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Abstract

In air quality studies it is common to use geostatistical methods to interpolate pollutant concentrations
in unsampled areas. In this type of studies it is necessary to include a measure of spatial uncertainty,
especially when analysing urban areas. These areas possess several sources of pollutant emissions
with different intensities, which cause variations of concentrations at short distances.
In this work, the Kriging with External Drift (KED) interpolation method was used to interpolate NO2

concentrations in unsampled areas. This method was then applied to a geostatistical simulation algorithm
(SGS) in order to obtain an approximation of the real events, and quantify the spatial uncertainty.
As a first objective, this work aims to evaluate the temporal evolution of the NO2 concentrations in the
Lisbon Metropolitan Area during the first lockdown caused by the COVID-19 pandemic. The second
objective was to quantify the local exposure of the populations living in a set of 86 parishes belonging to
the Lisbon Metropolitan Area through geostatistical methods.
The results of the analysis the concentrations of NO2 for the Lisbon Metropolitan Area revealed a
reduction of 41.99% of the average values for the month of April 2020. While the geostatistical analysis
of exposure in 2020 revealed that for the month of April, the population of the parish of Sto. António was
exposed to an average concentration of NO2 38.39% lower than the values recorded in 2019.
Keywords: Geostatistics; Kriging with external drift; COVID-19; Air quality; Exposure assessment.

1. Introduction

According to the World Health Organization
(WHO), 9 out of 10 people worldwide breathe air
with high concentrations of pollutants and about
4.2 million people die annually due to exposure to
air pollution [40]. Therefore, air quality monitoring
is a critical factor for the protection of public health
especially at a time of relevant increases in popula-
tion density in urban environments, and rapid eco-
nomic expansion reflected in increased emissions
[21]. The emergence of the SARS-CoV-2 virus and
the consequent closure of various activities, partic-
ularly in the industrial sector, and considerable de-
crease in traffic, led to a drastic reduction in emis-
sions of various pollutants into the atmosphere
from anthropogenic activities [24, 17, 27]. Conse-
quently, this work emerges as a unique opportunity
to assess the impact of confinement due to COVID-
19 on air quality. Geostatistics aims to characterize
the spatial dispersion and the spatio-temporal of
magnitudes that define the quantity and quality of
natural resources, such as forests, geological, hy-

drological, ecological resources among other nat-
ural phenomena that manifest a structure in space
and time [37]. Air quality modelling is positioned
as an essential tool in air pollution studies. Mon-
itoring data are indispensable to infer theories or
parameters and calibrate or validate computational
simulations. However, a good representation of
a real phenomenon and its associated dynamics
can only be achieved through a well tested and
calibrated model. Design and monitoring activities
should be integrated with numerical models in or-
der to avoid investments and efforts to collect un-
necessary data [30].

2. Data and settings
2.1. Study area
The study region is inserted in the Lisbon
Metropolitan Area (LMA) which comprises eigh-
teen municipalities. The river Tagus separates
LMA into two zones, LMA North and LMA South,
each with nine municipalities.
LMA has a population of 2,871,133 inhabitants in
2021 [8], and is the largest urban area in the coun-
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try with a total area of 3,015 km2. The study
area analysed in this thesis represents a sub-area
of LMA with 1,307.2 km2 and composed of 86
parishes .

2.2. Land use data
The relationship between air pollution in urban
environments and land use and land cover is
well established in the literature [18]. For this
work we used the information made available by
Direção-Geral do Território, concerning the 2018
land use and land cover cartography in the LMA
(COS2018). This information served to improve
the quality of the geostatistical modelling of air pol-
lution. The original cartography is composed of
homogeneous land cover/land use units, and has
a nomenclature structured in a hierarchical system
with 83 land cover/land use classes [10].
In order to integrate the COS2018 information in
the modelling it was necessary to develop a car-
tographic generalisation process, maintaining the
coherence of the information. This simplifica-
tion process culminated with the regrouping of the
COS2018 classes in three new classes: Trans-
ports, Urban, and other uses.

Figure 1: Generalised land use and land cover map of the LMA,
and study sub-area.

