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Abstract—Nowadays, the potential of using Machine Learn-
ing (ML) techniques to solve real-world problems is exten-
sively explored, and many are the application domains such
as cybersecurity, aviation and healthcare, where there is in-
depth research into their applicability. With the amount of
data currently gathered in the hospital environment, models
capable of learning and improving automatically through the
use of data might solve problems that endanger the proper
functioning of hospitals. The Operating Room (OR) is a high-
cost environment, and its usage must be efficient. Therefore, our
presented solution focuses on developing interpretable prediction
ML models for an OR decision support system to improve the
prediction of surgical times, comparing them with traditional
methods to aid the OR scheduling process. We implemented three
different ML models, XGBoost, RuleFit and a neural network,
and we compared and analyzed their performance, including
both accuracy and interpretability. For each of these algorithms,
we implemented three different strategies. Then, since surgical
durations showed a significant imbalance and this is known
to hinder the performance of accuracy-based ML algorithms,
we trained a Gaussian Mixture Model (GMM) to learn the
probability distribution on the minority values of our label
enabling sampling to overcome the imbalance. The performance
of the models on balanced and imbalanced datasets was compared
using the Utility-Based Algorithm (UBA). This research work
is an evidence that the proper implementation of interpretable
ML technologies can significantly improve current standards of
estimation, representing a cost reduction from an operation’s
perspective, maintaining the decision-makers’ confidence in the
system.
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I. INTRODUCTION

THE schedule planning of operating rooms is one of the
biggest challenges in the health sector since this service

is a hospital key element, responsible for around 42% [1] of
income but, simultaneously, due to high cost of use, most
hospital expenses are related to the OR. Operating rooms are
costly, ranging from $30 to more than $100 per minute [2].
Therefore, they represent a critical financial bottleneck and it
is crucial to maximize the efficiency [3].

Besides financial criticality, this service is one of the biggest
headaches in the hospital due to its extremely high complexity.
The interactions between different healthcare professionals
(such as surgeons, patients, nurses, and anesthesiologists), the
difficulty of predicting the time in certain types of procedures
due to unpredictable patient circumstances, the need for sterile
material that depends on third parties, and the availability of
beds in Post-Anesthesia Care Unit (PACU) are just a few

reasons that help us understand the difficulty in managing
this service [1].

Nowadays, the historical information on the OR operation
is well annotated and there is a lot of information available,
such as the surgical service performing the procedure, the
duration of surgery, and the patient’s information, which has
a vast potential to optimize the OR pathway. However, these
data are still not fully explored in most hospitals and forecasts
of the surgery duration are made based on the experience
and opinion of surgeons, that estimate the operating times
that they consider necessary, or by using simple statistics
on the conventional Electronic Health Records (EHR), the
electronic collection of a patient’s medical history where the
historical average for each case duration can be performed.
The study conducted by Laskin, Abubaker, and Strauss
[4] with oral and maxillofacial surgeons showed that only
26% of surgeon estimates were accurate and there is an
overestimation in 42% of the analysed cases. Overestimation
occurs because various factors can influence the doctor’s
prediction, simply because complications arise during the
procedures or sometimes the doctor may overestimate or
underestimate the surgery depending on the number of
appointments they have scheduled on that specific day.

Regarding the EHR sample means method also used
by CUF, the healthcare provider whose data was analysed
in this study, it allows predicting surgical time based on
the average of historical data from a specific procedure or
surgeon. However, this type of approach does not take into
consideration other factors, such as patient and procedure-
specific information, which can influence up to 30% of the
total surgery duration [5]. Tuwatananurak et al. [5] used
Leap Rail engine to show how can a machine learning
algorithm improves the EHR predictions, getting a significant
reduction of around 70% in the total scheduling inaccuracy,
improving the estimation in approximately about 7 minutes
per case regarding actual case duration. Moreover, in Rozario
and Rozario [6] work the baseline time prediction was
the surgeon’s average procedure time of the last 10 cases.
However, with the current method, case times follow a
Gaussian distribution with an underestimation in 50% of the
cases.

As these modest results evidence the challenging nature
of the problem, they also encourage a machine learning
approach, given the excellent results that machine learning
methods have provided in natural language understanding
[7], computer vision [8] or games [9]. We must, nevertheless,
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provide an interpretable prediction when informing human
decision making, particularly in healthcare.

II. RELATED WORK

The need for efficiency in planning and scheduling procedures
has led to an increase in research in OR related problems since
2000, with a significant increase in publications since then
[10]. In addition, since 2015, there has been an exponential
growth in research in terms of the application of ML in
the scope of medicine since the availability of big data and
the growth of data science have contributed positively to the
decision-making processes [2].

Firstly, statistical analysis of the variability of surgical
durations has been studied for years [11], and techniques such
as Lognormal Estimation and Bayesian statistical techniques
were intensively explored. These approaches find the best fit
in a family of distributions to predict surgical durations and
characterize relationships between variables. Stepaniak et al.
[12] fitted a 3-parameter lognormal model that improved the
OR scheduling and reduced the mean over reserved OR time
per case by up to 11.9 minutes. Strum, May, and Vargas in two
studies [13, 14] compared the modeling of surgical procedure
times with normal and lognormal distributions and concluded
that lognormal models provide accurate predictions and fit
better procedure times.

