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Um agradecimento especial à Daniela e ao João, que me apresentaram este projeto e confiaram

em mim para o desenvolver em conjunto com a CUF. Muito obrigada pelo acompanhamento, por me

apoiarem e se mostrarem sempre disponı́veis para responder às minhas questões.
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Resumo

Hoje em dia, o potencial do uso de técnicas de aprendizagem automática (ML) para resolver problemas

do mundo real é amplamente explorado, e muitos são os domı́nios de aplicação, como cibersegurança,

aviação e saúde, onde há pesquisas aprofundadas sobre sua aplicabilidade. Com a quantidade de

dados recolhidos atualmente no contexto hospitalar, modelos capazes de aprender e melhorar auto-

maticamente sustentados na exploração dos dados podem solucionar problemas que colocam em risco

o bom funcionamento dos hospitais. O bloco operatório é um ambiente de alto custo e a sua utilização

deve ser eficiente. Assim, o trabalho proposto foca-se no desenvolvimento de modelos de ML inter-

pretáveis de previsão para integração num sistema de suporte à decisão a fim de melhorar a previsão

dos tempos cirúrgicos, comparando-os com métodos tradicionais. Implementámos três modelos de

ML, XGBoost, RuleFit e uma rede neuronal, e analisamos o seu desempenho, incluindo precisão e

interpretabilidade. Para cada um dos algoritmos, implementamos três estratégias diferentes. Posterior-

mente, uma vez que as durações cirúrgicas mostraram um desequilı́brio significativo e isso pode preju-

dicar o desempenho de algoritmos de ML, treinamos uma Gaussian Mixture Model (GMM) para apren-

der a distribuição de probabilidade nos valores minoritários da label, permitindo superar o desequilı́brio.

O desempenho dos modelos em conjuntos de dados balanceados e desequilibrados foram compara-

dos usando o Utility-based Algorithm (UBA). Este trabalho é uma evidência de que a implementação

adequada de tecnologias de ML interpretáveis podem melhorar significativamente os padrões atuais

de estimativa, representando uma redução de custos, mantendo a confiança dos decision-makers no

sistema.

Palavras-chave: Bloco Operatório, Aprendizagem Automática, Eficiência, Duração da Cirur-

gia, Modelos Interpretáveis
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Abstract

Nowadays, the potential of using Machine Learning (ML) techniques to solve real-world problems is

extensively explored, and many are the application domains such as cybersecurity, aviation and health-

care, where there is in-depth research into their applicability. With the amount of data currently gathered

in the hospital environment, models capable of learning and improving automatically through the use of

data might solve problems that endanger the proper functioning of hospitals. The Operating Room (OR)

is a high-cost environment, and its usage must be efficient. Therefore, our presented solution focuses

on developing interpretable prediction ML models for an OR decision support system to improve the

prediction of surgical times, comparing them with traditional methods to aid the OR scheduling process.

We implemented three different ML models, XGBoost, RuleFit and a neural network, and we compared

and analyzed their performance, including both accuracy and interpretability. For each of these algo-

rithms, we implemented three different strategies. Then, since surgical durations showed a significant

imbalance and this is known to hinder the performance of accuracy-based ML algorithms, we trained

a Gaussian Mixture Model (GMM) to learn the probability distribution on the minority values of our la-

bel enabling sampling to overcome the imbalance. The performance of the models on balanced and

imbalanced datasets was compared using the Utility-Based Algorithm (UBA). This research work is an

evidence that the proper implementation of interpretable ML technologies can significantly improve cur-

rent standards of estimation, representing a cost reduction from an operation’s perspective, maintaining

the decision-makers’ confidence in the system.

Keywords: Operating Room, Machine Learning, Efficiency, Surgery Case Duration, Inter-

pretable Models
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Chapter 1

Introduction

1.1 Motivation

For public or private hospitals, efficiency is a common goal. Both need to manage the limited resources

available to provide high quality care and care for a larger number of patients. However, this manage-

ment is hard due to the unpredictability of various events that escape the foresight of the best managers

and medical doctors.

More precisely, the schedule planning of Operating Rooms (ORs) is one of the biggest challenges in

the health sector since this service is a hospital key element, responsible for around 42% [1] of income

but, simultaneously, due to high cost of use, most hospital expenses are related to the OR, around 35%

to 40% of hospital’s costs [2]. Nowadays, operating rooms are costly, ranging from $30 to more than

$100 per minute. Therefore, it is crucial to maximize this critical financial bottleneck’s efficiency [3].

Besides financial criticality, this service is one of the biggest headaches in the hospital due to its ex-

tremely high complexity. The interactions between different healthcare stakeholders (such as surgeons,

patients, nurses, and anesthesiologists), the difficulty of predicting the time in certain types of proce-

dures due to unpredictable patient circumstances, the need for sterile material that depends on third

parties, and the availability of beds in Post-Anesthesia Care Unit (PACU) are just a few reasons that

help us understand the difficulty in managing this service [1].

Regarding the hospital group under study, CUF is a Portuguese private healthcare provider with 18

clinics and hospitals spread across the country. CUF is one of the most important private groups in

Portugal that between 2017 and 2020 treated 190 thousand patients on operating rooms in its 15 units

equipped with an OR. To highlight the importance of CUF in Portugal, last year 2020 CUF won the

“Trusted Brand” award promoted by Seleções dos Reader’s Digest magazine, in the “Private Clinics and

Hospitals” category, a choice that has been made for the sixth consecutive year. At the CUF operating

room management level recently, in 2019, a global management consulting firm delivered a report that

stated inefficiencies at the OR organization system, which came to support the fact that these problems

exist.

There is a cascade of negative consequences due to inadequate estimation of surgery times with a
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high impact on health professionals that can be highly affected since if time is wasted unnecessarily, the

higher is the probability of working over hours, which generates discontent in the workplace. Moreover,

it may also impact patients since surgery waiting lines can be long and ineffective scheduling quickly

leads to very high waiting times during patient flow.

To conclude, in this thesis, we seek to solve this problem and explore methods for minimizing the in-

correct prediction of surgical times, minimizing blockings between two consecutive surgeries to provide

good care to all patients and increase health professionals’ satisfaction.

1.2 Objectives and Contributions

The goal of the thesis is to develop a Machine Learning (ML) model to improve the operating room

planning through a case-time estimation using CUF historical data from 2017 to 2020.

The purpose of the work is to find an accurate method to estimate the surgery times to optimize the

operating room process flow, improving surgery allocation in the overall scheduling and care delivery

from hospitals. For this approach, several factors were considered, such as type of surgery, operating

room time, pseudo-anonymized patient information, and type of procedures.

1.3 State of The Art

This Section presents an overview of what already exists in the literature regarding the implementation

of machine learning in the scope of operating rooms efficiency improvement efforts. Important concepts

are introduced to better understand the operating room’s organization and its dependence on other

healthcare services.

1.3.1 Operating Room Stages

Operating room scheduling does not just depend only on the use of the operating room itself, there is

a whole path that the patient has to go through, and all stages are directly correlated. As described by

Abedini et al. [4] we can divide the surgical process into three stages:

• The peri-operative process

• The intra-operative process

• The post-operative process

The peri-operative stage is related to administrative and clinical admissions, and the interaction be-

tween the patient and the anesthesiologist. Thus, in this first stage, some important information is

gathered after the patient’s arrival at the hospital to be admitted and the patient is prepared for surgery

that occurs in the next phase. The surgery is performed during the intra-operative stage and in the last

stage the patient is moved to a PACU where it waits for recovery after surgery and anesthesia.
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Therefore, there is a complex environment to manage which depends on a lot of factors. In each

stage, some problems can represent a bottleneck with a significant impact on all processes, such as

delayed patient registration, staff unavailability, case duration accuracy, and the lack of beds in PACU.

These factors create congestion throughout the operating room organization because patients cannot

be moved to the next stage and health professionals have to keep them in the state they are in [3, 4].

Regarding CUF, we had the opportunity to visit CUF Sintra in order to better understand the process

that the patient undergoes since it arrives at the hospital until it leaves. This visit gave us an overview of

the patient flow that was extremely important in identifying the steps that are wasting unnecessary time,

realizing CUF’s expectations and confirming the existence of the same problems that were found in the

bibliographic review.

1.3.2 Prediction of Case-time Duration

The accurate prediction of surgical procedure times is essential to maintain efficiency and avoid a cas-

cade of delays in OR. Thus the use of inaccurate strategies may have a significant impact on the entire

service and waiting lists.

Nowadays, the historical information on the OR operation is well annotated and there is a lot of in-

formation available, such as the surgical service performing the procedure, the duration of surgery, and

the patient’s information, which has a vast potential to optimize the OR pathway. However, these data

are still not fully explored in most hospitals and forecasts of the surgery duration are made based on the

experience and opinion of surgeons, that estimate the operating times that they consider necessary, or

by using simple statistics on the conventional Electronic Health Records (EHRs), the electronic collec-

tion of a patient’s medical history where the historical average for each case duration can be performed.

The study conducted by Laskin et al. [5] with oral and maxillofacial surgeons showed that only 26%

of surgeon estimates were accurate and there is an overestimation in 42% of the analysed cases. Over-

estimation occurs because various factors can influence the doctor’s prediction, simply because com-

plications arise during the procedures or sometimes the doctor may overestimate or underestimate the

surgery depending on the number of appointments they have scheduled on that specific day.

Regarding the EHR sample means method also used by CUF, the healthcare provider whose data

was analysed in this study, it allows predicting surgical time based on the average of historical data from

a specific procedure or surgeon. However, this type of approach does not take into consideration other

factors, such as patient and procedure-specific information, which can influence up to 30% of the total

surgery duration [6]. Tuwatananurak et al. [6] used Leap Rail engine to show how can a machine learn-

ing algorithm improves the EHR predictions, getting a significant reduction of around 70% in the total

scheduling inaccuracy, improving the estimation in approximately about 7 minutes per case regarding

actual case duration. Moreover, in Rozario and Rozario [7] work the baseline time prediction was the

surgeon’s average procedure time of the last 10 cases. However, with the current method, case times

follow a Gaussian distribution with an underestimation in 50% of the cases.

As these modest results evidence the challenging nature of the problem, they also encourage a ma-
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chine learning approach, given the excellent results that machine learning methods have provided in

natural language understanding [8], computer vision [9] or games [10]. For these reasons, the methods

used today are seen by healthcare management as not effective, not allowing the most efficient use

of surgery rooms. Thus, machine learning optimization methods that handle the information already

available and recorded in hospitals have the potential to accurately predict future outcomes.

1.3.3 Related Work

The need for efficiency in planning and scheduling procedures has led to an increase in research in OR

related problems since 2000, with a significant increase in publications since then [11]. In addition, since

2015, there has been an exponential growth in research in terms of the application of ML in the scope

of medicine, since the availability of big data and the growth of data science have allowed a positive

contribution to the decision-making processes [2].

Firstly, statistical analysis of the variability of surgical durations has been studied for years [12], and

techniques such as Lognormal Estimation and Bayesian statistical techniques were intensively explored.

These approaches find the best fit in a family of distributions to predict surgical durations and charac-

terize relationships between variables. Stepaniak et al. [13] fitted a 3-parameter lognormal model that

improved the OR scheduling and reduced the mean over reserved OR time per case by up to 11.9 min-

utes. Strum et al. in two studies [14, 15] compared the modeling of surgical procedure times with normal

and lognormal distributions and concluded that lognormal models provide accurate predictions and fit

better procedure times.

Moreover, models based on Gaussian Mixture Model (GMM) are also widely applied as a prediction

model, even in the surgical area i.e. support patient flow models [16]. The Bayesian method obtained

by Dexter and Ledolter [17] allowed improving predictions for cases where few or no historical data exist

and concluded that GMM can be a reasonable choice when surgical times do not follow a lognormal

distribution. Taaffe et al. [12] also studied the application of Kernel Density Estimation (KDE) to model

surgical durations. The results outperformed traditional methods such as lognormal and GMM when

there is limited historical data.

Other studies also investigate the potential of using mathematical models to improve durations, show-

ing an OR efficiency improvement by combining advanced mathematical and financial techniques [18]

[19]. However, these approaches postulate a simplified model for the data distribution and this thesis

takes a data-driven, machine learning approach, while keeping interpretability as a requirement. Al-

though machine learning and statistics are closely related fields in terms of methods, their main goal is

different. Lee and Yoon [20] summarized the differences between classical statistical analysis and big

data medical analysis. While ML models are designed to make the most accurate predictions possible

and find patterns in the data that can be generalized, statistical models are designed for inference about

the relationships between variables and reach conclusions about populations or derive scientific insights

from data. Thus, in ML, the algorithm learns from a considerable amount of data and generates the

hypothesis from the data, while in statistical models, we need to commit on a priori assumptions based
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on various underlying probability distribution functions [2].

Even in the machine learning field, the high complexity of the OR environment allows and leads to

different approaches to the problem and the use of different metrics by authors and researchers. Fair-

ley et al. [21] defined as objective the minimization of maximum PACU occupancy, using constraints to

control and maintain OR utilization. Thereby, to predict PACU recovery times for each patient, a gradi-

ent boosting tree model was used, which is used as input in a program that formulates the schedule of

procedures in the operating room. Abedini et al. [4] developed a blocking minimization model to reduce

the number of blockings between OR and PACU, allowing the hospital to define the OR schedule for

the next day, considering the current stage occupancy of the OR, in order to to ensure the availability of

downstream resources, such as beds in PACU and Intensive Care Unit (ICU).

The case duration accuracy is one of the most common approaches since to allocate the staff and

maximize the use of OR accurately, it is important to predict the time required for each surgery with the

smallest possible error. Bartek et al. [1] developed a linear regression and two ML models to predict

OR case-time duration, with the XGBoost [22] attaining the best performance. Besides these, service-

specific and surgeon-specific models were considered, where each speciality and doctor were modeled

individually. Tuwatananurak et al. [6] compared the duration of the predicted cases from the conven-

tional method based on averaged historical means for case duration with cases duration predicted by

the Leap Rail engine, a proprietary algorithm that combines different supervised learning algorithms.

Rozario and Rozario [7] resorted to the Operations Research Tools from Google Artificial Intelligence

(AI), an open-source software suite for optimization, and developed an algorithm to optimize efficiency

in OR in the era of COVID-19 with the objective of minimizing overtime and undertime cases in an OR

that has shown to be beneficial to reduce the long waiting lists generated during this period.

Regarding machine learning-based solutions proposed to accurately predict surgical durations, Mar-

tinez et al. [23] compared Linear Regression, Support Vector Machines, Regression Trees, and Bagged

Trees. In general, the methods considered are beneficial for operating room scheduling, but Bagged

Trees was the one that achieved the best overall performance to predict the surgical time duration. Fur-

thermore, Hosseini et al. [24] developed a classical Least-squares Linear Regression (LIN) and a Step-

wise regression (STEP), showing both improvements compared to traditional methods. Lastly, Edelman

et al. [25] performed linear regression models with data from six academic hospitals. Even with few

variables, all are highly significant predictors and models presented a low error.

Researchers frequently use the approaches described above, however, other metrics can also be

used with the goal of optimizing the operating room management. Lee et al. [3] performed an OR’s

efficiency review and mentioned methods such as identifying surgeries with high risk of cancellation

and optimizing the turnover time between surgeries as frequent metrics used to evaluate and improve

efficiency. Furthermore, Bellini et al. [2] presented a systematic review about the AI implementation in

ORs where the majority of the studies use supervised learning techniques, being more frequently used

random forest and decision trees algorithms. Decision trees are powerful and intuitive data structures,

and because they are easily interpretable, they are widely used in the context of medicine, where it

is essential to explain the predictions of the model, something difficult in ML because most predictive
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models are complex and challenging to interpret.

Moreover, several researchers address the features used as inputs in their optimization models.

Bartek et al. [1] took greater account of procedures and personal data to the detriment of the patient’s

health status and describes the primary surgeon as the most important feature to create variability. Fair-

ley et al. [21] used a set of 10 features chosen based on discussions with health professionals, such

as surgical service, patient information and the hospital unit the patient will go to after PACU recovery,

where the most important feature was the procedure type with 0.41 of weight within the total of features.

Tuwatananurak et al. [6] took into consideration more than 1,500 features, factors related to patients,

providers, facility/room, procedures and prior events. Lastly, Rozario and Rozario [7] addressed that the

machine learning algorithm held features such as frequency and distribution of procedure types, average

case times and case times variability, highlighting the importance of the development of surgeon-specific

models due to the variability that this feature can generate.

Unlike low-stakes applications, in decision-making and particularly in healthcare, black-box methods

that output pure predictions without any verifiable explanation are not acceptable. Thus, the focus of this

thesis is on interpretable machine learning models.

1.4 Thesis Outline

The thesis comprises a total of six chapters, and in detail it has the following structure.

Chapter 1 includes an overview of related work, OR organization and current standards of estima-

tion. In Chapter 2 we introduce relevant topics for the full comprehension of the work. In Chapter 3,

we present one of the most important steps for choosing the statistical model. The Exploratory Data

Analysis (EDA) of available datasets allows us to analyze a massive dataset, correct errors and maxi-

mize insight into the data to extract important data characteristics. In addition, we describe the feature

engineering and feature selection process, transforming raw data into features suitable for modeling and

choosing non-redundant and relevant features to use in model construction.

In Chapter 4 we present and discuss the results of model approaches after applying three different

ML algorithms to compare the applications of white box decision systems with black-box systems and

current standards. Chapter 5 describes the application of GMM strategy used to deal with imbalanced

data and presents a novel curve developed to have the model selection function.

To conclude, Chapter 6 introduces the proposed model and analyzes the results from an operational

perspective comparing costs with standard performance. The chapter also presents the main conclu-

sions of the research work and explores some possibilities regarding future work.
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Chapter 2

Theoretical Background

In this Chapter, several theoretical concepts applied throughout the thesis are covered in order to demon-

strate an understanding of the theories relevant to the topic and facilitate full third-party compression.

2.1 Supervised Learning

In the machine learning world, the two common machine learning tasks are supervised and unsuper-

vised learning. What will lead us to use one or the other is the type of data we have to develop and

train the model. In general, data can be described as labeled or unlabeled, in other words, it may or

may not contain the solution we intend to reach. Our work, since we know the target, will be focused

on supervised learning. To deal with imbalance, we will use unsupervised techniques like the GMM to

learn the distribution of the scarce regions of our data and sample from it to rebalance the learning data.

Thereby, through the work we will design algorithms to learn by example and training with labeled

data that will map the inputs in order to predict outcomes for unseen data and solve our machine

learning-based problem.

Regarding labels, these can be categorical or continuous, leading us to perform a classification task

or a regression task, respectively. In classification, algorithms work with discrete values and models are

trained to categorize data into different classes. In the case of regression, we sought to find the rela-

tionship between the features in order to predict continuous output variables such as predicting house

prices based on relevant information e.g., location, area and number of rooms. As the point of our work

will be to predict surgical times and these are continuous, we will be working with supervised learning

methods using regression.
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2.2 Regression Algorithms

2.2.1 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is an ensemble learning method that combines the outputs

from individual trees called ”weak learners”, modest models that performed slightly better than ran-

dom chance. XGBoost is a gradient boosting framework developed by Chen and Guestrin [22] and a

supervised learning technique that can be used for regression or classification tasks.