2.3. Monitoring stations
The assessment of air quality in the country is
carried out using Air Quality monitoring networks.
The LMA has 22 stations distributed over nine
municipalities, these are the responsibility of the
Comissão de Coordenação e Desenvolvimento
Regional de Lisboa e Vale do Tejo (CCDR-LVT).
Data from these stations is measured continuously
and transmitted, in semi real time, to regional con-
centrators and then to the central information sys-
tem that is based on the QualAr database, which
is housed in the Agência Portuguesa do Ambiente
(APA). These data are subsequently made avail-
able to the public through the QualAr [1] platform.
The stations in the air quality measurement net-

work are installed in areas of different types (rural,
suburban and urban).
Measurements were collected from 16 monitoring
stations (hourly average concentrations in µ/m3)
of NO2 observed between March and June 2018,
2019 and 2020.

3. Methodology
3.1. Data treatment
The measurements of the air quality stations pro-
vided by CCDR-LVT had missing values. Thus, it
was necessary to pre-process the monitoring data
in order to enable its use for modelling. In a first
step, daily averages were calculated for each sta-
tion and each pollutant for the days in which there
were complete measurements (one day was con-
sidered has the time interval between 8h and 20h).
Then, stations with less than 80% of the obser-
vations were removed from this operation. After-
wards, an imputation method was applied using the
Predictive Mean Matching (PMM) algorithm. This
method calculates the predicted value of the tar-
get variable Y according to the specified imputa-
tion model. For each missing value, a set of can-
didate donor values is generated, and this set is
formed from complete cases that have a predicted
value close to the missing value. A donor is ran-
domly drawn from the candidate set, which in turn
is used to replace the missing value [38].

3.2. Descriptive statistics
A descriptive analysis of the data was performed
in order to synthesise measures of location and
dispersion. Histograms were obtained to evaluate
the empirical distribution of observations and the
averages for each month in each year were esti-
mated. The analysis of empirical distributions in
each month and each year was stratified by sta-
tion type. Boxplots were used to represent the dis-
tribution of pollutants by month year and station
type. After intersecting station data with land cover
classes, empirical distributions by land cover type
were calculated.

3.3. Geostatistics
3.3.1 Linear geostatistical estimator

To model the NO2 data, the linear estimators of
Ordinary Kriging (OK) and the variant of Ordinary
Kriging with External Drift (KED) were incorporated
into sequential simulation algorithms.
OK is a specific case of weighted average predic-
tion assuming a constant and unknown trend with a
homogeneous and known spatial variance. Equa-
tion (1) represents the functional form of the linear
estimator, where the concentration of the pollutant
Z at the unsampled location s0 is determined (pre-
dicted) with the linear estimator ẑ(s0), eq. (1), as
a weighted average of the n neighbouring samples
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z(s). The coefficient λα, is the weight of the neigh-
bouring sample z(sα) located at the coordinates sα
[33]. The λα are determined so as to minimize the
estimation variance and satisfy the non-bias condi-
tion, i.e.,

∑n
α=1 λα = 1.

ẑ(s0) =

n∑
α=1

λαz(sα) (1)

The weights λα should reflect the structural de-
pendence of the samples. One way to quan-
tify this dependence is by estimating the semivar-
iogram γ(h) which measures the spatial continuity
between pairs of points separated by a spatial lag
distance h, eq. (2) [33].

γ(h) =
1

2
E
{
Z(sα)− Z(sα+h)

2
}

(2)

The experimental variogram (obtained from the
sample data), γ̂(h) is estimated by maximum like-
lihood from the observed values, and is function
of the distance between the pairs of observations
h, eq. (2). If the experimental variogram presents
spatial dependence, the values of samples that
are closer to another will tend to present similar
values. With the increase of the distance between
points, the values between pairs of points will tend
to differ more until they stop being correlated. The
value of the variogram from which it is considered
that correlation between the samples ceases to
exist is called threshold. The estimate for the value
of the sill is obtained by the sample variance.

In order to obtain a semivariogram model for any
distance, it is also necessary to fit a mathemati-
cal model to an experimental variogram. The most
widely used models in the field of earth and envi-
ronmental sciences are the spherical, exponential
or Gaussian model [33, 6]. The model used in this
analysis was the spherical model, eq. (3).