Moreover, models based on Gaussian Mixture Model
(GMM) are also widely applied as a prediction model, even
in the surgical area e.g. support patient flow models [15].
The Bayesian method obtained by Dexter and Ledolter [16]
allowed improving predictions for cases where few or no
historical data exist and concluded that GMM can be a rea-
sonable choice when surgical times do not follow a lognormal
distribution. Taaffe, Pearce, and Ritchie [11] also studied the
application of Kernel Density Estimation (KDE) to model sur-
gical durations. The results outperformed traditional methods
such as lognormal and GMM when there is limited historical
data.

Other studies also investigate the potential of using math-
ematical models to improve durations, showing an OR ef-
ficiency improvement by combining advanced mathematical
and financial techniques [17, 18]. However, these approaches
postulate a simplified model for the data distribution and
this thesis takes a data-driven, machine learning approach,
while keeping interpretability as a requirement. Although
machine learning and statistics are closely related fields in
terms of methods, their main goal is different. Lee and Yoon
[19] summarized the differences between classical statistical
analysis and big data medical analysis. While ML models are
designed to make the most accurate predictions possible and
find patterns in the data that can be generalized, statistical
models are designed for inference about the relationships
between variables and reach conclusions about populations or
derive scientific insights from data. Thus, in ML, the algorithm
learns from a considerable amount of data and generates
the hypothesis from the data, while in statistical models, we
need to commit on a priori assumptions based on various

underlying probability distribution functions [2].
Even in the machine learning field, the high complexity of

the OR environment allows and leads to different approaches
to the problem and the use of different metrics by authors
and researchers. Fairley, Scheinker, and Brandeau [20] defined
as objective the minimization of maximum Post-Anesthesia
Care Unit (PACU) occupancy, using constraints to control and
maintain OR utilization. Thereby, to predict PACU recovery
times for each patient, the author used a gradient boosting tree
model as input in a program that formulates the schedule of
procedures in the OR. Abedini, Li, and Ye [21] developed
a blocking minimization model to reduce the number of
blockings between OR and PACU, allowing the hospital to
define the OR schedule for the next day, considering the
current stage occupancy of the OR to ensure the availability
of downstream resources, such as beds in PACU and Intensive
Care Units (ICU).

The case duration accuracy is one of the most common
approaches since to allocate the staff and maximize the use
of OR accurately, it is important to predict the time required
for each surgery with the smallest possible error. Bartek et al.
[1] used a linear regression and two ML models to predict
OR case-time duration, with the XGBoost [22] attaining the
best performance. Besides these, service-specific and surgeon-
specific models were considered, where each specialty and
doctor were modeled individually. Tuwatananurak et al. [5]
compared the duration of the predicted cases from the con-
ventional method based on averaged historical means for case
duration with cases duration predicted by the Leap Rail engine,
a proprietary algorithm that combines different supervised
learning algorithms. Rozario and Rozario [6] resorted to the
Operations Research Tools from Google Artificial Intelligence
(AI), an open-source software suite for optimization, and
developed an algorithm to optimize efficiency in OR in the
era of COVID-19 with the objective of minimizing overtime
and undertime cases in an OR that has shown to be beneficial
to reduce the long waiting lists generated during this period.

Regarding machine learning-based solutions proposed to
accurately predict surgical durations, Martinez et al. [23]
compared Linear Regression, Support Vector Machines, Re-
gression Trees, and Bagged Trees. In general, the methods
considered are beneficial for operating room scheduling, but
Bagged Trees was the one that achieved the best overall
performance to predict the surgical time duration. Furthermore,
Hosseini et al. [24] developed a classical Least-squares Linear
Regression and a Stepwise regression, showing both improve-
ments compared to traditional methods. Lastly, Edelman et al.
[25] performed linear regression models with data from six
academic hospitals. Even with few variables, all are highly
significant predictors and models presented a low error.

Researchers frequently use the approaches described above,
however, other metrics can also be used with the goal of
optimizing the operating room management. Lee, Ding, and
Guzzo [3] performed an OR’s efficiency review and mentioned
methods such as identifying surgeries with high risk of can-
cellation and optimizing the turnover time between surgeries
as frequent metrics used to evaluate and improve efficiency.
Furthermore, Bellini et al. [2] presented a systematic review
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about the AI implementation in ORs where the majority
of the studies use supervised learning techniques such as
random forest and decision trees algorithms. Decision trees
are powerful, intuitive data structures and easily interpretable,
which allows them to be widely explored in the context of
medicine, where it is essential to explain the predictions of
the model, something difficult in ML because most predictive
models are complex and challenging to interpret.

Moreover, several researchers address the features used as
inputs in their optimization models. Bartek et al. [1] took
greater account of procedures and personal data to the detri-
ment of the patient’s health status and described the primary
surgeon as the most important feature to create variability.
Fairley, Scheinker, and Brandeau [20] used a set of 10 features
chosen based on discussions with health professionals, such
as surgical service, patient information and the hospital unit
the patient will go to after PACU recovery, where the most
important feature was the procedure type with 0.41 of weight
within the total of features. Tuwatananurak et al. [5] took
into consideration more than 1,500 features, factors related to
patients, providers, facility/room, procedures and prior events.
Lastly, Rozario and Rozario [6] addressed that the machine
learning algorithm held features such as frequency and distri-
bution of procedure types, average case times and case times
variability, highlighting the importance of the development of
surgeon-specific models due to the variability that this feature
can generate.

