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Resumo

A Doença de Parkinson (PD) é uma doença neurodegenerativa que afecta o sistema nervoso central.
A doença manifesta-se na fala do paciente, que normalmente se torna desarticulada, monotónica, e
ofegante. Estes sintomas fornecem um poderoso biomarcador para a detecção de PD.

O presente estudo incluiu dois objectivos. Primeiro, analisar o desempenho de um modelo inde-
pendente de lı́ngua para o diagnóstico de PD. Para este trabalho, foram utilizados três datasets de lı́nguas
diferentes. Uma abordagem de base (com um modelo treinado e testado com discurso na mesma lı́ngua)
alcançou uma precisão máxima de 90%. Foi também executado um passo intermédio, onde um mod-
elo foi treinado com discurso numa lı́ngua e parte de um dataset numa lı́ngua diferente e testado com
a restante parte do segundo dataset. O desempenho deste modelo semi independente da lı́ngua foi
semelhante ao desempenho da abordagem de base. Estes resultados demonstraram a capacidade do
nosso modelo de ser re-treinado com novos dados de uma nova lı́ngua e de ser estendido a pacientes
que falam a nova lı́ngua. Em seguida, o modelo independente da lı́ngua foi treinado, atingindo uma
accuracy máxima de 67% e um valor de recall de 76%. Enquanto a accuracy do nosso modelo é menor
do que o estado da arte (77%), a recall, que representa a capacidade de detectar pacientes com PD, é
bastante superior ao melhor trabalho anterior (53%). Em segundo lugar, o modelo de explicabilidade
LIME foi utilizado para explicar cada diagnóstico produzido pelo modelo de classificação. O relatório
inclui a probabilidade do sujeito pertencer a cada classe (PD ou grupo de controlo) e as cinco princi-
pais caracterı́sticas com a maior contribuição para a classificação do modelo. Para cada caracterı́stica,
são fornecidos o valor médio, a gama de valores de um indivı́duo saudável, a sua contribuição para a
classificação, e uma pequena descrição. Estas informações permitem ao médico ter uma melhor com-
preensão da classificação do modelo, proporcionando assim uma maior confiança no mesmo. Uma
avaliação da contribuição global de cada caracterı́stica concluiu que tanto os MFCC como PLP fornecem
aos modelos informações mais relevantes quando comparados com F0, HNR, jitter e shimmer.

Este trabalho contribuiu para aumentar a utilidade dos modelos de aprendizagem de máquinas
para a detecção automática de PD. A sua contribuição incluiu uma nova abordagem para aplicação uni-
versal a qualquer lı́ngua e modelação independente da mesma. Além disso, o modelo de explicabilidade
aplicado facilita a compreensão e promove a adopção de modelos computacionais de diagnóstico PD na
prática médica real.





Abstract

Parkinson’s Disease (PD) is a neurodegenerative disorder that affects the central nervous system. One
of the disease’s manifestation is in the patient’s speech, which usually becomes slurred, monotonic, and
breathy. These symptoms provide a powerful biomarker for the detection of PD.

The present work had two objectives. First, we aimed at assessing the performance of a language-
independent model for the Parkinson’s Disease (PD) diagnostic task. For this work, three datasets from
different languages were used. A baseline approach (a model trained and tested with speech from the
same language) achieved a maximum accuracy of 90%. An intermediate step was also taken, where a
model was trained with speech from one language and part of the speech contained in a different dataset
(in a different language) and tested with the remaining part of the speech from the second dataset.
This semi language-independent model’s performance was similar to the baseline’s performance. These
results demonstrated the ability of our model to be re-trained with new data from a new language and be
extended to patients speaking the new language. Next, the language-independent model was trained,
reaching a maximum accuracy of 67% and a recall value of 76%. Although the accuracy of our model is
lower than the state-of-the-art (77%), the recall, which represents the capacity to detect PD patients, is far
better than the best previous work (53%). Second, the LIME explainability model was used to generate
an explanation report for each diagnostic produced by the classification model. The report includes
the probability of a subject belonging to each class (PD or Healthy Controls (HC)) and the top five
features with the highest contribution to the model’s classification. Each feature includes the average
value, the range of values of a healthy individual, its contribution weight to the classification, and a
small description. This information helps the clinician to understand the computational diagnostic,
thus providing enhanced trust in the model. An evaluation of the global contribution of each feature
concluded that both MFCC and PLP features provide the models with more relevant information than
Fundamental Frequency (F0), Harmonics-to-Noise Ratio (HNR), jitter, and shimmer.

This work contributed to increase the usefulness of machine learning models for the automatic PD
detection. Its contribution was a PD detection approach that can be extended to any language. Further-
more, the explainability model applied herein facilitates the understanding and fosters the adoption of
PD diagnostic computational models in real medical practice.
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1Introduction
Neurodegenerative diseases are the most debilitating disorders that ail human kind, and the fourth
leading cause of death. Neurodegenerative diseases affect the patient’s thinking, movement, cognitive
behavior, and memory, causing impairments and disabilities. These diseases include serious disorders
like Alzheimer’s Disease (AD) and PD (Rai et al., 2019).

PD is the second most common neurodegenerative disease. It was estimated that 1% of people
over 60 years old are affected with PD (Tysnes & Storstein, 2017). In 2015, more than 6 million people
suffered from this disease worldwide. This value is projected to double by 2040, mainly driven by the
increase of life expectancy (Dorsey, Sherer, Okun, & Bloem, 2018). One of the consequences of PD is
the development of dementia. Almost half the PD patients develop dementia in the first 10 years after
diagnosis (Williams-Gray et al., 2013), reaching over 80% after 20 years (Hely, Reid, Adena, Halliday, &
Morris, 2008).

Early detection of PD can be critical for the life quality of the patient. Hence, the earlier the diag-
nostic is made, the earlier the treatment can begin, thus starting to control the evolution of the disease
and improving the comfort of the patient. Furthermore, the majority of the treatment costs occur during
the later stages of the disease, reinforcing the importance of early diagnosis (Pagan, 2012).