γ(h) =

{
C0 + Ce(

2h
3a − h3

a3 ) 0 < h ⩽ a

C0 + Ce h ≥ a
(3)

In eq. (3), the parameter C0 represents the nugget
effect, Ce partial sill, C0 +Ce sill, a range and h the
lag distance. The parameters C0, Ce and a can be
estimated automatically or manually. For this work
a mix of the manual and automatic approach was
used.
Nugget effect is assumed to exist when the value
of the semivariogram near the origin is non-zero,
i.e. γ(h ≈ 0) > 0. This represents the part of the
variance without spatial structure, i.e., a random-
ness or noise [33, 25].
To increase the robustness of the experimental var-
iogram to deal with close and discrepant obser-
vations the variogram estimator used is Cressie’s

[7, 23].
A semivariogram was used to calculate the Kriging
weights λα, eq. (1), for each time interval.
OK was used concurrently with Kriging With Exter-
nal Drift (KED) eq. (4), which is a more flexible vari-
ant of OK. In KED it is possible to combine a linear
trend with the stochastic component of the spatial
variance (Ordinary Kriging of the model residuals).
NO2 concentration at an unobserved point of co-
ordinates s(x0), ẑ(s0), is modelled by the sum of a
trend, m̂(s0), and a linear combination of the neigh-
bourhood residuals e(sα). In this thesis, the func-
tional form chosen for m̂(s) is the regression model
with linear predictor given by land cover.

ẑ(s0) = m̂(s0) +

n∑
α=1

λαe(sα) (4)

In these type of linear models, a common prob-
lem is the possibility of returning physically impos-
sible values (e.g., negative values). In these cases,
the solution found in this thesis was to manually
replace those values by admissible values. In the
cases where the function returned negative value,
they were replaced by 0 as proposed by Goovaerts
in [14].

3.3.2 Trend

The linear regression model was chosen to predict
the expected value of NO2, with the linear predictor
of land use represented by the following formula:

mij(s0) = β0 + β1U(s0) + β2T (s0) (5)

where mij(s0) is the expected value of NO2 for
month i of year j at coordinate point s0, U(s0) rep-
resents the value of the land cover ”Urban” and
T (s0) the value in the class ”Transports” at point s0.
The parameters β1, β2 are the coefficients associ-
ated with U(s0) and T (s0) respectively, β0 is the
ordinate at the origin, and represents the expected
value of NO2 when the class at point s0 is ”Other
Uses” (called the reference class). Thus, GIS was
used to assign to each air monitoring station, the
occupation classes predominant in its area of influ-
ence. To consider that a land use class exists in the
area of influence of a station, the proportion of the
area of each land cover class was calculated for a
radius of influence of 1 km. The following criteria
were applied to each station:

U(s0) =

{
0 , % of coverage ”Urban” < P63%

1 , % of coverage ”Urban” ≥ P63%

(6)
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T (s0) =

{
0 , % of coverage ”Transports” < P25%

1 , % of coverage ”Transports” ≥ P25%

(7)
The reference class (”Other uses”) takes the value
1 whenever U(s0) = 0 ∧ T (s0) = 0 or 0 otherwise,
i.e., U(s0) = 1 ∨ T (s0) = 1.

3.3.3 Geostatistical Simulation

Spatial uncertainty is an important aspect when
modelling air pollution. Interpolation by OK and
KED provides a simplification of reality, but not a
measure of spatial uncertainty. Thus, one way
to measure the uncertainty associated with pre-
dictions is to generate simulations with the aid of
geostatistical interpolators, to generate new simu-
lated maps that reproduce the statistical properties
of the observed data [33]. The set of simulated
maps allows the estimation of the expected val-
ues at each point (also referred to as E-type val-
ues) and an associated spatial uncertainty mea-
sure, given by the interquartile range of the simu-
lated values.
The simulation method used was the Sequential
Gaussian Simulation (SGS), where the whole sim-
ulation process is developed under an environment
where it is admitted that the variable of interest
has a Gaussian distribution at any point s of the
spatial domain. The first step consists in trans-
forming the original values into Gaussian values
Y (s) = φ[Z(s)], being then applied the following
methodology [37]:

• Estimation at a point si, randomly located in
area A, where the mean and variance are to
be simulated. Then, a p-value is generated
from a uniform distribution between 0 and 1.
The simulated Gaussian value Y (si) is then
obtained from the inverse function of the lo-
cal cumulative Gaussian distribution, integrat-
ing the conditional set;