III. METHODOLOGY

In this section, we discuss the methodology of the work
conducted. After the data collection, we perform an analytical
exploration to summarize the data’s main characteristics, a
crucial initial step in data science. Three different algorithms
are compared through Python: RuleFit [26], XGBoost [22] and
a Feedforward Neural Network, an opaque algorithm.

A. Exploratory Data Analysis

CUF, the largest private operator of health care in Portugal,
provided the data under study. Four anonymized datasets
corresponding to the years 2017, 2018, 2019 and 2020 were
made available, even as a dataset with the description of all
types of hospital procedures described in medical association,
the official Portuguese Order of Physicians table. Historical
datasets provide the surgeries that have been performed at CUF
in the past four years, so each row represents an episode. For
each surgery, relevant data related to unit, patient, doctor and
surgery performed were made available. Concerning patient
information, it is provided age, gender and encrypted CUF
ID (common to all units). About the surgery, data such as
the surgical specialty, type of anesthesia, procedure types, the
predicted and real used time inside OR and the recovery room
time are given.

The dataset includes a total of 191,046 surgeries and 31
features containing surgeries performed in 15 hospitals and
clinics. We used the official Portuguese Order of Physicians
table to remove any mistakenly introduced procedure not listed
on the table but presented on procedures columns in the

historical dataset.
The dataset contains a similar proportion of male and female

patients and 80% of them have only one surgery at CUF in
the last four years. Regarding the type of anesthesia, it is
noticeable that specific categories of anesthesia are associated
with longer times of OR usage and the number of procedures
is essential to estimate the final surgical time, since with the
increase in the number of procedures, the average time within
the OR is increasing.

Concerning specialties, CUF’s dataset covers 26 specialties,
of which 25 are valid surgical specialties for further analysis.
Administration request was excluded as it was incorrectly
recorded as a specialty and therefore should not be consid-
ered. Orthopedics, general surgery and ophthalmology are the
specialties with more surgeries covering almost 50% of the
total number of surgeries in ORs. However, although they are
at the top in terms of the number of surgeries, obstetrics and
gynecology is the one that contains more surgeons.

Lastly, it is critical to understand how the data is distributed
over time and look for patterns, such as trends and seasonality,
so we performed a time series analysis. August and December
are the months in which we have a considerable reduction
in the demand for surgeries, a fact consistent over the years
and potentially related to summer, hospital staff vacation, and
the end of the year. In addition, the reduction in demand for
surgeries during the early phase of the COVID-19 pandemic
is visible from April 2020, however, there is also a greater
demand after the summer of 2020, probably related to the
reduction of fear and demand for scheduling surgeries previ-
ously postponed, and therefore, in the annual total, there is no
significant reduction in surgeries in 2020.

B. Data Engineering and Feature Selection

Before the feature selection and with the insights gained after
investigating and exploring the data, it was clear that it would
be interesting to develop some specific features. Feature engi-
neering is related to the good utilization of domain knowledge
in order to ably transform raw data into new additional features
that improve the performance of machine learning models.
Thus, some essential features, such as age, month, weekday
and part of the day, had been generated through this process,
directly from date and surgery time columns.

Moreover, due to the potential difficulty using procedures
columns ( I1, I2, I3, I4, I5, I6) since most of the columns
have a considerable number of missing values, a column with
the total number of procedures is created. Thus, if a surgery
has I1, I2 and I3 values not null but I4, I5 and I6 with NaN
values, 3 will be the value present in the additional column.

Additionally, the doctors’ daily capacity and the total num-
ber of surgeries performed by the doctor in CUF may have an
impact on its performance and, therefore, in surgery duration.
Thus, a column was created to reflect the surgery order on a
specific day and for a given doctor, and another column to
reflect the doctor’s experience level.

After the feature engineering process, the dataset contains a
total of 41 features, however it includes a lot of information,
some of it redundant. Thus, the columns that were considered
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relevant to generate the machine learning models were se-
lected. This includes: specialty, CUF unit, anesthesia category,
the total number of procedures performed, first procedure,
surgeon, patient’s gender and age, number of surgeries that a
given doctor has performed so far, number of surgeries that the
doctor has performed on that day, temporal data such as month,
weekday and part of the day, the actual duration of surgery,
planned time by CUF, type of hospitalization (outpatient or
inpatient surgery) and planned or urgent surgery. The column
with the time planned by CUF is not an input to the models
but is kept to compare the current methods used. From these
17 columns, we removed all surgeries that contained surgeries
with missing information. Thus, the final dataset contains a
total of 169,772 surgeries.

Lastly, it is important to understand if the data needs
to be transformed to be compatible with a specific model
type. Therefore, features with two values were converted into
a binary representation and categorical features with more
than two values were encoded with target encoding [27].
With target encoding some considerations must be taken into
account because we want to minimize target variable leakage
in the new encoded feature. To prevent this problem, target
encoding utilizes training data to fit the encoder and transform
the new categorical data in both training and test sets.