Over the last years, medicine and health care have been a prime focus for Artificial Intelligence
(AI) and Machine Learning (ML). Numerous models have been tested to these areas, demonstrating
impressive results in early detection of many diseases, among other tasks. A common problem in these
experiments is the lack of training data. A solution for this problem is to train a global model that could
be used for patients with different characteristics than the ones from the training data (for example,
for speech-based models, it would be able to make diagnostics using speech in a language different
from the one used to train the model). In addition, the majority of these experiments focuses only on
maximizing accuracy performance. Hence, a large problem remains unsolved on the real application
of the previously referred models, as explainability has yet to become a focus for any of these works
(Magesh, Myloth, & Rijo, 2020). Replacing medical decision-making with non-explainable, black-box
ML models, can be contravening with the profound ethical responsibilities of clinicians (London, 2019).
Consequently, the lack of explainability and interpretability of ML models used in these areas can se-
riously limit their chances of adoption in real practice (Vellido, 2019). Therefore, the application of
explainable models will increase the possibility for medical professionals to understand a model’s out-
put, thus increasing the acceptance of AI systems in such tasks (Holzinger, Biemann, Pattichis, & Kell,
2017). Explainability remains almost unexplored for the task of early detection of PD. In addition, to the
best of our knowledge, no work has combined explainability algorithms with acoustic-based models for
this task.

This work’s objective was twofold. First, we trained a model that was able to detect PD from speech
in a language different from the training data. Second, we used an explainability model to generate
human-understandable explanations for the given classification (Parkinson or Healthy) of each patient
to foster the use of ML models to support PD’s diagnosis.

The document is structured as follows. Section 2 describes PD and state-of-the-art methodologies
for PD computational diagnosis. Next, section 3 dives into the concept of Explainable Artificial Intel-
ligence (XAI), and reviews multiple approaches developed in this area. Section 4 describes the experi-
mental setup of this work, followed by section 5, which reports the results and their discussion. Finally,
Section 6 presents the conclusions and future work.
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PD is a common cause of dementia. It consists of a neurodegenerative disorder that affects the central
nervous system. Symptoms begin gradually and worsen over time (National Institute of Aging, 2017).

Dementia is a syndrome that reduces the cognitive function. It affects a wide range of mental ca-
pacities, such as memory, comprehension, calculation, and language. Several factors can contribute
to the development of dementia: factors that cannot be changed, such as age (the percentage of peo-
ple over 60 years old suffering from dementia is estimated to be 5-8% (World Health Organization,
2020)) and genetics (having a family history of dementia increases one’s probability of developing some
form of dementia), and factors that can be changed, such as a poor diet and lack of exercise, smoking,
diabetes, vitamin and nutritional deficiencies, excessive alcohol consumption and cardiovascular risk
factors (Mayo Clinic, 2019).

Dementia impacts the patient physically and psychologically, but also its carers and family (as it
creates a high level of dependency for the patient), and society at economic and social levels (World
Health Organization, 2020).

2.1 Symptoms

As previously stated, symptoms begin gradually and worsen over time (National Institute of Aging,
2017). The most common symptoms include resting tremors (where hands or arms start shaking when
resting), bradykinesia (or slowness of movement), muscle stiffness, which results in difficulty in moving
and producing facial expressions, postural instability, which reduces the ability to maintain a steady pos-
ture, and dystonia, a condition in which patients have involuntary and repetitive muscle movements.
In particular, PD also affects speech ability. Slurring and mumbling are observed in PD patients’ speech,
which is often observed to be monotone and breathy. The speech rate is also affected, as most patients
speak slowly, although others speak too fast. Finally, cognitive problems have been associated with the
disease, manifested as a difficulty in finding the correct words (which also contributes to slowing the
speech) (Clinic, 2020).

2.2 Speech Impairments

PD patients exhibits multiple speech impairments, both at acoustic and at language levels. Acoustic
parameters of speech, such as the F0 (Harel, Cannizzaro, Cohen, Reilly, & Snyder, 2004), pause dura-
tion (Harel et al., 2004) or vowel space time (Goberman & Elmer, 2005) have been shown to distinguish
PD from HC. 90% of PD patients are reported to have speech and voice disorders (Froelich, Wróbel,
& Porwik, 2015), which show that this biomarker can be an important source of information to de-
tect PD. Instances of incomplete closure of vocal folds along with bowing folds during phonation have
been reported (Perez, Ramig, Smith, & Dromey, 1996), leading to noise presence, typically characterized
by measures such as Glottal-to-Noise Ratio (GNR), Noise-to-Harmonics Ratio (NHR), HNR and Voice
Turbulence Index (VTI). An increase in the average values of F0, jitter, and shimmer have also been
measured in PD patients.
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2.3 Diagnosis

To measure the progression of PD, Hoehn and Yahr (H&Y) was proposed (Hoehn & Yahr, 1967). This
scale describes the disease through five stages, ranging from stage one, where the patient’s symptoms
are mild and only manifest on one side of the body, to stage five, where patients are confined to a
wheelchair or a bed.

Two decades later, Unified Parkinson’s Disease Rating Scale (UPDRS) was created (Fahn & Elton,
1987). It consists on a 50 question test, separated into four sections: (1) Mentation, behavior, and mood,
(2) Activities of daily living (ADL), (3) Motor, and (4) Complications (Fish, 2011). Sections 2 and 3
include speech evaluation (section 2 contains questions for self-assessment of speech impairments, while
section 3 evaluates free speech from the patient, for an evaluation made by the clinician). The UPDRS
test has proven to be very effective in the diagnosis of PD, although favoring moderate and severe
impairments. Hence, it may not be ideal to detect mild disease-related signs and symptoms (Goetz et al.,
2003). Furthermore, the UPDRS presents some ambiguities (Goetz et al., 2003). In 2003, the Movement
Disorder Society (MDS) published a state-of-the-art review on the UPDRS stating the test’s inability to
measure the severity of PD (Goetz et al., 2008). Furthermore, the heterogeneity of the test (evident on
section 4 that uses a mixture of 5-point options with “yes” or “no” questions) hampers a global analysis.
Additionally, some redundancy has been found in ADL and motor sections, which increases the time
required to perform the test. Lastly, cultural biases have also been identified, in items such as Dressing
and Cutting Food/Handling Utensils.

