
Predicting Real Operating Room Occupation, an
Interpretable ML Approach

Maria Teresa de Carvalho Dias Marcelino

Thesis to obtain the Master of Science Degree in

Biomedical Engineering

Supervisor(s): Prof. Cláudia Alexandra Magalhães Soares
Prof. Qiwei Han

Examination Committee

Chairperson: Prof. Maria do Rosário De Oliveira Silva
Supervisor: Prof. Cláudia Alexandra Magalhães Soares

Member of the Committee: Prof. Iolanda Raquel Fernandes Velho

October 2021

ii

I declare that this document is an original work of my own authorship and that it

fulfils all the requirements of the Code of Conduct and Good Practices of the

Universidade de Lisboa.

iii

iv

Preface

The work presented in this thesis was performed at CUF (Lisbon, Portugal), during the period March-

October 2021, under the supervision of Eng. João Leal and Eng. Daniela Burrinha. The thesis was

co-supervised at Instituto Superior Técnico by Prof. Cláudia Soares and also by Prof. Qiwei Han,

Professor of Data Science and Business Analytics at Nova SBE.

For this thesis, a non-disclosure agreement was signed with CUF, for the protection of sensitive

information shared for the development of the thesis.

v

vi

Acknowledgments

Em primeiro lugar, gostaria de agradecer aos meus orientadores, Professora Cláudia e Professor Qiwei,

por toda a confiança que depositaram em mim ao longo destes meses e por me receberam como sua

aluna. A forma como me trasmitiram a sua curiosidade e paixão por data science foi uma motivação ao

longo de toda a realização do trabalho, e o seu pensamento crı́tico e orientação serão um exemplo a

seguir. Foi um privilégio poder aprender tanto com eles.

Um agradecimento especial à Daniela e ao João, que me apresentaram este projeto e confiaram

em mim para o desenvolver em conjunto com a CUF. Muito obrigada pelo acompanhamento, por me

apoiarem e se mostrarem sempre disponı́veis para responder às minhas questões.

Numa nota mais pessoal, agradeço às pessoas com quem tive o prazer de partilhar esta longa cam-

inhada. Primeiro, aos amigos de longa data que Coimbra me deu, que mesmo longe acompanharam

sempre o meu crescimento e conquistas. Aqueles com quem sem dúvida partilhei os segredos da

minha cidade, Coimbra, e que levarei p’rá vida. Por mais que nunca tenha sentido o verdadeiro signifi-

cado de ser estudante de Coimbra e o peso da capa negra, foi também aqui, nesta cidade, que é minha

desde sempre, que vivi dos melhores anos da minha vida, criei amizades e partilhei momentos.

Em segundo lugar, aos amigos que o Técnico me presenteou. Foi há 5 anos que cruzei a Alameda

pela primeira vez e esta foi a primeira paragem de uma viagem por alguns dos melhores anos da minha

vida. Foi aqui que aprendi a pensar, a olhar para o mundo de outra forma e a superar-me. Viagem esta

que não faria sozinha. Obrigada Lu, Mary J, Maria, Marga, Pipa, Cat, Carol, João, Gonçalo e Nuno por

terem sido a minha casa durante estes 5 anos e alinharem sempre nas minhas aventuras. Foi com eles

que partilhei desde noites de estudo na P10 e almoços contrariados no social a diversos momentos de

lazer e viagens. Obrigada por me fazerem querer ser melhor todos os dias e me acompanharem desde

então. À Maria e ao Hugo, muito obrigada por todo o apoio e ajuda, e pela companhia durante estes

últimos meses de tese.

Por último, à minha famı́lia, a base de tudo aquilo que sou hoje e peça chave dos meus sucessos.

Aos meus pais, pelo apoio incondicional, por terem sempre as palavras certas e por serem um exem-

plo daquilo que quero ser. Aos meus irmãos, por partilharem as alegrias comigo e serem incansáveis

sempre que preciso. Aos meus avós, pelo amor incondicional. Obrigada por acreditarem em mim e me

terem deixado voar e fazer as minhas próprias escolhas, mesmo que isso implicasse estar longe. Foi

sem dúvida um desafio que valeu a pena.

Ao Técnico, que me proporcionou tudo isto e que permitiu ir além fronteiras até à Bélgica, não te

digo adeus porque te levo sempre comigo.

vii

viii

Resumo

Hoje em dia, o potencial do uso de técnicas de aprendizagem automática (ML) para resolver problemas

do mundo real é amplamente explorado, e muitos são os domı́nios de aplicação, como cibersegurança,

aviação e saúde, onde há pesquisas aprofundadas sobre sua aplicabilidade. Com a quantidade de

dados recolhidos atualmente no contexto hospitalar, modelos capazes de aprender e melhorar auto-

maticamente sustentados na exploração dos dados podem solucionar problemas que colocam em risco

o bom funcionamento dos hospitais. O bloco operatório é um ambiente de alto custo e a sua utilização

deve ser eficiente. Assim, o trabalho proposto foca-se no desenvolvimento de modelos de ML inter-

pretáveis de previsão para integração num sistema de suporte à decisão a fim de melhorar a previsão

dos tempos cirúrgicos, comparando-os com métodos tradicionais. Implementámos três modelos de

ML, XGBoost, RuleFit e uma rede neuronal, e analisamos o seu desempenho, incluindo precisão e

interpretabilidade. Para cada um dos algoritmos, implementamos três estratégias diferentes. Posterior-

mente, uma vez que as durações cirúrgicas mostraram um desequilı́brio significativo e isso pode preju-

dicar o desempenho de algoritmos de ML, treinamos uma Gaussian Mixture Model (GMM) para apren-

der a distribuição de probabilidade nos valores minoritários da label, permitindo superar o desequilı́brio.

O desempenho dos modelos em conjuntos de dados balanceados e desequilibrados foram compara-

dos usando o Utility-based Algorithm (UBA). Este trabalho é uma evidência de que a implementação

adequada de tecnologias de ML interpretáveis podem melhorar significativamente os padrões atuais

de estimativa, representando uma redução de custos, mantendo a confiança dos decision-makers no

sistema.

Palavras-chave: Bloco Operatório, Aprendizagem Automática, Eficiência, Duração da Cirur-

gia, Modelos Interpretáveis

ix

x

Abstract

Nowadays, the potential of using Machine Learning (ML) techniques to solve real-world problems is

extensively explored, and many are the application domains such as cybersecurity, aviation and health-

care, where there is in-depth research into their applicability. With the amount of data currently gathered

in the hospital environment, models capable of learning and improving automatically through the use of

data might solve problems that endanger the proper functioning of hospitals. The Operating Room (OR)

is a high-cost environment, and its usage must be efficient. Therefore, our presented solution focuses

on developing interpretable prediction ML models for an OR decision support system to improve the

prediction of surgical times, comparing them with traditional methods to aid the OR scheduling process.

We implemented three different ML models, XGBoost, RuleFit and a neural network, and we compared

and analyzed their performance, including both accuracy and interpretability. For each of these algo-

rithms, we implemented three different strategies. Then, since surgical durations showed a significant

imbalance and this is known to hinder the performance of accuracy-based ML algorithms, we trained

a Gaussian Mixture Model (GMM) to learn the probability distribution on the minority values of our la-

bel enabling sampling to overcome the imbalance. The performance of the models on balanced and

imbalanced datasets was compared using the Utility-Based Algorithm (UBA). This research work is an

evidence that the proper implementation of interpretable ML technologies can significantly improve cur-

rent standards of estimation, representing a cost reduction from an operation’s perspective, maintaining

the decision-makers’ confidence in the system.