First, we introduce some notions of ensemble learning such as bagging and boosting to better un-

derstand gradient boosting. Bagging uses parallel training in multiple independent models to combine

them and takes the average of the models’ responses for regression tasks. In contrast, the boosting

technique allows sequential training and the generation of ”weak learners” sequentially to correct the

error of the previous one until no further improvements can be made. This method combines several

models into one giving more weight to the models that perform better.

Finally, gradient boosting is a re-definition of boosting where the objective is to minimize a loss func-

tion. This function measures how close the predicted value is to the actual values, using a gradient

descendent algorithm and finding the direction in which the loss decreases the fastest. The loss is the

combination between the target value and the predicted value in order to figure out patterns on residuals.

In this method, ”weak learners” have the same weight to the final prediction given by the learning rate,

parameters that range between 0 and 1.

Therefore, XGBoost is a gradient boosting algorithm that uses decision trees, that combines simple

decision rules, as its ”weak” prediction to predict a target variable accurately. XGBoost minimizes the

objective function with Lasso (L1) and Ridge (L2) regularization to prevent overfitting penalizing model

complexity. Thus, during training, the algorithm will iteratively generate decision trees to predict the

residual errors of previous trees, and then combine the result with the generated trees in order to get the

final prediction.

XGBoost is described as an algorithm that can model very complex relationships and it is popular

by its performance and speed. This computational performance is enhanced by the algorithm design

since it is able to use hardware resources efficiently and due to the possibility of the user specifying

the maximum depth parameter, max depth, when using the method, allowing to avoid unnecessary time

pruning trees backward. An advantage of this machine learning model is its effective ability to achieve

great results even with imbalanced datasets with skewed distributions because the algorithm is able to

adjust the training to give more attention to minority class misclassification.

2.3 Interpretable Methods

2.3.1 RuleFit

RuleFit [26] is an algorithm that combines tree ensembles and linear models to take advantage of tree

ensemble’s accuracy and linear models interpretability. This algorithm allows us to generate rules from
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a decision tree that create a set of new ”features” from interactions between the original features.

A tree-based model such as Random Forest or Gradient Boosting machine model can feed the

RuleFit model and train the model using the dataset. The difference between the two lies in the way

the trees are built. Gradient Boosting, as described in the XGBoost Section, builds trees one at a time,

where each new tree helps correct mistakes made by previously trained trees, while Random Forest

trains each tree independently with random sets in order to build more robust models and less likely to

overfit on the training data.

From the generated decision tree, hundreds of rule combinations are generated, where each path

can be converted into a decision rule through the combination of splits and therefore, depending on the

depth and number of leaves, many rules can be generated that make it difficult to interpret and explain

the model.

To circumvent the increase in dimensionality, Lasso, the L1 regularization technique, is called to

assign weights to each decision rule since the current implementation of RuleFit can produce redundant

features. By assigning a coefficient of 1 or 0 to the rules, Lasso will shrink the less important feature’s

coefficient and transform the input feature space into a smaller subset and easier to explain.

RuleFit is an interesting algorithm to apply in nonlinear problems since the generation of candidate

rules from a combination of a tree model and Lasso regressor may help us better interpret predictions.

Furthermore, it is a white box algorithm which is crucial from the point of view of the user and end

consumer. Through relevant explanations directly taken from the model, we can increase the user’s

confidence in the model, and at the same time, understand if the model may be making illogical decisions

or if it is unintentionally biased [27]. The set of rules generated should meet the insights returned from

the exploratory analysis of the data.

2.4 Feedforward Neural Network

The Feedforward Neural Network (FNN) is a set of structured neurons in a series of layers, with each

neuron in a layer containing weights to all neurons in the previous layer. The FNN goal is approximate

some function f∗ with succesive compositions of linear and nonlinear operators on x. The name ”Feed-

forward” is derived from the assumption that inputs and outputs are independent of each other and the

corresponding decision that there are no feedback connections in which outputs of the model are feed-

back into itself [28].

The model is associated with a directed acyclic graph and represented by a combination of many

layers of perceptrons. The first layer is the input layer and the rightmost is the output layer. Between

them, there are a set of hidden layers with hidden units associated with often a nonlinear activation func-

tion to preserve many of the properties that make linear models generalize well. In FNN the piecewise

linear function, Rectified Linear Unit (ReLU), is the recommended activation function represented with

the formula f(x) = max{0, x} and shown in Figure 2.1.

The ability of the ReLU function set to zero values lower than zero, ensuring that the function is linear

for values greater than zero, brings many advantages to the backpropagation process and the use of
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gradient-based methods. Additionally, some hidden units have some points that are not differentiable,

but with ReLU the derivative becomes 0 on the left side of x=0 and 1 on the right side. A drawback is

that ReLU is not differentiable at zero. Nevertheless, it is differentiable almost everywhere, as the set of

non-differentiable points has measure zero. Therefore, in practice, it is relatively rare to have a zero as

the input to the ReLU.

Figure 2.1: Line plot of Rectified Linear Activation Function for negative and positive inputs.

Backpropagation of the gradients allows the network to efficiently compute the cost function gradient

to be used in the optimization algorithm, e.g., Stochastic Gradient Descendent (SGD).

To optimize the Neural Network (NN) cost or loss, SGD and Adaptive Moment Estimation (ADAM) [29]

are gradient-based optimization algorithms commonly used. SGD is generally a little noisier because

it takes small steps in a noisy direction of a minimum and is influenced by every set of samples. The

optimizer updates weights after seeing a small subset of data or mini batch, instead of computing the

gradient of the cost function for the whole training set.

ADAM has the advantage of being an algorithm that computes adaptive learning rates for each

parameter and also adds the expected value of past gradients. The speed and faster convergence

make ADAM a very interesting optimizer to use, being robust and suitable for a wide range of non-

convex optimization problems in field machine learning as described by Kingma and Ba [29].

In FNN, it is common to normalize inputs to concentrate the spread of the data for the features

in a smaller region to facilitate learning in the backpropagation phase. A significant difference between

input features would generate large weights and, respectively, large updates, which would create greater

instability and cause greater difficulties during training. Another issue relates with the saturation of dead

zones of activation functions when gradients are zero. For these reasons, it is essential to normalize

the features before introducing them into the model and after each activation layer. Thus, to keep all

activation values on the same scale, we use a batch normalization layer to help us to get a faster

convergence of the learning algorithm.

Lastly, dropout layers can be used to reduce model overfit and generalization error. Dropout is a

regularization technique that allows us to train the network with random configurations, where we can

drop some nodes at random during each training stage and learn redundant information pathways.
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2.5 Categorical Data Encoders

Most machine learning algorithms have trouble handling categorical variables as inputs and require

encoding them as real continuous variables. It is common to convert categorical features into numerical

ones before fitting the data. Thereby, the three most popular encoding techniques are ordinal encoding,

one-hot encoding and dummy encoding.

Ordinal encoding converts variables in ordinal ones, retaining order and for that reason end up to

rearrange variables based on ranks. Suppose a ”Nucleotides” column with the four nucleotides types

(Adenine (A), thymine (T), cytosine (C) and guanine (G)) found in DNA, after the implementation of the

ordinal technique, the nucleotides will be converted into 0, 1, 2 and 3 respectively. Thereby, the encoding

enforce ordered output and ”A” will be considered lower than a ”T”, which is lower than a ”C”, which is

lower than a ”G”. Thus, afterwards it is relevant to comprehend if the ordinal relationship between the

inputs that ordinal encoding will preserve is interesting for the dataset.

On the other hand, one-hot encoding will encode nominal features and generate a feature column per

each variable. Each category value of the feature will be mapped into a binary column with 1’s and 0’s,

where 1 represents the presence of that specific category. Thus, if we have a feature with five possible

categorical values, one-hot encoding will generate five new columns and drop out the original one.

However, this encoding will significantly increase the cardinality of the problem. If we applied one-hot

encoding to columns like the first procedure, specialties or doctors, because these are feature variables

with multiple categories, the encoding would create very high dimensionality that become problematic.

Regarding dummy encoding, this categorical encoding method is very similar to one-hot encoding

and transforms variables into a set of binary variables. However, while in one hot encoding N variables

are created to represent N values of one categorical variable, with dummy encoding, there is a slight

upgrade and it can represent the same N labels in N-1 variables.

Lastly, one method that can help us with the high dimensionality is target encoding [30]. This encoder

replaces categorical values with the mean of the target variable, so it picks up values that can explain

the target. This encoding is a Bayesian encoding technique since it replaces each category with the

posterior probability of the target and should be used with great care in order to minimize leakage.

2.6 Imbalanced Approaches

Imbalanced data is a common issue in learning problems mainly in classification problems where the

ratios of each class are unbalanced and may lead the model to ignore minority classes. However, this

problem is inherent in the real world as it is rare to have uniform distributions across several categories

and we always end up observing skewed distributions in data labels.

As an example, we can think of a classification problem in which we want to predict whether a given

person has cancer or not. In this problem, the dataset that we will have should contain much fewer

instances of people classified with cancer than people without cancer. Therefore, we will have a dispro-

portionate ratio between classes. Usually, the cost function aims to minimize overall error and maximize
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classification accuracy, so with this disproportion of classes, our model will learn much better for ma-

jority classes. Consequently, if we do not correct this imbalance issue, we could get a model with high

accuracy by being correct for most non-cancer instances without correctly predicting a single minority

class instance.

To deal with imbalanced datasets, three data level methods are commonly used: Undersample ma-

jority class, oversample minority class, and generate synthetic samples.

Firstly, undersampling can be implemented by removing some instances from the majority class,

however, it should be only used when we have a considerable amount of data because we do not want

to remove valuable data.

Secondly, oversampling is related to increasing the number of samples in the minority class by adding

random copies of the minority class in our dataset as if we increased the weight of these copied instances

in the cost function. This method implies that some precautions have to be taken since the generation

of copies can lead to overfitting and we need to ensure that copies are not from the test set in order to

guarantee that there is no memorization by the model.

On the other hand, we can deal with imbalanced datasets creating synthetic samples through Gaus-

sian Mixture Model (GMM) or Synthetic Minority Over-sampling Technique (SMOTE) [31]. These imbal-

anced solutions are going to be explored and therefore explained in a more concise way below.

Lastly, it is essential to note that we just should implement the imbalanced method after splitting the

data into training and test to maintain the test set intact and ensure an adequate generalization error

model in unseen data.

2.6.1 Synthetic Minority Over-sampling Technique

SMOTE uses the Euclidean distance between neighbors in the nearest neighbors algorithm to generate

artificial minority class instances that will be available to train our model. First, SMOTE takes samples of

feature space from the minority class and then the k-neighbors closest to the data are found. Afterwards,

new instances will be randomly generated in space between target cases and their neighbors.

Figure 2.2: Synthetic samples creation process by SMOTE using k-nearest neighbor algorithm.

The algorithm helps to overcome the overfitting problem posed by oversampling however it has some

drawbacks. As described by Chokwitthaya et al. [32], SMOTE cannot distinguish outliers from minority

samples and it is limited in a line segment which is unreasonable for high dimensional data. Additionally,

SMOTE does not check if neighboring examples are from other classes, so it may be introducing some

noise in the dataset.
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2.6.2 Gaussian Mixture Model

GMM is a powerful clustering and unsupervised classification method, defined as a convex combination

of multiple Gaussian normal distributions, which has been proven to perform better than many other

clustering methods as k-means or k-nearest neighbor [32].

The Gaussian Mixture is a function comprised of K Gaussians, where K represents the number of

models. Each Gaussian identified by a κ ∈ 1,..,K is represented by a mean, µκ, and a covariance, Σκ,

the first one defining the center and the second one the spread and orientation of the cluster.

Although GMM are also applied in clustering tasks, this generative method learns complex data

distributions from which we can sample synthetic data points in the high-dimensional feature space,

instead of a linear sampling space [33]. In addition, GMM is also able to distinguish outliers from minority

class instances and thereby it was the proposed framework implemented by Zhang and Yang [33] instead

of SMOTE.

Type of covariances for the GMM

The covariance measures how much two random variables vary together and it is an important param-

eter that can be different along with GMM models. The covariance matrices vary between spherical,

diagonal, full or tied, getting different performances according to how the data is adjusted. In Figure 2.3

is possible to observe the behavior of each covariance type in a generic example from Scikit-Learn [34].

The goal is to understand which covariance type in GMM best represents the three classes available.

Figure 2.3: Different covariance structures for Gaussian Mixture Models. The example is a two-
dimensional case with three different classes [34].

Firstly, diagonal covariance implies that each component has its own diagonal covariance matrix

meaning different variances along the diagonal, therefore each component adopts an elliptical shape.

This covariance implies D parameters per Gaussian, so a total of DK to be learned, where D is the

number of dimensions. In contrast, in spherical covariance, a type of diagonal covariance, each element

from the covariance matrix has its own single variance adopting a spherical shape. This covariance

shape only require one parameter per Gaussian, so is less flexible. Regarding tied covariance, all

components share the same general covariance matrix, thus each component shares the same shape

and D(D−1)
2 parameters are needed to represent the model. Lastly, the more flexible covariance is

the full because each component can adopt any shape or position in space. In terms of the covariance
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matrix, each element has its own general matrix and is necessary D(D−1)
2 parameters for each Gaussian.

Although this shape is more expressive, the more parameters, the more data is required for training.

Although it can be expected to achieve better results using full covariance, sometimes it tends to

overfit with small datasets, and therefore it will be important to test always with all types before choosing

a covariance matrix.

Number of Components

The number of components is related to the number of Gaussian models needed to fit our data. In order

to get good synthetic samples, this parameter will have to be adjusted since too many components can

generate overfitting but few may not represent the data structure well.

The optimal number of components will be chosen based on the Bayesian Information Criterion (BIC)

and Akaike Information Criterion (AIC).

Probabilistic Model Selection

As mentioned previously, there are information criteria methods for determining the number of clusters

that maximize efficiency while minimizing error, being these BIC and AIC. These information criteria

allow controlling overfitting cases and attempt to correct the maximum likelihood bias, penalizing models

with many components and ending up finding a reasonable optimal value for the number of components

[35]. The lower the score value, the better the prediction of the GMM model. The formulas for BIC and

AIC are shown in Equations (2.1) and (2.2) respectively.

Looking to formulas presented, where L is the likelihood, k is the number of adjustable parameters

in the model and n is the samples size, we are able to understand that both scores add a penalty for

additional parameters to maintain the balance between model performance and model complexity.

BIC = −2 log(L) + 2κ log(n) (2.1)

AIC = −2 log(L) + 2κ (2.2)

Despite some subtle theoretical differences, their only difference in practice is the size of the penalty,

in which BIC penalizes more heavily complex models. AIC has a higher probability of overfitting and

selecting many parameters because it emphasizes model performance, but in contrast, BIC may choose

a underfitted model and not being able to capture relevant variations.

Technically, the calculation of score curve gradient is also important to find the optimal model number

of components since at a given point, the gradient will be practically constant and there is no advantage

of increasing components number and computational time. Therefore, when it will be necessary to

identify the optimal number of clusters for a given dataset, we will analyze both BIC and AIC metrics but

also their gradients.
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2.7 Regression Metrics

The evaluation of a machine learning algorithm is a crucial step during the machine learning process.

After getting the predictions, we have to understand how close they are to the expected value and there-

fore, different metrics can be used. However, we will have to keep in mind that different metrics will lead

to different results depending on our goal and data distribution, and that our model can get outstanding

results on the training set, but behave poorly with the test set.

So, next, we will succinctly mention some regression metrics that will be used throughout the devel-

opment of the models, either in the tuning step or in the final evaluation step.

2.7.1 Mean Squared Error (MSE)

MSE is a popular metric used to evaluate regression tasks, characterized by taking the mean of the

square of the difference between the original values and the predicted values to obtain the final error.

This metric is presented in the following Equation (2.3), where ŷi represents the predicted value and yi

is the actual value. The MSE can be further decomposed in variance and squared bias of ŷ

Looking to Equation (2.3), more significant errors will be very expressive in the final calculation

because the square has the effect of magnifying these errors, and therefore this metric will have a great

focus on large errors.

MSE =
1

N

N∑
i=1

(yi − ŷi)2 (2.3)

2.7.2 Mean Absolute Percentage Error (MAPE)

MAPE represents the error normalized by the true observation value. This performance metric is asym-

metric, being biased to under-predicted models over over-predicted ones, which may be interesting for

our study. An under-forecast will never contribute more than 100%, as for example the limit case where

ŷi is 0 and yi is 2, however the contribution of an over-forecast is unbounded below, as the case of ŷi=

6 and yi= 2. Thus, the error imposes a higher penalty for negative errors and when the predicted value

is higher than the actual.

Finally, the formula to this scale-independent metric is presented in Equation (2.4).

MAPE =
1

N

N∑
i=1

∣∣∣∣ (yi − ŷi)yi

∣∣∣∣ (2.4)

2.7.3 Utility-Based Regression

The performance evaluation sometimes may require the use of special metrics as the most popular met-

rics are based on averages and are not prepared for unbalanced domains [36]. To address regression

problems where extreme values are also important to predict accurately and where we can focus on

key application cases, Torgo and Ribeiro [37] developed a regression algorithm in the non-uniform costs
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domain, which allows user to specify domain preferences and it also includes utility-based performance

metrics, precision and recall metrics, often used in classification, but to be applied in regression tasks.

The package provides various pre-processing functions to deal with classification and regression

problems and involves evaluating the utility (cost/benefit) of predictions. Nowadays, traditional formulas

assume that all errors are of equal importance, however, this is not generally the case. So, to answer

cost-sensitive problems, this metric assigns an utility score to any prediction based on the relevance of

both the true and predicted values and on the loss of the prediction [38].

Before delving into both metrics, it is important to address the concept of Utility-Based Learning

(UBL), the package that will be also used in this section and available in the R programming language

[39]. Firstly, there is a relevance function, φ(.), which expresses the target variable in original domain

into a continuous scale of relevance ( ]-∞,∞[ −→ [0,1]) [37]. This function allows a specification of differ-

ent degrees of relevance where 1 identifies the most important value.

The responsibility of defining the relevance function is on the user. One can use a method named

”range” where the user manually defines the most important regions, or an automatic method named

”extremes” based on the box plot statistic of the target for extreme values. This last method is the one

that will be used throughout the thesis since the method assigns larger importance to the least repre-

sented target values of the dataset and so we do not have to worry about interpolating the points. In

the ”extreme” method, the score distribution of the final target values assigns more importance to the

most extreme values, which depending on the type of extreme that we choose ( low, high or both types

of extremes) will generate a different φ(.) [40]. As represented in Figure 2.4 a), only developed for the

explanatory purpose, we selected the ”extreme” method and ”high” type, thus samples with target values

higher than 4, above the adjacent value (adjH ), will be more relevant than lower values. A single sigmoid

defines the relevance function.