The MDS created the MDS-UPDRS (Goetz et al., 2008), an update on the UPDRS correcting sev-
eral problems recognized in the original version. Specifically, the response type was homogenized (all
questions are answered in a 4-point scale). Some of the redundant items were removed and unrepre-
sented areas in the UPDRS were added. Finally, cultural bias was eliminated. An appendix regarding
non-motor problems was also inserted in the MDS-UPDRS.

2.4 Computational diagnosis

Over the last years, many experiments have been conducted to diagnose PD using ML models. Such
projects have achieved positive results, which are reviewed in this section.

2.4.1 Speech production tasks

The most common speech production tasks used for PD classification are:

• productions of a sustained vowel, as there are major variations in glottal noise and tremors in
patients with PD (Godino-Llorente, Shattuck-Hufnage, Choi, Moro-Velázquez, & Gómez-Garcı́a,
2017)

• Diadochokinesia (DDK), which consists of a fast repetition of sounds that imply quick succession
of movements with the mouth and tongue (for this task, it is normal to use the pseudo-word /pa-
ta-ka/)

• Text-dependent Utterances (TDU)

• Text reading

Several speech production tasks to detect PD were tested (Pompilli et al., 2017) – Sustained vowel
phonation (/a/), maximum phonation time (/a/), rapid repetitions of the pseudo-word /pa-ta-ka/, reading
of words, sentences and texts, and storytelling guided by visual stimuli. Two approaches were carried
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out. First, a sentence-level vector was created, with which the classifier achieved accuracies between
55% (with a sustained vowel phonation /a/ production task) and almost 71% (where the speech pro-
duction task was reading out loud prosodic sentences). Secondly, all sentences were segmented into
4-second segments, with a time shift of 2 seconds. Using the features extracted at a segment level, the
classifier achieved accuracies between 58% (with a sustained vowel phonation /a/ production task) and
85% (where the speech production task was reading of prosodic sentences). For this work, the authors
used the FraLusoPark dataset (Pinto et al., 2016), which contains audio from 60 PD and 60 HC. The
participants were European Portuguese speakers.

A set of 22 acoustic features was extracted from the Parkinson’s Disease Detection Dataset (Little,
McSharry, Costello, & Moroz, 2007) and the Parkinson’s Telemonitoring Dataset (Tsanas, Little, Mc-
Sharry, & Ramig, 2009). The Parkinson’s Disease Detection Dataset includes speech by 23 patients with
PD and 8 HC producing sustained vowels. The Parkinson’s Telemonitoring Dataset contains speech
from 42 PD patients producing sustained vowels. Using multiple ML classifiers, the system achieved an
accuracy of almost 97% using a Gaussian Process Classification (GPC). With this model, the sensitivity
reached 88% and the specificity went slightly above 97% (Despotovic, Skovranek, & Schommer, 2020).

To study the relevance of each phonemic group in detecting PD, three datasets were used – GITA
(Orozco-Arroyave, Arias-Londoño, Vargas-Bonilla, Gonzalez-Rátiva, & Nöth, 2014), Neurovoz (Moro-
Velazquez, Gomez-Garcia, Godino-Llorente, & Dehak, 2019), and CzechPD (Rusz et al., 2013). Neurovoz
contains the results for multiple tasks – DDK, TDU and a monologue, based on a picture description –
from 47 PD patients and 32 control Spanish Castilian speakers. GITA contains multiple speech produc-
tion tasks from 50 PD patients and 50 HC Spanish Colombian speakers – DDK, TDU and a monologue.
The CzechPD subset considered for this study contains only the DDK task, produced by 20 newly diag-
nosed and untreated speakers with PD and 14 HC, all Czech speakers. Using a Gaussian Mixture Model
- Universal Background Model (GMM-UBM) classifier pre-trained with an auxiliary Spanish Castilian
dataset, Albayzin (Moreno et al., 1993), the model yielded an classification accuracy of 94% for the
CzechPD dataset, 89% for Neurovoz, and 84% for GITA (Moro-Velázquez et al., 2019).

Sustained vowels and text reading tasks were tested to differentiate PD from HC (Braga, Madureira,
Coelho, & Ajith, 2019). The authors use three datasets – Proença (Proença et al., 2014) (containing audio
from 22 PD patients in European Portuguese), UCI (Erdogdu Sakar et al., 2013) (with audio from 20 PD
and 20 HC) and a dataset created for the purpose of this study by the authors. The Proença dataset
contains word and text reading tasks and the UCI contains results from the sustained vowel task from
the patients and healthy controls. The authors tested multiple ML classifiers, such as Neural Networks
(NN), Support Vector Machines (SVM) and Random Forests (RF). This work yielded an accuracy of
almost 95% with the RF classifier and slightly above 90% with NN (with 4 layers, comprising 7, 7, 6 and
7 neurons, respectively) and SVM.

2.4.2 Feature selection

Multiple acoustic features have been used to attempt to distinguish between PD and HC.

Cases of incomplete vocal folds closure along with folds bowing during phonation were reported
(Perez et al., 1996), leading to the presence of noise, that is typically characterized using measures such
as NHR, GNR, HNR, and VTI. Some feature values have also been found to increase in PD patients,
such as average F0 and jitter (Bang, Min, Sohn, & Cho, 2013) and shimmer (Kent, Vorperian, Kent, &
Duffy, 2003).

A set of 5 acoustic features – F0, correlation dimension, HNR, detrended fluctuation analysis and
recurrence period density entropy – were selected from a set of 22 acoustic features by using Gaussian
processes for regression and classification combined with Automatic Relevance Determination (ARD)
(Despotovic et al., 2020). The authors tested multiple ML classifiers (SVM, RF, GPC, among others). The
GPC achieved an accuracy of almost 97%, although the model’s sensitivity was left on 88% (wrongly
classifying 12% of the patients). The specificity reached 97%.
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The adequacy of different phonemic groups in identifying PD patients was analyzed (Moro-
Velázquez et al., 2019). The work describes the concept of phonemic grouping, which consists of group-
ing phonemes by their type (such as nasal, fricatives, plosives). Using a GMM-UBM classifier, this work
yielded results with accuracies between 77% (using the plosive-nasal-vowel phonemic group) and 94%
(with the fricative-nasal phonemic group). The authors extracted Rasta-Perceptual Linear Predictive
(Rasta-PLP) (Hermansky, Morgan, Bayya, & Kohn, 1992) and its derivatives, ∆+∆∆, and labeled them
by phonemic group. The focus on the most important sounds has proved that plosive, vowel and frica-
tive segments are the most important for PD detection.

