δI
and the set of routesRI . The cost C(I) of the solution that
individual I represents is given by the sum of the penalized
costs of each of its routes, C(I) =

∑
σ∈RI

CP (σ).
The fitness BF (I) of an individual I is based on two

factors: the cost of the solution C(I) and the diversity
contribution of the individual with respect to the rest of
the subpopulation.

The diversity contribution of an individual I is calcu-
lated as the average distance to its nclose closest neighbors.
The distance dBP(A,B) between two individuals A and B
is equal to the number of adjacent services in A that are
no longer adjacent in B and can be computed in O(n).
Let fit(I), with values in 1, ..., nind, be the rank of an

individual I with respect to its penalized cost in a sub-
population with nind individuals. Let dc(I) be the rank of
an individual I with respect to its diversity contribution,
where the solution with the largest diversity contribution
has rank 1. Then the biased BF (I) of individual I is given
by equation 15, where nelite is the number of elite individ-
uals. The diversity contribution and the biased fitness are
recalculated for every individual anytime an individual is
added or removed from a subpopulation.

BF (I) = fit(I) +

(
1− nelite

nind

)
dc(I) (15)

3.2.3. Parent Selection and Offspring Generation

In MADCoM, there are two ways to generate an offspring:
selecting two parents and applying crossover or selecting
an individual and mutating it by applying RCO and HD.
The individuals that can be selected are always chosen at
random from both subpopulations.

The individual that will undergo HD and RCO is se-
lected by tournament selection, with a tournament size of
20, which selects at random 20 individuals and chooses the
one with the smallest biased fitness. The large tournament
size will frequently select the same solutions, however since
HD and RCO are both random, it will not repeatedly gen-
erate the same solutions. Also, as selection is based on cost
and diversity, if the same solution is selected several times
for mutation its diversity will drop, resulting in a higher
fitness and less of a chance to be selected for mutation.

The selection of the parents for crossover is done
through binary tournament. The offspring is generated
using Order Crossover (OX), a crossover method suited to
permutation schemes that seeks to transmit the relative
order of the services from the parents to the offspring.

4

After the offspring is generated, Split must be applied
to determine the cost and routes of the solution. It then
undergoes local search with probability pLS if its cost is
at most 110% of the best-so-far solution. Afterwards it is
added to the correct subpopulation depending on its feasi-
bility. If the offspring is infeasible, it can be repaired with
probability pR to attempt to transform it into a feasible
solution.

The repair operator consists of applying local search
with a penalty parameter of 10 times its current value.
If the resulting individual is still infeasible, the process is
repeated but with a penalty parameter of 100 times its
current value. If the repair operator is successful, the re-
paired offspring is added to the feasible subpopulation.
By increasing the penalties for infeasible routes, the local
search will prioritize moves that respect the vehicle capac-
ity, as the reduction in cost from infeasible routes will not
offset the increased penalties.

3.2.4. Survivor Selection

The size of a subpopulation nind is kept between µ and
µ+λ individuals, where µ is the minimum population size
and λ is the number of offspring per generation. When a
subpopulation reaches the maximum size µ + λ, survivor
selection occurs.

Survivor selection chooses µ individuals from the initial
µ + λ to remain in the population and continue to the
next generation. At each iteration, the individual with the
largest biased fitness is eliminated from the subpopulation,
and, to favour a diverse population, individuals that share
the same penalized solution cost, denominated clones, are
eliminated first. In addition, the nelite best individuals in
terms of penalized solution cost are guaranteed to proceed
to the next generation.

3.2.5. Population Initialization

The population is initialized by generating 4µ individuals
and assigning to each subpopulation depending on their
feasibility. Of these individuals, a fraction fHD = 0.20 are
generated using HD, producing quality solutions. These
solutions can also undergo local search and be repaired.
The remaining individuals are generated randomly to in-
troduce diversity into the population. These solutions do
not undergo local search or repair unless they improve on
the best feasible or infeasible solution found so far, as it
is not beneficial in terms of time or solution quality when
compared to improving solutions generated using HD. Sec-
tion 4.1 demonstrates this result.

3.2.6. Diversification Phase

One of the main problems with genetic algorithms is the
premature convergence of the population. Using the bi-
ased fitness that promotes diversity mitigates this prob-
lem, but does not eliminate it completely. For that rea-
son, MADCoM performs a diversification phase when the

best-so-far solution has not been improved for Itdiv iter-
ations. The diversification phase consists of keeping the
µ/3 individuals with the smallest penalized cost of each
subpopulation and generating 4µ new individuals in the
same way as when the population is initialized.