Keywords: Operating Room, Machine Learning, Efficiency, Surgery Case Duration, Inter-

pretable Models

xi

xii

Contents

Preface . v

Acknowledgments . vii

Resumo . ix

Abstract . xi

List of Tables . xvii

List of Figures . xix

List of Algorithms . xxi

Nomenclature . xxiii

List of Acronyms . xxvi

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives and Contributions . 2

1.3 State of The Art . 2

1.3.1 Operating Room Stages . 2

1.3.2 Prediction of Case-time Duration . 3

1.3.3 Related Work . 4

1.4 Thesis Outline . 6

2 Theoretical Background 7

2.1 Supervised Learning . 7

2.2 Regression Algorithms . 8

2.2.1 Extreme Gradient Boosting . 8

2.3 Interpretable Methods . 8

2.3.1 RuleFit . 8

2.4 Feedforward Neural Network . 9

2.5 Categorical Data Encoders . 11

2.6 Imbalanced Approaches . 11

2.6.1 Synthetic Minority Over-sampling Technique . 12

2.6.2 Gaussian Mixture Model . 13

2.7 Regression Metrics . 15

xiii

2.7.1 Mean Squared Error (MSE) . 15

2.7.2 Mean Absolute Percentage Error (MAPE) . 15

2.7.3 Utility-Based Regression . 15

2.8 Interpretability and Model Explanations . 19

2.8.1 Shapley Additive Explanations . 19

2.8.2 Rashomon Curves . 20

3 Data Analysis and Preparation 22

3.1 Dataset Introduction . 22

3.2 Exploratory Data Analysis . 23

3.3 Time Series Analysis . 28

3.4 Feature Engineering . 30

3.5 Data Imbalance . 30

3.6 Missing Data . 31

3.7 CUF Predictions . 32

3.8 Remotion of erroneous data . 33

3.9 Data and Features Selection . 33

3.10 Encoding . 34

4 Modeling 35

4.1 Proposed Approaches . 35

4.1.1 General Model . 35

4.1.2 Specialty-speci�c Models . 36

4.1.3 Surgeon-speci�c Models . 36

4.2 Data Split . 36

4.3 Machine Learning Algorithms Implementation . 36

4.3.1 Extreme Gradient Boosting Implementation . 36

4.3.2 RuleFit Implementation . 42

4.3.3 Feedforward Neural Network Implementation . 48

5 Balanced Approach 58

5.1 Deal With Imbalanced Data . 58

5.2 Interpretability Curve for Imbalanced Data . 61

5.3 Balanced Model Results . 62

5.3.1 Model Selection . 62

5.3.2 Performance Evaluation . 65

6 Results from an Operation's Perspective, Generalization Error and Conclusions 70

6.1 Final Model and Generalization Error . 70

6.2 Results from an Operation's Perspective . 72

6.3 Conclusions . 74

xiv

6.3.1 Future Work . 75

Bibliography 76

A Technical Nomenclature 83

A.1 Data Dictionary . 83

A.2 Types of Anesthesia . 84

B Code 85

B.1 Code Organization . 85

B.1.1 Python . 85

B.1.2 R . 86

xv

xvi

List of Tables

4.1 Set of parameters used in XGBoost Tuning. 37

4.2 Validation error obtained for each approach with XGBoost algorithm and from CUF model. 38

4.3 Set of parameters used in Ensemble Methods Tuning. 44

4.4 Selection of parameters used by the rule �tting method in each model approach. 45

4.5 Validation error obtained for each approach with RuleFit and from CUF model. 45

4.6 Five of the rules that were generated by general RuleFit model, along with their support

and importance. 47

4.7 Set of parameters used in Feedforward Neural Network Tuning. 49

4.8 Range of Batch Size used in Feedforward Neural Network Tuning. 52

4.9 MSE results for surgeon-speci�c models, specialty-speci�c models, general model and

CUF model. 53

4.10 Validation error obtained for each approach with FNN and from CUF model. 54

5.1 Model selection for each model approach and algorithm type for imbalanced and balanced

data based on Interpretability Curve. 65

5.2 Results of utility metrics for general model with imbalanced data and with balanced data

from GMM. 68

5.3 Results of utility metrics for ophthalmology specialty models with imbalanced data and

with balanced data from GMM. 68

5.4 Results of utility metrics for surgeon ID 96440008 model with imbalanced data and with

balanced data from GMM. 68

5.5 Summary of the RMSE in minotiry classes for each model approach and its comparison

with CUF predictions. 69

5.6 Summary of the RMSE in all classes for each model approach and its comparison with

CUF predictions. 69

6.1 Summary of the generalization error measured by RMSE in minotiry classes for each

model approach and its comparison with CUF predictions. 71

6.2 Summary of the RMSE in each such model and its comparison with RMSE of CUF pre-

dictions. 73

6.3 Ratio between preventive costs for each model in relation to CUF's baseline cost. 73

xvii

xviii

List of Figures

2.1 Recti�ed Linear Activation Function. 10

2.2 Synthetic samples creation process by SMOTE. 12

2.3 Covariance types. 13

2.4 Relevance function using ”extremes” method and its utility surface. 16

2.5 The utility surface obtained with the relevance function � shown in Figure 2.4 a), with p =

0.95. 18

2.6 The utility surface generated by UBL package when set the type of surface that is being

interpolated as cost. 19

2.7 The Rashomon Curve. 21

3.1 Number of surgeries per year since 2017 to 2020. 23

3.2 Gender and age distribution over the patients. 24

3.3 Anesthesia and procedures number distribution over surgeries. 25

3.4 Frequency of surgeries per specialty. 26

3.5 Anesthesia and procedures number distribution over surgeries. 26

3.6 Week distribution of specialities. 27

3.7 Week distribution of procedures. 27

3.8 Monthly distribution of surgeries from 2017 to 2020. 28

3.9 Yearly and monthly seasonality. 29

3.10 Trend resulting from the use of Prophet tool after the inclusion of an exceptional season. . 29

3.11 Histogram and density plot of target. 31

3.12 Visualization of missing values. 31

3.13 Error distribution since 2017 to 2020. 32

3.14 Summary of the data cleaning process. 34

4.1 Distribution of within cases using XGBoost and CUF predictions for each specialty. 38

4.2 SHAP summary plot of XGBoost general model. 39

4.3 SHAP summary plot of orthopedics specialty. 40

4.4 SHAP summary plot of surgeon ID 132273102. 41

4.5 Feature importance chart for general model. 42

4.6 Feature importance computed in general model with SHAP values. 43

xix

4.7 Distribution of within cases using RuleFit algorithm and CUF predictions for each specialty. 46

4.8 Bar chart listing the explanatory variables based on their signi�cance level for the general

model. 47

4.9 Architecture of Feedforward Neural Network. 50

4.10 Loss and validation loss before and after parameters tuning. 51

4.11 Split of data into test, train and validation set. 52

4.12 Validation loss and training loss of �nal general model. 53

4.13 MSE distribution in Boxplots. Box represents the data that exists between the �rst and

third quartile. 54

4.14 Distribution of within cases using Feedforward Neural Network and CUF predictions for

each specialty. 55

4.15 Loss and validation loss before and after parameters tuning. 56

4.16 Features individual contributions in general model. 57

5.1 Plot of true labels with predicted labels. 59

5.2 GMM selection for ophthalmology specialty using AIC and BIC scores. 60

5.3 Selection of best number of components for ophthalmology specialty. 60

5.4 Distribution of surgery durations for the ophthalmology specialty dataset before and after

the generation of synthetic data in minority classes by GMM. 60

5.5 The proposed Interpretability Curve. 62

5.6 XGBoost model selection for ophthalmology. 63

5.7 RuleFit model selection for ophthalmology. 64

5.8 Illustration of train and validation error performance as a function of rules number. 64

5.9 The relevance function for the prediction of surgeries times in case of surgeon ID 9644000 66

5.10 An utility surface for the the prediction of surgeries obtained with the relevance function

shown in Figure 5.9, with p = 0.90. 67

6.1 Cost comparison of baseline and proposed solutions. Total cost in function of ratio. 74

xx

List of Algorithms

1 Operating room decision support system. 71

xxi

xxii

Nomenclature

Greek symbols

� Difference.