(a) Relevance function φ.
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(b) Utility Surface.

Figure 2.4: Relevance function using ”extremes” method and its utility surface. The relevance is asso-
ciated with extreme and rare values. This function allows the specification of the target variable into a
continuous scale of relevance, advantageous in terms of sensibility concerning the different values of
the target variable. The utility surface is a function that maps the prediction value, ŷ, for the true value y
into a utility score.
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After defining the relevance function, we will be able to develop the utility function, U(.), through

methods of spatial interpolation of points. This function generates a surface nominated utility surface

which maps the predicted value, ŷi, for the actual value, yi, into a utility score. The score ranges from

-1 to 1 and will be meaningful for the metric evaluation. If a data point has a utility score of 1, the point

is of great importance and its predicted value is very close to the real one. In contrast, a utility score of

-1 means that the point has a larger error and low relevance. In the following Figure 2.4 b) is possible to

observe the utility surface that represents the previous relevance function.

As we can see in Figure 2.4 b), the utility surface generates a uniform-cost domain like we had a

symmetry along the y = x plane. However, Ribeiro [38] developed a set of tools for regression algorithms

in non-uniform cost domains with the inclusion of utility-based performance metrics.

Based on the relevance function φ(Y ), a joint relevance function was developed (Equation (2.5)),

which depends not on the relevance values from the pair (ŷ, y) but also on a weight parameter (p ∈

[0,1]).

φp(ŷ, y) = (1− p)φ(ŷ) + (p)φ(y) (2.5)

The weight parameter defines the importance given false alarms and missed values, where false

alarms are events that are predicted in left upper corner of utility surface and missed values events

predicted in lower right corner. Thus a p = 0.5 is equivalent to the previous situation where no cost-

sensitivity exists. Additionally, as more weight is given to the real value relevance component in costs,

false alarms, are even less punished and have less associated cost.

Moreover, the utility function is dependent on φp(ŷ, y) where ΓB and Γc represent two bounded-loss

functions with domain [0,∞]−→[0,1]. As presented in Equation (2.6), the function in its limits is bounded

by φ(y) when ŷ = y and below by Up(ŷ, y) = p.(1− φ(y))− 1 [40, 41].

Up(ŷ, y) = φ(y).(1− ΓB(ŷ, y))− φp(ŷ, y).Γc (2.6)

Figure 2.5 represents the utility surface and its utility isometrics defined for a p = 0.95. This value

of p encodes that opportunity costs are considered more serious than false alarms. Thus, comparing

Figure 2.5 a) with Figure 2.4 b), it is understandable than a p higher than 0.5 will exhibit higher costs

associated with large errors about the relevant actual values, and the false alarms are not so relevant.

Precision and recall metrics are two of the most commonly used metrics in model evaluation in

classification tasks and were originally defined by Kent et al. [42] in 1955. Precision expresses the

proportion of data points that our model says are relevant and actually are relevant. At the same time,

recall is the ability of a model to find all relevant cases within a dataset. The following equations (2.7)

and (2.8) are the formulas to calculate these measures, where TP, FP and FN refer to true positives,

false positives and false negatives respectively.

precision =
TP

TP + FP
(2.7)
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recall =
TP

TP + FN
(2.8)
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Figure 2.5: The utility surface obtained with the relevance function φ shown in Figure 2.4 a), with p =
0.95.

For obtaining precision and recall metrics for imbalanced regression tasks, two equivalent metrics

were proposed by Torgo and Ribeiro [37] and Ribeiro [38] in order to adequately assess the performance

of models in applications with non-uniform distributions of the target variable. Thus, for regression tasks,

precision and recall will be expressed in terms of the utility obtained by the model rather than a hit/miss

ratio as in the classification. Now, precisionφ and recallφ metrics will be calculated considering the

relevance function and its utility surface to respond to the problem of imbalanced data. The metrics will

be used without the slight alteration in the formulation made later by Branco [43] since the package does

not allow to control the p and it is more difficult to define the utility surface regions of interest. In Figure

2.6 we can see the utility surface generated by UBL when the type of surface is set to ”cost” with splines

and krige interpolation methods where the only difference is how the separation between the different

utility levels is done. The ”cost” parameter assumes that the diagonal of the surface where ŷ = y is zero

however it is also relevant that the diagonal has a high utility value, mainly for the region where there are

fewer points.

First, a threshold, tE , will be defined so that only points with a score above the threshold will be

accepted for the metric evaluation. Thus, if we set the limit, for example, to 0.8, only will be evaluated

data points with scores equal to or greater than 0.8.

The recallφ (Equation (2.9)) defined as the proportion of relevant events that a model retrieves, in

which relevant events are the ones φ(Y ) ≥ tE and Y is the original domain of the target variable [37].

Basically, this metric is responsible for evaluating how well the y points that have high relevance are

being estimated. In Equation (2.9) the value z can be 1 or 0 depending on φ(Y ) ≥ tE , so if the relevance

function is greater than the domain-dependent threshold on relevance, the argument will be 1, if not is

0. The zi is the true class and ẑi is the predicted class.
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(a) Utility Surface with splines interpolation method. (b) Utility Surface with krige interpolation method.

Figure 2.6: The utility surface generated by UBL package when set the type of surface that is being
interpolated as cost.

recallφ =

∑
i:ẑi=1,zi=1

(1 + U(ŷi, yi))∑
i:zi=1

(1 + φ(yi))
(2.9)

Regarding precisionφ (Equation (2.10)), this is the proportion of the events retrieved by a model that

are effective events, thus only takes into account the relevance of the predicted values, ŷi [37].

precisionφ =

∑
i:ẑi=1,zi=1

(1 + U(ŷi, yi))∑
i:ẑi=1,zi=1

(1 + φ(yi)) +
∑

i:ẑi=1,zi=0

(2− p(1− φ(yi)))
(2.10)

2.8 Interpretability and Model Explanations

2.8.1 Shapley Additive Explanations

Due to the complexity of machine learning models, sometimes it is not easy to interpret these models,

which compromise their own application. Areas such as the health sector are linked to a high-risk

industry, where it is imperative to understand and trust the decision-making process carried out by

machine learning [44]. Keeping in mind this issue, the Shapley Additive Explanations (SHAP) [45]

will be used in the context of tree ensembles like XGBoost, but also in cases of great complexity like

Feedforward Neural Network to debug black-box models.

The framework proposed by Lundberg and Lee in 2017 allows us to train a ML model whose goal

is to explain the contribution of features to individual predictions and understand which ones push more

the output for a longer or shorter surgery duration. In the case of trees and ensembles of trees, the

SHAP framework provides the implementation of Tree SHAP. For deep learning models provides an

implementation of Deep SHAP to calculate SHAP values.

The calculation of SHAP values from the SHAP library is based on Shapley Values, a concept coming

from cooperative game theory in Economics. Through this concept is possible to explain the difference

between the actual prediction of output and the average prediction and comprehend the effect of each
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feature taking into account the weight of all features.

2.8.2 Rashomon Curves

”Why would we trust the prediction of a machine learning algorithm over our own prediction?”. When

presented with a machine learning solution to a specific problem, this is a question frequently raised

by stakeholders. From their point of view, it must be accessible to understand the model decisions so

that we can also verify traits such as reliability and fairness [46]. Therefore, interpretability is important,

mainly in areas where accuracy is crucial and the model will significantly impact.

Based on the need to obtain models that explain the output, but at the same time with sufficiently

high accuracy and low generalization error on the test set, a diagnostic tool called the Rashomon Curve

was proposed by Semenova et al. [47] to help answer this challenge.

Before introducing the Rashomon Curve concept, it is necessary to define some important terms.

• Rashomon Effect: As defined by Breiman [48] in 2001 this term describes problems where many

accurate but different models exist to describe the same data.

• Rashomon Set: This is a subset of the entire hypothesis space of possible models in which the

performance of the training set is close to the best model in the class. This is a set of almost

equally accurate models for a given problem, so if the Rashmon Effect is large the Rashomon Set

will contain a large number of models.

• Rashomon Ratio: The measure that will allow us to trade-off between simplicity and accuracy.

This is calculated as the ratio between the volume of the set of accurate models and the volume

of the hypothesis space.

Finally, the Rashomon Curve is a Γ-shaped curve formed as we increase the size of the hypothesis

space. The curve represents the log of the Rashomon Ratio as a function of the empirical risk, where

with the increase in the size of the hypothesis space, we will have a lower empirical risk for the training

set.

The empirical risk is easily obtained because it corresponds directly to the loss, however the formu-

lation of the Rashomon Ratio is more complex. The ratio varies always between 0 and 1 and, given

a hypothesis space, represents the fraction of models that perform equally well when fit the data. The

following Equation (2.11) shows the ratio calculation, which depends on the Rashomon parameter, θ,

hypothesis space, F and the subspace of the hypothesis space, R̂set. The Rashomon ratio calculates

the ratio of the volume (V ) of models inside the Rashomon set to the volume of models in the hypothesis

space.

R̂ratio(F , θ) =
V (R̂set(F , θ)

V (F , θ)
(2.11)

Semenova et al. [47] set the Rashomon parameter to 5%. Technically, all the models in the Rashomon

set that have an empirical risk not more than L̂(f̂)+θ, where L̂(f̂) is the lowest possible empirical risk

across all algorithms, will be considered by the Rashomon volume. Thus, the Rashomon ratio is a ratio
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of the Rashomon volume to the total number of models (hypothesis space).

Considering the different complexities of the models that can solve the ML problem under develop-

ment, it is expected to obtain a Rashomon Curve similar to the one shown in Figure 2.7. Each hypothesis

space is represented with a colored dot and the generalization error by an arrow.

Figure 2.7: The Rashomon Curve illustrating the generalization ability of the Rashomon elbow and the
empirical risk effect of increasing Rashomon Ratio.

Initially, for overly simple models, we will get a high error, however, with increasing model complexity,

we will gradually reduce the associated error as it is possible to observe along the horizontal region with

the decrease of empirical risk. It is important to mention that the Rashomon Ratio is almost constant

in this zone since the Rashomon volume grows at about the same rate as the volume of all possible

models.

Moving along the vertical part of the curve, models start to be too complex and the error is practically

constant despite the increase in complexity.

Therefore, for the graph illustrated in Figure 2.7, among the hierarchy of model classes, the turning

point named Rashomon Elbow is a good choice for model selection. This will be the sweet spot that

allows us to have a balance between low empirical risk and a low complexity hypothesis space with

desired properties such as generalization and interpretability [47].

21



Chapter 3

Data Analysis and Preparation

In this Chapter, firstly we introduce the datasets that are used to develop the model. Afterwards, these

datasets are prepared and analyzed in order to summarize their main characteristics, a crucial initial

step in data science.

3.1 Dataset Introduction

For the development of the time prediction model, historical data from CUF was studied. Four anonymized

datasets corresponding to the years 2017, 2018, 2019 and 2020 were made available, even as a dataset

with the description of all types of hospital procedures described in medical association, the official Por-

tuguese Order of Physicians table (”Tabela Ordem dos Médicos (TOM)”).

Regarding the procedures dataset, this is a small dataset in terms of volume when compared with

the historical data, which contains each procedure name and corresponding TOM code. This dataset

does not require analysis since it is only used to verify that the procedures used in each surgery match

with existing procedures codes in the TOM document, since there may be an error in data entry.

Historical datasets provide the surgeries that have been performed at CUF in the past four years,

so each row represents an episode. For each surgery, relevant data related to unit, patient, doctor and

surgery performed were made available. Concerning patient information, it is provided age, gender and

encrypted CUF Identity Document (ID) (common to all units). About the surgery, data such as the sur-

gical specialty, type of anesthesia, procedure types, the predicted and real used time inside OR and the

recovery room time are given.

All datasets were made available in two formats (.csv and .xls), with the historical datasets together

containing 191,046 rows, a value that represents the number of surgeries performed over the four years.

To access and understand the information provided in historical datasets, a data dictionary is displayed

in Appendix A. Latsly, the dataset of procedures contain a total of 2,832 procedure codes.
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3.2 Exploratory Data Analysis

The EDA provides us with a fundamental insight into the dataset before starting to make assumptions.

In this process, the main characteristics of the datasets are summarized, patterns are studied and clues

are found to help formulate the assumptions and hypotheses for our model. In general, we are investi-

gating the data, asking questions and looking for answers so relationships between features will become

clearer. Based on a survey presented by Forbes, data scientists spend 80% of their time cleaning and

organizing data, which highlights the importance of this step in the machine learning process [49].

To create the EDA, the two most commonly used data science tools are the language Python and R.

For this analysis, we utilized Python and libraries such as Pandas, Matplotlib and NumPy. Furthermore,

we concatenated the historical datasets of the last four years to avoid an extensive analysis. Only the

most relevant information for interpreting the dataset is shown throughout this Chapter due to the order

of magnitude of number of features that each dataset contains. The entire analysis is publicly available

in [50].

CUF datasets come from an electronic medical records database, where patient information and

important data from the operating room is recorded. Nurses register some records at the end of the

surgery e.g., type of anesthesia or patient information, however, time records are automatically regis-

tered when certain buttons present in ORs are pressed by the doctor or nurse at certain times, such as

when the patient enters or leaves the OR.

The dataset contains a total of 191,046 rows and 31 features, where each row is a data record of a

surgery performed at CUF. These surgeries correspond to the activity of CUF at fifteen CUF units spread

across Portugal with the distribution over the years present in Figure 3.1.

Figure 3.1: Number of surgeries per year since 2017 to 2020.

The units present in our dataset are categorical features represented by integer numbers. Each

number is linked to a CUF unit where there are surgery services, however, we do not have access to the

hospital name and its location for confidentiality reasons. The majority of surgeries, around 68%, are

performed in CUF units 13, 14 and 15, that have the highest number of operating rooms, 21, 24 and 15

respectively.
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Regarding patients, our dataset contains specific columns from patient data, such as their birthday

date, gender, encrypted Local ID and Unique ID, Operative Registry Number (ORN) and the status of

the patient (Outpatient or Inpatient). Outpatient care defines a service that does not require any type

of hospitalization. In contrast, inpatient care is related to patients who remain in the hospital for one or

more nights.

First, the Local ID is a unique key to encode each patient in each unit, where for example within the

same unit patient ”1234” will always have the same number, but patient ”1234” from another unit will

be different. The Operative Registry Number is an internal unit code, however the same number can

be present in different units, so to identify unmistakably we should use as a unique key for a patient’s

surgery a composite key between ORN and Unit. In addition, the Unique ID makes it possible to identify

the number of surgeries that each patient underwent at all CUF units, and it was possible to observe

that in the last four years, almost 80 % of patients performed only one surgery at CUF.

In Figure 3.2 is possible to observe the distribution of age and gender among patients, where the

calculation of the patient’s age at the time of surgery was possible using his date of birth and the date

of surgery. For the case of gender, the proportion of male and female patients is almost 50/50. This

observed relationship takes into account all surgeries, however, in some specialties such as gynecology,

there is a predominant gender.

For the distribution of age is possible to visualize an interesting shape. Although specialties are only

studied further in Figure 3.4, we analyzed that up to the age of 10, we observed a considerable number

of surgeries with a particular incidence in otorhinolaryngology (ear, nose and throat) and obviously

pediatric surgery. From the age group of 35 years old, we have once again a substantial increase in

the number of surgeries performed, with orthopedics, general surgery and ophthalmology being the

predominant specialties. Besides, it is interesting to note that the distribution shape of Figure 3.2 b) is

consistent in each of the four years.

(a) Gender Distribution. (b) Age Distribution.

Figure 3.2: Gender and age distribution over the patients. The proportion of males and females is
approximately the same. Underage patients represent 9.98% of the total surgeries.

Moreover, for each surgery itself, there is a variety of information provided by the CUF records, such

as type of anesthesia, surgeon, procedures performed, surgery date and CUF unit. Each of these

features may or may not be relevant to predicting surgical time, as will be determined by the EDA.

Regarding the type of anesthesia, it is noticeable by observing Figure 3.3 a) that specific categories

24



of anesthesia are associated with longer times of OR usage. Therefore, due to the apparent time

differences between the anesthesia categories, we expect the anesthesia feature to be important for the

final prediction.

For the same reason, the number of procedures is essential to estimate the final surgical time, since

with the increase in the number of procedures, the average time within the OR is increasing. The results

in Figure 3.3 b) are consistent with what we were expecting since for surgeries with several procedures

some idle time may also be associated with procedures transition.

(a) Categories of anesthesia distribution. Nomenclature
of anesthesia categories presented in Appendix A

(b) Number of Procedures distribution.

Figure 3.3: Anesthesia and procedures number distribution over surgeries. Each anesthesia type has its
surgery duration distribution pointing to the importance of this feature. Surgeries with different numbers
of procedures also present different spread out of data.

Concerning specialties, CUF’s dataset covers 26 specialties, of which 25 are valid surgical specialties

for further analysis. Administration request was excluded as it was incorrectly recorded as a specialty

and therefore should not be considered. Thereby, in Table 3.4 is possible to look at the variety and

number of surgeries performed over the four years in each specialty. Orthopedics, general surgery

and ophthalmology are the specialties with more surgeries covering almost 50% of the total number of

surgeries in ORs. However, although they are at the top in terms of the number of surgeries, obstetrics

and gynecology is the one that contains more surgeons.

Furthermore, exploring the distribution of surgeries over the week and throughout the day is also

important to confirm that the data meets our expectations. Thus, in Figure 3.5 is presented the distribu-

tions of elective and urgent surgeries for the situations mentioned above. Programmed or elective are

surgeries scheduled in advance and urgent surgeries are considered emergent and must be performed

as soon as possible.

Regarding distributions, during the week we have a greater occurrence of surgeries and they mostly

occur between 9 am and 8 pm. Compared to elective surgeries, the proportion of urgent surgeries

increases significantly on weekends and between 9 pm and 8 am, even representing more than 50% of

all surgeries on Sundays and between 1 am and 4 am. These values meet our expectations since one

of the main reasons for operating at night is the emergence of unavoidable cases. Therefore, surgeries
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Figure 3.4: Frequency of surgeries per specialty. A small number of specialties accounts for most
surgeries.

(a) Surgeries distribution over the week (b) Surgeries distribution throughout the day

Figure 3.5: Anesthesia and procedures number distribution over surgeries. More urgent than elective
surgeries on Sunday and between 1 am and 4 am.

at these hours are performed infrequently and predominantly in urgent cases.

Then, we explored the distribution of procedures and specialties throughout the week. Again, we

performed a similar investigation over the different months and throughout the different parts of the day,

but these results are not described here because of their similar patterns.

The objective with these distributions is discover patterns and relationships, and in the analysis of

surgeries by weekday in Figure 3.6, understand the most performed surgeries throughout the week. In

Figure 3.6, we can see, for example, that orthopedics is the most performed surgery type over the week

days except for Thursday and general surgery is consistently in the batch of 3 specialties with more

surgeries every day.
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Figure 3.6: Week distribution of specialities. Orthopedics, general surgery and ophthalmology are the

main specialties performed throughout the week.