3.2.7. Parameter Adjustment

The penalty parameter ω is initially set to ω = c/q, where
c is the average minimum cost between two services and
q is the average demand. Every 100 iterations, ω is ad-
justed with the objective of achieving a target proportion
ξREF of feasible individuals. By reducing penalties, the
generation of infeasible solutions is promoted and vice-
versa. Whenever the penalty ω is changed, the penalized
costs of infeasible individuals are recalculated using the
new penalty value. Let ξ be the number of feasible indi-
viduals in the last 100 iterations, then ω is adjusted in the
following way:

• If ξ ≤ ξREF + 0.05, then ω = ω × 1.2

• If ξ ≥ ξREF − 0.05, then ω = ω × 0.85

The local search and repair probabilities, pLS and pR re-
spectively, are adjusted using a different strategy. Both
pLS and pR are initialized at 0.05 and every ItLS iter-
ations without improvement they are increased by 0.10.
If an improvement is found, pLS and pR are reduced by
0.10. By starting with a small value, the algorithm per-
forms more exploration of the solution space as opposed
to exploiting the solutions in the vicinity of the best-so-
far solution. When an improvement is found, it is a local
minimum, most likely in an area of the solution space with
few chances for improvement and therefore the probabili-
ties are reduced to increase exploration.

3.3. Local Search
The objective of local search is to improve a solution by
exploring the neighborhood of solutions around it. The
neighborhood is defined by a set of local search moves
that alter a small part of the solution. We consider 4 local
search move types:

• swap - Swap two disjoint subsequences containing 1
or 2 services from the same route or from different
routes.

• relocate - Relocate a subsequence containing 1 or
2 services to another position in the same route or to
another route.

• 2-opt - Reverse a subsequence with at most 5 ser-
vices.

• 2-opt* - Swap two subsequences that end at the de-
pot from different routes.

We use the efficient local search techniques of UHGS
to evaluate moves with optimal mode choices. Instead of

5

computing the cost of a route in the original DAG K, we
compute it on a reduced graph. The routes created by a lo-
cal search move can be expressed in terms of subsequences
of the original routes. The shortest paths along these sub-
sequences can be stored, and calculating the cost of a route
consists of concatenating each subsequence. To speed up
local search even further, we calculate lower bounds of the
route cost using the subsequences.

For every service u, chosen in random order, the local
search tries to place a service v after u. Lower bounds are
calculated for every move that accomplishes this, and non-
improving moves are discarded. For moves with a chance
for improvement, the costs of the resulting routes are cal-
culated by concatenation inO(1). The move that produces
the largest improvement of the solution is applied. After a
move is applied, the cost for each subsequence are recom-
puted. Local search stops when an improving move can’t
be found, reaching a local minimum.

3.4. Large-Scale Heuristics

A divide-and-conquer heuristic will divide the problem
into smaller subproblems that are easier to solve due to
their reduced size. After solving each subproblem, the
solution to the original problem is found by merging the
solutions of each subproblem.

The mutation operator of MADCoM consists of apply-
ing two divide-and-conquer heuristics to a solution in or-
der to generate an offspring. The division is accomplished
by Route Cutting Off Decomposition (RCO). RCO will
segment a solutions’ routes, outputting a virtual task set.
Then, Hierarchical Decomposition (HD) takes as input the
virtual task set and joins it together to form a giant tour,
thereby generating an offspring. While forming the giant
tour, the virtual tasks are ordered, which can be thought of
as solving the subproblems. The mutation operator is out-
lined in Algorithm 1. Sometimes, applying both heuristics
can generate a clone of the parent. When that happens,
we double the cutting probabilities of RCO and repeat
the process. We impose a limit of 10 iterations to avoid
an infinite loop, which is very rarely reached.

Algorithm 1: Mutation Operator

Data: Parent Individual I
Result: Offspring O
i = 0
while i < 10 do

i+ = 1
Apply RCO to I to obtain a virtual task set V T
Form a giant tour δO by applying HD to V T
if δO = δI then

Double the cutting probabilities of RCO
else

Break

3.4.1. Route Cutting Off Decomposition

Route Cutting Off Decomposition segments a route into
virtual tasks by cutting a link. Here, a link is defined
as a sequence of two services (i, j) and cutting a route
σ = (0, σ1, . . . , i, j, . . . σ|σ|−1, 0) means generating two sub-
sequences (σ1, . . . , i) and (j, . . . σ|σ|−1), where the depot
dummy services were discarded as the objective is to form
a giant tour δ with Hierarchical Decomposition.