A NN was trained with the VoxCeleb 1 (Chung, Nagrani, & Zisserman, 2017) and 2 (Chung, Na-
grani, & Zisserman, 2018) datasets. An affine transformation was applied to the last pooling layer, to
retrieve the x-vectors, an abstract representation of the input features, which were Mel-frequency cep-
stral coefficients (MFCC) and its derivatives, ∆ + ∆∆. The x-vectors are then used as an input to a
Probabilistic Linear Discriminant Analysis (PLDA) classifier. The model achieved an accuracy of 90%
on TDU production tasks and 79% on DDK production task (repetition of the pseudo-word /pa-ta-ka/)
(Moro-Velázquez, Villalba, & Dehak, 2020).

2.4.3 Classification models

Most of the available datasets for this task are very small, considering the usual size for a classification
problem. This characteristic made the PD detection difficult. Indeed, complex models are unable to
capture the variability of the data from a small dataset, and are therefore unable to correctly simulate and
generalize the training set (Andonie, 2010). Therefore, the majority of the approaches to this problem
use traditional machine learning models, such as SVM, RF and K-Nearest Neighbours (KNN), which are
able to make accurate predictions training with small datasets. Nevertheless, some experiments have
used Multi-Layer Perceptrons (MLP) and other NN architectures, achieving accurate results, in some
cases yielding superior performances when compared to other models, such as SVM, and RF (Wan,
Liang, Zhang, & Guizani, 2018).

A 114-dimensional feature vector was used as input to a RF. Using acoustic features such as F0,
loudness, shimmer, jitter and MFCC, and using 5-fold cross-validation, the classifier achieved an accu-
racy of 85.1% (Pompilli et al., 2017).

A set of classifiers was used on two PD datasets (Despotovic et al., 2020). The authors extracted the
top 5 acoustic features (using ARD) from a set of 22 features. After feature selection, the model achieved
an accuracy of almost 97%, using a GPC. The SVM classifier yielded an accuracy close to 97% as well,
whereas the Boosting Classifier (BC) obtained an accuracy around 1% lower, completing the task with
close to 96 % accuracy. The RF achieved 96.62% specificity, whereas the model’s accuracy almost reached
93%.

From the Naranjo dataset (Naranjo, Pérez, Campos-Roca, & Martı́n, 2016) 240 recordings were re-
trieved (Yaman, Ertam, & Tuncer, 2020). From these recordings, 44 acoustic features were extracted.
The authors used KNN and SVM classifiers, achieving similar results, yielding accuracies slightly above
91%.

From the Naranjo dataset, a total of 177 acoustic features were retrieved (Yaman et al., 2020). Using
the Relief algorithm, the authors selected the 66 more relevant features. Ensemble KNN was compared
against Cosine KNN and Gaussian SVM was compared to Quadratic SVM. The Cosine KNN yielded
an accuracy slightly above 91%, whereas the Gaussian SVM outperformed the Quadratic SVM, with an
accuracy similar to the Cosine KNN (also above 91%).

A total of 2330 acoustic features were extracted from the mPower dataset (Bot et al., 2016) (2268
corresponding to Audio/Visual Emotion and Depression Recognition Challenge (AVEC) 2013 and 62
corresponding to GeMAPS) (Tracy, Özkancab, Atkins, & Ghomi, 2020). With 2023 HC and 246 PD, the
authors tested three ML methods to distinguish between PD and HC: L2-regularized Logistic Regression
(LR), RF, and gradient-boosted Decision Trees (DT). Because the dataset is heavily biased towards HC
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(n = 2023) compared to PD (n = 246), the authors added precision, recall and F1-score to the accuracy
as evaluation metrics to compare the performance of each model. The gradient boosted DT achieved
the best results, yielding 0.797 for recall, 0.901 precision and an F1-score of 0.836. Similar results were
reached with the RF classifier, but with an inferior value for recall (0.693 recall, 0.902 precision and
0.783 for F1-score). The LR achieved the worst results, reaching 0.759 recall, 0.811 precision and 0.784 of
F1-score.

A GMM-UBM classifier was trained using one dataset and tested with three others. The model
yielded accuracies between 84% and 94% (Moro-Velázquez et al., 2019).

MLP have also been extensively used for PD classification, having proven their efficacy in perform-
ing this task. A 1 hidden layer MLP, used on various sets of acoustic features, was able to classify AD
patients with an accuracy of over 92% and HC with an accuracy of almost 91%, surpassing the perfor-
mance of a KNN model, which yielded accuracies of 90.9% for AD and 87.3% for HC (Lopez-de Ipiña
et al., 2014). The Levenberg-Marquardt and Scaled Conjugate Gradient methods were tested as train-
ing algorithms for an MLP (Bakar, Tahir, & Yassin, 2010). Using 16 classical acoustic features (such as
F0, jitter, shimmer) extracted from 195 speakers, the authors tested multiple values for the number of
hidden units (5, 10, 15, 20, 25) and concluded that the Levenberg-Marquardt outperformed the Scaled
Conjugate Gradient, reaching accuracies of over 97% with 25 hidden units, whereas Scaled Conjugate
Gradient achieved 79% on 10 hidden units. Using the UCI dataset (Erdogdu Sakar et al., 2013), a set of
23 features was extracted for PD classification (Wan et al., 2018). The authors compared the performance
of a Deep Multi-Layer Perceptrons (DMLP), with 5 or 10 hidden layers, with other ML classifiers. The
authors reduced the size of the DMLP to 5 hidden layers, using ReLU or softplus as non-linear activation
functions instead of the latter activation function, as these are continuous and can therefore address
the vanishing gradient problem that affects Deep Neural Networks (DNN). Results on this experiment
concluded that the best performance came from the DMLP using 10 hidden layers, which yielded 80%
accuracy, whereas the LR model only reached 77.5% and the KNN could only get to 72.5%. Dropping
the size of the DMLP to 5 hidden layers reduced the model’s accuracy to 76%, which was still higher
than some of the tested models, such as the KNN and RF models.