• The previous step is repeated for other points,
until the last Y (sN ) value of A is simulated
based on the conditional values;

• The simulated Gaussian map Y (s) is subse-
quently transformed into the values Z(s) by
the inverse transform:

Z(s) = φ−1[Y (s)] (8)

In the simulation algorithm, the expected value
of Y (si) in the simulated point of coordinates si
is obtained by the simple Kriging estimator. The
use of simulations allows quantifying spatial uncer-
tainty and obtaining various representations of re-
ality (from observed data). With SGS, 300 maps

were generated with statistical properties similar to
those observed in the concentrations of NO2. Fi-
nally, the variance of the set of simulations and the
interquartile range were calculated for each grid
point. Both these metrics allow the evaluation the
dispersion of the simulations for each location.

3.4. Exposure analysis
To quantify the levels of NO2 that the population
was exposed in 2020, the areas of the parishes
where the urban centres are located were con-
sidered and these areas were crossed with the
simulated concentrations. Thus the average expo-
sure was calculated only for the areas where the
population lived (thus excluding from the exposure
calculations the values simulated in agricultural or
forested areas).
Thus, a new polygon vector layer was created
with land use (vector layers represent geographic
objects, with an associated geographic database
[19]), composed only of the areas of the classes of
continuous built coverage and discontinuous built
coverage of COS2018 [10], to which the resident
population of each parish was assigned [8]. For
this layer a population density per inhabited area
was calculated, which, in turn, when multiplied
by the total population of each parish results in a
vector layer with the resident population in each
polygon of urban area.
The vector layer of resident population per urban
area was in turn overlaid on the simulations,
extracting the simulated values inside each urban
area polygon (for instance, in parish A with 3 urban
areas, 3 sets of simulated values were obtained).
With the distribution of simulated values inside
each area we estimated the average exposure in
each urban area. Finally, this information was used
to calculate the average exposure for each parish,
this average being weighted by the population of
each urban area (within the same parish).

Ekij =

∑nk

l=1 pl ∗ml(z)∑nk

l=1 pl
(9)

In eq. (9), Ekij is the estimated population expo-
sure in parish k, in month i and year j, pl is the
resident population in urban area l(l = 1, . . . , nk),
and ml(z) is the mean of the empirical distribution
of simulated values of z (variable NO2) in urban
area l, contained in parish k.
In order to establish a metric for comparing the av-
erage exposure with each of the previous years
(2019 and 2018), non-parametric bootsrapping
techniques were used using the empirical distri-
bution of the estimated values in each parish (in
each month and year). Confidence intervals were
defined for Ekij using the 2.5% and 97.5% per-
centiles of the empirical distribution and the differ-
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ences between exposure in 2020 and exposure in
each of the previous years were compared. Differ-
ences are considered significant when the rejec-
tion areas of the distributions do not overlap (for a
95% confidence interval).

3.5. Software
Statistical analysis was performed in R language,
supported by the integrated development environ-
ment (IDE) RStudio [11, 35]. Missing data impu-
tation was performed using the MICE package of
R [39]. Interpolation and geostatistical simulation
was performed using the gstat package of R [15].
QGIS software was used as an aid to R to prepare
raster and vector data [31].

4. Results
4.1. Descriptive statistics
4.1.1 NO2

NO2 presents a significant reduction in its concen-
trations in 2020 when compared to previous years.
In the histograms of average daily values, it is vis-
ible in 2020 an increase in the frequency of ob-
servations with lower values, fig. 2. In the same
figure, it is visible that the mean values of concen-
trations in the months analysed (represented by
the dashed lines) decreased in 2020 when com-
pared to 2019 and 2018. This, being more evident
in the months of April to June. Observing the ho-
mologous variation of the monthly average values
between the months of March and June, a reduc-
tion in the monthly averages of 32.99% (March),
41.99% (April), 32.84% (May) and 9.14% (June)
between 2019 and 2020, table 1.

Table 1: Monthly averages of NO2 concentrations in LMA.

NO2 (µg/m3/month)

Year March April May June

2018 17.88 19.64 18.71 16.96
2019 23.13 17.05 17.69 13.59
2020 15.50 9.89 11.88 9.63

By station type, the reduction in NO2 concentra-
tions is more pronounced at traffic stations com-
pared to the reductions observed at background or
industrial stations. In traffic stations there is also a
marked narrowing of the variability around the me-
dian, and the absence of outliers in April, which
corresponds to the first full month experienced un-
der severe containment measures, fig. 3.