To choose which link to cut, RCO uses a task rank ma-
trix Θ to evaluate the quality of each link and compares it
to the average task rank θ̄(S) of the solution S. Every row
i of Θ contains the ranks of every link (i, j), with j ̸= i,
where the rank is calculated from the minimum distances
between services cMIN

ij = mink∈Mi

{
minl∈Mj {d(k, l)}

}
.

This means that Θib = 1 if the service b is the closest
service to i, i.e., the link (i, b) has the lowest cMIN

ij for all
j. By using ranks, Θij represents the relative quality of
having service j after service i in a route, compared to
every other service.

A good link is defined as a link whose task rank is
greater than the average task rank θ̄(S) of the solution
S, calculated from all the links in each route. Similarly, a
poor link (i, j) is defined as a link with Θij > θ̄(S). For
every route of a solution S, RCO identifies the good and
poor links. Then, with probability pgl = 0.05 cuts one
random good link and with probability ppl = 0.20 cuts
one random poor link. The values of pgl and ppl are kept
equal to those of the original paper [15].

3.4.2. Hierarchical Decomposition

Hierarchical Decomposition (HD) seeks to form a giant
tour from an initial virtual task set V T , where a virtual
task τ li is a permutation of several services. HD constructs
a hierarchical structure (Figure 2) where the initial vir-
tual task set forms the bottom layer and the next layer is
formed by grouping them. The virtual tasks of each group
are ordered and concatenated to form a new virtual task
τ2i for layer 2. The procedure continues until only one
virtual task remains, a giant tour δ.

Figure 2: Hierarchical Structure of HD

To form layer l+1, HD selects a random number of clus-
ters Kl+1 ∈ [1, βKl], where β = 0.1 and KL = |V Tl| is the
number of virtual tasks at layer l, and then forms Kl+1

groups using the clustering algorithm k-medoids. The dis-
tance measure between two virtual tasks τ li = (p, . . . , q)

6

and τ lj = (r, . . . , s) that will be used by the clustering

algorithm to derive the clusters is given by d(τ li , τ
l
j) =

1
2

(
cMIN
qr + cMIN

sp

)
.

Once the virtual tasks are grouped into clusters, they
are ordered using the Best Insertion Heuristic (BIH) and
then concatenated to form a new virtual task. BIH starts
by choosing the virtual task whose first service is closest
to the depot and then chooses the virtual task whose first
service is closest to the last service of the last virtual task
chosen.
Hierarchical Decomposition can also be used as an ini-

tialization method, by having the initial virtual task set
be the set of all services.

4. Results
MADCoM was implemented in Python 3.9.7 and executed
in a E2ds v4 virtual machine from Azure running Win-
dows Server 2019, with 16 GB of RAM and a Intel(R)
Xeon(R) Platinum 8272CL processor with a frequency of
2.60 GHz. We evaluate the performance of MADCoM, we
executed 5 runs of 30 minutes on all instances of the clas-
sical benchmarks for CARP and MCARP, as well as the
more recent large-scale benchmarks.
On the classical instances, we compare MADCoM to

VNS, MAENS, UHGS and the memetic algorithm by Be-
lenguer et al. [1], designated as MABBLP. On the large-
scale instances, we compare MADCoM to UHGS, RDG-
MAENS, RCO-RDG-MAENS, RCO-SAHiD, as well Fast-
CARP [14], a constructive heuristic tailored for large-scale
problems, and Path-Scanning (PS) [4], a classical con-
structive heuristic.

4.1. Comparison of Initialization Methods
When using Hierarchical Decomposition as an initializa-
tion method, the size of the initial virtual task set is equal
to the problem size n. Given the quadratic complexity of
the clustering algorithm, HD can be computationally ex-
pensive for larger problems, especially because it requires
clustering several times. In the original paper, it was ob-
served that for larger instances the parameter β, that sets
the maximum number of clusters in a layer, did not in-
fluence significantly the performance of SAHiD. For these
reasons, we experiment with imposing a limit on the max-
imum number of clusters using two alternative variants:

• Maximum of 10 clusters per layer. With β = 0.1
this results in having only two layers regardless of the
problem size, as the second layer will simply order the
virtual task set to form the giant tour.

• Maximum of
√
n clusters per layer. This will gener-

ate few layers, as the number of clusters per layer is
randomly selected from [1,min(β|V T |,

√
n)].

A population of 100 individuals was generated using
each method for four instances of different sizes and each
individual underwent local search. For control purposes,
we also include the classical HD where no limit is imposed,
i.e., the number of clusters in each layer is selected from

[1, β|V T |], and random solutions improved by local search.
Figure 3 shows the boxplots of the total time to generate
an individual and figure 4 shows the solution quality. The
boxplots of the solution quality of each HD variant before
local search is applied was also included for easier com-
parison.