C. Prediction Algorithms

The study used three machine learning algorithms to develop
prediction models that help healthcare professionals decide
the time required for surgery based on historical data. As a
starting point for the development of models, we studied one
interpretable and explanatory model, RuleFit [26], as well as
two opaque models, XGBoost [22] and a Feedforward Neural
Network, in order to comprehend the behavior of CUF data
with black-boxes and the trade-off between predictive power
and interpretability. Below, we present a brief discussion of
these algorithms:

1) XGBoost: XGBoost is a gradient boosting algorithm that
uses decision trees, that combines simple decision rules, as
its "weak" prediction to predict a target variable accurately.
XGBoost minimizes the objective function with Lasso (L1)
and Ridge (L2) regularization to prevent overfitting and penal-
izing model complexity. Thus, during training, the algorithm
will iteratively generate decision trees to predict the residual
errors of previous trees, and then combine the result with the
generated trees in order to get the final prediction.

2) RuleFit: RuleFit is an algorithm that combines tree en-
sembles and linear models to take advantage of tree ensemble’s
accuracy and linear models interpretability. This algorithm
allows us to generate rules from a decision tree that create
a set of “new” features from interactions between the original
features. To circumvent the increase in dimensionality, Lasso,
the L1 regularization technique, is called to assign weights to
each decision rule since the current implementation of RuleFit
can produce redundant features. By assigning a coefficient of 1
or 0 to the rules, Lasso will shrink the less important feature’s
coefficient and transform the input feature space into a smaller
subset and easier to explain.

3) Feedforward Neural Network: The Feedforward Neural
Network (FNN) is a set of structured neurons in a series of
layers, with each neuron in a layer containing weights to
all neurons in the previous layer. The name "Feedforward"
is derived from the assumption that inputs and outputs are
independent of each other and the corresponding decision that
there are no feedback connections in which outputs of the
model are feedback into itself [28]. The model is associated
with a directed acyclic graph and represented by a combination
of many layers of perceptrons. The first layer is the input layer
and the rightmost is the output layer. Between them, there
are a set of hidden layers with hidden units associated with
often nonlinear activation function to preserve many of the
properties that make linear models generalize well. In FNN
the piecewise linear function, Rectified Linear Unit (ReLU),
is the recommended activation function. The ability of the
ReLU function set to zero values lower than zero, ensuring
that the function is linear for values greater than zero, brings
many advantages to the backpropagation process and the use
of gradient-based methods.

D. Models Development

After analyzing similar works in the OR topic and considering
the indication of CUF’s stakeholders, the strategy chosen to
move forward was the study of three types of approaches: a
general, specialty-specific and surgeon-specific models. The
last two specific models were based on the work developed
by Bartek et al. [1], in which the authors generated specific
models where surgeons are modeled individually and specific
machine learning models for each specialty. The two specific
approaches were developed for each surgical specialty or each
surgeon with more than 100 surgeries in the training dataset
to achieve a reasonable performance value in the test dataset.
Therefore, we developed a total of 18 specialty-specific models
corresponding to each surgical specialty and 381 surgeon-
specific models for surgeons. The models of each approach
will contain a different structure, its specific encoding and
different observations in the target column.

The machine learning models were developed on the 80%
training data and validated on 10% of the data. Another 10%
of the data is preserved as a test dataset to compute the
generalization error.

Regarding the choice of model parameters during model
development, in FNN and RuleFit, it was not possible to
introduce a custom evaluation function, thus, our choice fell
on the Mean Squared Error (MSE) metric. Nonetheless, the
XGBoost algorithm allows to define a metric of our choice,
so, taking into account the approach taken by Bartek et al.
[1], the scoring strategy combines both the Mean Absolute
Percentage Error (MAPE) but also the percentage of within
cases, where surgeries considered within present an error of
less than 10%, concerning the difference between the actual
duration of the surgery and the one predicted by XGBoost.

E. Data Enrichment and Model Selection

Imbalanced data is a common issue in learning problems
mainly in classification problems where the ratios of each class
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are unbalanced and may lead the model to ignore minority
classes. However, this problem is inherent in the real world as
it is rare to have uniform distributions across several categories
and we always end up observing skewed distributions in data
labels.

Through the EDA, it was possible to identify that the data
was imbalanced and the histogram of the actual values, as
shown in Figure 1, is left-skewed. Consequently, models will
probably have difficulty delivering optimal results for some
surgeries presented in less predominant regions, thus could
show considerable difficulty in predicting surgeries with a
longer operative time. Therefore, we enriched three different
datasets, one of each of the previous approaches, using the
GMM to improve the prediction of surgeries by learning the
distribution of the features in the scarce label regions and
sample from it, to rebalance the dataset. This strategy aims to
ensure that the models can predict surgeries in general without
bias and attempt to predict surgeries outside the main range
with a smaller error.

Fig. 1. Histogram and density plot of target.

First, for each model, a set was generated containing most
of the data, around 75%, including the mode. The remaining
surgeries were divided into two minority classes. Thus, we will
be able to consider having three types of surgeries belonging
to the class 1, 2 or 3, and treat the problem as a classification
problem. In this way, taking the sets of the two minority
classes, we will generate new synthetic samples using GMM.

As the basis for evaluating the model complexity and
choosing the number of components, different types of co-
variance were analyzed, including spherical, diagonal, full and
tied, using the Akaike (AIC) and the Bayesian Information
Criterion (BIC). The GMM was applied to each minority class
until the sum of the data points generated with the initial class
data be equal to the total number of points in class 1.

Fig. 2. The proposed curve illustrating the generalization ability of the
elbow on lower left corner and the empirical risk effect of increasing model
complexity.