4.2. NO2 concentrations and land use
Linear regression models were fitted to predict the
expected value of NO2 as a linear combination of
land cover. The resulting residuals were then used
in geostatistical modelling.
Models were fitted for each month and year, and
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Figure 2: Histograms with empirical distribution of NO2 in April-
June, by year.
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Figure 3: Boxplots of daily average concentrations of NO2 for
each month and year, by type of station.

the results obtained suggest that the impact of the
”Transport” class is significant in the variation of the
expected value for NO2. The table 2 shows the
results for the month of April:

Table 2: Estimated coefficients of the three regression models
(1 per year) fitted for the month of April. The * symbol indicates
a p-value < 0.05.

Year Constant Transports Urban

2018 *12.10 *14.84 4.06
2019 9.02 *15.62 4.08
2020 *7.35 *5.32 1.43

By the analysis of the significance of the esti-
mated parameters, it is observed that the soil class
”Transports” has a significant impact (for a p-value
= 0.05) in the variation of the expected value of the
NO2 in the three years analyzed. In the case of the
”Urbanized” soil class, on the other hand, the re-
sults were not significant (i.e. p-value > 0.05). This
pattern of results was repeated for the remaining
months analysed.
The overall results of the adjustments obtained (by
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month and year) can be summarized from the mea-
sure of the quality of adjustment provided by the
coefficient of determination, R2. Table 3 shows
the results of the adjusted-R2 obtained in the four
months for the three years. It can be seen that the
fitted linear models explain between 53% and 21%
of the variability of NO2 concentrations suggesting
that the linear model fits well to measure the rela-
tionship between land use and average NO2 con-
centrations.

Table 3: Adjusted-R2 linear models used in the KED.

Year March April May June

2018 0.53 0.43 0.35 0.33
2019 0.37 0.43 0.24 0.35
2020 0.32 0.43 0.31 0.21

When analysing the distribution of the residuals for
the year 2020 in table 4, it can be seen that the
linear model fitted better in April than in the other
months, since the median is closer to 0 (-0.2) and
the range of values of the residuals (8.2) is the
smallest among those analysed in 2020.

Table 4: Distribution of residuals generated by linear regression
models for the year 2020.

Month Min 1stQ Median 3rdQ Max

March -8.5 -4.5 0.5 2.6 15.1
April -3.9 -2.0 -0.2 1.9 4.3
May -6.7 -2.6 -0.8 2.6 11.1
Junho -8.1 -2.7 -0.2 2.1 14.7

4.3. Geostatistics
4.3.1 Sequential Gaussian Simulation

The parameters of the theoretical semivariograms
adjusted in all the months and years analysed
are presented in table 5 and indicate that major
changes in the parameters occurred in the months
of April, May and June(range and sill).
For March, the values of the estimated sills of the
years 2018 and 2020 were much lower than those
estimated for 2019. However, similar ranges are
observed in 2019 and 2020 (9.1 km and 8.9 km
respectively).
In April, the range value was maximum in 2020,
and 2.5 times higher than the range estimated in
2018. On the other hand, the estimated sill for
2020 was 8-9 times lower than those estimated in
previous years.
In May the estimated threshold for 2020 was 5 and
7 times lower than the estimated thresholds for
2018 and 2019 respectively. The estimated ranges
in the three years ranged from 9 km to 12.5 km.
In June the range parameter varied between 9.2
km and 12.4 km and the sill between 26.7 and 90.9

(µg/m3)2.
In the year 2020 (last row of the table 5) the esti-
mated sill decreased from 37 to 7 (µg/m3)2 (81%
decrease) between March and April. Thereafter a
gradual increase of the sill was observed reaching
26.7 (µg/m3)2 in June. In the opposite direction,
the range value increased from 8.9 km to 15 km
(59%) between March and April. In the following
months a stabilization of the range value was ob-
served, in line with the evolution observed in previ-
ous years.

Table 5: Parameters of the fitted semivariogram in each month
and year. a - range, in meters, C1 - sill, in (µg/m3)2.