Regarding Figure 3.7 is possible to verify a relationship between the procedures and the type of

specialty. In this figure, procedure 33, described by the nomenclature as ”skeletal muscle system”, is

the most frequently performed procedure throughout the week, presenting the same orthopedic pattern

and clearly associated by name to orthopedic surgery. We observed the same on Wednesday, where

we have ophthalmology as the second most performed type of surgery and associated with procedure

46, meaning ”eyes and ocular attachments”.

Figure 3.7: Week distribution of procedures. 33 (skeletal muscle system), 39 (digestive system) and 46
(eyes and ocular attachments) are the main procedures performed throughout the week.
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3.3 Time Series Analysis

Time series is critical to understand how the data is distributed over time and look for patterns, such as

trends and seasonality. Thereby, based on past data and its underlying structure, it is possible to predict

future events’ behavior.

Firstly, Figure 3.8 represents the monthly number of surgeries over the four years. As can be seen,

August and December are the months in which we have a considerable reduction in the demand for

surgeries, a fact consistent over the years and potentially related to summer, hospital staff vacation, and

the end of the year. In addition, the reduction in demand for surgeries during the early phase of the

COVID-19 pandemic is visible from April 2020, however, there is also a greater demand after the sum-

mer of 2020, probably related to the reduction of fear and demand for scheduling surgeries previously

postponed, and therefore, in the annual total, there is no significant reduction in surgeries in 2020.

Moreover, an open-source software from Facebook, Prophet, was explored. The library was de-

signed for forecasting time series data and, in addition to adapting to yearly, weekly and daily seasonal-

ity, it can also handle specific events, such as COVID-19 as a sporadic event, allowing users to adjust

forecasts.

Figure 3.8: Monthly distribution of surgeries from 2017 to 2020.

Therefore, the following Figures 3.9 and 3.10 represent the yearly and monthly seasonality, and the

trend, respectively. On these figures, the y-axis of each component represents the incremental effect

on y, so the value related to a particular weekday means how much y is added to the final value due to

weekly seasonality. Observing Equation (3.1) is noticeable that the tool uses a decomposed time series

model with three main components: models trend (g(t)), models seasonality i.e yearly, weekly and daily

(s(t)) and models the effects of holidays or large events (h(t)). Lastly, there is also an error term related

to unusual changes. Hence, if Friday has the value of 40 in weekly seasonality, this indicates that for

every Friday, 40 is added to the sum of all components.

y(t) = g(t) + s(t) + h(t) + εt (3.1)
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Figure 3.9: Yearly and monthly seasonality obtained through Prophet Library

Figure 3.10: Trend resulting from the use of Prophet tool after the inclusion of an exceptional season
(COVID-19).

These plots were obtained considering the COVID-19 pandemic between April and August as a spo-

radic event. As it is possible to observe in Figure 3.8, we chose this interval because it is the period

where is noticeable a significant change about the same period in previous years.

From the weekly component, it is possible to observe the behavior of the number of surgeries

throughout the week, where, as expected, it noticed a reduction in surgeries at weekends with a greater

impact on Sunday. Regarding the monthly component, as seen earlier, in summer, between June and

September, there is a reduction in the number of surgeries performed, and at the end of December and

beginning of January, low demand is also evident.

Concluding, intending to develop machine learning methods and predict future events, the analysis

of the data and the sequence in time are significantly relevant to be afterward possible to explain the

obtained interpretable models. Thus, using the time series analysis, it is possible to understand the

behavior of surgery throughout the year and from year to year.
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3.4 Feature Engineering

Feature engineering is related to the good utilization of domain knowledge in order to ably transform

raw data into new additional features that improve the performance of ML models. Throughout feature

engineering, we can generate additional information that has the potential to boost model performance

and develop a helpful predictor.

Some important features already mentioned before, such as age, month, weekday and part of the

day, had been generated through these processes, but directly from date and surgery time columns.

However, with the insights gained after investigating and exploring data, we find it interesting to develop

some specific features.

Firstly, due to the potential difficulty using procedures columns ( I1, I2, I3, I4, I5, I6) since most of the

columns have a considerable number of missing values, a column with the total number of procedures

is created. Each surgery can have 6 procedures involved during surgery, so we can have up to 6

TOM codes. The first procedure(I1) is usually associated with the main and general procedure, and the

following ones are secondary and more specific procedures. Thus, if a surgery has I1, I2 and I3 values

not null but I4, I5 and I6 with Not a Number (NaN) values, 3 will be the value present in the additional

column.

Additionally, the doctors’ daily capacity and the total number of surgeries performed by the doctor

in CUF may have an impact on its performance and, therefore, in surgery duration. Thus, a column

was created to reflect the surgery order on a specific day and for a given doctor, and another column to

reflect the doctor’s experience level. So, if a doctor has already performed five surgeries in a day, the

subsequent surgery performed on that day will have the number six associated with this column.

Finally, a column with the total number of surgeries performed by the doctor in CUF so far is created.

The goal is to attempt to identify if the doctor’s experience level can cause an impact on surgery duration.

3.5 Data Imbalance

Throughout the EDA we noticed an unequal distribution of surgery times in the dataset, which could be

more challenging to model and require specialized techniques. As we can see in the following histogram

in Figure 3.11, the actual values are very funneled close to the mode (mode=30), presenting a left-

skewed histogram.

By looking at the histogram in Figure 3.11, we notice that our model probably will predict longer times

very poorly due to the lack of data in this region and therefore as machine learning models minimize

the general error of the problem, the model could be focused on reducing the error for surgeries with

short times because the majority of the labels are in the first region of the domain. Consequently, a

data imbalance problem may arise. In this scenario, we can use synthetic data generation techniques to

address data imbalance.
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Figure 3.11: Histogram and density plot of target. Evidencing the data imbalance.

3.6 Missing Data

About missing data, the majority of machine learning algorithms do not support NaN values in the input

data and, therefore, realizing how they are distributed in features and handling them is very relevant. So,

with this analysis, we intended to understand if there may be a negative impact on removing surgeries

with missing values since we do not want to lose a large amount of valuable data.

To visualize the distribution of missing values, understand the structure of the dataset and figure out

correlations, Figure 3.12 below was plotted using the Missingno library. Here, all surgeries in the dataset

are represented and each white line indicates an absent value in each column.

Figure 3.12: Visualization of missing values. The white lines represent the missing values in each
column. Procedures columns present a high number of missing values except I1 column since each
episode needs to have at least one procedure.

In the CUF dataset, most features have less than 2% of missing data, a substantially low percent-

age compared to the total number of surgeries presented. However, regarding procedures, the dataset
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has six columns representing up to a maximum of six distinct procedures that can be performed during

surgery, and most of them have a considerable number of NaN values. The high number of missing

values happens because most surgeries have a unique procedure and only 1% of surgeries have six

procedures.

The remaining features have missing data ranging from 10% to 24%, and it is important to point out

that for 11% of the data, we do not have the duration planned by CUF and 25% of patients have no time

in the recovery room recorded.

3.7 CUF Predictions

After extensive data analysis, CUF forecasts were compared with the actual surgery durations. So we

can understand the distribution of the error and how close the predictions are to the recorded real time.

This will be the benchmark for our work, where the focus will be on reducing this error and improving

precision in the prediction of surgical times.

In Figure 3.13, it is possible to observe the error distribution of CUF predictions. This error was

calculated considering the actual case-time duration and considering a tolerance threshold of 10%.

Overutilization cases are those where the real duration exceeds the predicted time by greater than 10%,

representing a positive error. In contrast, underutilization cases are those estimated 10% below real

time, associated with an OR overestimation and a negative error. Lastly, within cases are considered

when the prediction of surgery is within ±10% threshold.

Analysing plot shape, the error follows a Gaussian distribution with a mean of -27% and a standard

deviation of 90%. Therefore, most surgeries take less time than scheduled and operating rooms end up

not being used to their full potential. Furthermore, considering as well-planned surgeries those with a

module error of less than or equal to 10%, 29% of surgeries are overestimated and 52% underestimated.

(a) Error distribution between planned and realized surgery du-
rations.

(b) Overutilization and underutilization of operating rooms.

Figure 3.13: Error distribution since 2017 to 2020. A negative error is directly related to the underuti-
lization of the room, meaning that CUF prediction is greater than the real time used. Positive errors
are related to OR overutilization. Both Figures highlight the importance of a more effective method for
predicting OR surgeries, as CUF tends to overestimate the case duration, correctly estimating only 19%
of surgeries.
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3.8 Remotion of erroneous data

Given the dataset from January 2017 to December 2020 with a total of 191,046 surgeries, data cleaning

was performed to facilitate the use of subsequent machine learning models.

Firstly, duplicate surgeries were removed from the dataset, as well 64 instances associated with sur-

geon ID 0009, doctor number used by the CUF surgery scheduling team to test the platform. In addition,

all procedures present in columns I1 to I6 were checked with the Order of Physicians table to remove

any mistakenly introduced procedure that was not listed. In this case, the procedure was set to NaN.

During the data exploration, it was also possible to verify that certain patients contained duplicate

registered surgeries that had not been removed. This happened because there were patients with the

same surgery at the same time but associated with different units or different operative registry numbers.

Thus, to remove the duplicated rows we checked the ones that contained the same patient ID, doctor,

surgery date and surgery start time, since this set of variables must be unique throughout the dataset.

Thereby, 4,067 surgeries were removed and the variable that was different within the duplicates was

defined as NaN.

Moreover, there is a low relative frequency (<0.01%) of male patients associated with data entry

mistakes in the gynecology specialty, so we removed these patients’ surgeries. Lastly, within the 26 spe-

cialties present in our dataset, administration requests is not recognized as a specialty within surgeries.

This may be an error introduced by the healthcare professional and therefore the associated lines have

been deleted.

Thus, after data cleaning we have a total of 186,979 surgeries in our dataset.

3.9 Data and Features Selection

After the feature engineering process in which we generated more columns from the original data and

the knowledge acquired in the exploration data analysis, our dataset contains a total of 41 columns. At

the moment, it includes a lot of information, some of it redundant, so it is crucial to make the right choice

on the data that we intend to use.

Hence, the columns that we consider relevant to train the models were selected. These include:

specialty, CUF unit, anesthesia category, the total number of procedures performed, first procedure,

surgeon, patient’s gender and age, number of surgeries that a given doctor has performed so far, num-

ber of surgeries that the doctor has performed on that day, temporal data such as month, weekday and

part of the day, actual duration of surgery, planned time by CUF, type of hospitalization (outpatient or

inpatient surgery) and planned or urgent surgery. From these 17 columns, we removed all surgeries that

contained surgeries with missing information. The column with the time planned by CUF is not an input

to the models but is kept to compare the current methods used. The case was not taken to not allow for

information leakage for this benchmark.

With this selection and removal of surgeries with missing values in at least one of these 17 columns,

we obtained a total of 169,772 surgeries in our final dataset, which we consider a good starting point
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for the development of the thesis. In Figure 3.14 we can note the cleaning process performed to ensure

that the dataset is free of inaccurate or corrupt information and ready for use.

Figure 3.14: Summary of the data cleaning process. Flow diagram illustrating the data cleaning process

to create the final dataset.

3.10 Encoding

The majority of the models work with numeric data as input, so it is important to understand if our data

needs to be transformed to be compatible with a specific model type. As explained in Section 2.5, there

is a wide variety of encoding methods and have into consideration the advantages and disadvantages

of each method we want to convert categorical data into suitable numeric values.

Consequently, for the case of features with two values, which happen in 3 of the 17 features, we

performed dummy encoding, an encoding similar to one-hot encoding in which only one column is kept

to represent features such as gender, hospitalization and if the surgery is programmed. Thereby, one

column with 1’s and 0’s is generated, meaning female or male respectively in case of gender feature.

Lastly, in remaining categorical features with more than two values, seven features in total, target

encoding on features was performed. As discussed, although one-hot encoding may have better en-

coding than order encoding since sorting variables is not in our interest, it produces countless columns

hindering the good performance of machine learning models.

With target encoding some considerations must be taken into account because we do not want target

variable leakage in the new encoded feature. To prevent this problem, encoding should be applied after

the split into training and test data because otherwise, our data could overfit and the results may not

be reliable. Thus, to prevent this problem, target encoding utilizes training data to fit the encoder and

transform the new categorical data in both training and test sets.
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Chapter 4

Modeling

In this Chapter three different strategies have been implemented to our dataset. We applied the inter-

pretable and explanatory model, RuleFit, and two opaque models, the gradient boosted decision trees,

XGBoost, and a feedforward neural network to comprehend the behavior of CUF data with black-boxes

and the trade-off between predictive power and interpretability. Since our objective will go through an

explanatory model, RuleFit will be the main algorithm used as a starting point for the final development

of the model.

4.1 Proposed Approaches

With all the data processed and ready to be used, we had the opportunity to understand with CUF our

main focus and how we would approach and solve the problem. After analyzing similar works in the OR

topic and considering the indication of CUF’s stakeholders, the strategy chosen to move forward was

the study of three types of approaches: a general, specialty-specific and surgeon-specific models. The

last two specific models were based on the work developed by Bartek et al. [1], in which the authors

generated specific models for surgeons and each specialty.

The models of each approach will contain a different structure, its specific encoding and different

observations in the target column.

4.1.1 General Model

The general model is a model that receives as input all 17 variables defined previously. We intend to

realize if a single model without being focused on a specialty or doctor can be good enough and even

accurately assess the operating room durations or if it turns out not to be great because the problem is

very complex and there is great data dispersion.
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4.1.2 Specialty-specific Models

The specialty models are generated for each specialty present in the dataset using all available features

except the specialty column. The specialty-specific models are developed for each surgical specialty

with more than 100 surgeries in the training dataset to achieve a reasonable performance value in the

test dataset. Accordingly, of the 25 specialties present in the dataset, 18 have specific models.

4.1.3 Surgeon-specific Models

Regarding surgeon models, these models use 16 features because the doctor column is removed.

Surgeon-specific models are modeled individually and only those surgeons with more than 100 surg-

eries in the training dataset are considered. Therefore, 381 surgeon-specific models are trained and

evaluated.

4.2 Data Split

Concerning the split, as throughout the thesis we are going to apply different methods to the data and

in the end, we desire to obtain the algorithm generalization error, we divided the data into: training,

validation and test datasets.

Technically, we require a training set to fit the model and a validation set to provide an unbiased

final model evaluation. However, as these training and validation datasets are used across the different

algorithms, once we have all final models defined, we will evaluate them all at once with the test dataset,

which allows us to compute the generalization error. Therefore, we divided the model’s data into 80%

for training, 10% for validation and 10% for testing dataset.

Lastly, it is important to mention that intermediate validation sets that help us have an unbiased

evaluation while tuning model hyperparameters are not defined at this stage because it is used differently

depending on the algorithms. Most algorithms receive a validation parameter that corresponds to the

percentage of the training we want to use as validation, so it is not necessary to define a priori.

4.3 Machine Learning Algorithms Implementation

4.3.1 Extreme Gradient Boosting Implementation

As a starting point of our work, the approach taken by Bartek et al. [1] was reproduced to understand

what results we would obtain and whether our data would be able to achieve an improvement concern-

ing the current CUF predictions. The paper used three different algorithms: linear regression, random

forest and XGBoost, thus the one with the best results, XGBoost, was used to generate the first model.

A decision-tree-based ensemble ML algorithm that uses a gradient boosting framework, one of the most

powerful methods to produce predictive models. XGBoost framework was developed based on the idea

of successive improvements of weak learners, where second-order gradients of the loss function are
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computed to get more information about the direction of the minimum.

We performed a 5-fold cross-validation for each model to optimize the hyperparameters, so the train-

ing set is split into five groups and each fold is used as a testing set at some point. These parameters

were set before the algorithm was trained because it affects the reliability of the model.

In Table 4.1 is possible to observe the tuned parameters and the tested values. All sets of com-

binations were tested for each model, and the set of parameters that minimized the evaluation metric

was chosen. Each adjusted parameter is essential for the construction of the model. Max depth control

the maximum depth of a tree, min child weigth defines the minimum weight necessary to create a new

node or child, and gamma is a regularisation parameter which determines, in order to make a split, the

minimum necessary loss reduction. The higher gamma is, the higher the regularization and the more

conservative the algorithm will be. Subsample and colsample bytree are used to help avoid the overfit-

ting of a single sample or feature, in which the first corresponds to the percentage of observations/rows

used in each step and the second one corresponds to the portion of features utilized for each tree.

Lastly, eta has the same behavior as the leaning rate and shrinks the weights associated with features

after each round, so we have to use a small value enough to avoid overfitting but not minimal because it

makes the computation substantially more difficult.

Table 4.1: Set of parameters used in XGBoost Tuning.

Parameters Set

Maximum Depth {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
Minimum Child Weight {1, 2, 3, 4, 5, 6, 7, 8}

Gamma {0, 0.1, 0.2, 0.3, 0.4}
Subsample {0.7, 0.8, 0.9, 1.0}

Colsample bytree {0.7, 0.8, 0.9, 1.0}
Eta [0.01, 0.35] with a step of 0.005

The customized evaluation metric combines both the MAPE (2.4) but also the percentage of within

cases, where surgeries considered within present an error of less than 10%, concerning the difference

between the actual duration of the surgery and the one predicted by the XGBoost model. Moreover, if

the evaluated metric does not improve the performance on our intermediate validation after ten rounds

during tuning, we enforce an early stop mechanism to halt learning. In that case, early stopping will oc-

cur before reaching the total number of rounds defined by the number of boosting rounds, corresponding

to the number of trees to build.

Finally, the results shown in Table 4.2, were consistent with the results presented in Bartek et al.

paper. All models learned better results than the current CUF estimates and the surgeon-specific mod-

els still have a 6% improvement in within cases in respect to the specific model for each specialty. The

models’ performance was measured based on within, overutilization, and underutilization cases. Within

cases are those in which the forecast has a maximum error of 10%, which is the threshold chosen, and

therefore the higher this percentage, the better the model’s performance. Overutilization and underuti-

lization are cases estimated with an error greater than 10%, with a time shorter than the real one and

with a time exceeding the actual case-time duration, respectively.
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Lastly, it is important to mention that the cases of within, overutilization and underutilization achieved

for the CUF model vary between the different approaches since the split is different. However, the dif-

ference (∆) between the approaches is minimal and less than ∆ 0.008. Therefore, only the values

for general case CUF model are shown in Table 4.2 because they are practically the same for specific

models.

Table 4.2: Validation error obtained for each approach with XGBoost algorithm and from CUF model.

Model Within Overutilization Underutilization

CUF 0.20 0.31 0.49
General Model 0.26 0.39 0.35

Specialty-specific Models 0.27 0.41 0.32
Surgeon-specific Models 0.33 0.41 0.26

Regarding specialties, the performance distribution within the models is not always constant. As

shown in Figure 4.1, dermatology is the specialty in which XGBoost can obtain a more outstanding

performance, which may be associated with a low standard deviation compared to other specialties.