Moreover, a new version of the Rashomon Curve [29],
named Interpretability Curve and illustrated in Figure 2, will

be designed to find the optimal model. The Interpretability
Curve will be designed to better respond to the problem
at hand. The curve will evaluate the relationship between
complexity as a function of the empirical loss of the train set
in the minority classes to assess the error in the class that the
model has more difficulty in predicting. Unlike the Rashomon
Curve, the arrows will represent the difference in Root Mean
Squared Error (RMSE) in the minority classes between the
test dataset and the training dataset to identify the transition
between the model’s underfit and overfit. This approach will
be applied both to the model generated from imbalanced and
balanced data and in both algorithms, XGBoost and RuleFit.

Regarding the y-axis, the complexity will be represented by
the number of rules generated by RuleFit or the depth of the
XGBoost trees. Thus, to generate the respective Interpretability
Curve for each algorithm, a set of trees with different depths
and different number of rules are initialized to generate the
final curve. The Interpretability Curve will be used for the
model selection and to choose appropriate complexity. As
described by Semenova et al. [29] the elbow of the curve
seems to be a reliable model selection criterion, an important
selection from the interpretability point of view.

F. Performance Evaluation Method

The evaluation of a machine learning algorithm is a crucial
step during the machine learning process. After getting the
predictions, it is important to understand how close they are
to the expected value and therefore, different metrics can be
used. However, we will have to keep in mind that different
metrics will lead to different results depending on our goal
and data distribution, and that our model can get outstanding
results on the training set, but behave poorly with the test set.

Firstly, during the development of approaches to develop
predictive models the results obtained from each algorithm
were compared taking into account the actual case-time dura-
tion. The metric used to compare the performance of models
was the percentage of within cases, where these cases are those
in which the forecast has a maximum error of 10%, which is
the threshold chosen, and therefore the higher this percentage,
the better the model’s performance. Overutilization and un-
derutilization are cases that have been estimated with an error
greater than 10% in module, with a time shorter than the real
one and with a time exceeding the actual case-time duration
respectively. For the surgeon and specialty approaches, the
performances of the different models belonging to each were
concatenated, taking into account the percentage of each model
to make a more direct comparison throughout strategies.

In the second phase of the work, imbalanced and balanced
models were developed with the same metrics explained, how-
ever UBA imbalanced learning metrics [30] will be applied
to compare the results of both datasets. The performance
evaluation sometimes may require the use of special metrics
as the most popular metrics are based on averages and are not
prepared for unbalanced domains [31]. To address regression
problems where extreme values are also important to predict
accurately and where we can focus on key application cases,
Torgo and Ribeiro [32] developed a regression algorithm in
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the non-uniform costs domain, which allows user to specify
domain preferences and it also includes utility-based perfor-
mance metrics, precision and recall metrics, often used in
classification, but to be applied in regression tasks. The idea
is to assign different importance to each surgery prediction
provided by the model. For example, if it is more important
for CUF to predict more accurately shorter procedure times
than longer surgeries, or if it is preferable to underestimate
the time rather than overestimate, as it does not affect the
following surgeries, probably it makes no sense to use metrics
that give the same rate of importance to each forecast and
thus we will base our metrics on the application’s target. The
package provides various pre-processing functions to deal with
classification and regression problems, and involves evaluating
the utility (cost/benefit) of predictions.

IV. RESULTS & DISCUSSION

A. Algorithmic Analysis

Firstly, we studied the three model approaches by applying
the above-described algorithms to understand the behavior of
the data. In the implementation phase, the parameter tuning
was performed depending on the algorithm. For XGBoost,
parameters such as maximum depth, eta and minimum child
weight were optimized. In RuleFit, it was tuned parameters
like the type of decision tree and its depth. And lastly, in
FNN, the number of layers, learning rate and dropout. We
evaluated performance considering the percentage of within
surgeries. We also compared the model’s predictions with the
CUF estimates. The results achieved with each algorithm and
approach are represented in the following Tables I,II and III.

TABLE I
VALIDATION ERROR OBTAINED FOR EACH APPROACH WITH XGBOOST

AND FROM CUF MODEL.

Model Within Overutilization Underutilization
CUF 0.20 0.31 0.49

General Model 0.26 0.39 0.35
Specialty-specific models 0.27 0.41 0.32
Surgeon-specific models 0.33 0.41 0.26

TABLE II
VALIDATION ERROR OBTAINED FOR EACH APPROACH WITH RULEFIT AND

FROM CUF MODEL.

Model Within Overutilization Underutilization
CUF 0.20 0.31 0.49

General Model 0.22 0.30 0.48
Specialty-specific models 0.24 0.29 0.47
Surgeon-specific models 0.26 0.30 0.44

TABLE III
VALIDATION ERROR OBTAINED FOR EACH APPROACH WITH FNN AND

FROM CUF MODEL.

Model Within Overutilization Underutilization
CUF 0.20 0.31 0.49

General Model 0.24 0.31 0.45
Specialty-specific models 0.24 0.34 0.42
Surgeon-specific models 0.24 0.33 0.43

According to previous Tables, all algorithms show better
results about the current CUF estimates, and the surgeon-
specific models still have an improvement in cases within
the threshold in respect to the specialty model. Additionally,
XGBoost presents a higher improvement than the rest of the
algorithms, an expected outcome since this scalable imple-
mentation of gradient boosting behaves well under imbalanced
data.