0 10 20 30 40 50 60 70
Time to Generate an Individual (seconds)

Beijing-3 (1075)

Hefei-6 (727)

egl-g2-E (375)

Hefei-1 (121)

In
st

an
ce

 (N
º S

er
vi

ce
s)

Comparison of Execution Time for Different Initialization Methods

Method
LS + HD with Maximum of 10 Clusters
LS + HD with Maximum of sqrt(n) Clusters
LS + HD with No Maximum
Random + Local Search

Figure 3: Boxplots of the total time to generate an indi-
vidual using different variants of HD combined with local
search.

0% 10% 20% 30% 40% 50% 60%
Percentage Gap to Best Known Solution

Beijing-3 (1075)

Hefei-6 (727)

egl-g2-E (375)

Hefei-1 (121)

In
st

an
ce

 (N
º S

er
vi

ce
s)

Comparison of Gap to Best Known Solution for Different Initialization Methods

Method
LS + HD with Maximum of 10 Clusters
LS + HD with Maximum of sqrt(n) Clusters
LS + HD with No Maximum
Random + Local Search
HD with Maximum of 10 Clusters
HD with Maximum of sqrt(n) Clusters
HD with No Maximum

Figure 4: Boxplots of the gap to the best known solution
using different variants of HD combined with local search.

Imposing a limit reduces the total time to generate an
individual and the solutions are better on average. In fact,
for the largest instance, solutions generated only with HD
are significantly better than random solutions improved
by local search, demonstrating the benefits of using HD
as an initialization method. When no limit is imposed,
the time to generate an individual is larger and the added
computational effort does not translate on average into
better solutions.

Another important factor is the diversity of the pop-
ulation. By imposing a limit on the number of clusters,
the number of outcomes of HD is also reduced. Figure 5
shows the boxplots of the diversity contribution of each
individual in the population, normalized by the maximum
diversity n − 1. The populations generated with HD are
not as diverse as the random individuals, especially for
smaller instances, but are still suficiently diverse.

7

0% 20% 40% 60% 80% 100%
Percentage of Maximum Diversity

Beijing-3 (1075)

Hefei-6 (727)

egl-g2-E (375)

Hefei-1 (121)

In
st

an
ce

 (N
º S

er
vi

ce
s)

Comparison of Diversity for Different Initialization Methods
Method

LS + HD with Maximum of 10 Clusters
LS + HD with Maximum of sqrt(n) Clusters
LS + HD with No Maximum
Random + Local Search

Figure 5: Boxplots of the diversity contribution of each in-
dividual in the population generated using different vari-
ants of HD combined with local search.

Summarizing, imposing a limit on the number of clus-
ters reduces the computational effort of HD with no sig-
nificant reduction on solution quality. In MADCoM, we
choose the limit

√
n as it is similar in time and quality

to the limit of 10, but generates a more diverse popula-
tion. Additionally, HD combined with local search gener-
ates solutions with higher quality in less time than random
solutions improved with local search.

4.2. Results on Classical Instances

Due to the large number of instances, we only present
the summarized results for the classical CARP bench-
marks (GDB, VAL, BMCV and EGLESE) and the clas-
sical MCARP benchmarks (MVAL and LPR). For each
algorithm, the column ”Best(%)” displays the average
across all instances of the percentage gap to the best
known solution of the best solution found in the five runs,
and column ”Mean(%)” is the average gap to the best
known solution across all instances. For each algorithm,
the column ”Best(%)” displays the percentage gap of the
best solution in the five runs and averaged across all in-
stances in the benchmark set. Column ”Mean(%)” is the
percentage gap of the mean of the five runs, averaged
across all instances in the benchmark set. In column ”Nº
BKS”, we display the number of instances in the bench-
mark for which the algorithm found a solution equal or
better than the best known solution.

On the classical CARP benchmarks, MADCoM per-
forms worse than the all algorithms, with a maximum
difference in the gap of 0.502 % when compared to the
best algorithm. On the MVAL benchmark set, MADCoM
outperforms MABBLP, and manages to find new best so-
lutions for 8 instances, 2 of which are optimal solutions
as they match the best lower bound in the literature. On
the LPR benchmark, which contains larger MCARP in-
stances, MADCoM performs worse than MABBLP.