In addition, XGBoost’s prediction does not improve in plastic and reconstructive surgery, although the

precision is not significantly worse, perhaps because this is one of the surgeries where we have the

most remarkable data dispersion, being the second largest standard deviation and variance among

specialties.

Figure 4.1: Distribution of within cases using XGBoost and CUF predictions for each specialty. The 18
specialty-specific XGBoost models varied in their within cases. 88% of all models have an accuracy
greater than or equal to that of CUF schedulers.

Moreover, it is important to understand how these predictions are performed and interpret both

specialty-specific and surgeon-specific models since the explainability of models in high-risk decision-

making is crucial. Hence, Shapley Additive Explanations [45] was used to estimate SHAP values and
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explain the output of XGBoost models.

Thus, the SHAP summary plot was performed to graphically represent each feature’s importance

and effect in the model given the data. The SHAP summary presents, for each feature, SHAP values of

each observation as a data point. The features are also arranged in descending order according to their

importance for the model.

The assigned color is related to each point’s value in each feature, where low values correspond

to more bluish colors and high values to red colors. In addition, we have wider regions than others in

each feature, which correspond directly to the SHAP values distribution since overlapping equal points

generate an increase along y.

Figure 4.2: SHAP summary plot of XGBoost general model. The y-axis indicates the variable name in
order of importance from top to bottom. The top one, the first procedure, is the most contributor to the
predictions. Shap values are provided in the x-axis. The color of each dot, which represents a single
data point, denotes the value of that on corresponding feature.

The SHAP summary plot for the XGBoost’s general model, the one that receives all data without any

particular alteration or specification, is presented in Figure 4.2. The four most important features are

the first procedure, the doctor, the number of procedures performed during the surgery, and the type of

hospitalization. The way the model identifies the relevant features is very interesting, emphasizing the

importance of a specific model for each doctor due to the relevance given to the doctor column.

In Figure 4.3 is possible to observe a SHAP summary plot for the orthopedics model, one of the

18 specialty-specific models. The four most important features are the first procedure, the number of

procedures performed during the surgery, the doctor and if the patient is an outpatient or inpatient. This

set of features are also highlighted as the most important across all specialty models.
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Figure 4.3: SHAP summary plot of orthopedics specialty. The y-axis indicates the variable name in

order of importance from top to bottom. The top one, the first procedure, is the most contributor to the

predictions. Shap values are provided in the x-axis. The color of each dot, which represents a single

data point, denotes the value of that on corresponding feature.

Regarding the first procedure, this is the most important feature and the SHAP values are widely

distributed between -50 to 150. This feature has been encoded with target encoding, so positive SHAP

values represent procedures with high variable values. Thereby, as this feature considerably impacts

the model’s prediction, samples with high first-procedure values are likely to have a longer estimated

surgical time.

The second feature with greater importance is the number of procedures associated with surgery.

Surgeries with more procedures are correlated with positive SHAP values, which is expected since sur-

geons with more procedures tend to take longer to perform the surgery. These longer times occur due

to the time required in each procedure and because there may be an interval of time necessary between

each procedure, e.g. material change. Most surgeries are generally related to a negative procedure’s

SHAP value, as there are usually 1 or 2 procedures per surgery.

The surgeon also has a relevant impact on the final value predicted by the XGBoost model according

to the SHAP analysis, which can justify the significant enhancement in predictions when models are

trained according to each doctor. The doctor was encoded using target encoding by the same logic as

the first procedure, so negative SHAP values are related to doctors with lower coding values. However,

in most doctors for the orthopedics specialty, the SHAP value is around zero between -10 and 10.

Concerning hospitalization, this feature can only take two values: 0 or 1 for inpatients or outpatients,

respectively. As expected, inpatients are related to higher SHAP values since the need for a bed at least

one night before surgery may imply that surgery is more complicated or requires patient monitoring care.

Lastly, it is interesting to note that the fifth most crucial feature, the number of doctor’s surgeries in a

day, presents a curious behavior. Surgeries with lower values in this column, such as the first or second
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surgery of the day for a given doctor, tend to be longer than the last surgeries of the day. This behavior

could be related to scheduling longer surgeries at the beginning of the day or time tightening throughout

the day due to overestimation issues.

Conversely, Figure 4.4 presents the SHAP summary plot for one of the 322 models treated for each

doctor, in this case for the doctor with the number 132273102 coded as 65.9142 through target en-

coding. Contrary to what happened for specialty models, the importance order of features is no longer

as consistent for all surgeon-specific models, which confirms the importance of the surgeon to create

variability between different models. The first procedure is transversely the most important across the

models. However, the second and third most important features vary between age, gender, hospital-

ization, type of anesthesia and number of procedures performed depending on the surgeon. However,

we can already remark similarities in the three most important features by analyzing doctors within the

same specialty.

Figure 4.4: SHAP summary plot of surgeon ID 132273102. The y-axis indicates the variable name in

order of importance from top to bottom. The top one, the first procedure, is the most contributor to the

predictions. Shap values are provided in the x-axis. The color of each dot, which represents a single

data point, denotes the value of that on corresponding feature.

Even when faced with XGBoost’s robust accuracy, we must not forget that explaining the predictions

of this ensemble tree is difficult. Furthermore, identifying the most relevant features for the model is not

easily extracted because different measures report different feature importance orderings, making the

model even less reliable. In Figure 4.5, we ran three options for measuring feature importance in the

general XGBoost model, where weight states for the number of times a feature is used across trees, gain

represents the average gain of a feature when used to split data and cover means the relative number

of observations related to a feature. As we can notice, the ordering of features varies considerably with

the chosen approach, and even the feature reported as the more influential of income is different.
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As plausible, the use of XGBoost in the health context must be done very carefully, as we cannot

report conclusions unequivocally without complete confidence in the model’s behavior. Analyzing fea-

ture importance derived from SHAP, Figure 4.6, we observe a different feature importance ordering,

highlighting the inconsistency of previous methods. The charts from all methods can produce different

results, leading us to raise questions about their application. For a given problem, it is not easy to con-

clude which is the most appropriate feature importance method for the situation and which we should

consider.

To conclude, it is important to highlight that XGBoost behaves very well under imbalanced data, in

line with results found in similar research works [51, 52]. However, we have to point out that as a tree

ensemble and therefore as a combination of the predictions of different decision trees, XGBoost ends

up approaching a black-box model where we would have very difficult to interpret without SHAP demys-

tifying the models [53]. Although SHAP had been developed to address the problem that current feature

attribution methods are inconsistent [54], we have difficulties explaining the reasoning process behind

their predictions.

(a) Relative importance of features for weight metric. (b) Relative importance of features for gain metric.

(c) Relative importance of features for cover metric.

Figure 4.5: Feature importance chart for general model.

4.3.2 RuleFit Implementation

After analyzing CUF data performance with XGBoost, we developed a ML model based on rule-based

methods through RuleFit [26] implementation. This interpretable framework was chosen once inter-

pretability is fundamental in the health context.

Regarding inputs, features were used without additional normalization or scaling because decision

trees are not sensitive to the variance of the data and are not impacted by outliers.

During the development of the RuleFit model, we came to understand that we should vary the type of

ensemble tree that generates the decision tree and the type of regularizer applied to reduce the number
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Figure 4.6: Feature importance computed in general model with SHAP values.

of decision rules. Hence, the RuleFit algorithm itself had to be customized to meet what we wanted to

perform.

In a first instance, the RuleFit framework only allowed the use of Random Forest and Gradient Boost-

ing as a decision tree at the regression level. Thus, considering the ensemble methods available in the

Scikit-Learn library, we added Bagging Regressor since it has a lower tendency to overfit than Gradient

Boosting. Additionally, Extremely Randomized Tree was also added as an option of the decision tree

since Random Forest in a first analysis worked interestingly. Thus, we would analyze if Extremely Ran-

domized Trees could behave similarly or even better since it is usually related to a reduction in variance

from the bias-variance point of view [55].

Finding the best parameters of ensemble trees is also important, mainly the maximum tree depth, to

ensure interpretability. Thus, as also advised by Molnar [56], we should keep the depth at a reasonable

level, so the rule does not have more than 3 or 4 conditions.

The number of estimators was also varied. In the case of Gradient Boosting, Random Forest and

Extra Trees, the decision trees ensembles fit several trees and then average them. Thus, if the number

of estimators is 10, we have ten trees and the final result is performed through the average of these ten

trees. In Bagging Regressor, the number of estimators is related to the base estimator utilized, which in

our case is a Decision Tree Regressor.

Lastly, the learning rate was also tuned, but this one is only present in Gradient Boosting. This

parameter will shrink the contribution of each tree so that it will be directly related to the number of esti-

mators. Thereby, in Table 4.3 is possible to observe the range of values tested for each parameter.

The total number of combinations is not so expressive as in XGBoost, so we do not need to limit

the trails number. Each tree was optimized by cross-validation grid-search, with a 5-fold and the neg-

ative MSE as a scoring strategy. A negated version of the score needs to be utilized because, in

GridSearchCV, a high score is better. Thus, we need to return the negative to handle losses.

Furthermore, RuleFit can control a large amount of generated rules through Lasso regularizer, where

some rules get non-zero weight. However, to understand which type of regularizer would work better,

we also customized the RuleFit regularization to receive any of the following regularizers: Lasso, Elastic

Net and Pyowl [57].

The motivation for the regularizer’s choice was the following. Firstly, we kept Lasso because it is
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Table 4.3: Set of parameters used in Ensemble Methods Tuning.

Parameters Set

Learning Rate {0.150.1, 0.05, 0.01, 0.005, 0.001}
Number of Estimators {100, 250, 500, 750, 1000, 1250, 1500, 1750}

Maximum Depth {3, 4}

the default regularizer in RuleFit and has an essential role in variable selection. Elastic Net was also

used as a regularizer since it usually tends to be more accurate and does not remove features so

aggressively as Lasso. Elastic Net is a combination between Lasso and Ridge and takes advantage of

both. Lastly, we added Pyowl [57], a recent algorithm that robustly handles highly correlated features,

puts the coefficients in order and then discards the lowest ones. This algorithm uses the Ordered

Weighted `1 (OWL) family of regularizers for sparse linear regression. It is known to behave better than

previous regularizes when it is desirable to identify all of the covariates relevant for modeling the data

in high-dimensional problems since, in a situation where there is near-linear dependence among a few

covariables, the Lasso and Elastic Net are unsatisfactory and tend to select one variable from the group

of correlated variables [58, 59].

Regarding Ridge, the instability of L2 regularization led us not to use this regularizer. The ridge

penalty can not shrink the coefficient precisely to zero, so it will not reduce the number of rules generated

by decision trees [60].

In our rule fitting method, the set of regularizers run in two distinct ways. Firstly, by cross-validation

in order to find the most suitable parameter alpha, and afterwards without cross-validation and setting a

specific value to alpha instead of a range. The alpha assigns how much weight is given to each penalty,

so a higher alpha implies a higher penalty and more rules will be set to 0 after using the regularizer. To

choose the suitable alpha without cross-validation, the developed algorithm only accepts to generate a

RuleFit model when the total number of rules after application of the regularizer is less than 50, so now

it is possible to control the rules without reducing them in a more ”raw” way.

We use the rule fitting method with and without cross-validation because of the number of rules we

want to get. When we first developed a model that looked for the best alpha value by cross-validation,

we got a very high number of rules, over 500 rules. So, to force the model to reduce the number of rules,

we had to define the maximum total number of rules that we wanted to get at most before applying the

regularization technique and, in this way, we were able to work around the problem.

However, sometimes setting the maximum number of rules at the beginning can make the model

worse than using a specific alpha without cross-validation and large enough to obtain enough rules for

what we are looking for. So, this was the reason that led us to test RuleFit with both Lasso without cross-

validation and Lasso with cross-validation but with the maximum number of defined rules. Regarding

regularizers, only the Pyowl implementation does not allow running the cross-validation method because

the algorithm requires that we set parameters alpha and beta at the beginning.

We started by analyzing all the possible combinations for each model approach. As it is plausible,

we can not look for the best combination for each model within specialties and surgeons due to the high
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number of models. Thus, since we are also interested in defining the same combination for all models

within the same approach, a set of five specialties and five surgeons were analyzed to understand which

best combination fit the data better. The selected parameters chosen for each approach to generate the

RuleFit models are present in Table 4.4.

Table 4.4: Selection of parameters used by the rule fitting method in each model approach.

Model Decision Tree Ensemble Regularizer Cross-Validation

General Model Gradient Boosting Regressor Lasso No
Specialty-specific Models Gradient Boosting Regressor Lasso No
Surgeon-specific Models Bagging Regressor Lasso No

The Lasso regularizer without cross-validation consistently obtained the best results for the different

approaches from the set of combinations. With cross-validation and respectively limiting the maximum

number of rules, we obtained a higher MSE error.

The difference between the model approaches lies only in the type of decision tree. For the gen-

eral case and specialty models, Gradient Boosting Regressor is the chosen ensemble method, whereas

Bagging Regressor was the decision tree that showed the best results for the case of surgeon-specific

models. The comparison method used across combinations was the MSE error value in the validation

dataset and the percentage of within cases, surgeries with an error of less than 10%, resulted from each

decision tree ensemble.

The results obtained for each model approach are presented in Table 4.5. As expected, CUF esti-

mates are less accurate than each approach and it is possible to verify that the less generic the dataset

is, thus moving from the general model to the surgeon’s models, the percentage of correct predictions

increases.

Table 4.5: Validation error obtained for each approach with RuleFit and from CUF model.

Model Within Overutilization Underutilization

CUF 0.20 0.31 0.49
General Model 0.22 0.30 0.48

Specialty-specific Models 0.24 0.29 0.47
Surgeon-specific Models 0.26 0.30 0.44

Concerning each specialty, like in previous algorithms, it is possible to observe the distribution of

within cases in Figure 4.7. The RuleFit algorithm cannot overcome CUF’s predictions in dermatology by

4% and plastic, reconstructive and aesthetic surgery by 1.5%. However, in general, there is a significant

improvement of 4% in relation to CUF estimates. Moreover, contrary to what had happened in the

current estimation standards, RuleFit improved the estimates by 7% in internal medicine, one of the

most challenging specialties due to the reduced number of data and the great dispersion and variation

of surgical times.
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Figure 4.7: Distribution of within cases using RuleFit algorithm and CUF predictions for each specialty.

The 18 specialty-specific RuleFit models varied in their within cases. 88% of all models have an accuracy

greater than or equal to that of CUF schedulers.

Before analyzing the rules generated by the RuleFit model, we use the model-agnostic tool available

in RuleFit to visualize the feature importance given to the explanatory variables after training a tree-

based model and identify the most significant features affecting the target. The measurement includes

the importance of the raw feature term and all the decision rules in which the feature appears [56]. This

visualization is not feasible for surgeon-specific models since the function feature importances () only

works with Random Forest and Gradient Boosting Tree.

The tree-based model optimized creates several decision rules and the RuleFit model is posteriorly

fed by a tree model and a combination with Lasso regressor. Therefore, the feature importance graph

for the general model is present in Figure 4.8.

Like the previous algorithm, the first procedure and doctor are the most significant features affect-

ing the target in the general case. Regarding specialties, there are some differences in the top 3 most

relevant features. For example, the orthopedics model presents the same order of importance as the

general model. However, the main one for dermatology is the doctor, then the first procedure and age

as the third most important. In general, the first procedure and surgeon are always very relevant and

from the third main feature to the last, the order varies a lot from specialty to specialty. However, these

percentages of individual relevance are minimal, each one less than 0.05.

After this analysis, it would be expected that the most important rule combinations also mostly con-

tain these features. Thereby, now it is crucial to analyze the most informative rules from the set of

decision rules built by each RuleFit model to understand how the model is learning and which aspects

it emphasizes. As we know, trees are a form of rules in which the paths to each node form one rule.

In addition to the set of rules generated, RuleFit also informs us of the support and importance of each
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Figure 4.8: Bar chart listing the explanatory variables based on their significance level for the general
model. The most important features for the predictions were the first procedure and the surgeon.

rule.

Table 4.6 displays the five globally most important rules resulting from the general RuleFit model

based on their estimated importance. The coefficient column represents the slope parameter in the

case of linear terms and, for rules, represents the change in predicted value if the rule is satisfied. The

support column represents the proportion of the dataset that the rule applies to. The importance column

is calculated from the regression model’s weights, and it is measured as the overall impact on predictions

which is given as the posterior mean weighted with its standard deviation [61].

Table 4.6: Five of the rules that were generated by general RuleFit model, along with their support and
importance.

Description Coefficient Support Importance

First Procedure 0.68 1 28.07
Doctor 0.18 1 5.81

First Procedure ≤ 181 and Number of procedures ≤ 2.5 -10.35 0.84 3.78
First Procedure ≤ 115 and Number of procedures ≤ 3.5 -8.25 0.80 3.25

Hospitalization ≤ 0.5 and Daily Surgery Number (individual) ≤ 1.5 5.9 0.30 2.70

In Table 4.6 the first and second terms reflect the linear dependence on the first procedure and doc-

tor, congruent with previous Figure 4.8. The third and fourth rules indicate smaller target values when

the number of procedures and the first procedure value are small. The fifth rule produces larger target

values when there is no hospitalization and supports 30% of the data.

Regarding specialty-specific models, the first procedure remains with a linear relationship and as a

rule of greater importance in the case of orthopedics. Then the number of procedures supporting the

dataset reflects a linear dependence. As a third more important rule, surgeries without hospitalization
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where the doctor has a high value and the surgery is the first of the day indicates a higher target function

value.

For ophthalmology, the first procedure is the most relevant rule. Then, the patient’s hospitalization

and small doctor values indicate a smaller target value. Moreover, as a third important rule, surgeries

with a high doctor number and high anesthesia target encoding value show a higher target value.

In general, within specialties it is possible to verify that the first procedure is consistently the rule of

the most significant importance and rule combinations involving doctor, the number of procedures and

the daily number of surgery for a particular doctor are also important features and support most of the

dataset of each specialty.

Finally, rules generated by surgeons-specific models are not so similar to the general case. The sur-

geon ID 5050005, for example, has a rule combined with a low number of procedures, low value of the

first procedure, and high experience representing the most important rule and having a smaller impact

on the target function value. On the other hand, surgeon ID 776636291’s main combination is an aggre-

gate between the first surgery of the day in patients with age between 50 and 80 years old, reflecting a

lower target value. Between different surgeons, there is a significant variation between the main rules.

However, as happened in XGBoost, it is possible to observe more similarities between surgeons within

the same specialty.

Contrary to XGBoost, the RuleFit algorithm generates a set of binary decision rules, not all informa-

tive but possible to filter, turning out to be more transparent and explanatory from the point of view of

functionality since new features are known in the form of decision rules.