In both XGBoost and RuleFit, CUF predictions are less
accurate than each approach and it is possible to verify that the
less generic the dataset is, thus moving from the general model
to the surgeon’s models, the percentage of correct predictions
increases.

Through the FNN method, we cannot verify a better fore-
cast when we use specific models compared to the general
model. These results may be related to the difficulty of the
neural network to adapt to imbalanced datasets [33] since it
works based on the calculation of errors and assumes equal
costs. Therefore, neural networks end up adapting more to a
particular class, in the case of classification, or to a range of
more frequent labels in the regression case.

Later, it was also analyzed the importance of the features for
the final output through insightful model interpretation such as
Shapley values [34]. Interestingly, for the general and specialty
approaches, the most important features are the first procedure,
the doctor, the number of procedures performed during the
surgery, and the type of hospitalization. Therefore, this result
emphasizes the importance of a specific model for each doctor
due to the relevance given to the doctor column.

B. Data Balancing Approach

In addition to the algorithmic analysis and the use of more
robust methods like XGBoost for imbalanced datasets, we also
adopt a data balancing approach. Our data is imbalanced and
has difficulty in delivering optimal results for surgeries asso-
ciated with longer times, as observed in Figure 3. Therefore,
we enriched three different datasets using generative modeling
techniques to improve the prediction of surgeries.
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Fig. 3. Graph of true labels versus predicted labels for the ophthalmology
specialty with RuleFit algorithm.

Then, the choice of the optimal model will take into account
the behavior of the Interpretability Curve, including the mo-
ment when the complexity does not justify the minor reduction
of RMSE. A curve is generated for imbalanced and balanced
data and in both algorithms, XGBoost and RuleFit. Figure 4
shows the Interpretability Curve generated for ophthalmology
using the XGBoost algorithm. As expected, we can observe a
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trend of increasing RMSE error in the training set as we have
a lower tree profundity since we will have fewer splits and a
higher tendency to underfit. Therefore, based on Figure 4, the
selected XGBoost model for imbalance data has a depth of 7
and for the ophthalmology model with balanced data generated
from GMM, the tree depth will be 9. In the case of balanced
data, Figure 4 b) presents a minimal error when the depth is
12. However, not only 12 is a very high depth and hard to
interpret, as the difference between the errors of the minority
classes from training and test datasets is almost 50%.

(a) Proposed Interpretability Curve
for ophthalmology model with imbal-
anced data.

(b) Proposed Interpretability Curve
for ophthalmology model with bal-
anced data.

Fig. 4. XGBoost model selection for ophthalmology.

In summary, Table IV presents the selected ideal model
based on the Interpretability Curve for each approach and
algorithm studied. It is possible to notice that the value of the
balanced data is consistently higher than the value associated
with the imbalanced data, coherent results considering that it
contains a more considerable amount of data in the training
set.

TABLE IV
MODEL SELECTION FOR EACH MODEL APPROACH AND ALGORITHM TYPE
FOR IMBALANCED AND BALANCED DATA BASED ON INTERPRETABILITY
CURVE. THE VALUE REPRESENTS THE TREE DEPTH FOR XGBOOST AND

THE CHOSEN NUMBER OF RULES FOR RULEFIT MODELS.

Algorithm Data General
Approach

Ophthalmology
Speciality

Surgeon ID
96440008

XGBoost Imbalanced 9 7 3
Balanced 11 9 3

RuleFit Imbalanced 67 42 28
Balanced 79 47 20

Furthermore, we applied the UBA tool, an evaluation
methodology that gives more importance to points that are
more difficult to predict, and, at the same time, it allows pro-
viding different costs to regions that represent underutilization
or overutilization. In our case problem, the penalization costs
factor p was set to 0.90 since opportunity costs are considered
more severe than false alarms. In other words, overutilization
is more costly than underutilization of operating rooms. Thus,
when the estimated time for a given surgery is longer than
the real one, these false alarms are less punished and lower
the cost. On the other hand, if the predicted time is less than
the real one since this can cause congestion in the flow of
surgeries, the cost associated with this region is higher. The
accuracy of models with and without imbalanced data was
measured with mean utility, recall, precision and Area Under
the Receiver Operating Characteristic Curve (AUC-ROC).

Tables V, VI and VII represent the results obtained after
applying the UBA library in imbalanced and balanced datasets
for the general model, ophthalmology specialty and surgeon
ID 96440008, respectively. The results of the two interpretable
models, XGBoost and RuleFit, can be compared to understand
which algorithms better compress predictions and better esti-
mate surgeries belonging to the classes that we consider part
of the minority class.

In general, through the Tables presented, we can confirm
that balanced models are an improved version of imbalanced
models, particularly on observations with rare extreme values,
and thus get better scores. Firstly, recall is one of the most
important metrics because it evaluates the y points considered
with a high variance and are well predicted, thus it estimates
how good the model is at verifying that a certain value
belongs to minority classes. Hence, a higher recall value means
that our model is predicting better points considered highly
relevant. Analyzing the imbalanced models with the ones
from balance data, this metric has a consistent improvement.
According to the algorithm, RuleFit can better estimate the
set of relevant points than XGBoost, showing a maximum
value in the RuleFit algorithm with balanced data in all model
approaches.

TABLE V
RESULTS OF UTILITY METRICS FOR GENERAL MODEL WITH IMBALANCED

DATA AND WITH BALANCED DATA FROM GMM.