� B Bounded-loss function.

� c Bounded-loss function.

� Gaussian distribution.

� Mean of a Gaussian distribution.

� Relevance function.

� p Joint relevance function.

� Covariance of a Gaussian distribution.

� Rashomon parameter.

K Number of models generated by Gaussian Mixture Models.

Roman symbols

L̂ Loss function.

R̂ratio Rashomon Ratio.

R̂set Rashomon Set.

ŷ Estimated target value.

ẑ Predicted class.

F Hypothesis space.

V Volume space.

D Number of dimensions.

f Function.

k Number of adjustable parameters.

xxiii

L Likelihood.

N Number of samples.

n Sample size.

U Utility function.

Y Original domain of the target variable.

y Target value.

z True class.

tE Threshold.

p Weight parameter.

Subscripts

1 Free-stream condition.

i; j Computational indexes.

x,y Cartesian components.

xxiv

List of Acronyms

ADAM Adaptive Moment Estimation

AI Arti�cial Intelligence

AIC Akaike Information Criterion

AUC-ROC Area Under the Receiver Operating Characteristic Curve

BIC Bayesian Information Criterion

EDA Exploratory Data Analysis

EHR Electronic Health Record

FN False Negatives

FNN Feedforward Neural Network

FP False Positives

GMM Gaussian Mixture Model

ICU Intensive Care Unit

ID Identity Document

KDE Kernel Density Estimation

L1 Lasso

L2 Ridge

LIN Least-squares Linear Regression

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

ML Machine Learning

MSE Mean Squared Error

NaN Not a Number

xxv

NN Neural Network

OR Operating Room

ORN Operative Registry Number

OWL Ordered Weighted `1

PACU Post-Anesthesia Care Unit

ReLU Recti�ed Linear Unit

RMSE Root Mean Squared Error

RMSprop Root Mean Squared Propagation

SGD Stochastic Gradient Descendent

SHAP Shapley Additive Explanations

SMOTE Synthetic Minority Over-sampling Technique

STEP Stepwise regression

TOM Tabela Ordem dos Médicos

TP True Positives

UBA Utility-Based Algorithm

UBL Utility-Based Learning

XGBoost Extreme Gradient Boosting

xxvi

Chapter 1

Introduction

1.1 Motivation

For public or private hospitals, ef�ciency is a common goal. Both need to manage the limited resources

available to provide high quality care and care for a larger number of patients. However, this manage-

ment is hard due to the unpredictability of various events that escape the foresight of the best managers

and medical doctors.

More precisely, the schedule planning of Operating Rooms (ORs) is one of the biggest challenges in

the health sector since this service is a hospital key element, responsible for around 42% [1] of income

but, simultaneously, due to high cost of use, most hospital expenses are related to the OR, around 35%

to 40% of hospital's costs [2]. Nowadays, operating rooms are costly, ranging from $30 to more than

$100 per minute. Therefore, it is crucial to maximize this critical �nancial bottleneck's ef�ciency [3].

Besides �nancial criticality, this service is one of the biggest headaches in the hospital due to its ex-

tremely high complexity. The interactions between different healthcare stakeholders (such as surgeons,

patients, nurses, and anesthesiologists), the dif�culty of predicting the time in certain types of proce-

dures due to unpredictable patient circumstances, the need for sterile material that depends on third

parties, and the availability of beds in Post-Anesthesia Care Unit (PACU) are just a few reasons that

help us understand the dif�culty in managing this service [1].

Regarding the hospital group under study, CUF is a Portuguese private healthcare provider with 18

clinics and hospitals spread across the country. CUF is one of the most important private groups in

Portugal that between 2017 and 2020 treated 190 thousand patients on operating rooms in its 15 units

equipped with an OR. To highlight the importance of CUF in Portugal, last year 2020 CUF won the

“Trusted Brand” award promoted by Seleções dos Reader's Digest magazine, in the “Private Clinics and

Hospitals” category, a choice that has been made for the sixth consecutive year. At the CUF operating

room management level recently, in 2019, a global management consulting �rm delivered a report that

stated inef�ciencies at the OR organization system, which came to support the fact that these problems

exist.

There is a cascade of negative consequences due to inadequate estimation of surgery times with a

1

high impact on health professionals that can be highly affected since if time is wasted unnecessarily, the

higher is the probability of working over hours, which generates discontent in the workplace. Moreover,

it may also impact patients since surgery waiting lines can be long and ineffective scheduling quickly

leads to very high waiting times during patient �ow.

To conclude, in this thesis, we seek to solve this problem and explore methods for minimizing the in-

correct prediction of surgical times, minimizing blockings between two consecutive surgeries to provide

good care to all patients and increase health professionals' satisfaction.

1.2 Objectives and Contributions

The goal of the thesis is to develop a Machine Learning (ML) model to improve the operating room

planning through a case-time estimation using CUF historical data from 2017 to 2020.

The purpose of the work is to �nd an accurate method to estimate the surgery times to optimize the

operating room process �ow, improving surgery allocation in the overall scheduling and care delivery

from hospitals. For this approach, several factors were considered, such as type of surgery, operating

room time, pseudo-anonymized patient information, and type of procedures.

1.3 State of The Art

This Section presents an overview of what already exists in the literature regarding the implementation

of machine learning in the scope of operating rooms ef�ciency improvement efforts. Important concepts

are introduced to better understand the operating room's organization and its dependence on other

healthcare services.

1.3.1 Operating Room Stages

Operating room scheduling does not just depend only on the use of the operating room itself, there is

a whole path that the patient has to go through, and all stages are directly correlated. As described by

Abedini et al. [4] we can divide the surgical process into three stages:

• The peri-operative process

• The intra-operative process

• The post-operative process

The peri-operative stage is related to administrative and clinical admissions, and the interaction be-

tween the patient and the anesthesiologist. Thus, in this �rst stage, some important information is

gathered after the patient's arrival at the hospital to be admitted and the patient is prepared for surgery

that occurs in the next phase. The surgery is performed during the intra-operative stage and in the last

stage the patient is moved to a PACU where it waits for recovery after surgery and anesthesia.

2

Therefore, there is a complex environment to manage which depends on a lot of factors. In each

stage, some problems can represent a bottleneck with a signi�cant impact on all processes, such as

delayed patient registration, staff unavailability, case duration accuracy, and the lack of beds in PACU.