March April

Year a C1 Year a C1

2018 5256 38.42 2018 6000 61.59
2019 9167 86.49 2019 10158 65.84
2020 8881 36.97 2020 14997 6.98

May June

Year a C1 Year a C1

2018 8666 98.89 2018 12320 90.93
2019 12550 140.56 2019 9259 55.33
2020 10975 20.19 2020 12378 26.73

The fitted variogram models and the values of the
residuals calculated at the different stations were
used to generate 300 simulations with SGS algo-
rithm and obtain estimates of the concentrations
in the areas where the population resides. From
this set of simulations, thematic maps represent-
ing the mean and interquartile range of the 300
simulations were generated. For the year 2020,
these maps are represented in fig. 4 (mean), fig.
5 (interquartile range) and provide an estimate of
the mean exposure and spatial uncertainty at each
node of the simulation grid.
In the maps of the average of the simulations it is
possible to observe the contour of the soil classes
”Transports” and ”Urban” fig. 4, being these zones
signalled by the presence of higher values of NO2
concentration. There is a reduction in the maxi-
mum levels observed from April onwards, a hotspot
of high concentrations is always being identified in
the Almada area.

In the interquartile range maps, the areas with
lower spatial uncertainty (i.e. smaller interquartile
range) coincide with the areas closer to the sta-
tions, due to the presence of observed data. Af-
ter March there is a reduction in the dispersion of
the values of the 300 simulations. In addition to
the reduction of the dispersion of the values oc-
curred, there is also a large increase in the spatial
continuity of the maps (especially in the month of
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(a) Average of March 2020. (b) Average of April 2020.

(c) Average of May 2020. (d) Average of June 2020.

Figure 4: Maps of the local average NO2 concentration from
the 300 simulations generated by SGS.

April), presenting a more uniform distribution val-
ues throughout the extent of the spatial domain as
illustrated in fig. 5.

(a) Interquartile range March
2020.

(b) Interquartile range April
2020.

(c) Interquartile range May
2020.

(d) Interquartile range June
2020.

Figure 5: Local interquartile range maps of the 300 simulations
generated by SGS.

From the semivariograms of the 2020 simula-
tions, we can also observe a decrease in semivari-

ance between the months of March and April. Be-
tween April and June there is a gradual increase
of this magnitude. There is a greater dispersion
of the semivariance of the simulations (identified in
grey) in values higher than the original semivari-
ance (identified in red) fig. 6.

(a) Semivariograms for March
2020.

(b) Semivariograms for April
2020.

(c) Semivariograms for May
2020.

(d) Semivariograms for June
2020.

Figure 6: Theoretical semivariograms of the first 100 simula-
tions generated by SGS (grey) and the variogram model fitted
to the observed data (red)

4.3.2 Exposure analysis

For each month and each parish, the mean and the
2.5% and 97.5% percentiles (bootstrap method)
of the empirical distribution of the 300 simulations
were calculated. This approach made it possible to
obtain a average exposure value and a 95% confi-
dence interval for the mean.
In the density plots of the empirical distributions
of the simulations of the NO2 concentrations four
parishes with sets of different characteristics (ur-
banization levels and location) are represented fig.
7. It is possible to observe from the graphs that,
in the year 2020, the distributions of observations
present lower mean values, with a range of val-
ues also lower, resulting in narrower confidence
intervals (observations are less dispersed around
the mean) when compared to the years 2018 and
2019.
In the parish of Sto. António, a reduction in
38.39% of the average concentrations to which
the population was exposed between 2019 and
2020 occurred for April. There were reductions in
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(a) Parish of Alcântara.
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(b) Paish of Sto. António.
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(c) Union of the parishes of Al-
mada, Cova da Piedade, Pra-
gal and Cacilhas.
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(d) Union of the parishes of
Oeiras, S. Julião da Barra, Pç.
de Arcos and Caxias.

Figure 7: Density plots of the empirical distributions of the sim-
ulations of NO2 concentrations in 2018, 2019 and 2020, in the
month of April, in four different parishes.

the order of 59.85% for the Union of parishes of
Almada , 45.92% in Alcântara and 35.83% in the
in Union of parishes of Oeiras, table 6.

Table 6: Average population exposure to observed concentra-
tions of NO2 in the month of April.