4.3.3 Feedforward Neural Network Implementation

In this Section we focus on a deep neural network modeled in Tensor Flow to understand the behavior

of another black-box model on our problem. The complexity of a black-box model makes it difficult for a

human to interpret the output and understand how the algorithm behaves. Even those who design them

cannot understand how variables are being combined to make predictions, which can be a problem from

an ethical point of view [62].

In several areas, including healthcare management, the models’ explainability and interpretability are

fundamental for the use of ML in everyday life. For a nurse to be able to commit to signing the time that

a given machine estimates for a specific surgery, the latter needs to understand how the models work

to provide confidence to the health professional. The doctor is relying more on the machine than on his

own estimate, so it is essential to have this explanatory dimension of the generated models.

The neural network’s approach allows us to understand whether we have significant differences when

comparing interpretable and non-interpretable models since this is widely discussed topic in the ML field,

and questions are often raised as to whether precision is sacrificed for interpretability. The use of black-

box models for high-stakes decisions, as in predicting medical outcomes, only should be considered if

no interpretable model can be constructed that achieves a good enough accuracy level [62].

Again, we developed three types of approaches: a general FNN with all data, surgeon-specific FNNs
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and specialty-specific FNNs. Regarding the data split, the fraction used for training was 80% and 10%

for testing. From our training set, 20% was considered as a validation set, an essential set to update

hyperparameters during tuning. Moreover, the target on the training set was standardized by Stan-

dardScaler from Scikit-learn, so each instance was normalized by subtracting the mean and posteriorly

dividing by the standard deviation as represented in Equation (4.1). The scaling process is critical to

keep the continuous features identical in terms of the range.

z =
x− µ
σ

(4.1)

Using a Keras Tuner class, RandomSearch, we performed the model tuning to define a searchable

space for hyperparameters that needed optimization. The tuner selects random combinations to train

the model and evaluates them considering the objective function. Table 4.7 presents the range of values

used to tune hyperparameters, however, it is important to note that before the selection of range param-

eters shown, some experiments were performed to narrow the searchable space.

These four hyperparameters can significantly affect the accuracy of the model and, for that reason,

are chosen. First, the tune of the learning rate is crucial to control how much we are adjusting the

weights of our network concerning the loss gradient. The tuning of layer units is necessary once a small

number of units can lead to underfitting. A higher number of layers can increase the time it takes to

train the network and reach a point where it is impossible to train the neural network adequately. Lastly,

dropout is essential because it helps the neuronal network avoid overfitting, forces to learn more robust

features, and not develop codependency.

Table 4.7: Set of parameters used in Feedforward Neural Network Tuning.

Parameters Set

Dropout [0.1, 0.5] with a step of 0.05
Learning Rate {0.1, 0.01, 0.001}

Number of layers [2, 20] with a step of 2
Number of units [16, 64] with a step of 4

As it is possible to verify, the number of combinations is extremely large, and running all combinations

is computationally inefficient, so the maximum number of trails in RandomSearch was set at 20 and the

MSE of the validation set was used as the objective function. After 20 trials, the best model architecture

is chosen based on the minimum MSE obtained from the validation set.

The model’s architecture is fundamental in neural networks since there are different layers available,

different numbers of units in each layer, and other ways of combining these layers. Our first layer is a nor-

malized layer in all models, which compute the mean and variance, storing them as the layer’s weights.

Then comes a set of dense layers, whose the optimum number of hidden layers and the number of units

for each layer are optimized during tuning. Each layer is also associated with a rectified linear activation

function, widely used in deep learning and recommended for most feedforward neural networks [28].

ReLU is linear for half of the input domain and can retain many of the linear properties of the models to

facilitate the use of optimization methods.
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Moreover, a batch normalization layer is introduced between each dense layer to prevent vanish-

ing gradients [63] following the formula of standardization shown in Equation (4.1). This layer induces a

faster and better convergence through normalization using mini-batches instead of the complete dataset.

Lastly, a dropout layer is used immediately after batch normalization, so some units are randomly dis-

regarded during the training phase. The last layer of models is always a dense linear layer, with one

neuron to return an output per surgery.

To better comprehend the architecture of the models, Figure 4.9 illustrates the structure previously

described. For example, a model with five as an optimal number of layers presents the following struc-

ture: a normalization layer; five sets of dense layers, batch normalization and dropout; and finalize with

a dense layer with one unit.

Figure 4.9: Architecture of Feedforward Neural Network.

Afterwards, the architecture is fully defined when the loss function and the optimizer are specified.

The loss function measures how close the model is towards the goal and since there are various types of

regression losses, MSE and Mean Absolute Error (MAE) were studied. The best results were achieved

with MSE after verifying how each function would be minimized when the model training algorithm itera-

tively updated the model parameters.

For the optimizer, the behavior of ADAM and SGD was studied. However, with SGD, a problem

arises during the tuning for some models, where the loss takes the value NaN. This may occur because

in neural networks regression problems, the output is unbounded, so minimization becomes difficult and

issues such as exploding gradients can occur. This problem is related to the significant increase in the

norm of gradient [64] during the tuning, which explodes weight terms with long components and the

loss goes to NaN. Thus, we used ADAM in all models to avoid this complication, an adaptive learning

rate that combines Momentum and Root Mean Squared Propagation (RMSprop) [28]. This optimization

algorithm is an extension of SGD, where adjustments to the learning rate are performed during the train-

ing phase.

Regarding tuning, firstly, the optimum dense layers number for each model was found. The tuning is

done separately from the remaining parameters to ensure that the model is not underfitting the training

data. The set of layers number tested to find the best set that performed the minimum MSE in the vali-

dation set are shown in Table 4.7 above.
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For each set of layers, the training step of the neural network was performed without any dropout or

batch normalization layers. The number of epochs for which we need to train the neural network was

set to 100, with no callback in order to visualize the U-shape of the validation set and the overfitting

of the model. In Figure 4.10 a), it is possible to observe the number of layers tuning for the general

model. Here for a better plot visualization, only three of the ten tested sets are shown. The model with

six layers obtained the minimum MSE in the validation set and therefore, this value was selected as an

ideal parameter to the general model.

In Figure 4.10 b) we are able to analyze the performance of the training after tuning the remaining

parameters mentioned in Table 4.7. As expected, the addition of batch normalization and dropout layers

significantly reduces the overfitting issues.

(a) Loss and validation loss during tuning of layers number with
2, 6 and 16 layers.

(b) Loss and validation loss with 6 layers and after implementing
Batch Normalization and Dropout in model.

Figure 4.10: Loss and validation loss before and after parameters tuning. A neural network with six
layers for the general model was chosen since present the lowest MSE. The validation loss behavior
was not expected because it should be higher than training loss for the first epochs.

An important point to note is that both graphs are very noisy, indicating that the batch size is too

small or the optimizer is not optimal. This noisy result is explained by using the default value of 32 as

batch size, once the batch size was the last parameter to optimize and is not yet tuned. Moreover, the

validation set presents a lower loss concerning the training loss, which occurs during the model’s training

after the parameters tune previously mentioned (Figure 4.10 b)).

One explanation may be that the validation set has ’harder’ cases to learn, however, the split done

is completely random. The initial split between training and validation set is done when fitting the model

by order of the index, and Keras takes the first 80% of data points as training data and the last 20%

as validation data. However, firstly, the split between testing and training data was performed using a

random state of 123, so the validation data is generated from random surgeries of the training set and

is a mixture of the four years present in the dataset. In Figure 4.11 is demonstrated the transformation

applied to dataset.
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Finally, for the general model, the value chosen for the number of dense layers was six, the specialty-

specific models were four, and the surgeon-specific models were two. This decreasing need for layers

may be related to the reduction of the data to generate specific models and hence, fewer layers are

needed to predict the output from the features.

Figure 4.11: Split of data into test, train and validation set.

After the tune of the newly mentioned parameters through RandomSearch, batch size was also

adjusted. This parameter is related to the number of training examples per single forward/backward

pass before updating the model. This parameter is tuned during the model configuration for training.

However, due to different datasets dimensions introduced in each model, individual ranges were created

for each approach, as shown in Table 4.8.

Table 4.8: Range of Batch Size used in Feedforward Neural Network Tuning.

Model Batch Size Range

General Model {16, 32, 64, 128, 256, 512, 1024}
Specialty-specific Models {8, 16, 32, 64, 128, 256, 512}
Surgeon-specific Models {2, 4, 8, 16, 32, 64}

Afterwards, the models were trained with 200 epochs, therefore the learning algorithm learned

through the entire training dataset 200 times. In addition, an early stopping epoch using the callbacks

associated with the MSE error of the validation set was added to avoid overfitting of the model, so if the

validation set error does not improve in 10 epochs, the training ends.

In Figure 4.12 is possible to analyze the final training graph for the general model with the respective

loss and validation loss. Compared with figures previously shown when all the parameters were not yet

optimized, it is possible to observe differences mainly in the noisy effect. This significant improvement is
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related to the proper use of a batch size of 256 instead of the default value of 32. Furthermore, we can

see that overfitting issues have been significantly reduced, as they only start to happen after 70 epochs.

Figure 4.12: Validation loss and training loss of general model after tuning of all parameters including

batch size.

Subsequently, the three approaches were generated: 1 general model, 381 surgeon-specific models

and 18 specialty-specific models. MSE models error and the percentage of within cases obtained by

each model when applied to the validation set are shown in Tables 4.9 and 4.10.

Table 4.9: MSE results for surgeon-specific models, specialty-specific models, general model and CUF
model.

Model Validation MSE Error CUF MSE Error

General model 1193.13 2170.76
Specialty-specific models 1306.81 2232.96
Surgeon-specific models 1.31 × 1012 1109.44

The reduction in MSE measure, the metric used as the objective function, is evident in the general

model compared to the CUF model, however specific models presented a very high and significant error.

Let us look only at Table 4.9. It seems that the models predict the surgeries reasonably poorly. However,

if we additionally look at the boxplots represented in Figure 4.13, which show MSE error distribution for

specific models, we can better observe the interquartile range and the outliers. These values fall outside

this range and cause the explosion of MSE value. Boxplots summarize the distribution of a continuous

variable, where we can identify the first (Q1) and third quartile (Q3), outliers and adjacent values. The

whiskers, the lines extended from both sides, represent these adjacent values, observations within a

distance of 1.5 times the interquartile range i.e. the high adjacent value is given by adjH=Q3+1.5× IQR,

where IQR=Q3 - Q1.

In fact, this problem is common in neural networks where an error in an instance can cause an

explosion of the total error in the final calculation of the MSE because there are no parameter in the

forecast output handling the error explosion and informing the neural network that something is wrong.

Thus, neural networks can fail, ending up propagating the error. Analyzing boxplots, we can observe

53



(a) MSE distribution for specialty-specific models. (b) MSE distribution for surgeon-specific models.

Figure 4.13: MSE distribution in Boxplots. Box represents the data that exists between the first and third
quartile.

that the error distribution within the 381 surgeon-specific models is highly different from the final value

presented in Table 4.9 and there is also a reduction in the MSE concerning the CUF model looking to

the median.

On the other hand, the error of specific models does not improve significantly in relation to the general

model. This may happen because the architecture tuning in specialties was not performed individually.

Given the number of surgeons and specialties, it was not doable to perform the tuning for each individual

model and for that reason, the ideal number of layers was achieved with a limited set of models tested.

However, the dataset sizes present in each specialty are much more variable than the size across

surgeon models. Thus, this may be one reason for the inferior MSE compared to the general model.

Nevertheless, the value is reasonable since it presents improvements regarding the MSE of the CUF

predictions.

Considering the same metric used in previous models, the results from neural networks are also

analyzed considering the within cases, the ones with less than an error of 10%. Thus, in Table 4.10 is

noticeable the error distribution resulting from each model.

Table 4.10: Validation error obtained for each approach with FNN and from CUF model.

Model Within Overutilization Underutilization

CUF 0.20 0.31 0.49
General Model 0.24 0.31 0.45

Specialty-specific models 0.24 0.34 0.42
Surgeon-specific models 0.24 0.33 0.43

Through this method, we are not able to verify a better forecast when we use specific models com-

pared to the general model, and, unlike XGBoost and RuleFit models, the within cases in the surgeon-

specific model do not present a significant improvement in relation to the specialty-specific model. These

results may be related to the difficulty of the neural network to adapt to imbalanced datasets [65] since it

works based on the calculation of errors and assumes equal costs. Therefore, neural networks end up

adapting more to a particular class, in the case of classification, or to a range of more frequent labels in

the regression case.
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In addition, taking into account the specialty models, it is possible to notice the distribution of within

predictions within each specialty model to understand which specialties can demonstrate more ease

when learning with FNN. Surgeries such as dermatology, plastic surgery, cardiac surgery, internal

medicine, and gastroenterology obtained worse results concerning CUF estimates.

Dermatology is a specialty with short durations of surgery with an average time between more than

77,000 surgeries of 25 minutes, so for these to be correctly estimated and evaluated as within cases,

the error has to be less than 2 minutes and 30 seconds, which may justify the slightly lower accuracy

than the CUF model.

Gastroenterological surgery and internal medicine are specialties that do not present a considerable

amount of data, a total of 156 and 105 surgeries respectively, which implies that the training sets are

at the limit of 100 surgeries, the minimum necessary for us to consider the development of the model.

Thus, the small training dataset may explain the lower accuracy. In addition, CUF predictions are also

barely accurate for the validation set provided in internal medicine specialty, so the small dataset that

only contains 12 surgeries can also include more difficult surgeries despite the random split.

Lastly, as mentioned in the XGBoost section, plastic surgery and cardiac surgery are specialties with

variance and standard deviation expressive, and therefore the wide distribution of times may explain the

lower precision.

Figure 4.14: Distribution of within cases using Feedforward Neural Network and CUF predictions for
each specialty. The 18 specialty-specific FNN models varied in their within cases. 77% of all models
have an accuracy greater than or equal to that of CUF schedulers.

To conclude, an essential step after developing the models is the generation of an additional expla-

nation to support the model interpretability. This post-hoc analysis is imperative in some risk-sensitive

domains such as finance and medicine, where professionals are reluctant to trust a model without any

plausible explanation. Hence, SHAP is crucial to assist in interpreting unexplained black-boxes as neural

networks [66].
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As mentioned earlier, neural networks are more complex than interpretable models due to the mul-

tiple interconnected layers that hinder the user’s ability to comprehend models. Deep SHAP, a faster

algorithm to compute SHAP values for deep learning models, comes to open some doors and point

some lights into the model to be able to interpret some relevant points and slightly deconstruct the

model.

In the following Figure 4.15 is possible to deduce the different average contributions of each variable

to the overall mean model’s output. This proper interpretation method helps us understand the contribu-

tions in terms of units from each feature variable. Regarding the general model, we can visualize that the

first procedure and the doctor are very relevant to generating the forecast, which is in line with what we

get with XGBoost and RuleFit. Moreover, the ordering of features in the orthopedics specialty is similar

to the general model, but gender now plays a relevant role. This variation in gender importance is very

interesting since we have specialties such as orthopedics, where gender is one of the most relevant

features, but others such as pediatric surgery, where gender is not so crucial for the final estimate.

(a) Average contribution of each feature to general model. (b) Average contribution of each feature to orthopedics spe-
cialty model.

(c) Average contribution of each feature to 0094051011 doctor
model.

Figure 4.15: Loss and validation loss before and after parameters tuning.

Lastly, in Figure 4.15 c), we can also observe the order of relevance of different variables for surgeon

ID 776636291 from ophthalmology, however, this is only one of the 381 surgeon-specific models. The

ordering of the example is not the same to all doctors, but it is possible to notice a more consistent

pattern within doctors of the same specialty.

Furthermore, we can also observe individual attributions inferred by the model, as represented in
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Figure 4.16, where we explain the 91st prediction of the general model. The graph refers to the expected

value of the dataset as base value and each bar corresponds to a feature’s importance value.

Figure 4.16: Features individual contributions from the 91st prediction of the general model. The ”base

value” is the mean for the output, which is approximately zero in our case. This is the baseline for

predictions, and then the prediction changes according to the value of each feature.

We can infer how to go from the base value to the output value by analyzing each feature’s contribu-

tion. In this case, most feature variables pull down the expected surgery time, except for the gender and

hospitalization variables.
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Chapter 5

Balanced Approach

We will now have a data balancing approach in addition to the algorithmic analysis and the use of more

robust methods like XGBoost for imbalanced datasets. Our data is imbalanced and has difficulty deliv-

ering optimal results for some surgeries presented in less predominant regions. Therefore, we enriched

three different datasets by using the GMM to improve the prediction of surgeries and rebalance the

dataset.

In the previous Chapter, we worked with three different approaches, however now it is expensive to

deal with the imbalance problem in all generated models due to the time involved with the generation of

synthetic data. Thus, one model of each approach was selected: a surgeon, a specialty, and the general

model. We trained a Gaussian Mixture Model to learn the probability distribution on the minority values

of our label.

Finally, the Interpretability Curve was designed and presented, a curve based on Rashomon Curve

but for imbalanced problems that will determine the desired model considering the complexity and ac-

curacy. Furthermore, the Utility-Based Algorithm (UBA) imbalanced learning metrics will be applied to

compare the results of imbalanced and balanced data.

5.1 Deal With Imbalanced Data

With the development of models so far, subsequent analysis of the forecasts performed and the plot of

true labels against predicted labels, we verified that most models showed considerable difficulty predict-

ing surgeries with a longer operative time. Figure 5.1 illustrates this bias where we clearly recognize a

trend in long-time surgeries for these to be predicted with much shorter times.

As described in Section 2.6, most methods for dealing with imbalanced data are prepared for classi-

fication problems and not for problems where the target is continuous. Thus, in the imbalanced regres-

sion, we will have new challenges that will need our attention. Now, the continuous target no longer has

hard boundaries, as happened in the classification problem, and certain target values may not have any

data.
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Figure 5.1: Graph of true labels versus predicted labels for the ophthalmology specialty with RuleFit

algorithm.

After the detailed analysis we performed in Section 2.6, GMM will be used to the detriment of SMOTE.

It presents greater advantages throughout the analyzed papers and thesis, proven to be more robust

when generating minority class instances [33].

At this point, the method to control the imbalanced is chosen, but the classification problem remains

to be overcome. By the same logic that we have done so far, we will want to control this imbalance for the

general model with all the data, the specific models for doctors and the specific models for specialties.

However, as understandable, due to a large number of surgeons and specialties in the CUF dataset, a

doctor and a specialty, being this ophthalmology, were chosen. So, for each model case, we split our

training set into three small sets. To avoid an extensive analysis, we exemplify below how we treat the

imbalance for the ophthalmology case.

Firstly, a set was generated containing most of the data, including the mode, that is, all surgeries up

to 40 minutes, so it is our majority class with approximately 70%-75% of the data. Then a second set

with surgeries between 40 and 80 minutes and a last and third set with the remaining surgeries longer

than 80 minutes.