These factors create congestion throughout the operating room organization because patients cannot

be moved to the next stage and health professionals have to keep them in the state they are in [3, 4].

Regarding CUF, we had the opportunity to visit CUF Sintra in order to better understand the process

that the patient undergoes since it arrives at the hospital until it leaves. This visit gave us an overview of

the patient �ow that was extremely important in identifying the steps that are wasting unnecessary time,

realizing CUF's expectations and con�rming the existence of the same problems that were found in the

bibliographic review.

1.3.2 Prediction of Case-time Duration

The accurate prediction of surgical procedure times is essential to maintain ef�ciency and avoid a cas-

cade of delays in OR. Thus the use of inaccurate strategies may have a signi�cant impact on the entire

service and waiting lists.

Nowadays, the historical information on the OR operation is well annotated and there is a lot of in-

formation available, such as the surgical service performing the procedure, the duration of surgery, and

the patient's information, which has a vast potential to optimize the OR pathway. However, these data

are still not fully explored in most hospitals and forecasts of the surgery duration are made based on the

experience and opinion of surgeons, that estimate the operating times that they consider necessary, or

by using simple statistics on the conventional Electronic Health Records (EHRs), the electronic collec-

tion of a patient's medical history where the historical average for each case duration can be performed.

The study conducted by Laskin et al. [5] with oral and maxillofacial surgeons showed that only 26%

of surgeon estimates were accurate and there is an overestimation in 42% of the analysed cases. Over-

estimation occurs because various factors can in�uence the doctor's prediction, simply because com-

plications arise during the procedures or sometimes the doctor may overestimate or underestimate the

surgery depending on the number of appointments they have scheduled on that speci�c day.

Regarding the EHR sample means method also used by CUF, the healthcare provider whose data

was analysed in this study, it allows predicting surgical time based on the average of historical data from

a speci�c procedure or surgeon. However, this type of approach does not take into consideration other

factors, such as patient and procedure-speci�c information, which can in�uence up to 30% of the total

surgery duration [6]. Tuwatananurak et al. [6] used Leap Rail engine to show how can a machine learn-

ing algorithm improves the EHR predictions, getting a signi�cant reduction of around 70% in the total

scheduling inaccuracy, improving the estimation in approximately about 7 minutes per case regarding

actual case duration. Moreover, in Rozario and Rozario [7] work the baseline time prediction was the

surgeon's average procedure time of the last 10 cases. However, with the current method, case times

follow a Gaussian distribution with an underestimation in 50% of the cases.

As these modest results evidence the challenging nature of the problem, they also encourage a ma-

3

chine learning approach, given the excellent results that machine learning methods have provided in

natural language understanding [8], computer vision [9] or games [10]. For these reasons, the methods

used today are seen by healthcare management as not effective, not allowing the most ef�cient use

of surgery rooms. Thus, machine learning optimization methods that handle the information already

available and recorded in hospitals have the potential to accurately predict future outcomes.

1.3.3 Related Work

The need for ef�ciency in planning and scheduling procedures has led to an increase in research in OR

related problems since 2000, with a signi�cant increase in publications since then [11]. In addition, since

2015, there has been an exponential growth in research in terms of the application of ML in the scope

of medicine, since the availability of big data and the growth of data science have allowed a positive

contribution to the decision-making processes [2].

Firstly, statistical analysis of the variability of surgical durations has been studied for years [12], and

techniques such as Lognormal Estimation and Bayesian statistical techniques were intensively explored.

These approaches �nd the best �t in a family of distributions to predict surgical durations and charac-

terize relationships between variables. Stepaniak et al. [13] �tted a 3-parameter lognormal model that

improved the OR scheduling and reduced the mean over reserved OR time per case by up to 11.9 min-

utes. Strum et al. in two studies [14, 15] compared the modeling of surgical procedure times with normal

and lognormal distributions and concluded that lognormal models provide accurate predictions and �t

better procedure times.

Moreover, models based on Gaussian Mixture Model (GMM) are also widely applied as a prediction

model, even in the surgical area i.e. support patient �ow models [16]. The Bayesian method obtained

by Dexter and Ledolter [17] allowed improving predictions for cases where few or no historical data exist

and concluded that GMM can be a reasonable choice when surgical times do not follow a lognormal

distribution. Taaffe et al. [12] also studied the application of Kernel Density Estimation (KDE) to model

surgical durations. The results outperformed traditional methods such as lognormal and GMM when

there is limited historical data.

Other studies also investigate the potential of using mathematical models to improve durations, show-

ing an OR ef�ciency improvement by combining advanced mathematical and �nancial techniques [18]

[19]. However, these approaches postulate a simpli�ed model for the data distribution and this thesis

takes a data-driven, machine learning approach, while keeping interpretability as a requirement. Al-

though machine learning and statistics are closely related �elds in terms of methods, their main goal is

different. Lee and Yoon [20] summarized the differences between classical statistical analysis and big

data medical analysis. While ML models are designed to make the most accurate predictions possible

and �nd patterns in the data that can be generalized, statistical models are designed for inference about

the relationships between variables and reach conclusions about populations or derive scienti�c insights

from data. Thus, in ML, the algorithm learns from a considerable amount of data and generates the

hypothesis from the data, while in statistical models, we need to commit on a priori assumptions based

4

on various underlying probability distribution functions [2].

Even in the machine learning �eld, the high complexity of the OR environment allows and leads to

different approaches to the problem and the use of different metrics by authors and researchers. Fair-

ley et al. [21] de�ned as objective the minimization of maximum PACU occupancy, using constraints to

control and maintain OR utilization. Thereby, to predict PACU recovery times for each patient, a gradi-

ent boosting tree model was used, which is used as input in a program that formulates the schedule of

procedures in the operating room. Abedini et al. [4] developed a blocking minimization model to reduce

the number of blockings between OR and PACU, allowing the hospital to de�ne the OR schedule for

the next day, considering the current stage occupancy of the OR, in order to to ensure the availability of

downstream resources, such as beds in PACU and Intensive Care Unit (ICU).

The case duration accuracy is one of the most common approaches since to allocate the staff and

maximize the use of OR accurately, it is important to predict the time required for each surgery with the

smallest possible error. Bartek et al. [1] developed a linear regression and two ML models to predict

OR case-time duration, with the XGBoost [22] attaining the best performance. Besides these, service-

speci�c and surgeon-speci�c models were considered, where each speciality and doctor were modeled

individually. Tuwatananurak et al. [6] compared the duration of the predicted cases from the conven-

tional method based on averaged historical means for case duration with cases duration predicted by

the Leap Rail engine, a proprietary algorithm that combines different supervised learning algorithms.

Rozario and Rozario [7] resorted to the Operations Research Tools from Google Arti�cial Intelligence

(AI), an open-source software suite for optimization, and developed an algorithm to optimize ef�ciency

in OR in the era of COVID-19 with the objective of minimizing overtime and undertime cases in an OR

that has shown to be bene�cial to reduce the long waiting lists generated during this period.

Regarding machine learning-based solutions proposed to accurately predict surgical durations, Mar-

tinez et al. [23] compared Linear Regression, Support Vector Machines, Regression Trees, and Bagged

Trees. In general, the methods considered are bene�cial for operating room scheduling, but Bagged

Trees was the one that achieved the best overall performance to predict the surgical time duration. Fur-

thermore, Hosseini et al. [24] developed a classical Least-squares Linear Regression (LIN) and a Step-

wise regression (STEP), showing both improvements compared to traditional methods. Lastly, Edelman

et al. [25] performed linear regression models with data from six academic hospitals. Even with few

variables, all are highly signi�cant predictors and models presented a low error.