Alcântara Sto. António
Year P2.5% Mean P97.5% Year P2.5% Mean P97.5%

2018 8.99 21.64 34.45 2018 12.36 20.13 27.57
2019 10.53 20.23 30.17 2019 10.53 16.67 22.78
2020 7.82 10.94 14.14 2020 8.42 10.27 12.08

Almada Oeiras
Year P2.5% Mean P97.5% Year P2.5% Mean P97.5%

2018 14.31 27.27 38.42 2018 5.57 18.12 31.91
2019 19.09 29.39 37.94 2019 3.24 14.01 24.49
2020 8.71 11.8 14.57 2020 5.42 8.99 12.4

The following maps in fig. 8 provide a summa-
rized representation of the reduction of NO2 con-
centrations for the 86 parishes in the month of April
of 2020, by comparing this interval with April 2018
and April 2019.

5. Discussion
The descriptive statistical analysis for the concen-
trations of NO2 measured at the monitoring sta-
tions showed a clear reduction in the concentra-
tions of this pollutant in 2020 [24, 17, 27] when
compared with previous years. This analysis pro-
vided more evident results in March and April,
which are likely to be related to the effects of the
initial ”shock” (and fear) caused by the appearance
of a pandemic and the implementation of the se-
vere lockdown measures imposed by the national
authorities.
Fitting the linear regression models with the linear
land use predictor helped to increase the accuracy
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(b) Reduction in 2020 com-
pared to 2019.

Figure 8: Reduction by parish, of the 95% confidence intervals
of the empirical distributions for the month of April.

of the geostatistical modelling of NO2, which takes
advantage of the fact that there is land cover over
the entire spatial domain providing available auxil-
iary information that is well related to NO2 emis-
sions [12, 5]. The linear modelling results rein-
forced the idea that the state of emergency expe-
rienced in 2020 caused a marked reduction in an-
thropogenic emissions and will have positively af-
fected population exposure levels to NO2. The ob-
servation of this phenomenon is not surprising and
the results obtained are in line with the existing lit-
erature [3].
The results obtained from the adjustments of the
semivariograms were considered as positive. Dur-
ing the year 2020, between March and April there
is an increase in the range of the semivariogram
and a significant reduction in the semivariance, re-
sulting in a smoothing of the concentrations. The
increase in the range of the semivariogram indi-
cates that there is correlation with data at greater
distances, while the decrease in semivariance in-
dicates less variability in the data [37, 29]. The re-
sults of the semivariograms accompanied by the
observed decreases in the averages reinforce the
impact of confinement effects. Both of these ob-
servations occur during the final phase of March
and the whole of April, coinciding with the imple-
mentation of more restrictive lockdown measures,
namely in the form of restrictions on commuting
and the implementation of teleworking [24]. These
measures resulted in a decrease in the number of
vehicles in circulation and the shutdown of several
services and industries [22], which are factors that
contributed to the increase in local variability. The
reduction of the range and semivariance in the fol-
lowing months are also identified as expected re-
sults, because their gradual increase represent the
lifting of some restriction measures indicating the
gradual return to normality.
We then verified that the averages of the 300 SGS
resulted in maps similar to those generated by
KDE. Similarly, the variance of the 300 SGS gen-
erated maps where we observe lower levels of
variance in the municipality of Lisbon, due to the
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greater proximity between observed data. From
the maps of the interquartile range we verified be-
tween April and June, a smoothing of the values
generated by the simulations and also a higher
probability of occurrence of lower values. In ar-
eas that lack of data observation, extremely high
values of variance were generated for the years of
2018 and 2019, which can be explained by the lim-
itation of the residuals obtained through the linear
regression models, which increase the local vari-
ability in this type of areas [37, 29]. In the year
2020 there is a tremendous attenuation of the vari-
ance, which can be explained due to the increase
in spatial continuity and the reduction in observed
concentrations.