2.4.4 Language independency

As one of the goals for this work is to develop a model capable of detecting PD for any patient, universal-
ity is an important property for the desired model, which can be achieved with language independency.

Three distinct datasets, one in Spanish, one in German and one in Czech, were used with a GMM-
UBM model to train a semi language-independent model (Orozco-Arroyave et al., 2016). For each ex-
periment, the model was trained with one dataset and tested with another (adding to the training set
subsets of the test set with percentages varying from 10% and 80%). Despite reaching accuracies of 96%,
high accuracies are only achieved when large portions of the test language are used to train the model.
In a fully language-independent model (where the model is trained using one language and tested with
another), the model accuracy only reaches 77% (trained with the German dataset and tested with the
Czech dataset).

A GMM-UBM was trained using corpora in Spanish Castilian, Spanish Colombian and Czech. Cross-
language testing resulted in accuracies of 82% (Moro-Velázquez et al., 2019).

2.5 Summary

This chapter dived into the symptoms of PD, as well as feature representation of speech, used for com-
putational diagnostic of PD. The chapter closes with an introduction to language independency in the
diagnostic of this disease.
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3Explainability Models

XAI is a field of AI that provides techniques and algorithms able to generate interpretable, intuitive,
human-understandable explanations of AI decisions (Das & Rad, 2020).

Explaining the decisions made by a black-box model requires knowledge of its internal operations
(Das & Rad, 2020), which makes it impossible to use by end-users who are only focused and interested
on getting an accurate result. The very nature of a black-box ML/Deep Learning (DL) model is a barrier
for their real-life usage (Shrikumar, Greenside, & Kundaje, 2017). For a ML model be used in real life
situations, the users must have confidence in it. Two definitions of trust must be considered: trust in the
prediction, where the user trusts a prediction sufficiently such that he is comfortable with performing an
action based on it, and trust in the model, which gives enough confidence to deploy the model. Thus, in
order for such model to be deployed, both definitions must be fulfilled (Ribeiro, Singh, & Guestrin, 2016).
This is even more important in critical situations, such as medical diagnosis. To address this limitation
in ML and DL, many models have been created to generate explanations for a model’s predictions.

Creating human-understandable explanations can also aid in finding erroneous behavior in a
model. A peculiar discovery was made in an experiment where Fisher Vector classifiers were used
for the image recognition task (Bach, Binder, Montavon, Müller, & Samek, 2016). An interpretability
technique called Layer-wise Relevance Propagation (LRP) was applied to explain the predictions of the
model. In particular cases, where the input image consisted of a horse, it was found that the model pri-
marily based its decision not on any of the physical traits of the horse, but on a copyright tag present on
the bottom left of the image that turned out to be a characteristic of all the horse images used in training.
This error certainly highlights the need for interpretability of ML/DL models, especially in the medical
field, where such errors can severely impact human lives.

3.1 Explanation

An explanation is a verifiable justification for a model’s output or decision (Das & Rad, 2020). There
are many kinds of explanations, such as a heat map stressing relevant parts of an image (for example,
a DaTSCAN image in PD detection (Magesh et al., 2020)). Some models, such as Local Interpretable
Model-agnostic Explanation (LIME) (Ribeiro et al., 2016), base their explanations on activations or pa-
rameters of the black-box models, using simpler surrogate models (Das & Rad, 2020).

3.2 Scope

Explainability models can be subdivided in three large groups, based on the scope of their explanations:
local, global or mixed.

3.2.1 Local explanations’ models

Locally explainable methods are designed to generate an explanation for the model’s decision on a
single instance of input data (Das & Rad, 2020). Models that provide local explanations fail to provide a
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global observation of the model. Their explanations do not provide enough information on the original
model computations and do not provide enough detail to understand the model’s behavior as a whole
(Agarwal, Frosst, Zhang, Caruana, & Hinton, 2020).

The concept of Axiomatic Attributions was proposed (Sundararajan, Taly, & Yan, 2017). Consider
a function F : Rn → [0, 1] representing a DNN. Let x ∈ Rn be the input, and x′ ∈ Rn be the baseline
input (the black image for image networks, for example). Using a straight line path in Rn from x′ to
x, the model computes the gradients along the path, in every point. Integrated gradients are obtained
by cumulating these gradients. Specifically, integrated gradients are defined from baseline x′ to input x
as the path integral of the gradients along a straight line path. For each dimension i, ∂F (x)

∂xi
defines the

gradient along dimension i. Integrated Gradients (IG) are then calculated as

IGi(x) = (xi − x′
i)×

∫ 1

α=0

∂F (x′ + α× (x− x′))

∂xi
dα (3.1)

The IG provide a measure of the relative importance of each feature on the model’s classification of
instance x - the higher the IG of feature i, the higher its importance for the classification.

Randomized Input Sampling for Explanation (RISE) was proposed in 2018. This model is based
on random masking to locally understand the most important features (for example, in the case of the
image classification problem, RISE will determine the most important pixels for the black-box model’s
classification) (Petsiuk, Das, & Saenko, 2018).

Consider f : I → R to be the model. For the image classification problem, we consider Λ : {1, .., J}
x {1, ..,W} as the image coordinates and I would map every pixel to its RGB representation (I = {I|I :
Λ → R}). f is a classifier that returns the probability of an instance of a certain class be present in the
image. Considering a random binary mask M : Λ → {0, 1} following a distribution D. By masking the
image with I ⊙ M (where ⊙ represents the element-wise multiplication), we preserve only a subset of
the pixels of I . By calculating the confidence score f(I⊙M), we can define the importance of every pixel
λ, SI,f (λ), λ ∈ Λ, as the average value of the confidence scores of all masked images where M(λ) = 1.
Mathematically,

SI,f (λ) =
1

E[M ]

∑
m∈M

f(I ⊙m) ·m(λ) · P [M = m] (3.2)

3.2.2 Global explanations’ models

Understanding the model’s behavior on a set of input data points could provide insights on the in-
put features, patterns, and their output correlations, thereby providing transparency of model behavior
globally. Various globally explainable methods break down complex deep models into linear counter-
parts, which are easier to interpret (Das & Rad, 2020).