Researchers frequently use the approaches described above, however, other metrics can also be

used with the goal of optimizing the operating room management. Lee et al. [3] performed an OR's

ef�ciency review and mentioned methods such as identifying surgeries with high risk of cancellation

and optimizing the turnover time between surgeries as frequent metrics used to evaluate and improve

ef�ciency. Furthermore, Bellini et al. [2] presented a systematic review about the AI implementation in

ORs where the majority of the studies use supervised learning techniques, being more frequently used

random forest and decision trees algorithms. Decision trees are powerful and intuitive data structures,

and because they are easily interpretable, they are widely used in the context of medicine, where it

is essential to explain the predictions of the model, something dif�cult in ML because most predictive

5

models are complex and challenging to interpret.

Moreover, several researchers address the features used as inputs in their optimization models.

Bartek et al. [1] took greater account of procedures and personal data to the detriment of the patient's

health status and describes the primary surgeon as the most important feature to create variability. Fair-

ley et al. [21] used a set of 10 features chosen based on discussions with health professionals, such

as surgical service, patient information and the hospital unit the patient will go to after PACU recovery,

where the most important feature was the procedure type with 0.41 of weight within the total of features.

Tuwatananurak et al. [6] took into consideration more than 1,500 features, factors related to patients,

providers, facility/room, procedures and prior events. Lastly, Rozario and Rozario [7] addressed that the

machine learning algorithm held features such as frequency and distribution of procedure types, average

case times and case times variability, highlighting the importance of the development of surgeon-speci�c

models due to the variability that this feature can generate.

Unlike low-stakes applications, in decision-making and particularly in healthcare, black-box methods

that output pure predictions without any veri�able explanation are not acceptable. Thus, the focus of this

thesis is on interpretable machine learning models.

1.4 Thesis Outline

The thesis comprises a total of six chapters, and in detail it has the following structure.

Chapter 1 includes an overview of related work, OR organization and current standards of estima-

tion. In Chapter 2 we introduce relevant topics for the full comprehension of the work. In Chapter 3,

we present one of the most important steps for choosing the statistical model. The Exploratory Data

Analysis (EDA) of available datasets allows us to analyze a massive dataset, correct errors and maxi-

mize insight into the data to extract important data characteristics. In addition, we describe the feature

engineering and feature selection process, transforming raw data into features suitable for modeling and

choosing non-redundant and relevant features to use in model construction.

In Chapter 4 we present and discuss the results of model approaches after applying three different

ML algorithms to compare the applications of white box decision systems with black-box systems and

current standards. Chapter 5 describes the application of GMM strategy used to deal with imbalanced

data and presents a novel curve developed to have the model selection function.

To conclude, Chapter 6 introduces the proposed model and analyzes the results from an operational

perspective comparing costs with standard performance. The chapter also presents the main conclu-

sions of the research work and explores some possibilities regarding future work.

6

Chapter 2

Theoretical Background

In this Chapter, several theoretical concepts applied throughout the thesis are covered in order to demon-

strate an understanding of the theories relevant to the topic and facilitate full third-party compression.

2.1 Supervised Learning

In the machine learning world, the two common machine learning tasks are supervised and unsuper-

vised learning. What will lead us to use one or the other is the type of data we have to develop and

train the model. In general, data can be described as labeled or unlabeled, in other words, it may or

may not contain the solution we intend to reach. Our work, since we know the target, will be focused

on supervised learning. To deal with imbalance, we will use unsupervised techniques like the GMM to

learn the distribution of the scarce regions of our data and sample from it to rebalance the learning data.

Thereby, through the work we will design algorithms to learn by example and training with labeled

data that will map the inputs in order to predict outcomes for unseen data and solve our machine

learning-based problem.

Regarding labels, these can be categorical or continuous, leading us to perform a classi�cation task

or a regression task, respectively. In classi�cation, algorithms work with discrete values and models are

trained to categorize data into different classes. In the case of regression, we sought to �nd the rela-

tionship between the features in order to predict continuous output variables such as predicting house

prices based on relevant information e.g., location, area and number of rooms. As the point of our work

will be to predict surgical times and these are continuous, we will be working with supervised learning

methods using regression.

7

2.2 Regression Algorithms

2.2.1 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is an ensemble learning method that combines the outputs

from individual trees called ”weak learners”, modest models that performed slightly better than ran-

dom chance. XGBoost is a gradient boosting framework developed by Chen and Guestrin [22] and a

supervised learning technique that can be used for regression or classi�cation tasks.

First, we introduce some notions of ensemble learning such as bagging and boosting to better un-

derstand gradient boosting. Bagging uses parallel training in multiple independent models to combine

them and takes the average of the models' responses for regression tasks. In contrast, the boosting

technique allows sequential training and the generation of ”weak learners” sequentially to correct the

error of the previous one until no further improvements can be made. This method combines several

models into one giving more weight to the models that perform better.

Finally, gradient boosting is a re-de�nition of boosting where the objective is to minimize a loss func-

tion. This function measures how close the predicted value is to the actual values, using a gradient

descendent algorithm and �nding the direction in which the loss decreases the fastest. The loss is the

combination between the target value and the predicted value in order to �gure out patterns on residuals.

In this method, ”weak learners” have the same weight to the �nal prediction given by the learning rate,

parameters that range between 0 and 1.

Therefore, XGBoost is a gradient boosting algorithm that uses decision trees, that combines simple

decision rules, as its ”weak” prediction to predict a target variable accurately. XGBoost minimizes the

objective function with Lasso (L1) and Ridge (L2) regularization to prevent over�tting penalizing model

complexity. Thus, during training, the algorithm will iteratively generate decision trees to predict the

residual errors of previous trees, and then combine the result with the generated trees in order to get the

�nal prediction.

XGBoost is described as an algorithm that can model very complex relationships and it is popular

by its performance and speed. This computational performance is enhanced by the algorithm design

since it is able to use hardware resources ef�ciently and due to the possibility of the user specifying

the maximum depth parameter, max depth, when using the method, allowing to avoid unnecessary time

pruning trees backward. An advantage of this machine learning model is its effective ability to achieve

great results even with imbalanced datasets with skewed distributions because the algorithm is able to

adjust the training to give more attention to minority class misclassi�cation.

2.3 Interpretable Methods

2.3.1 RuleFit

RuleFit [26] is an algorithm that combines tree ensembles and linear models to take advantage of tree

ensemble's accuracy and linear models interpretability. This algorithm allows us to generate rules from

8

a decision tree that create a set of new ”features” from interactions between the original features.

A tree-based model such as Random Forest or Gradient Boosting machine model can feed the

RuleFit model and train the model using the dataset. The difference between the two lies in the way

the trees are built. Gradient Boosting, as described in the XGBoost Section, builds trees one at a time,

where each new tree helps correct mistakes made by previously trained trees, while Random Forest

trains each tree independently with random sets in order to build more robust models and less likely to

over�t on the training data.

From the generated decision tree, hundreds of rule combinations are generated, where each path

can be converted into a decision rule through the combination of splits and therefore, depending on the

depth and number of leaves, many rules can be generated that make it dif�cult to interpret and explain

the model.