4.3. Results on Large-Scale Instances

The results of MADCoM on the large-scale benchmarks
sets are available in tables 2-5. In each table, n denotes
the problem size and BKS the best known solution for each

Table 1: Summarized results on standard benchmarks.
Benchmark n Algorithm Best(%) Mean(%) Nº BKS

GDB [11,55]

MAENS 0.000% 0.009% 23/23

UHGS 0.000% 0.000% 23/23

MADCoM 0.077% 0.123% 22/23

VAL [34,97]
UHGS 0.013% 0.041% 32/34

MADCoM 0.051% 0.073% 31/34

BMCV [28,121]
UHGS 0.003% 0.013% 99/100

MADCoM 0.035% 0.073% 92/100

EGLESE [51,190]

VNS 0.174% 0.624% 14/24

MAENS 0.211% 0.651% 12/24

UHGS 0.047% 0.139% 19/24

MADCoM 0.483% 0.641% 11/24

MVAL [43,138]
MABBLP 0.000% 0.202% 34/34

MADCoM -0.238% -0.185% 34/34

LPR [50,806]
MABBLP 0.000% 0.090% 15/15

MADCoM 0.551% 0.703% 5/15

instance. For each comparing algorithm, Best denotes the
cost of the best solution found across all runs and Mean
the average cost of the best solution found in each run.
For MADCoM, we also report the percentage gap to the
best known solution of both the best solution found and
the mean. A value is in bold if it has the minimal cost
among all algorithms, and it is underlined if it is larger
than the corresponding value of MADCoM.

Table 2 shows the results on the EGL-L benchmark set.
MADCoM performs worse than all of the comparing al-
gorithms across all instances. Another observation is the
performance of MADCoM is significantly different among
instances with the same problem size. The main differ-
ence between these instances lies in the number of vehicles.
On instances with a larger fleet size, MADCoM performs
worse. Since the Split procedure is optimal, this points to
a weakness in the local search, in particular the inter-route
moves.

Table 2: Results on the EGL-L benchmark set.
MADCoM

RDG-MAENS UHGS RCO-RDG-MAENS Best Mean

Instance n BKS Best Mean Best Mean Best Mean Cost Gap Cost Gap

egl-g1-A 347 991176 998405 1007368 992227 993127 998763 1005870 1010493 1.95 % 1019633 2.87 %

egl-g1-B 347 1109656 1118030 1123369 1112149 1116617 1118030 1121529 1135636 2.34 % 1144064 3.10 %

egl-g1-C 347 1230155 1242897 1251029 1232501 1236062 1243096 1250070 1268701 3.13 % 1277029 3.81 %

egl-g1-D 347 1361862 1375583 1384902 1365393 1370963 1375319 1383355 1409894 3.53 % 1418436 4.15 %

egl-g1-E 347 1501801 1518694 1527631 1503467 1511572 1513589 1526503 1559785 3.86 % 1569198 4.49 %

egl-g2-A 375 1086932 1097581 1106082 1087353 1090396 1097291 1106843 1115394 2.62 % 1127162 3.70 %

egl-g2-B 375 1196873 1211805 1223706 1198633 1202901 1211789 1220454 1239375 3.55 % 1245825 4.09 %

egl-g2-C 375 1330744 1344228 1353819 1333430 1336104 1344353 1352802 1377353 3.50 % 1387605 4.27 %

egl-g2-D 375 1468310 1482216 1492745 1471783 1476285 1482345 1490704 1528559 4.10 % 1533628 4.45 %

egl-g2-E 375 1602229 1622927 1633192 1610919 1616556 1621354 1631378 1675262 4.56 % 1683165 5.05 %

The results on benchmark set Hefei are available in ta-
ble 3. MADCoM performs worse than UHGS across all
instances and only outperforms RCO-SAHiD on the small-
est instance Hefei-1, but finds better solutions than RDG-
MAENS in 4 out of 10 instances. Also, MADCoM per-
forms on average better than RDG-MAENS on 7 out of
10 instances. On the Beijing benchmarks set, in table 4,
MADCoM performs worse than UHGS and RCO-SAHiD

8

on all instances, but performs better than RDG-MAENS
on all instances, both on average and in the best solution
found.

Table 3: Results on the Hefei benchmark set.
MADCoM

RDG-MAENS UHGS RCO-SAHiD Best Mean

Instance n BKS Best Mean Best Mean Best Mean Cost Gap Cost Gap

Hefei-1 121 245596 246221 247341 245596 245596 246571 247351 246161 0.23 % 246501 0.37 %

Hefei-2 242 433648 436020 441539 433648 433807 436031 437631 437431 0.87 % 438778 1.18 %

Hefei-3 364 572545 583050 589152 572545 573737 582839 586795 588239 2.74 % 590044 3.06 %

Hefei-4 485 737730 754855 761351 737730 740404 750687 753859 764430 3.62 % 767514 4.04 %