To generate explanations at class , Concept Activation Vectors (CAV) were proposed, which provide
interpretations for a NN’s internal state in terms of human-friendly concepts (Kim et al., 2018). The
model considers a NN with inputs x ∈ Rn and a feed-forward layer l with m neurons. Thus, layer l’s
activation can be seen as fl : Rn → Rm. The user chooses a concept of interest C and creates a series
of inputs labeled as contains concept C and a series of inputs labeled as does not contains concept C. The
model then calculates the hyperplane separating the two groups of inputs. The CAV is then defined as
the vector normal to this hyperplane.

Common interpretability methods (such as saliency maps), calculate the derivatives for the logit in
terms of the input features. With this approach, these methods are able to measure sensitivity in the set
of input features. When combining CAVs and directional derivatives, the model can gauge sensitivity
of ML predictions in directional input changes of the concept C, at activation layer l.
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In 2020, the concept of Neural Additive Models (NAM) was proposed (Agarwal et al., 2020). The
explanations are created by shape functions, relative to each input feature. To parameterize these func-
tions, a NN is created for each function. With this architecture, the model is able to create an exact
representation of how NAMs compute a prediction, thus creating an explanation of the model’s global
behavior.

Consider D = {(x(i), y(i))}Ni=1 as the training set, with N instances, where x is the input vector and
y is the target vector. The proposed model was trained using the following loss function:

L(Θ) = Ex,y∼D[l(x, y; Θ) + λ1η(x; θ)] + λ2γ(Θ) (3.3)

where η(x,Θ) = 1
K

∑
x

∑
k(f

Θ
k (xk))

2 is the output penalty, γ(Θ) is the weighted decay and fΘ
k

represents the kth feature network.

The authors use the cross-entropy loss for binary classification as the task-dependent loss function
l(x, y; Θ), which, considering pΘ(x) = σ(βΘ +

∑K
k=1 k

β
k (xk)), yields

l(x, y; Θ) = (βΘ +

K∑
k=1

fΘ
k (xk)− y)2 (3.4)

where βΘ defines the parameters to be calculated.

3.2.3 Mixed models

To combine the advantages of the local and global explanations’ models, mixed models provide expla-
nations that are able to locally interpret decisions, while also allowing to understand the behavior of the
model as a whole.

Similarly to RISE, LRP allows to understand which pixels of the image contribute the most to the
model’s decision (Lapuschkin et al., 2015). This model, created for DNN architectures, redistributes the
relevance of each neuron at the last layer of the network to pixel-wise scores (Rl

i) using the rule

R
(l)
i =

∑
j

zij
∑

i′ zi′j
R

(l+1)

j
, zij = x

(l)
i w

(l,l+1)
ij (3.5)

where i is the i-th neuron in layer l,
∑

j iterates through all the upper-layer neurons to which neuron
i contributes. This result can be assessed using a visualization tool, such as a heat map, to explain the
model’s classification.

LIME is an algorithm that uses local interpretable representations of the classification data to generate
an output that can be interpreted by humans (Ribeiro et al., 2016). We define x ∈ Rd as the original
representation of the instance to be explained and x′ ∈ {0, 1}d′

, a binary vector and its interpretable
representation. Let g ∈ G, where G is the set of models that can present a interpretable output to the user.
We also denote Ω(g) as a measure g’s explanation complexity and f : Rd → R as the black-box model.
f(x) will be the probability that x belongs to a particular class. Let πx(z) be a distance measure between
x and an instance z defined around x. Lastly, we define L(f, g, πx) as a measure of how unfaithful g is
approximating f in the space defined by πx. To maximize interpretability while keeping local fidelity,
the explanation can be defined as:

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (3.6)
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The algorithm creates sample instances instances around x′, weighted by πx. Considering a per-
turbed sample z′ ∈ {0, 1}d′

containing a fraction of the non-zero elements of x′, the original repre-
sentation z ∈ Rd is obtained, so the value f(z) can be calculated. For example, considering an input
x = [1, 2, 3, 4, 5] and a mask x′ = [1, 1, 1, 1, 0], z′ could be [1,0,1,1,0] (ignoring the second value of the
input). Thus, z can be defined as z = z′ ⊙ x = [1, 0, 3, 4, 0]. Considering Z as the set of all perturbed z′

with the label f(z), equation 3.6 is used to calculate the explanation.

DeepLIFT (DeepLIFT) was presented as a method to understand the output of a NN by backprop-
agating the neurons’ contributions to every feature of the input (Shrikumar et al., 2017). To assign con-
tribution scores C, DeepLIFT compares the activation of each neuron t to its reference activation value
t0, using the summation-to-delta property:

n∑
i=1

C∆xi∆t = ∆t (3.7)

where ∆t = t − t0 and C∆xi∆t is a measure of the difference from the reference value t0 attributed
to the neuron xi. The reference values t0 are calculated by defining a set of reference input values
x0
1, x

0
2, ..., x

0
n for a given neuron, resulting in t0 = f(x0

1, x
0
2, ..., x

0
n), where f is the activation function

of the neuron. The choice of reference input values is highly context-dependent. For example, for the
MNIST (LeCun & Cortes, 2010), the reference values were set to 0 (which represents the background
color of the images, black). For DNA classification tasks, the references were defined based on the
expected frequency of each of the elements on the DNA’s alphabet (A, C, G, T). This creates a limitation
on some applications, as defining reference values may be difficult.

3.3 Parkinson’s Disease diagnosis

As stated in section 1, ML models used for sensitive tasks, such as detection of PD, lack the ability to
generate an explanation to be interpreted by the medical professionals that need to establish a diagnosis.
These models, called black-box models (Holzinger et al., 2017), take an input and return as an output a
classification, which cannot be interpreted by a medical professional. This problem difficults the accep-
tance of these models for such tasks, as the risk of decision-making based on the results of a black-box
system raises numerous ethical concerns (Chen et al., 2020).