To circumvent the increase in dimensionality, Lasso, the L1 regularization technique, is called to

assign weights to each decision rule since the current implementation of RuleFit can produce redundant

features. By assigning a coef�cient of 1 or 0 to the rules, Lasso will shrink the less important feature's

coef�cient and transform the input feature space into a smaller subset and easier to explain.

RuleFit is an interesting algorithm to apply in nonlinear problems since the generation of candidate

rules from a combination of a tree model and Lasso regressor may help us better interpret predictions.

Furthermore, it is a white box algorithm which is crucial from the point of view of the user and end

consumer. Through relevant explanations directly taken from the model, we can increase the user's

con�dence in the model, and at the same time, understand if the model may be making illogical decisions

or if it is unintentionally biased [27]. The set of rules generated should meet the insights returned from

the exploratory analysis of the data.

2.4 Feedforward Neural Network

The Feedforward Neural Network (FNN) is a set of structured neurons in a series of layers, with each

neuron in a layer containing weights to all neurons in the previous layer. The FNN goal is approximate

some function f � with succesive compositions of linear and nonlinear operators on x. The name ”Feed-

forward” is derived from the assumption that inputs and outputs are independent of each other and the

corresponding decision that there are no feedback connections in which outputs of the model are feed-

back into itself [28].

The model is associated with a directed acyclic graph and represented by a combination of many

layers of perceptrons. The �rst layer is the input layer and the rightmost is the output layer. Between

them, there are a set of hidden layers with hidden units associated with often a nonlinear activation func-

tion to preserve many of the properties that make linear models generalize well. In FNN the piecewise

linear function, Recti�ed Linear Unit (ReLU), is the recommended activation function represented with

the formula f (x) = max f 0; xg and shown in Figure 2.1.

The ability of the ReLU function set to zero values lower than zero, ensuring that the function is linear

for values greater than zero, brings many advantages to the backpropagation process and the use of

9

gradient-based methods. Additionally, some hidden units have some points that are not differentiable,

but with ReLU the derivative becomes 0 on the left side of x=0 and 1 on the right side. A drawback is

that ReLU is not differentiable at zero. Nevertheless, it is differentiable almost everywhere, as the set of

non-differentiable points has measure zero. Therefore, in practice, it is relatively rare to have a zero as

the input to the ReLU.

Figure 2.1: Line plot of Recti�ed Linear Activation Function for negative and positive inputs.

Backpropagation of the gradients allows the network to ef�ciently compute the cost function gradient

to be used in the optimization algorithm, e.g., Stochastic Gradient Descendent (SGD).

To optimize the Neural Network (NN) cost or loss, SGD and Adaptive Moment Estimation (ADAM) [29]

are gradient-based optimization algorithms commonly used. SGD is generally a little noisier because

it takes small steps in a noisy direction of a minimum and is in�uenced by every set of samples. The

optimizer updates weights after seeing a small subset of data or mini batch, instead of computing the

gradient of the cost function for the whole training set.

ADAM has the advantage of being an algorithm that computes adaptive learning rates for each

parameter and also adds the expected value of past gradients. The speed and faster convergence

make ADAM a very interesting optimizer to use, being robust and suitable for a wide range of non-

convex optimization problems in �eld machine learning as described by Kingma and Ba [29].

In FNN, it is common to normalize inputs to concentrate the spread of the data for the features

in a smaller region to facilitate learning in the backpropagation phase. A signi�cant difference between

input features would generate large weights and, respectively, large updates, which would create greater

instability and cause greater dif�culties during training. Another issue relates with the saturation of dead

zones of activation functions when gradients are zero. For these reasons, it is essential to normalize

the features before introducing them into the model and after each activation layer. Thus, to keep all

activation values on the same scale, we use a batch normalization layer to help us to get a faster

convergence of the learning algorithm.

Lastly, dropout layers can be used to reduce model over�t and generalization error. Dropout is a

regularization technique that allows us to train the network with random con�gurations, where we can

drop some nodes at random during each training stage and learn redundant information pathways.

10

2.5 Categorical Data Encoders

Most machine learning algorithms have trouble handling categorical variables as inputs and require

encoding them as real continuous variables. It is common to convert categorical features into numerical

ones before �tting the data. Thereby, the three most popular encoding techniques are ordinal encoding,

one-hot encoding and dummy encoding.

Ordinal encoding converts variables in ordinal ones, retaining order and for that reason end up to

rearrange variables based on ranks. Suppose a ”Nucleotides” column with the four nucleotides types

(Adenine (A), thymine (T), cytosine (C) and guanine (G)) found in DNA, after the implementation of the

ordinal technique, the nucleotides will be converted into 0, 1, 2 and 3 respectively. Thereby, the encoding

enforce ordered output and ”A” will be considered lower than a ”T”, which is lower than a ”C”, which is

lower than a ”G”. Thus, afterwards it is relevant to comprehend if the ordinal relationship between the

inputs that ordinal encoding will preserve is interesting for the dataset.

On the other hand, one-hot encoding will encode nominal features and generate a feature column per

each variable. Each category value of the feature will be mapped into a binary column with 1's and 0's,

where 1 represents the presence of that speci�c category. Thus, if we have a feature with �ve possible

categorical values, one-hot encoding will generate �ve new columns and drop out the original one.

However, this encoding will signi�cantly increase the cardinality of the problem. If we applied one-hot

encoding to columns like the �rst procedure, specialties or doctors, because these are feature variables

with multiple categories, the encoding would create very high dimensionality that become problematic.

Regarding dummy encoding, this categorical encoding method is very similar to one-hot encoding

and transforms variables into a set of binary variables. However, while in one hot encoding N variables

are created to represent N values of one categorical variable, with dummy encoding, there is a slight

upgrade and it can represent the same N labels in N-1 variables.

Lastly, one method that can help us with the high dimensionality is target encoding [30]. This encoder

replaces categorical values with the mean of the target variable, so it picks up values that can explain

the target. This encoding is a Bayesian encoding technique since it replaces each category with the

posterior probability of the target and should be used with great care in order to minimize leakage.

2.6 Imbalanced Approaches

Imbalanced data is a common issue in learning problems mainly in classi�cation problems where the

ratios of each class are unbalanced and may lead the model to ignore minority classes. However, this

problem is inherent in the real world as it is rare to have uniform distributions across several categories

and we always end up observing skewed distributions in data labels.

As an example, we can think of a classi�cation problem in which we want to predict whether a given

person has cancer or not. In this problem, the dataset that we will have should contain much fewer

instances of people classi�ed with cancer than people without cancer. Therefore, we will have a dispro-

portionate ratio between classes. Usually, the cost function aims to minimize overall error and maximize

11

classi�cation accuracy, so with this disproportion of classes, our model will learn much better for ma-

jority classes. Consequently, if we do not correct this imbalance issue, we could get a model with high

accuracy by being correct for most non-cancer instances without correctly predicting a single minority

class instance.

To deal with imbalanced datasets, three data level methods are commonly used: Undersample ma-

jority class, oversample minority class, and generate synthetic samples.

Firstly, undersampling can be implemented by removing some instances from the majority class,

however, it should be only used when we have a considerable amount of data because we do not want

to remove valuable data.

Secondly, oversampling is related to increasing the number of samples in the minority class by adding

random copies of the minority class in our dataset as if we increased the weight of these copied instances

in the cost function. This method implies that some precautions have to be taken since the generation

of copies can lead to over�tting and we need to ensure that copies are not from the test set in order to

guarantee that there is no memorization by the model.