Hefei-5 606 941278 980153 991813 941278 946574 961376 967045 982810 4.41 % 993578 5.56 %

Hefei-6 727 1068035 1119584 1132063 1068035 1072864 1092667 1098915 1119480 4.82 % 1124864 5.32 %

Hefei-7 848 1266931 1329745 1361125 1266931 1272880 1299360 1305057 1334139 5.30 % 1337509 5.57 %

Hefei-8 970 1427531 1526453 1550509 1427531 1436048 1469819 1478098 1498918 5.00 % 1510409 5.81 %

Hefei-9 1091 1598203 1705381 1749079 1598203 1605554 1645841 1656147 1676545 4.90 % 1681245 5.20 %

Hefei-10 1212 1748829 1837767 1923264 1748829 1754889 1799158 1810301 1839707 5.20 % 1846897 5.61 %

Table 4: Results on the Beijing benchmark set.
MADCoM

RDG-MAENS UHGS RCO-SAHiD Best Mean

Instance n BKS Best Mean Best Mean Best Mean Cost Gap Cost Gap

Beijing-1 358 760578 812647 829406 760578 760578 765538 770199 771892 1.49 % 780293 2.59 %

Beijing-2 717 1129810 1303570 1337954 1129810 1132987 1148259 1163978 1190494 5.37 % 1210427 7.14 %

Beijing-3 1075 1534878 1777852 1847922 1534878 1542405 1563874 1577027 1628115 6.07 % 1648438 7.40 %

Beijing-4 1434 1836866 2126151 2193399 1836866 1847355 1879617 1896581 1963803 6.91 % 1989004 8.28 %

Beijing-5 1792 2199275 2581910 2639458 2199275 2210443 2234352 2255386 2347314 6.73 % 2361021 7.35 %

Beijing-6 2151 2561113 2968102 3047295 2561113 2571748 2632250 2650420 2737955 6.90 % 2767488 8.06 %

Beijing-7 2509 2851602 3331900 3388263 2851602 2871881 2925015 2952809 3066896 7.55 % 3088432 8.31 %

Beijing-8 2868 3136727 3584696 3697025 3136727 3150688 3203032 3233296 3360983 7.15 % 3386317 7.96 %

Beijing-9 3226 3462953 3934270 4061793 3462953 3485819 3541842 3575671 3719620 7.41 % 3732243 7.78 %

Beijing-10 3584 3765614 4206005 4353966 3765614 3785520 3852428 3884308 4047304 7.48 % 4061605 7.86 %

Table 5 shows the results of MADCoM on the KW
benchmark set. MADCoM finds better solutions for all
instances, with improvements ranging from 0.56 % to 6.94
% of the previous best known solution. These instances
have previously only been solved by constructive heuris-
tics, which explains the significant improvements on some
instances.

Table 5: Results on the KW benchmark set.
MADCoM

FastCARP PS Best Mean

Instance n BKS Best Best Cost Gap Cost Gap

F1 g-4 780 768209 768209 843418 727490 -5.30 % 731891 -4.73 %

F1 g-6 780 474809 474809 530687 460267 -3.06 % 461224 -2.86 %

F1 p-2 728 261743 261743 287581 249859 -4.54 % 251383 -3.96 %

F1 p-6 728 162376 162376 182656 151105 -6.94 % 152147 -6.30 %

F9 g-4 686 718145 718145 795868 683088 -4.88 % 686199 -4.45 %

F9 g-6 686 444369 444369 496164 430558 -3.11 % 431320 -2.94 %

S1 g-1 3797 3624502 3624502 3987605 3582342 -1.16 % 3594765 -0.82 %

S1 g-6 3797 1470679 1478193 1886632 1452374 -1.24 % 1458265 -0.84 %

S2 g-1 3797 3459811 3459811 3822136 3405300 -1.58 % 3418296 -1.20 %

S2 g-6 3797 1439140 1478328 1851578 1431048 -0.56 % 1441136 0.14 %

S5 g-2 3732 2191441 2197632 2588801 2157168 -1.56 % 2165719 -1.17 %

S5 g-6 3732 1413134 1443084 1841206 1402146 -0.78 % 1405855 -0.52 %

4.4. Comparison with Simpler Versions
MADCoM is an algorithm that integrates two main com-
ponents: the local search of UHGS and large-scale heuris-
tics, RCO and HD. It is important to show that it is the
combination of these components that leads to better re-
sults and not simply one of them. For this reason, we com-
pare the performance of MADCoM with simpler versions
without one of the components. The parameters used for
each simpler version are the same as those of MADCoM.
Each simpler version is tested on 5 runs of 30 minutes on
the instances of different sizes.
To analyse the performance of the large scale heuristics,

we tested simpler versions without the divide-and-conquer

mutation, by setting pM = 0, and without initialization
using HD, by setting fHD = 0. Table 6 shows the gap to
the best known solution of the best solution found among
the 5 runs and the average of the 5 runs. The best so-
lution found and best mean value for each instance are
highlighted in bold.