From this moment on, we can consider having three types of surgeries, belonging to class 1, 2 or

3, and so we can treat the problem as a classification problem. In this way, taking the sets of the two

minority classes, we will generate new synthetic samples using GMM. Therefore, different types of co-

variance were analyzed, including spherical, diagonal, full and tied, using Akaike Information Criterion

(AIC) and Bayesian Information Criterion (BIC) as the basis for evaluating the model’s complexity and

for further model selection.

Analyzing the BIC and AIC plots presented in Figure 5.2 was possible to verify that the diagonal co-

variance is the one that better fits the ophthalmology data and which respectively obtain the lowest value

of AIC and BIC score. Then, to evaluate the optimal number of components, technically is necessary

to calculate BIC and AIC gradients represented in Figure 5.3 b). At some point, the increment in the

number of clusters will not change significantly and the slope of the line is practically constant as we can

detect around 50 clusters. From the definition of gradient, we know that if two consecutive points have

approximately the same value, their gradient is close to zero, which in the context of AIC and BIC scores

will mean that when we have a smoother slope and gradient close to 0. Hence, the increase in gain may
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not justify further increasing the number of clusters. Therefore, our selection of the optimal number of

components will be based on BIC and AIC scores and their gradients.

(a) AIC score (b) BIC score

Figure 5.2: GMM selection for ophthalmology specialty using AIC and BIC scores.

(a) AIC and BIC score (b) AIC and BIC gradient

Figure 5.3: Selection of best number of components for ophthalmology specialty.

With the number of components and the type of covariance chosen, we proceeded with the genera-

tion of synthetic surgeries until each minority dataset had the same number of surgeries as the majority

dataset. The final distribution from the original training dataset to a dataset that now contains more

surgeries from classes 2 and 3 is shown in the following Figure 5.4.

(a) Surgery durations distribution before generate syn-
thetic data.

(b) Surgery durations distribution after generate syn-
thetic data.

Figure 5.4: Distribution of surgery durations for the ophthalmology specialty dataset before and after the
generation of synthetic data in minority classes by GMM.
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Finally, with this new training dataset which contains all training surgeries plus those generated by

the GMM, our model will no longer have such a bias behavior that it had previously. It will have a better

distribution of the surgeries’ durations, allowing that the model learns from a more uniform range of val-

ues. It is important to emphasize that the test set was kept intact, as the objective is to verify the quality

of the predictions in the test and how the model will generalize to new data.

Lastly, as mentioned above, the example we showed was applied to the ophthalmology surgery train-

ing set with surgeries over the four years. However, since we are also interested in developing a general

model and specific models for each surgeon with more than 100 training surgeries, all data and one

surgeon data were used to generate synthetic data and analyze the improvements in these models.

It is also important to mention that the training set, test set, and validation set must have the same

percentage of each class in their dataset to interpret the results after the development of models cor-

rectly. In fact, the initial random division performed to data presented in Section 4.2 already respects

these criteria and therefore no further changes to the datasets were necessary. The two minority classes

together always present a consistent percentage between the different datasets of each model. This

percentage varies between 25%-30%, with a variation of less than 1% between the training, test and

validation datasets in the general model and surgeon model, and a difference of less than 2.5% within

datasets in the ophthalmology model.

5.2 Interpretability Curve for Imbalanced Data

In Section 2.8.2 the Rashomon Curve was described, a curve that allows us to find a relationship be-

tween simplicity and accuracy. The proposed diagnostic tool allows us to achieve the best balance

between the right level of complexity and high accuracy, where properties such as interpretability and

generalizability are guaranteed. However, for the purpose of our thesis, the build of Rashomon Curve is

of extreme difficulty since the calculation of the Rashomon Ratio is too complex and involves the devel-

opment of more than 250,000 decision trees per fold to calculate each point of the graph. Furthermore,

as our work is a problem of imbalance, the metric accuracy is not prepared to evaluate how we intend

the models and a new version of the Rashomon Curve will be presented in this Section.

Thereby, to obtain an equally explanatory graph at the level of the same trade-off, the Interpretability

Curve is designed to better respond to the problem at hand. The curve will evaluate the relationship

between complexity as a function of the empirical loss of the train set in the minority classes to assess

the Root Mean Squared Error (RMSE) in the class that the model has more difficulty in predicting. The

Interpretability Curve is represented in Figure 5.5.
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Figure 5.5: The proposed curve illustrating the generalization ability of the elbow on lower left corner

and the empirical risk effect of increasing model complexity.

Regarding the y-axis, the complexity will be represented by the number of rules generated by RuleFit

or the depth of the XGBoost trees. Thus, to generate the respective Interpretability Curve for each

algorithm, a set of trees with different depths and different number of rules are initialized to generate the

final curve. The Interpretability Curve will be used for the model selection and to choose appropriate

complexity, for the case of XGBoost the ideal depth, and in the case of RuleFit it will help choosing the

ideal number of rules. As described by Semenova et al. [47] the elbow of the curve seems to be a

reliable model selection criterion, an important selection from the interpretability point of view.

Unlike the Rashomon Curve, the arrows will represent the difference in RMSE in the minority classes

between the validation dataset and the training dataset to identify the transition between the model’s

underfit and overfit. Arrows will be crucial to find the sweet spot where there is most likely to be a

suitable generalization of unseen data.

Hence, choosing the ideal depth for our model will not only take into account the suitable point where

complexity no longer has a major impact on the training error of the minority class, but will also bear

in mind whether there is overfitting in the minority values during training with a negative impact on the

performance of the model on new data.

The designed Interpretability Curve is able to adjust on an imbalanced dataset and ensure valuable

properties such as interpretability. Inscrutable models fail to accomplish the work purpose since we

cannot explain individual decisions and the generated output. This key factor limits the adoption of ML

models in healthcare. In areas of healthcare, the explanation and comprehension of predictions for

end-users allow healthcare experts to make reasonable decisions to the higher quality of their services

[67].

5.3 Balanced Model Results

5.3.1 Model Selection

A new version of the Rashomon Curve, Interpretability Curve, and described in Section 5.2, will be used

to find the optimal model. This approach will be applied both to the model generated from imbalanced
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and balanced data and in both algorithms, XGBoost and RuleFit. Although XGBoost is not interpretable,

we can select the suitable depth and understand the XGBoost behavior with balanced datasets through

this curve. The curve will be used for model selection and to choose appropriate complexity.

To generate the respective Interpretability Curve with XGBoost, a set of trees with different depths

were initialized to generate several models. The chosen and tested depths range within a nine fold step

increment of two units each, ranging from 1 to 17 on depth. Then, several final metrics such as the

final percentage of within surgeries, the error in minority classes in the validation and training dataset, in

which RMSE was used, were calculated in order to choose the model. Now, we use the RMSE instead

of the MSE because it is easier to interpret statistically and is in the same units as the target variable.

Therefore, presented in Figure 5.6 is the Interpretability Curve generated to ophthalmology using the

XGBoost algorithm. As expected, we can observe a trend of increasing RMSE in the training set as we

have a lower tree profundity, since we will have fewer splits and a higher tendency to underfit.

(a) Proposed Interpretability Curve for ophthalmology
model with imbalanced data.

(b) Proposed Interpretability Curve for ophthalmology
model with balanced data.

Figure 5.6: XGBoost model selection for ophthalmology.

As described previously, the choice of the optimal model will incorporate the behavior of the curve

and the moment when the complexity does not justify the minor reduction of RMSE. However, we will

also observe the behavior of the RMSE in the training and validation sets in order to avoid the overfitting

of the model. Consequently, we will only accept models where the difference between both sets’ error is

inferior to 15%.

Therefore, based on Figure 5.6, the selected XGBoost model for imbalance data has a depth of 7

and for the ophthalmology model with balanced data generated from GMM, the tree depth will be 9. In

the case of balanced data, 5.6 b) presents a minimal error when the depth is 11. However, not only 11

is a very high depth and hard to interpret, as the difference between the errors of the minority classes

from training and validation datasets is almost 50%.

Moreover, observing both figures, it seems that models with imbalance behave better than models

with balanced data. However, the data points belonging to the minority classes differ in both training

datasets since the balanced training also has synthetic data, and thus its final training MSE handles

more data. Therefore, we will analyse and compare both performances later with the UBA.

Regarding RuleFit, as the Interpretability Curve depends on the number of rules associated with

each model, 9 models were generated each with rules between 1 and 100. In descending order, models
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were generated first, one with a total number of rules between 90 and 100, followed by a second one

between 80 and 90 rules, and so on until a last simpler model between 1 and 10 rules.

Figure 5.7 shows the proposed Interpretability Curve for the ophthalmology specialty with the RuleFit

algorithm. Unlike XGBoost, arrows now have longer lengths, which means that a RuleFit model up to

100 rules has difficulty training the dataset. Thus, we have a high error in both training and validation

sets, seeming that the increase in rules is not significant for the model to learn to model the data.

(a) Proposed Interpretability Curve for ophthalmology
model with imbalanced data.

(b) Proposed Interpretability Curve for ophthalmology
model with balanced data.

Figure 5.7: RuleFit model selection for ophthalmology.

Again, the difference between validation and training error is higher in balanced datasets, so the

arrows have long lengths. However, observing the performance of the errors in Figure 5.8, we can notice

that this significant difference is due to the error in training. Training in a balanced dataset contains more

data belonging to the minority classes, having in total two times more data than the original dataset

and a higher data dispersion, which may explain the increased error. In the next Section, through the

implementation of utility metrics, we will be able to observe if models trained with the GMM can better

predict less common surgical times.

(a) Train and validation error for ophthalmology model with
imbalanced data.

(b) Train and validation error for ophthalmology model with
balanced data.

Figure 5.8: Illustration of train and validation error performance as a function of rules number.

Moreover, it is important to highlight that the decision tree generated by RuleFit has a depth of 4,

so the limitation in the learning process and the difficulty in reducing the RMSE training error may be

associated with the complexity of the problem and the low depth of the tree. For a fixed depth, the
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number of rules does not improve the final model error and the arrows are constantly high in length,

which means that more rules are not impacting and changing the final prediction. Figure 5.8 shows the

constant error for depth 4 even with more additional rules.

Additionally, we developed the Interpretability Curve for a RuleFit of depth 5 and 6 to verify the error

behavior. The performances were similar, with a low error reduction with the addition of rules. This

behavior does not occur in the surgeon’s model, as this one with less data is intrinsically easier to

apprehend from a small structure.

In summary, Table 5.1 presents the selected ideal model based on the Interpretability Curve for each

approach and algorithm studied. It is possible to notice that the value of the balanced data is consistently

higher than the value associated with the imbalanced data, coherent results considering that it contains

a more considerable amount of data in the training set.

Table 5.1: Model selection for each model approach and algorithm type for imbalanced and balanced
data based on Interpretability Curve. The value represents the tree depth for XGBoost and the chosen
number of rules for RuleFit models.

Algorithm Data General
Approach

Ophthalmology
Speciality

Surgeon ID
96440008

XGBoost Imbalanced 9 7 3
Balanced after GMM 11 9 3

RuleFit Imbalanced 67 42 28
Balanced after GMM 79 47 20

5.3.2 Performance Evaluation

In Section 2.7.3 was described the UBA tool designed for regression problems in non-uniform costs

domains with the goal of developing evaluation metrics based on utility for regression due to the inad-

equacy of the standard errors metrics. The evaluation methodology gives more importance to points

that are more difficult to predict, and, at the same time, it allows providing different costs to regions that

represent underutilization or overutilization.

The idea is to assign different importance to each surgery prediction provided by the model. For

example, if it is more important for CUF to predict more accurately shorter procedure times than longer

surgeries, or if it is preferable to underestimate the time rather than overestimate, as it does not affect

the following surgeries, probably it makes no sense to use metrics that give the same rate of importance

to each forecast and thus we will base our metrics on the application’s target.

In our case problem, the penalization costs factor (p) was set to 0.90 since opportunity costs are

considered more severe than false alarms. In other words, overutilization is more costly than underuti-

lization of operating rooms. Thus, when the estimated time for a given surgery is longer than the real

one, these false alarms are less punished and lower the cost. On the other hand, if the predicted time is

less than the real one since this can cause congestion in the flow of surgeries and operating rooms, the

cost associated with this region is higher.

The ”extreme” method is used for the relevance function since it interpolates points from the box plot

statistics for extreme values. The function maps the domain of the destination variable to the interval
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[0, 1], giving more relevance to the zone where we have a lower concentration of points, that is, to the

adjacent values and rare values.

In Figure 5.9, we notice the relevance function for the surgeon’s data. Surgeries with less than 50

minutes are considered of low relevance since they are part of the interquartile range (from the 25th per-

centile to the 75th percentile), containing 50% of the data. On the other hand, surgeries with more than

50 minutes will gradually have increasing relevance since the longer the time, the greater the difficulty

in making the prediction. However, we expect to improve this problem after the generation of synthetic

data by the GMM in minority classes.

Figure 5.9: The relevance function, φ, for the prediction of surgeries times in case of surgeon ID
96440008.

Figure 5.10 was designed and presented the surface, U0.9
φ , from the relevance function and its utility

isometrics generated from surgeon data. In both Figures, y represents the true labels and ŷ the predicted

values. With a closer inspection of the utility isometrics of the surface, we can observe the lines that

share the same utility value and better comprehend the costs and benefits. Firstly, when the true and

predicted values are similar in the diagonal, we observe a higher positive utility for high surgical times,

so these values are important to predict accurately. In the bottom right corner, the region of false alarms,

the target value is less relevant, so any prediction for these values will not achieve a significant benefit

but does not have any expensive cost itself. Nevertheless, surgeries with significant errors and in the

overutilization region, left upper corner, will be more penalized than false alarms, so isometrics show the

largest cost variation.

UBA metrics give us a better understanding of how models with balanced data can improve the

prediction accuracy of models in minority class zones compared to models developed with imbalanced

data. These include precision, recall, mean utility and Area Under the Receiver Operating Characteristic

Curve (AUC-ROC).

Firstly, the mean utility is expected to have a small value because most of the points in the validation

dataset belong to class 1. These points have a small utility score or even zero, so they do not influence

and add a considerable value to the metric. Models developed with imbalanced data are expected to
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(a) Utility isometrics

(b) Utility surface

Figure 5.10: An utility surface for the the prediction of surgeries obtained with the relevance function
shown in Figure 5.9, with p = 0.90. U0.9

φ exhibits higher costs associated to large errors bellow the actual
real time and much smaller costs associated with false alarms.

have a small mean utility because it is a method that predicts classes 2 and 3 very poorly, so presents

fewest points in the highest scoring area.

Furthermore, precision and recall are metrics that have higher values because their formulas only

consider points above a certain threshold in the relevance function. Thus, if the threshold is 0.9, only

points with a relevance score higher than 0.9 will be considered in the metric calculation.

AUC-ROC is a curve that measures performance for classification problems at various threshold

settings. This one tells how much the model is capable of distinguishing between classes. AUC-ROC

measures the power of discrimination for a binary classifier and its value varies between 0 and 1. If

AUC-ROC is equal to 1, all positive and negative samples are predicted correctly. Contrary, a value of 0
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means that all samples are wrongly classified.

Tables 5.2, 5.3 and 5.4 represent the results obtained with UBA library in imbalanced and balanced

datasets for the general case, ophthalmology specialty and surgeon ID 96440008, respectively. The

results of the two models, XGBoost and RuleFit, can now be compared to understand which algorithms

can better compress predictions and better estimate surgeries belonging to the classes that we consider

part of the minority class.

Table 5.2: Results of utility metrics for general model with imbalanced data and with balanced data from
GMM.

Algorithm Data Mean Utility Precision Recall AUC-ROC

XGBoost
Imbalanced 0.092 0.804 0.672 0.771
Balanced 0.092 0.789 0.677 0.779

RuleFit
Imbalanced 0.099 0.784 0.686 0.778
Balanced 0.113 0.788 0.704 0.791

Table 5.3: Results of utility metrics for ophthalmology specialty models with imbalanced data and with
balanced data from GMM.

Algorithm Data Mean Utility Precision Recall AUC-ROC

XGBoost
Imbalanced 0.071 0.759 0.661 0.765
Balanced 0.071 0.751 0.676 0.772

RuleFit
Imbalanced 0.079 0.758 0.673 0.776
Balanced 0.089 0.732 0.726 0.816

Table 5.4: Results of utility metrics for surgeon ID 96440008 model with imbalanced data and with

balanced data from GMM.
Algorithm Data Mean Utility Precision Recall AUC-ROC

XGBoost
Imbalanced 0.010 0.486 0.505 0.686

Balanced 0.071 0.711 0.674 0.794

RuleFit
Imbalanced 0.092 0.725 0.704 0.800

Balanced 0.092 0.697 0.722 0.806

In general, through the Tables presented, we can confirm that balanced models are an improved

version of imbalanced models, particularly on observations with rare extreme values, and thus get better

scores.

Firstly, recall is one of the most important metrics because it evaluates the y points considered with a

high variance and are well predicted, thus it estimates how good the model is at verifying that a certain

value belongs to minority classes. Hence, a higher recall value means that our model is predicting better

points considered highly relevant. Analyzing the imbalanced models with the ones from balance data,

this metric has a consistent improvement. According to the algorithm, RuleFit can better estimate the

set of relevant points than XGBoost, showing a maximum value in the RuleFit algorithm with balanced

data in all model approaches. Therefore, RuleFit can better compress the data.

Regarding precision, we do not constantly have a higher value for this metric in balanced models.
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The value presented represents the proportion of points estimated as highly relevant by the model

correctly predicted. In this context, most balanced models predict this parameter slightly lower than

imbalanced models. Furthermore, the mean utility allows studying the performance of different models

according to the relevance function and penalization factor. For the majority of the approaches, the

mean utility value for balanced models is higher or equal to the imbalanced value. Lastly, AUC-ROC

was consistently inferior for the imbalanced data in the totality of the models, meaning a better balanced

model performance in identifying minority classes.

Ultimately, Table 5.5 presents the results of RMSE in minority classes for each balanced model

approach and respective algorithm, establishing their comparison with CUF predictions. The RuleFit

algorithm outperforms XGBoost on all approaches when analyzing the error in minority classes. In

line with what was found through the UBA library, RuleFit reveals fewer difficulties in learning from

imbalanced data.

Table 5.5: Summary of the RMSE in minotiry classes for each model approach and its comparison with
CUF predictions.

Approach
RMSE in minority classes
CUF XGBoost RuleFit

General Model 62.09 60.89 57.39
Ophthalmology Model 31.59 29.54 26.62

Surgeon ID 96440008 Model 27.78 18.37 16.71

However, in an overall analysis and looking at the error of the validation set in its entirety, XGBoost

presents better results, as we notice in Table 5.6. The validation set is used for algorithm selection.

Table 5.6: Summary of the RMSE in all classes for each model approach and its comparison with CUF

predictions.