Algorithm Data Mean Utility Precision Recall AUC-ROC

XGBoost Imbalanced 0.092 0.804 0.672 0.771
Balanced 0.092 0.789 0.677 0.779

RuleFit Imbalanced 0.099 0.784 0.686 0.778
Balanced 0.113 0.788 0.704 0.791

TABLE VI
RESULTS OF UTILITY METRICS FOR OPHTHALMOLOGY SPECIALTY

MODELS WITH IMBALANCED DATA AND WITH BALANCED DATA FROM
GMM.

Algorithm Data Mean Utility Precision Recall AUC-ROC

XGBoost Imbalanced 0.071 0.759 0.661 0.765
Balanced 0.071 0.751 0.676 0.772

RuleFit Imbalanced 0.079 0.758 0.673 0.776
Balanced 0.089 0.732 0.726 0.816

TABLE VII
RESULTS OF UTILITY METRICS FOR SURGEON ’96440008’ MODELS WITH

IMBALANCED DATA AND WITH BALANCED DATA FROM GMM.

Algorithm Data Mean Utility Precision Recall AUC-ROC

XGBoost Imbalanced 0.010 0.486 0.505 0.686
Balanced 0.071 0.711 0.674 0.794

RuleFit Imbalanced 0.092 0.725 0.704 0.800
Balanced 0.092 0.697 0.722 0.806

Regarding precision, we do not constantly have a higher
value for this metric in balanced models. The value presented
represents the proportion of points estimated as highly rele-
vant by the model correctly predicted. In this context, most
balanced models predict this parameter slightly lower than
unbalanced models. Furthermore, the mean utility, the metric
that we want to maximize, is expected to have a small value
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because most of the points in the data test belong to class 1.
These points have a small utility score or even zero, so they
do not influence and add a considerable value to the metric.
Models developed with imbalanced data are expected to have a
small mean utility because it is a method that predicts classes 2
and 3 very poorly, so presents the fewest points in the highest-
scoring area. For most approaches, the mean utility value for
balanced models is higher or equal to the imbalanced value.
Lastly, AUC-ROC, which tells how much the model is capable
of distinguishing between classes, was consistently inferior for
the imbalanced data in the totality of the models, meaning
a better balanced model performance in identifying minority
classes.

Ultimately, Table VIII presents the results of RMSE in
minority classes for each balanced model approach and re-
spective algorithm, establishing their comparison with CUF
predictions. The RuleFit algorithm outperforms XGBoost on
all approaches when analyzing the error in minority classes.
In line with what was found through the UBA library, RuleFit
reveals fewer difficulties in learning from imbalanced data.

TABLE VIII
SUMMARY OF THE RMSE IN MINORITY CLASSES FOR EACH MODEL

APPROACH AND ITS COMPARISON WITH CUF PREDICTIONS.

Approach RMSE in minority classes
CUF XGBoost RuleFit

General Model 62.09 60.89 57.39
Ophthalmology Model 31.59 29.54 26.62

Surgeon ID 96440008 Model 27.78 18.37 16.71

C. Generalization error and results from an operation’s per-
spective

With the study of different approaches, algorithms, and bal-
anced techniques, we are in conditions to present the pro-
posed model that allow better planning of CUF’s operating
rooms and evaluate generalization set predictions. We intend
to develop an interpretable machine learning algorithm that
can help CUF health professionals in estimating the time
associated with each surgery and thus reduce the uncertainty
and high errors correlated with the surgical times. For that
reason, RuleFit will be our choice. This algorithm allows the
creation of a set of easily interpretable rules with different
importance, being easy from an explanatory point of view
its application in the hospital environment. Furthermore, it
presented very interesting results with balanced data, even
presenting better recall values than XGBoost.

Earlier, with the analysis of balanced data, we concluded
that GMM technique improves the results of the models
and makes the forecasting method less susceptible to over-
estimation, a parameter that we intended to reduce. As we
explained before, we used GMM to produce synthetic samples
however this implementation was not possible for all models
of each approach, but for only one model of each due to time
constraints. The duration of the generation of the synthetic
samples, the identification of the three classes of each model,
the design of the Interpretability Curve for the choice of the

best model and the guarantee of the same percentage of each
class within different sets are limitations that lead us to present
the final model in a theoretical concept.

Hence, the final model presented to CUF is a RuleFit
algorithm that uses the balanced models of three different
approaches depending on its data. If the initial features contain
a doctor whose model already exists, that is, a doctor with
more than 125 surgeries registered in CUF, the specific surgeon
model will be used because it presents the smallest error
among the approaches. On the other hand, if a doctor has
no trained model, we will move to the specialty models.
Following the same reasoning, we will use this model if there
is already a specialty model for the input specialty. Ultimately,
if none of the above conditions are possible, the general model
will be used for forecasting the time needed. Algorithm 1
represents the entire process described but further studies are
needed before incorporating machine learning-based decision
support systems into clinical practice.

Algorithm 1 Operating room decision support system.
F ← Features
S ← Specialty
N ← SurgeonNumber
if N has more than 100 surgeries in training set then

SurgeonModel(F,N)
else if S has more than 100 surgeries in training set then

SpecialtyModel(F, S)
else

GeneralModel(F )
end if

Finally, generalization errors are critical to understanding
the performance of machine learning models, however as it
was not possible to develop the final algorithm with all models
and approaches with balanced data, it will not be possible to
find this value. For this reason, we will use the unseen set to
estimate the error for the three balanced models conducted to
exemplify how we would have done it if it had been possible
to develop all balanced models. The results are presented in
Table IX and are consistent with the results presented in the
development of the models.