Table 6: Performance of the large-scale heuristics.
pM = 0 pM = 0 pM = 0.25 pM = 0.25

fHD = 0 fHD = 0.20 fHD = 0 fHD = 0.20

Instance n BKS Best Mean Best Mean Best Mean Best Mean

egl-s4-C 190 20461 1.89 % 2.24 % 1.63 % 2.13 % 1.67 % 1.99 % 1.57 % 1.74 %

egl-g2-E 375 1602229 4.89 % 5.55 % 4.96 % 5.34 % 4.75 % 5.59 % 4.56 % 5.05 %

Lpr-c-04 504 169254 1.41 % 1.60 % 0.64 % 0.84 % 0.91 % 1.08 % 0.61 % 0.82 %

Hefei-6 727 1068035 5.60 % 7.35 % 6.24 % 6.42 % 5.53 % 6.27 % 4.82 % 5.32 %

F1 g-4 780 768209 -4.29 % -4.07 % -5.00 % -4.64 % -4.69 % -4.45 % -5.30 % -4.73 %

Beijing-3 1075 1534878 24.87 % 28.17 % 12.09 % 15.70 % 7.04 % 7.95 % 6.07 % 7.40 %

Without the large-scale heuristics, the performance is
worse across all instances, and for larger instances it is
significantly worse, showing the importance of the large-
scale heuristics in MADCoM. Although the initialization is
beneficial, especially for larger instances, it can also be ob-
served that between initialization and mutation, the mu-
tation is more valuable. Combining the two shows the best
results.

To analyse the performance of local search, we ran
MADCoM without local search. The repair operator,
which is essentially local search, was replaced by a Split
procedure with Qmax = Q, which always results in a fea-
sible solution. The repair probability was set to pR = 0.5
and the values of the remaining parameters are the same
as in MADCoM.We also compare with a genetic algorithm
without local search and without the large-scale heuristics
and with the previous version with just local search. The
results are available in Table 7, which has the same table
format as Table 6.

Table 7: Performance of local search
Without Heuristics With Heuristics Without Heuristics With Heuristics

Without Local Search Without Local Search With Local Search With Local Search

Instance n BKS Best Mean Best Mean Best Mean Best Mean

egl-s4-C 190 20461 28.93 % 30.32 % 4.88 % 5.90 % 1.89 % 2.24 % 1.57 % 1.74 %

egl-g2-E 375 1602229 77.21 % 79.23 % 11.34 % 12.28 % 4.89 % 5.55 % 4.56 % 5.05 %

Lpr-c-04 504 169254 26.48 % 27.39 % 2.85 % 2.95 % 1.41 % 1.60 % 0.61 % 0.82 %

Hefei-6 727 1068035 234.09 % 242.61 % 14.75 % 15.36 % 5.60 % 7.35 % 4.82 % 5.32 %

F1 g-4 780 768209 72.94 % 73.34 % 5.85 % 6.71 % -4.29 % -4.07 % -5.30 % -4.73 %

Beijing-3 1075 1534878 791.84 % 803.44 % 20.57 % 21.55 % 24.87 % 28.17 % 6.07 % 7.40 %

The simpler version with neither heuristics nor local
search performs the worst, as expected. The version with-
out local search performs significantly worse, regardless of
the problem size. On all but the largest instance, the ver-
sion with just local search performs better than the version
with just heuristics. Looking at figure 4, we can observe
that for instance Beijing-3, the initial solutions generated
using HD are of better than quality than random solu-
tions improved by local search, which could explain this
result. Once again, combining local search and the large-
scale heuristics leads to the best results.

5. Conclusions
5.1. Concluding Remarks
The main objective was accomplished as MADCoM is
competitive on solving MCARP. We found new best so-

9

lutions for 8 MCARP benchmark instances, 2 of which
are optimal, and new best solutions on all the instances
of the KW benchmark set. On the classical benchmarks,
MADCoM performs on average at most 0.502 % than the
best algorithm. On the large scale instances, although
our algorithm outperforms RDG-MAENS on several in-
stances, further work is required to achieve the best known
solutions. The comparisons with state-of-the-art are not
straightforward, as they have been implemented in a dif-
ferent programming language, ran on different processors
and with varied termination conditions.