Image-based explanations were generated for a black-box model (the VGG16 convolutional neu-
ral network) on a dataset of SPECT DaTSCAN images of the brain (Magesh et al., 2020). The authors
retrieved a 2-dimensional section of the 3-dimensional image, trained, and tested the black-box model,
which yielded an accuracy of 95.2%, a specificity of almost 91%, a sensitivity of 97.5% and a precision of
95.2%. After the classification, the authors generated a color map over the input images to highlight the
regions of interest (the pixels with larger weights for the classification process). This showed that the
most interesting regions of the brain for this task were the putamen and the caudate, confirming the med-
ical background information described, providing trust in the model, as it could be easily interpreted by
a medical professional.

Explainability models have been applied to many other medical tasks, such as breast cancer detec-
tion (Pfob et al., 2020), identification of individuals with high-risk of depressive disorder (Choi, Shim,
Jeong, & Jo, 2020), and early detection of COVID-19 (Punn & Agarwal, 2020).

This area remains almost unexplored for the task of early detection of PD and, to the best of our
knowledge, no work has combined explainability algorithms with acoustic-based models for this task.
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3.4 Summary

This chapter described multiple types of explainability algorithms, based on the scope of their explana-
tions: local, global and mixed. State-of-the-art models were described for each scope. Finally, a literature
review on explainability in PD computational diagnostic was also presented.
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4Experimental Setup

This section describes the methodology. First, the corpora used in this work are described, followed
by the adopted approaches (feature selection, classification model, explanation generation model, and
multi-language tests). Finally, the evaluation procedures are presented. Figure 4.1 shows the pipeline
for the system’s architecture.

4.1 Corpus Description

Most datasets available for this task have insufficient data to train neural models (Andonie, 2010). Nev-
ertheless, few common speech production tasks are available in the datasets. As some datasets contain
speech from PD patients and share commons speech production tasks, they can be combined to produce
sufficiently long collections of data that can be used for neural models (Braga et al., 2019), (Despotovic
et al., 2020), (Moro-Velázquez et al., 2019), (Moro-Velázquez et al., 2020). Different datasets were used
for training and testing, or to combine instances from different datasets in the training and/or testing
sets (Orozco-Arroyave et al., 2016), all proving to be accurate in the PD classification task.

This study used 3 datasets for training and testing the model – FraLusoPark (PT) (Pinto et al., 2016),
GITA (ES) (Orozco-Arroyave et al., 2014), and MDVR KCL (EN) (Jaeger, Trivedi, & Stadtschnitzer, 2019).

The FraLusoPark dataset is composed by speech from 120 patients, half of which are native French
speakers and the other half are European Portuguese speakers. The dataset also contains 120 healthy
participants as a control group (with the same distribution between French and European Portuguese
speakers as the PD participants). Each group of PD patients is divided into three subgroups, based on
the number of years since diagnostic: 20 early stage patients (who have been diagnosed less than 3 years
before and present no motor fluctuations), 20 mid stage patients (with a diagnostic made 4 to 9 years
before the data collection, or less than 3 years and experiencing motor fluctuations), and 20 advanced
stage patients, diagnosed over 10 years ago. The patients’ speech is recorded twice for every speech
production task, before (at least 12 hours after medication) and after medication (at least 1 hour after
medication). FraLusoPark participants were asked to perform a set of speech production tasks:

• sustain the vowel a at a steady pitch

• hold the vowel a during their maximum phonation time on a single breath

• DDK (repetition of the pseudo-word pa-ta-ka at a rapid pace during 30 seconds)

• reading aloud 10 words and 10 sentences, formed by adapting part of section V.2 of the Frenchay
Dysarthria Assessment of Intelligibility (FDA-2)

• reading of a short text (adapted to French and European Portuguese)

• storytelling by guided visual stimuli

• reading a collection of sentences with specific language-dependent prosodic properties

• free conversation for 3 minutes
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Dataset Total time PD/HC (%) M/F (%) Average age

FraLusoPark 113m43s 54/46 51/49 65.1

Gita 30m8s 50/50 50/50 61.7

MDVR KCL 65m3s 42/58 38/62 n/a

Table 4.1: Information on the used datasets.

In the scope of the present study, we only consider the Portuguese speakers of this dataset, as the
audios from the french patients were not available.

The GITA dataset contains recordings of 50 PD patients and 50 HC, evenly distributed between
genders. For the PD group, the average age is 62.2 with a standard deviation of 11.2 years and 60.1 with
a standard deviation of 7.8 for male and female participants, respectively. Considering the HC group,
the average age is 61.2 and 11.3 years and 60.7 with a standard deviation of 7.7 for male and female
participants, respectively. Multiple stages of disease progression are considered in this study (time since
diagnostic ranges between 0.4 - 20 years for male patients and 1 - 41 years for female patients). All the
participants are Colombian Spanish native speakers. Recordings of the PD patients were made no up
to 3 hours after the morning medication. Different speech production tasks were performed to examine
phonation, articulation and prosody. To analyze phonation, participants were asked to sustain the five
Spanish vowels and to repeat the same five vowels, but alternating the tone between low and high.
Regarding articulation, a DDK evaluation was performed with the pseudo-words /pa-ta-ka/, /pa-ka-ta/
and /pe-ta-ka/. Finally, for the evaluation of prosody, both PD patients and HC were asked to repeat a
series of sentences with different levels of complexity, to read a dialogue between a doctor and a patient,
which contained the complete set of Spanish sounds, to read sentences with a strong emphasis on a set
of words and freely speak about their daily routine.

Lastly, the MDVR KCL dataset was recorded in the context of phone calls, in an acoustically-
controlled environment. The dataset contains speech from 16 participants with PD (11 male and 4
female) and 21 HC (3 male and 18 female), totaling 37 native English speakers. The PD group con-
tains patients from all the stages of the disease (early, mid and late stages) according to the Hoehn and
Yahr scale (Hoehn & Yahr, 1967). The participants were asked to read a text (“The north wind and the
sun” or “Tech. Engin. Computer applications in geography snippet”). Additionally, the interviewer
started a spontaneous conversation with each participant about various topics.

To homogenize the datasets, only the text-reading tasks were considered herein. This yields a total
of 131 HC and 125 PD speakers of European Portuguese, Colombian Spanish, and European English.