TABLE IX
SUMMARY OF THE GENERALIZATION ERROR MEASURED BY RMSE IN

MINORITY CLASSES FOR EACH MODEL APPROACH AND ITS COMPARISON
WITH CUF PREDICTIONS.

Approach RMSE in minority class
CUF RuleFit

General Model 61.67 57.17
Ophthalmology Model 35.54 28.28

Surgeon ID 96440008 Model 29.34 18.21

Lastly, from the perspective of the final consumer, the
hospital, we developed a cost function to explain more prac-
tically the benefits that the results of our proposal can bring.
We consider it essential to contemplate the relative cost
of overutilization and underutilization activities, which are
changeable costs that will depend on the hospital’s perspective.
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Thus, to calculate the proposed solution’s costs and establish
a comparison with the cost previously supported by CUF,
we generate a set of equations that take into account several
factors.

The total cost for underutilization presented in Equation (1)
considers the percentage of surgeries that falls 10% below the
real time, the number of surgeries with undertime (#Under)
divided by the total number of surgeries (#Surg), and the
average loss of time in minutes. The assigned cost will be
considered a cost per minute (Cunder).

Underutilizationcost = Cunder×
#Under

#Surg
×Avg(min)under

(1)
Similarly, Equation (2) represents the total cost for overuti-

lization, where now we consider the number of surgeries with
overtime (#Over) and the average in minutes of this overuse.

Overutilizationcost = Cover ×
#Over

#Surg
×Avg(min)over

(2)
Finally, the total cost is given by

Ctotal = Underutilizationcost +Overutilizationcost (3)

Both very long and very short time planning can lead to
undesirable consequences for the organization of operating
rooms. From the domain knowledge, we know that Cover is
higher than Cunder because the idle operating room produces
underutilization costs, and indirectly, we are not maximizing
the use of the room with a surgery that could be scheduled. In
contrast, the overuse costs represent increases in the additional
overtime payments and schedule reorganization costs [35].
Thus, we will assume the ratio between underutilization and
overutilization costs as Cover = r · Cunder.

The operational cost is given by the difference between our
proposed model and CUF baseline, where we desire to obtain
a cost reduction as presented in the following Inequality (4).
The chosen cost values will be based on the opinion of the
hospital’s stakeholders and will be kept as unknown variables
as they may have slight variations depending on the purpose
of its use. We will isolate these variables as much as possible
to estimate their relationship by finding a minimum r value.

Cmodel < CCUF (4)

The inequality is applied to both CUF and model predictions
in order to understand if, from an operational point of view,
our model outperforms the current model. Consequently, the
values obtained for r are presented in Table X. The proposed
solutions are cheaper than current standards when r > rmin.
The acquired rmin values are considered small since for
any hypothetical overutilization and underutilization costs,
our results overcome the current estimates, presenting a cost
reduction compared to the CUF baseline. Moreover, in line
with what we found previously, specific models have a lower
cost when compared to the general model.

Figure 5 shows the cost comparison of the baseline and
proposed solutions, where the blue line is associated with

the CUF baseline, and the light blue corresponds to proposed
solutions. We designed the graphs for a relationship between
Cover and Cunder at most twice, so r varies from 0 to 2.
The objective is to get the light blue line below the current
estimates line, with the largest possible gap for the proposed
model to remain more cost-effective. As we can notice in the
proposed solutions, we have a cost reduction compared to the
baseline. Moreover, in line with what we found previously,
specific models have a lower cost when compared to the
general model.

TABLE X
RATIO BETWEEN PREVENTIVE COSTS FOR EACH MODEL IN RELATION TO

CUF’S BASELINE COST.

rmin

General Model -0.36
Ophthalmology Model -0.16

Surgeon ID 96440008 Model -0.078
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(a) General proposed model com-
pared to the baseline
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(b) Ophthalmology specialty pro-
posed model compared to the baseline
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(c) Surgeon ID 96440008 proposed model
compared to the baseline

Fig. 5. Cost comparison of baseline and proposed solutions. Total cost in
function of ratio. The proposed solutions are cheaper than the baseline in the
three approaches. The objective is to be as much as possible below the current
estimate line.

To conclude, it is essential to point out that in a deep
analysis, possible indirect costs should also be analyzed and
other metrics. The measurement tool developed was based on
the type of results we obtain throughout the thesis.

V. CONCLUSIONS

We used explanatory algorithms to develop models that predict
the surgical time required at the operating room through
machine learning techniques associated with a regression
problem. Our models can more accurately predict the time
required to perform an operating room surgery than the CUF’s
current standards.

We developed three different approaches that merged into
the same algorithm can be used depending on the context and
available variables. The extensive work shows that specific
models can bring advantages, especially models developed
individually for each surgeon, having been this approach to
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obtain the highest percentage of within surgeries and at the
same time the lowest RMSE error. Besides, we demonstrate
that the use of techniques that generate large synthetic data
from small data may help to improve the overall accuracy
compared to the measures achieved using the original dataset.

The research work is an evidence that the proper im-
plementation of technologies that use machine learning can
significantly improve current standards of estimation, and
maintaining staff and patients confidence on the system.
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