We show that the novel mutation operator is benefi-
cial, increasing the performance significantly, especially for
larger instances. Coupling it with local search is essential
to achieve the best performance, as the mutation oper-
ator identifies the promising parts of the solution based
on their relative quality and not their absolute quality.
Therefore, if the solutions being mutated do not contain
useful patterns, the algorithm will be slower at finding
quality solutions.

We also demonstrate that Hierarchical Decomposition
can be used as an initialization method, generating a di-
verse population with quality solutions. When combined
with local search it outperforms random solutions im-
proved by local search on both time and quality. Further-
more, our technique that limits the maximum number of
clusters based on the problem size reduces the computa-
tional effort without impacting solution quality.

5.2. Future Work

The performance of MADCoM could be improved with a
faster implementation in C++. It would also allow for
the direct integration with the source code of UHGS and
Route Cutting Off Decomposition and result in a fairer
comparison between both methods and MADCoM.

Furthermore, it was observed that the local search is not
as effective for problems with a larger number of vehicles,
indicating a weakness with inter-route moves. A neigh-
borhood move with larger step size could help mitigate
this.

Another next step would be to generalize MADCoM to
solve other CARP variants for which a giant tour repre-
sentation can be used, such as heterogeneous fleets and
multiple depots. This generalization can be accomplished
without changing the mutation operator or the initializa-
tion method, since both use a giant tour representation. It
would only require adapting the Split procedure and local
search to the specific variant.

References

[1] J.-M. Belenguer, E. Benavent, P. Lacomme, and
C. Prins. Lower and upper bounds for the mixed
capacitated arc routing problem. Computers and Op-
erations Research, 33(12):3363–3383, Dec. 2006.

[2] M. Constantino, L. Gouveia, M. Mourão, and A. C.
Nunes. The mixed capacitated arc routing problem

with non-overlapping routes. European Journal of
Operational Research, 244(2):445–456, July 2015.

[3] R. W. Eglese. Routeing winter gritting vehicles. Dis-
crete Applied Mathematics, 48(3):231–244, Feb. 1994.

[4] B. L. Golden, J. S. Dearmon, and E. K. Baker. Com-
putational experiments with algorithms for a class of
routing problems. Computers & Operations Research,
10(1):47–59, Jan. 1983.

[5] B. L. Golden and R. T. Wong. Capacitated arc rout-
ing problems. Networks, 11(3):305–315, 1981.

[6] S.-H. Huang and P.-C. Lin. Multi-treatment capac-
itated arc routing of construction machinery in Tai-
wan’s smooth road project. Automation in Construc-
tion, 21:210–218, Jan. 2012.

[7] Y. Mei, X. Li, and X. Yao. Cooperative Coevolution
With Route Distance Grouping for Large-Scale Ca-
pacitated Arc Routing Problems. IEEE Transactions
on Evolutionary Computation, 18(3):435–449, June
2014.

[8] M. Polacek, K. Doerner, R. Hartl, and V. Maniezzo.
A Variable Neighborhood Search for the Capacitated
Arc Routing Problem with Intermediate Facilities.
Journal of Heuristics, 14, Oct. 2008.

[9] C. Prins, N. Labadie, and M. Reghioui. Tour split-
ting algorithms for vehicle routing problems. Inter-
national Journal of Production Research, 47:507–535,
Jan. 2009.

[10] K. Tang, Y. Mei, and X. Yao. Memetic Algorithm
With Extended Neighborhood Search for Capacitated
Arc Routing Problems. IEEE Transactions on Evo-
lutionary Computation, 13(5):1151–1166, Oct. 2009.

[11] K. Tang, J. Wang, X. Li, and X. Yao. A Scalable Ap-
proach to Capacitated Arc Routing Problems Based
on Hierarchical Decomposition. IEEE Transactions
on Cybernetics, PP:1–13, Aug. 2016.

[12] G. Ulusoy. The fleet size and mix problem for capac-
itated arc routing. European Journal of Operational
Research, 22:329–337, Feb. 1985.

[13] T. Vidal. Node, Edge, Arc Routing and Turn Penal-
ties: Multiple Problems—One Neighborhood Exten-
sion. Operations Research, 65, May 2017.

[14] S. Wøhlk. A fast heuristic for large-scale capacitated
arc routing problems. Journal of the Operational Re-
search Society, 69, July 2018.

[15] Y. Zhang, Y. Mei, B. Zhang, and K. Jiang. Divide-
and-conquer large scale capacitated arc routing prob-
lems with route cutting off decomposition. Informa-
tion Sciences, 553:208–224, Apr. 2021.

10