5.1. Limitations
The use of data imputation methods is a solution
found to minimize the impact of missing data in
the analysis, and the method chosen may not
have been the most appropriate, because it is
known that imputation algorithms are sensitive (in
terms of performance) to the characteristics of the
dataset [26]. PMM was chosen as the imputation
algorithm due to its versatility, robustness and
simplicity of use [38], having been successfully
applied to air pollutant data in [32, 16].
Air quality monitoring stations provide little spatial
coverage of the study area, causing difficulties
in accurately representing spatial variability. The
problem was overcome by using an auxiliary vari-
able with coverage over the entire spatial domain
(COS2018). This type of approach is common
and often applied by other methodologies such
as the Land use Regression (LUR models), and
supported by existing literature [36, 18, 13, 28, 20].
In order to use land cover as an auxiliary variable,
a simplification of COS2018 was used, assessing
the presence/absence of each class in the area
of influence of the monitoring stations. Although
these procedures led to a reduction of available
information (due to the simplification) and to an
increase of subjectivity (due to the classification)
about land cover, the solution found allowed
to integrate the impact of the main sources of
NO2 emissions in urban environment (transports,
industries or population).
The use of COS2018 for the modelling of NO2 con-
centrations was extremely relevant, the presence
of high residuals was verified. These suggest that
there is the omission of other relevant variables for
explainability. A way to fill this gap would be the
use of other explanatory variables (temperature,
humidity, distance to the nearest road, distance to
the nearest park). The inclusion of these variables
was not possible due to time constraints.
In areas where there are no air monitoring sta-
tions, interpolation of physically impossible values

(negative concentrations) was verified. These
interpolated values arise when the Kriging estima-
tor is applied to areas where there are ”extreme”
values, i.e. larger, in modulus, than those in its
neighbourhood, fig. These occurrences make
the Kriging estimator unstable, leading to the
interpolation of values outside the expected range
[29, 9, 37]. On the other hand, the extreme
residuals are the result of the weakness of the
linear regression models, worsening in the months
of May and June (when the models explain less
the concentration of NO2). The solution for the
negative concentrations was to replace these
occurrences by 0, this being a usual procedure
(although not desirable, being painful when there
is no large-scale occurrence) used successfully in
[29, 4, 2, 34].

6. Conclusion
This study made it possible to carry out a temporal
and geostatistical assessment of air quality in the
LMA.
In general, through the analysis of the temporal
evolution of the concentrations of NO2, it is possi-
ble to state that, during the period analysed, there
was a general improvement in the context of this
pollutant. The emission of air pollutants has de-
creased as a result of the application of restrictive
measures at national and local level.
COVID-19, and the measures imposed by the Por-
tuguese government to prevent and contain virus
transmission, confirmed and corroborated the sci-
entific evidence linking air pollution with human
activity. The change in daily life imposed by the
pandemic has strongly exposed some of the main
sources of air pollution, such as the transport and
industry sectors. It became evident, especially in
the month of April, that the restriction of socializa-
tion and the limitation of economic activities had
an almost instantaneous effect in reducing the con-
centrations of air pollutants. From the general data
analysis carried out, there was a significant reduc-
tion in the concentrations of NO2.
NO2 allowed a clearer interpretation of the impact
of COVID-19 on air quality since, given its short life-
time in the atmosphere, its variation of concentra-
tions in the atmosphere resulted directly from the
reduction of anthropogenic activities. In the month
of April 2020, a reduction of 42% in the values
measured at the LMA stations was recorded, com-
pared with the previous year.
The basic problem to be solved with geostatistics is
the characterisation of the spatial distribution and
the evaluation of uncertainty measures, taking into
account the variability of the spatial phenomenon,
the quality of the observations, the type of geosta-
tistical model and the degree of knowledge about
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the phenomenon. Therefore, in this work we can
identify the quality of the available observations as
the major limiting factor.
The monitoring network used is, for the most part,
located in the urban centres of the LMA, allowing
the objective of the work to have been, to a certain
extent, fulfilled. It was possible to achieve for 2020,
at the parish level and with reasonable levels of un-
certainty, an estimate of the concentrations of NO2
during the four months of lockdown.
The integrated geostatistical approach adopted in
this thesis allowed us to estimate, with relative lev-
els of success, the behaviour of NO2 concentra-
tions in the most populated areas in the centre of
the LMA. This analysis may contribute to a dis-
cussion of future strategies for the improvement of
large-scale monitoring in the LMA. In addition, we
consider that one of the strengths of this work was
the unique opportunity to analyze a period where
there was a suspension of anthropogenic activities
on a global scale, which allowed the study of the
impact of sectors such as transport and industry,
in the concentrations of NO2 in the LMA.
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