Approach
RMSE of all data

CUF XGBoost RuleFit

General Model 46.59 35.19 37.35

Ophthalmology Model 21.37 15.85 17.75

Surgeon ID 96440008 Model 17.01 10.83 11.46
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Chapter 6

Results from an Operation’s

Perspective, Generalization Error and

Conclusions

This Chapter describes the proposed interpretable prediction model for an operating room decision

support system. In addition, the test set error is displayed to verify that the models are able to predict

outcome values for previously unseen data accurately. Lastly, from the perspective of the final consumer,

the hospital, we developed a cost function to explain more practically the benefits that the results of our

proposal can bring.

6.1 Final Model and Generalization Error

With this thesis, we intend to develop an interpretable machine learning algorithm that can help CUF

health professionals in estimating the time associated with each surgery and thus reduce the uncertainty

and high errors correlated with the surgical times.

Earlier, with the analysis of balanced data, we concluded that the GMM technique improves the

results of the models and makes the forecasting method less susceptible to overestimation, a parameter

that we intended to reduce. As we explained in Chapter 5, we used GMM to produce synthetic samples

however this implementation was not possible for all models of each approach, but for only one model

of each due to time constraints. The duration of the synthetic samples generation, the identification of

the three classes of each model, the design of the Interpretability Curve for the choice of the best model

and the guarantee of the same percentage of each class within different sets are limitations that lead us

to present the final model in a theoretical concept.

Hence, the final model presented to CUF will be an algorithm that uses the three different approaches

depending on its data. If the initial features contain a doctor whose model already exists, that is, a

doctor with more than 125 surgeries registered in CUF, the specific surgeon model will be used because
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it presents the smallest error among the approaches. On the other hand, if a doctor has no trained

model, we will move to the specialty models. Following the same reasoning, we will use this model if

there is already a specialty model for the input specialty. Ultimately, if none of the above conditions are

possible, the general model will be used for forecasting the time required. Algorithm 1 represents the

entire process described but further studies are needed before incorporating machine learning-based

decision support systems into clinical practice.

Algorithm 1 Operating room decision support system.
F ← Features
S ← Specialty
N ← SurgeonNumber
if N has more than 100 surgeries in training set then

SurgeonModel(F,N)
else if S has more than 100 surgeries in training set then

SpecialtyModel(F, S)
else

GeneralModel(F )
end if

The algorithm advised is RuleFit because it allows the creation of a set of easily interpretable rules

with different importances, being easy from an explanatory point of view its application in the hospital

environment. Furthermore, it presented very interesting results with balanced data, even presenting

better recall and mean utility values than XGBoost.

Unfortunately, although XGBoost is not a complete black-box like FNN, it seems complex to explain

why it made a prediction. The SHAP values helped us to identify the relevant features and explore our

models with confidence. However, RuleFit generates binary decision rules that are easily interpretable

if the rules do not have more than 3 or 4 conditions. Therefore, its potential is more remarkable since

RuleFit is an interpretable model and the discrepancy between the RMSE errors and within percentages

in the different algorithms was not significant.

Moreover, generalization errors are critical to understanding the performance of machine learning

models. However, as it was not possible to develop the final algorithm with all models and approaches

with balanced data, it will not be possible to find this value. For this reason, we will only present the

test error on generalization set for the three balanced models conducted to exemplify how we would

have done it if it had been possible to develop all balanced models. Table 6.1 shows the generalization

errors for each model in minority classes. The results meet the results present in Table 5.6 related to the

validation set, so models are able to predict outcome values for a new data set accurately.

Table 6.1: Summary of the generalization error measured by RMSE in minotiry classes for each model
approach and its comparison with CUF predictions.

Approach RMSE in minority class
CUF RuleFit

General Model 61.67 57.17
Ophthalmology Model 35.54 28.28

Surgeon ID 96440008 Model 29.34 18.21
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6.2 Results from an Operation’s Perspective

Explaining the results of our model using interpretable concepts for the hospital is fundamental since

both end-users and the critical nature of the prediction require a certain amount of transparency. The

results presented below can be discussed from a different perspective, closer to the point of view of

specialist knowledge. We consider it essential to contemplate the relative cost of overutilization and

underutilization activities, which are changeable costs that will depend on the hospital’s perspective.

Thus, to calculate the proposed solution’s costs and establish a comparison with the cost previously

supported by CUF, we generate a set of equations that take into account several factors.

The total cost for underutilization presented in Equation (6.1) considers the percentage of surgeries

that falls 10% below the real time, the number of surgeries with undertime (#Under) divided by the

total number of surgeries (#Surg), and the average loss of time in minutes. The assigned cost will be

considered a cost per minute (Cunder).

Underutilizationcost = Cunder ×
#Under

#Surg
×Avg(min)under (6.1)

Similarly, Equation (6.2) represents the total cost for overutilization, where now we consider the

number of surgeries with overtime (#Over) and the average in minutes of this overuse.

Overutilizationcost = Cover ×
#Over

#Surg
×Avg(min)over (6.2)

Finally, the total cost is given by

Ctotal = Underutilizationcost +Overutilizationcost (6.3)

Both very long and very short time planning can lead to undesirable consequences for the organiza-

tion of operating rooms. From the domain knowledge, we know that Cover is higher than Cunder because

the idle operating room produces underutilization costs, and indirectly, we are not maximizing the use of

the room with a surgery that could be scheduled. In contrast, the overuse costs represent increases in

the additional overtime payments and schedule reorganization costs [68]. Thus, assuming that the ratio

between underutilization and overutilization costs is given by Cover = r · Cunder , Ctotal is defined by

Ctotal = Cover

[
r × #Over

#Surg
×Avg(min)over +

#Under

#Surg
×Avg(min)under

]
(6.4)

The operational cost is given by the difference between our proposed model and CUF baseline,

where we desire to obtain a cost reduction as presented in the following inequality (6.5). The chosen

cost values will be based on the opinion of the hospital’s stakeholders and will be kept as unknown

variables as they may have slight variations depending on the purpose of its use. We will isolate these

variables as much as possible to estimate their relationship by finding a minimum r value.

Cmodel < CCUF (6.5)
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The inequality is applied to both CUF and model predictions to understand if our model outperforms

the current model from an operational point of view. In Table 6.2 is also possible to observe the average

time values in minutes considered for both overutilization and underutilization situations.

Table 6.2: Summary of the RMSE in each such model and its comparison with RMSE of CUF predictions.

Data Predictions
Average overtime

(minutes)
Average undertime

(minutes)

All
General Model 37 27

CUF 38 29

Ophthalmology
Ophthalmology Model 16 14

CUF 24 16

Surgeon ID 96440008
Surgeon ID 96440008 Model 13 8

CUF 21 9

Consequently, the values obtained for r are presented in Table 6.3. The proposed solutions are

cheaper than current standards when r > rmin. The acquired rmin values are considered small since

our results overcome the current estimates for any hypothetical overutilization and underutilization costs,

presenting a cost reduction compared to the CUF baseline.

Table 6.3: Ratio between preventive costs for each model in relation to CUF’s baseline cost.
rmin

General Model -0.36
Ophthalmology Model -0.16

Surgeon ID 96440008 Model -0.078

Figure 6.1 shows the cost comparison of the baseline and proposed solutions, where the blue line

is associated with the CUF baseline, and the light blue corresponds to the proposed solutions. We

designed the graphs for a relationship between Cover and Cunder at most twice, so r varies from 0 to

2. The objective is to get the light blue line below the current estimates line, with the largest possible

gap for the proposed model to remain more cost-effective. As we can notice in the proposed solutions,

we have a cost reduction compared to the baseline. Moreover, in line with what we found previously,

specific models have a lower cost when compared to the general model.

To conclude, it is essential to point out that in a deep analysis, possible indirect costs should also

be analyzed and other metrics. The measurement tool developed was based on the type of results we

obtained throughout the thesis.
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(a) General proposed model compared to the baseline
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(b) Ophthalmology specialty proposed model compared to the

baseline
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(c) Surgeon ID 96440008 proposed model compared to the

baseline

Figure 6.1: Cost comparison of baseline and proposed solutions. Total cost in function of ratio. The

proposed solutions are cheaper than the baseline in the three approaches. The objective is to be as

much as possible below the current estimate line.

6.3 Conclusions

This thesis addressed the problem of inaccurate prediction of surgical procedures times through a data

science and machine learning point of view. The major achievement of the work was the development

of a model that allows better planning of CUF’s operating rooms based on a reliable and interpretable

prediction model for an operating room decision support system.

The interpretability concept has been extensively explored because the use of machine learning

methods in this domain must be subject to the understanding of the reasons that support the prediction

of a given algorithm by the decision-maker, clinician and patient. Without the model’s accountability and

oversight mechanisms, it is impossible to put into practice any of the systems described. Thus, a funda-

mental aspect of this proposal is the use of models with the highest precision, which are also explainable

such as RuleFit.

The basis of the work was the set of historical data provided by CUF with information available from

the last four years about its OR. However, this type of work that involves the use of real data gives rise to

several difficulties. Naturally, unprocessed data has errors related to their collection. In the first phase,

the challenge was identifying the features we intended to request from CUF and coding some features

such as the patient ID and the CUF unit because they could not be delivered as raw data for data pro-
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tection reasons. Secondly, the large number of different types of data did not facilitate the analysis.

However, throughout the EDA, it was possible to investigate the features in detail and discard those that

would be irrelevant to the work. As the last difficulty, identifying human errors related to data collection

was not an easy task. However, we analyzed the data in detail to remove all human errors, or at least

most of them.

To achieve the objectives of this study, we produced three different approaches: a general, specialty-

specific and surgeon-specific models. In the latter, doctors were modeled independently. The models

were trained and tested to understand which of the three models could be more precise and advan-

tageous. As expected, surgeon-specific models were superior to specialty-specific models based on

overestimation, underestimation and percentage of cases within, reaching an improvement of 6% in last

metric with XGBoost and 2% with RuleFit. Compared to CUF’s current state of the practice, the ability to

predict surgeries within the 10% threshold was improved from 20% to 26% with RuleFit surgeon-specific

models and 33% with XGBoost.

Subsequently, three models, one of each approach, were selected and their training dataset was

enriched by sampling a GMM density trained on the minority data. Then, predictive models were trained

and tested on original and enriched datasets to assess the models’ performance in both conditions.

Finally, the results were analyzed using the UBA library containing metrics developed for regression

problems in non-uniform cost domains. The enriched training datasets show better accuracy, recall, and

AUC-ROC performance compared to the original dataset. RuleFit is the algorithm with higher perfor-

mance based on utility-based performance metrics and RMSE of minority classes, an interesting finding

from the perspective of interpretability.

An ideal proposed method would be a combination of the three different approaches described. The

more specific the model, the more accurate the estimations, causing less congestion in the operating

room organization. This interpretable prediction model for an operating room decision support system

involves the use of balanced data for the learning process and would use RuleFit as a basis for its de-

velopment.

Through this study, we offer a comparison of different techniques of ML for predicting the surgical

durations based on a large dataset, exploring the impact of features on final predictions. Our research

work highlights, on one hand, the value of applying machine learning techniques in the context of op-

erating room management, and on the other hand, that imbalance-aware methods can make models

more accurate, in particular for surgeries that are more difficult to predict.

6.3.1 Future Work

To conclude, we point out several future directions. As stated in Section 1.3.3, several approaches could

be taken with the available data. However, we had to manage the work taking into account the time

involved with data preparation since it represented a large proportion of our work. Therefore, the direc-

tion chosen was the predictions of surgical procedure times. Approaches related to scheduling, staff

management and management of PACU capacity could also have been considered.
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In a future work could be interesting to use not only all columns of procedures but also the proba-

bilities of one procedure preceding another. Moreover, adding more data about doctor demographics,

previous surgery, and other patient factors such as hypertension can influence the algorithm’s decision-

making and help estimate more accurate procedures times.

Regarding the balanced approach, we used a ML method to populate minority classes artificially.

However, add real clinical data with the same features to enrich the dataset can yield better results. Ad-

ditionally, using other hospitals to validate our ML approach could also be interesting to understand the

model’s behavior once we can not ensure the same performance if applied to a different organization.

Furthermore, although the total number of surgeries in 2020 is similar to the previous years, under-

standing the impact of COVID-19 on surgeries times, such as if there are more delays in surgeries due

to more time involved in cleaning, can be an interesting study.

Lastly, regarding FNN, the approach was worse than interpretable models due to algorithm limita-

tions with imbalanced data. Thus, to achieve better results on the model, it could be interesting to use

a cost-sensitive neural network where the backpropagation algorithm can be updated to weigh errors in

proportion to the importance of the class. Therefore, giving different costs to samples of each class will

allow paying more attention to examples from minority classes.
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Appendix A

Technical Nomenclature

A.1 Data Dictionary

• Anesthesia: Type of Anesthesia

• Birth: Patient birth

• CUF Unit: CUF Unit

• CUFPlannedDuration: Planned surgery duration

• Date Surgery: Surgery date

• FLG PROG URG: If the surgery is urgent or programmed

• FLG AMB INT: If the patient is an outpatient or inpatient

• Doctor: Doctor Number

• HR start induction ANEST: Beginning of induction of anesthesia

• HR end induction ANEST: End of induction of anesthesia

• HR end Room: Exit from the room

• HR start Room: Entrance to the room

• HR start Surgery: Beginning of surgery

• HR end Surgery: End of surgery

• HR start RR: Entrance to the recovery room

• HR end RR: Exit to the recovery room

• Gender: Patient gender

• I1/I2/I3/I4/I5/I6: Procedures performed in each surgery. Correspond to TOM codes
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• ID Patient: Unique key for each patient transverse to all CUF units

• Local Patient: Unique key to encode each patient in each unit

• N REG OPER: Operative Registry Number, which is an internal unit code

• OR: Operating room

• RealRoomDuration: Real duration inside of room

• RealSurgeryDuration: Real surgery duration

• Room: Room inside operating room. An operating room can have several rooms

• Speciality: Surgery Speciality

• TimeRecoveryRoom: Time inside recovery room

A.2 Types of Anesthesia

• AE: Epidural Anesthesia

• AG: General Anesthesia

• ALOC: Local Anesthesia

• ALP: Local Anesthesia / Plexus

• AP (child-birth): without anesthesia

• APLE: Plexus Anaesthesia

• AS: Sequential Anaesthesia

• PAE (child-birth): Epidural Anesthesia

• PAG (child-birth): General Anesthesia

• PAR (child-birth): Spinal anesthesia

• RAQ: Spinal anesthesia

• SED: Sedation
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Appendix B

Code

This appendix highlights some practical aspects of the code to fully understand the notebooks pre-

sented in the repository, publicly accessible in [50]. This project is coded using Python and R.

B.1 Code Organization

B.1.1 Python

• Notebooks

– Exploration Data Analysis

⇒ DataAnalysis.ipynb: contains all the data analysis, where main dataset characteristics

are summarized.

⇒ FBprophet.ipynb: time series analysis where we can observe annual, weekly and daily

seasonality.

– Algorithm Implementation

⇒ Datapreparation.ipynb: separation of data into the three different approaches.

⇒ XGBoost implementation.ipynb: contains the code responsible for XGBoost Imple-

mentation in all approaches, including tuning, training, and test error analysis.

⇒ RuleFit implementation.ipynb: contains the code responsible for RuleFit Implementa-

tion in all approaches, including tuning, training, and test error analysis.

⇒ FNN implementation.ipynb: contains the code responsible for FNN Implementation in

all approaches, including tuning, training, and test error analysis.

– Model Implementation (Balanced vs Imbalanced)

⇒ SynteticSamples.ipynb: contains the code to generate synthetic samples in minority

classes through GMM for the three models (one of each approach).
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⇒ RuleFit General.ipynb: contains the code responsible for RuleFit Implementation in im-

balanced and balanced datasets of all data. Their Interpretability Curve is drawn to select

the suitable model.

⇒ RuleFit Specialty.ipynb: contains the code responsible for RuleFit Implementation in

imbalanced and balanced datasets of the ophthalmology. Their Interpretability Curve is

drawn to select the suitable model.

⇒ RuleFit Surgeon.ipynb: contains the code responsible for RuleFit Implementation in

imbalanced and balanced datasets of the Surgeon ID 96440008. Their Interpretability

Curve is drawn to select the suitable model.

⇒ XGBoost General.ipynb: contains the code responsible for XGBoost Implementation in

imbalanced and balanced datasets of all data. Their Interpretability Curve is drawn to

select the suitable model.

⇒ XGBoost Specialty.ipynb: contains the code responsible for XGBoost Implementation

in imbalanced and balanced datasets of the ophthalmology. Their Interpretability Curve

is drawn to select the suitable model.

⇒ XGBoost Surgeon.ipynb: contains the code responsible for XGBoost Implementation

in imbalanced and balanced datasets of the Surgeon ID 96440008. Their Interpretability

Curve is drawn to select the suitable model.

• Classes

⇒ RuleFit customized.py : contains the required functions to implement the customized Rule-

Fit package with detailed modifications presented in Section 4.3.2.

• Models

– Model Implementation (presented in Chapter 4)

⇒ Models Folder : there is a ”Model” folder in the repository of each algorithm, which con-

tains all models to generate predictions. RuleFit models are saved into .sav files, FNN

models into TensorFlow SavedModel format and XGBoost models into .model files.

– Model Implementation: balanced vs imbalanced ( presented in Chapter 5)

⇒ Models Folder : there is a ”Model” folder in the repository of XGBoost and RuleFit, which

contains all models to generate the Interpretability Curve. There is a folder for each

general, ophthalmology and surgeon approach. RuleFit models are saved as RuleFil.sav

files and their name include the number of rules. XGBoost models are saved into .model

files and their name include the depth of the model.

B.1.2 R

• RuleFit Performance
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⇒ UBA general RuleFit.R: contains the required code to apply the utility-based performance

metrics (precision, recall, utility and AUC-ROC) in predictions from imbalance and balanced

general models.

⇒ UBA speciality RuleFit.R: contains the required code to apply the utility-based performance

metrics (precision, recall, utility and AUC-ROC) in predictions from imbalance and balanced

ophthalmology models.

⇒ UBA surgeon RuleFit.R: contains the required code to apply the utility-based performance

metrics (precision, recall, utility and AUC-ROC) in predictions from imbalance and balanced

Surgeon ID 96440008 models.

• XGBoost Performance

⇒ UBA general XGBoost.R: contains the required code to apply the utility-based performance

metrics (precision, recall, utility and AUC-ROC) in predictions from imbalance and balanced

general models.

⇒ UBA speciality XGBoost.R: contains the required code to apply the utility-based perfor-

mance metrics (precision, recall, utility and AUC-ROC) in predictions from imbalance and

balanced ophthalmology models.

⇒ UBA surgeon XGBoost.R: contains the required code to apply the utility-based performance

metrics (precision, recall, utility and AUC-ROC) in predictions from imbalance and balanced

Surgeon ID 96440008 models.

• Relevant Packages

⇒ uba 0.7.7.tar.gz: contains performance metrics for regression algorithms in non-uniform

costs domains available in [69].

⇒ DMwR 0.4.1.tar.gz: package necessary to run UBA package. Includes functions from the

”Data mining with R: Learning with case studies” [70] and it is available in [71]
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