On the other hand, we can deal with imbalanced datasets creating synthetic samples through Gaus-

sian Mixture Model (GMM) or Synthetic Minority Over-sampling Technique (SMOTE) [31]. These imbal-

anced solutions are going to be explored and therefore explained in a more concise way below.

Lastly, it is essential to note that we just should implement the imbalanced method after splitting the

data into training and test to maintain the test set intact and ensure an adequate generalization error

model in unseen data.

2.6.1 Synthetic Minority Over-sampling Technique

SMOTE uses the Euclidean distance between neighbors in the nearest neighbors algorithm to generate

arti�cial minority class instances that will be available to train our model. First, SMOTE takes samples of

feature space from the minority class and then the k-neighbors closest to the data are found. Afterwards,

new instances will be randomly generated in space between target cases and their neighbors.

Figure 2.2: Synthetic samples creation process by SMOTE using k-nearest neighbor algorithm.

The algorithm helps to overcome the over�tting problem posed by oversampling however it has some

drawbacks. As described by Chokwitthaya et al. [32], SMOTE cannot distinguish outliers from minority

samples and it is limited in a line segment which is unreasonable for high dimensional data. Additionally,

SMOTE does not check if neighboring examples are from other classes, so it may be introducing some

noise in the dataset.

12

2.6.2 Gaussian Mixture Model

GMM is a powerful clustering and unsupervised classi�cation method, de�ned as a convex combination

of multiple Gaussian normal distributions, which has been proven to perform better than many other

clustering methods as k-means or k-nearest neighbor [32].

The Gaussian Mixture is a function comprised of K Gaussians, where K represents the number of

models. Each Gaussian identi�ed by a � 2 1,..,K is represented by a mean, � � , and a covariance, � � ,

the �rst one de�ning the center and the second one the spread and orientation of the cluster.

Although GMM are also applied in clustering tasks, this generative method learns complex data

distributions from which we can sample synthetic data points in the high-dimensional feature space,

instead of a linear sampling space [33]. In addition, GMM is also able to distinguish outliers from minority

class instances and thereby it was the proposed framework implemented by Zhang and Yang [33] instead

of SMOTE.

Type of covariances for the GMM

The covariance measures how much two random variables vary together and it is an important param-

eter that can be different along with GMM models. The covariance matrices vary between spherical,

diagonal, full or tied, getting different performances according to how the data is adjusted. In Figure 2.3

is possible to observe the behavior of each covariance type in a generic example from Scikit-Learn [34].

The goal is to understand which covariance type in GMM best represents the three classes available.

Figure 2.3: Different covariance structures for Gaussian Mixture Models. The example is a two-
dimensional case with three different classes [34].

Firstly, diagonal covariance implies that each component has its own diagonal covariance matrix

meaning different variances along the diagonal, therefore each component adopts an elliptical shape.

This covariance implies D parameters per Gaussian, so a total of DK to be learned, where D is the

number of dimensions. In contrast, in spherical covariance, a type of diagonal covariance, each element

from the covariance matrix has its own single variance adopting a spherical shape. This covariance

shape only require one parameter per Gaussian, so is less �exible. Regarding tied covariance, all

components share the same general covariance matrix, thus each component shares the same shape

and D (D � 1)
2 parameters are needed to represent the model. Lastly, the more �exible covariance is

the full because each component can adopt any shape or position in space. In terms of the covariance

13

matrix, each element has its own general matrix and is necessary D (D � 1)
2 parameters for each Gaussian.

Although this shape is more expressive, the more parameters, the more data is required for training.

Although it can be expected to achieve better results using full covariance, sometimes it tends to

over�t with small datasets, and therefore it will be important to test always with all types before choosing

a covariance matrix.

Number of Components

The number of components is related to the number of Gaussian models needed to �t our data. In order

to get good synthetic samples, this parameter will have to be adjusted since too many components can

generate over�tting but few may not represent the data structure well.

The optimal number of components will be chosen based on the Bayesian Information Criterion (BIC)

and Akaike Information Criterion (AIC).

Probabilistic Model Selection

As mentioned previously, there are information criteria methods for determining the number of clusters

that maximize ef�ciency while minimizing error, being these BIC and AIC. These information criteria

allow controlling over�tting cases and attempt to correct the maximum likelihood bias, penalizing models

with many components and ending up �nding a reasonable optimal value for the number of components

[35]. The lower the score value, the better the prediction of the GMM model. The formulas for BIC and

AIC are shown in Equations (2.1) and (2.2) respectively.

Looking to formulas presented, where L is the likelihood, k is the number of adjustable parameters

in the model and n is the samples size, we are able to understand that both scores add a penalty for

additional parameters to maintain the balance between model performance and model complexity.

BIC = � 2 log(L) + 2 � log(n) (2.1)

AIC = � 2 log(L) + 2 � (2.2)

Despite some subtle theoretical differences, their only difference in practice is the size of the penalty,

in which BIC penalizes more heavily complex models. AIC has a higher probability of over�tting and

selecting many parameters because it emphasizes model performance, but in contrast, BIC may choose

a under�tted model and not being able to capture relevant variations.

Technically, the calculation of score curve gradient is also important to �nd the optimal model number

of components since at a given point, the gradient will be practically constant and there is no advantage

of increasing components number and computational time. Therefore, when it will be necessary to

identify the optimal number of clusters for a given dataset, we will analyze both BIC and AIC metrics but

also their gradients.

14

2.7 Regression Metrics

The evaluation of a machine learning algorithm is a crucial step during the machine learning process.

After getting the predictions, we have to understand how close they are to the expected value and there-

fore, different metrics can be used. However, we will have to keep in mind that different metrics will lead

to different results depending on our goal and data distribution, and that our model can get outstanding

results on the training set, but behave poorly with the test set.

So, next, we will succinctly mention some regression metrics that will be used throughout the devel-

opment of the models, either in the tuning step or in the �nal evaluation step.

2.7.1 Mean Squared Error (MSE)

MSE is a popular metric used to evaluate regression tasks, characterized by taking the mean of the

square of the difference between the original values and the predicted values to obtain the �nal error.

This metric is presented in the following Equation (2.3), where ŷi represents the predicted value and yi

is the actual value. The MSE can be further decomposed in variance and squared bias of ŷ

Looking to Equation (2.3), more signi�cant errors will be very expressive in the �nal calculation

because the square has the effect of magnifying these errors, and therefore this metric will have a great

focus on large errors.

MSE =
1
N

NX

i =1

(yi � ŷi)
2 (2.3)

2.7.2 Mean Absolute Percentage Error (MAPE)

MAPE represents the error normalized by the true observation value. This performance metric is asym-

metric, being biased to under-predicted models over over-predicted ones, which may be interesting for

our study. An under-forecast will never contribute more than 100%, as for example the limit case where

ŷi is 0 and yi is 2, however the contribution of an over-forecast is unbounded below, as the case of ŷi =

6 and yi = 2. Thus, the error imposes a higher penalty for negative errors and when the predicted value

is higher than the actual.

Finally, the formula to this scale-independent metric is presented in Equation (2.4).

MAPE =
1
N

NX

i =1

�
�
�
�
(yi � ŷi)

yi

�
�
�
� (2.4)

2.7.3 Utility-Based Regression

The performance evaluation sometimes may require the use of special metrics as the most popular met-

rics are based on averages and are not prepared for unbalanced domains [36]. To address regression

problems where extreme values are also important to predict accurately and where we can focus on

key application cases, Torgo and Ribeiro [37] developed a regression algorithm in the non-uniform costs

15

domain, which allows user to specify domain preferences and it also includes utility-based performance

metrics, precision and recall metrics, often used in classi�cation, but to be applied in regression tasks.

The package provides various pre-processing functions to deal with classi�cation and regression

problems and involves evaluating the utility (cost/bene�t) of predictions. Nowadays, traditional formulas

assume that all errors are of equal importance, however, this is not generally the case. So, to answer

cost-sensitive problems, this metric assigns an utility score to any prediction based on the relevance of

both the true and predicted values and on the loss of the prediction [38].

Before delving into both metrics, it is important to address the concept of Utility-Based Learning

(UBL), the package that will be also used in this section and available in the R programming language

[39]. Firstly, there is a relevance function, � (:), which expresses the target variable in original domain

into a continuous scale of relevance (]-1 ,1 [�! [0,1]) [37]. This function allows a speci�cation of differ-

ent degrees of relevance where 1 identi�es the most important value.

The responsibility of de�ning the relevance function is on the user. One can use a method named

”range” where the user manually de�nes the most important regions, or an automatic method named

”extremes” based on the box plot statistic of the target for extreme values. This last method is the one

that will be used throughout the thesis since the method assigns larger importance to the least repre-

sented target values of the dataset and so we do not have to worry about interpolating the points. In

the ”extreme” method, the score distribution of the �nal target values assigns more importance to the

most extreme values, which depending on the type of extreme that we choose (low, high or both types

of extremes) will generate a different � (.) [40]. As represented in Figure 2.4 a), only developed for the

explanatory purpose, we selected the ”extreme” method and ”high” type, thus samples with target values

higher than 4, above the adjacent value (adj H), will be more relevant than lower values. A single sigmoid

de�nes the relevance function.

(a) Relevance function � . (b) Utility Surface.

Figure 2.4: Relevance function using ”extremes” method and its utility surface. The relevance is asso-
ciated with extreme and rare values. This function allows the speci�cation of the target variable into a
continuous scale of relevance, advantageous in terms of sensibility concerning the different values of
the target variable. The utility surface is a function that maps the prediction value, ŷ, for the true value y
into a utility score.

16

After de�ning the relevance function, we will be able to develop the utility function, U(:), through

methods of spatial interpolation of points. This function generates a surface nominated utility surface

which maps the predicted value, ŷi , for the actual value, yi , into a utility score. The score ranges from

-1 to 1 and will be meaningful for the metric evaluation. If a data point has a utility score of 1, the point

is of great importance and its predicted value is very close to the real one. In contrast, a utility score of

-1 means that the point has a larger error and low relevance. In the following Figure 2.4 b) is possible to

observe the utility surface that represents the previous relevance function.

As we can see in Figure 2.4 b), the utility surface generates a uniform-cost domain like we had a

symmetry along the y = x plane. However, Ribeiro [38] developed a set of tools for regression algorithms

in non-uniform cost domains with the inclusion of utility-based performance metrics.

Based on the relevance function � (Y), a joint relevance function was developed (Equation (2.5)),

which depends not on the relevance values from the pair (ŷ; y) but also on a weight parameter (p 2

[0,1]).

� p(ŷ; y) = (1 � p)� (ŷ) + (p)� (y) (2.5)

The weight parameter de�nes the importance given false alarms and missed values, where false

alarms are events that are predicted in left upper corner of utility surface and missed values events

predicted in lower right corner. Thus a p = 0 :5 is equivalent to the previous situation where no cost-

sensitivity exists. Additionally, as more weight is given to the real value relevance component in costs,

false alarms, are even less punished and have less associated cost.

Moreover, the utility function is dependent on � p(ŷ; y) where � B and � c represent two bounded-loss

functions with domain [0, 1]�! [0,1]. As presented in Equation (2.6), the function in its limits is bounded

by � (y) when ŷ = y and below by Up(ŷ; y) = p:(1 � � (y)) � 1 [40, 41].

Up(ŷ; y) = � (y):(1 � � B (ŷ; y)) � � p(ŷ; y):� c (2.6)

Figure 2.5 represents the utility surface and its utility isometrics de�ned for a p = 0 :95. This value

of p encodes that opportunity costs are considered more serious than false alarms. Thus, comparing

Figure 2.5 a) with Figure 2.4 b), it is understandable than a p higher than 0.5 will exhibit higher costs

associated with large errors about the relevant actual values, and the false alarms are not so relevant.

Precision and recall metrics are two of the most commonly used metrics in model evaluation in

classi�cation tasks and were originally de�ned by Kent et al. [42] in 1955. Precision expresses the

proportion of data points that our model says are relevant and actually are relevant. At the same time,

recall is the ability of a model to �nd all relevant cases within a dataset. The following equations (2.7)

and (2.8) are the formulas to calculate these measures, where TP, FP and FN refer to true positives,

false positives and false negatives respectively.

precision =
TP

TP + FP
(2.7)

17

	Preface
	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	List of Algorithms
	Nomenclature
	List of Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Objectives and Contributions
	1.3 State of The Art
	1.3.1 Operating Room Stages
	1.3.2 Prediction of Case-time Duration
	1.3.3 Related Work

	1.4 Thesis Outline

	2 Theoretical Background
	2.1 Supervised Learning
	2.2 Regression Algorithms
	2.2.1 Extreme Gradient Boosting

	2.3 Interpretable Methods
	2.3.1 RuleFit

	2.4 Feedforward Neural Network
	2.5 Categorical Data Encoders
	2.6 Imbalanced Approaches
	2.6.1 Synthetic Minority Over-sampling Technique
	2.6.2 Gaussian Mixture Model

	2.7 Regression Metrics
	2.7.1 MSE
	2.7.2 MAPE
	2.7.3 Utility-Based Regression

	2.8 Interpretability and Model Explanations
	2.8.1 Shapley Additive Explanations
	2.8.2 Rashomon Curves

	3 Data Analysis and Preparation
	3.1 Dataset Introduction
	3.2 Exploratory Data Analysis
	3.3 Time Series Analysis
	3.4 Feature Engineering
	3.5 Data Imbalance
	3.6 Missing Data
	3.7 CUF Predictions
	3.8 Remotion of erroneous data
	3.9 Data and Features Selection
	3.10 Encoding

	4 Modeling
	4.1 Proposed Approaches
	4.1.1 General Model
	4.1.2 Specialty-specific Models
	4.1.3 Surgeon-specific Models

	4.2 Data Split
	4.3 Machine Learning Algorithms Implementation
	4.3.1 Extreme Gradient Boosting Implementation
	4.3.2 RuleFit Implementation
	4.3.3 Feedforward Neural Network Implementation

	5 Balanced Approach
	5.1 Deal With Imbalanced Data
	5.2 Interpretability Curve for Imbalanced Data
	5.3 Balanced Model Results
	5.3.1 Model Selection
	5.3.2 Performance Evaluation

	6 Results from an Operation’s Perspective, Generalization Error and Conclusions
	6.1 Final Model and Generalization Error
	6.2 Results from an Operation’s Perspective
	6.3 Conclusions
	6.3.1 Future Work

	Bibliography
	A Technical Nomenclature
	A.1 Data Dictionary
	A.2 Types of Anesthesia

	B Code
	B.1 Code Organization
	B.1.1 Python
	B.1.2 R