4.2 Data Processing

The original audio files contained the interviews (including silences and speech segments from the in-
terviewers) of each test subject, therefore requiring segmentation in order to remove useless audio frag-
ments. Silences between speech segments were removed. Next, sounds produced by the subject that
were not considered as speech were also deleted. Finally, audio segments containing speech from inter-
viewers were also eliminated.

After data processing, the datasets were reduced to one file per subject. Total duration and remain-
ing metadata on each dataset is presented in table 4.1.

4.3 Feature Extraction

In order to extract the features, the openSMILE (Eyben, Wöllmer, & Schuller, 2010) tool was used. To
extract the complete set of features, four configurations were used: MFCC12 0 D A.conf for MFCC’s,
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PLP 0 D A.conf to extract Perceptual Linear Predictive (PLP)’s, prosodyAcf2.conf for prosody features
(F0 and HNR), and GeMAPSv01b.conf to extract jitter and shimmer.

OpenSMILE was configured to use a sliding window of 25ms with a frame step of 10ms. After
the extraction, each participant was represented by a sequence of feature vectors, and each frame de-
scribed by a list of features. To classify each patient, the resulting diagnostic is obtained by averaging
the model’s output for each of the patient’s frames.

Male Female Reference

F0 (Hz) 105-160 175-245 (Palumbo et al., 2010)

Jitter (%) < 1.04 (Asiaee, Vahedian-azimi, Atashi, & Keramatfar, 2020)

Shimmer (%) < 3.81 (Asiaee et al., 2020)

HNR (dB) < 20 (/a/, /i/), < 40 (/u/) (Fernandes, Teixeira, Guedes, Junior, & Teixeira, 2018)

Table 4.2: Feature values for healthy subjects.

Feature Description

F0 The number of open/close cycles of the glottis.

Jitter
Measures the frequency variation between cycles. Affected by lack of

control on the vocal cords vibration.

Shimmer Measures the amplitude variation between cycles.

HNR
The ratio between periodic (associated with normal speed production)

and non-periodic (associated with noise) speech components.

MFCC Features that approximate to our perception of the audio quality

PLP Features that approximate to our perception of the audio quality

Table 4.3: Acoustic features description.

4.4 Classification Experiments

Three distinct experiments were conducted during the present work. First, a baseline was created by
training and testing a classification model with sets from the same dataset. This procedure scored the
classification models for single languages. Secondly, the same model was trained to evaluate its perfor-
mance as a semi language-independent classifier. For this, the model was trained using one complete
dataset and with a fraction of another dataset (90%), thus combining two languages in the same train-
ing set. The model was then tested with the remaining 10% of the second dataset. All the combinations
between the three datasets were tested, leading to 6 dataset combinations. By testing this semi language-
independent version, it was possible to evaluate an intermediate step between a language-dependent
and a language-independent classification model, shedding light into the model’s sensitivity to the lan-
guage. Lastly, a completely language-independent model was trained by combining two datasets. For
this last experiment, each model was trained with two datasets and tested with the third, thus allowing
to evaluate the model’s ability to diagnose a patient who speaks in a language different from the ones
used to train the model.

These experiments used the scikit-learn implementation (Pedregosa et al., 2011) of a MLP. Two dif-
ferent architectures were tested to evaluate their ability to learn from the training data. The first ar-
chitecture contains one entry layer with N neurons (where N is the number of input features), a fully-
connected hidden layer with N + 1 neurons and an output layer with 1 neuron, whose value represents
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the probability of the test subject to be classified as PD (Lopez-de Ipiña et al., 2014). The second archi-
tecture also contains an input layer with N neurons, two fully-connected hidden layers, comprising 200
neurons each and, similarly to the first architecture, an output layer with 1 neuron, also representing the
probability of the subject under evaluation to be diagnosed with PD. For these experiments, the thresh-
old between HC and PD diagnostics (the output value of the neuron from the output layer) was set to
0.5.

In order to find the best model configuration, the experiments were repeated testing multiple values
for the L2 regularization term parameter, or alpha (10−4, 10−3, 10−2), maximum number of iterations
(1000, 2000, 5000) and solver for weight optimization (lbfgs, sgd, adam).

4.5 Explanation Generation

After the classification experiments, explanations were generated for each individual of the test set (with
all models described in section 4.4). As the objective of this work is to generate an explanation for each
diagnostic individually, a mixed model was used.

The selected model was LIME (Ribeiro et al., 2016). This model yielded results on explaining PD
diagnostics with SPECT DaTSCAN images of the brain that were confirmed by the bibliography. This
work aimed to verify if a similar performance can be achieved using acoustic features.

To explain the diagnostic of each subject, the explain instance method from the LimeTabularExplainer
class was used with each feature list (each representing a time frame) to generate a report. Next, two op-
erations were performed. First, the classification model’s output was averaged between all time frames,
creating a final classification probability for the subject. Secondly, each feature weight (which LIME
calculated) was also averaged, thus creating a final weight for each feature (from which the top five
features with the largest contribution to the classification were selected). To this report, a list of normal
values for healthy patients for each of the features was added. Finally, to assist the interpretation of the
report by the medical professional, a small description of each feature was also added. Tables 4.2 and
4.3 show the complete list of normal values and descriptions for each feature.

Additionally, a global evaluation of each feature’s relevance was conducted. In order to conduct
this analysis, the top five classification model configurations for each experiment for each MLP were
used. An explanation was generated for each patient from the testing set, and the result contribution
of each feature was averaged. Additionally, the percentage of patients for each of the top five features
with highest contribution was calculated. Thus, we shed light into the relative quality of each feature in
distinguishing PD patients from healthy subjects.

4.6 Model Evaluation

To evaluate the classification model’s performance, multiple metrics have been selected:

• accuracy allows to evaluate the % of subjects correctly diagnosed

• precision yields the fraction of subjects diagnosed with PD that were correctly classified

• recall quantifies the percentage of PD subjects that were correctly diagnosed

• F1-score allows to evaluate precision and recall in the same metric

• Specificity is the fraction of subjects classified as HC that were correctly diagnosed
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Figure 4.1: Pipeline of the proposed model.

These metrics quantify the performance of the models, which allows to determine the best param-
eters and architecture. Furthermore, recall allows to evaluate the percentage of subjects from the PD
group that were correctly diagnosed, which, combined with specificity (that evaluates the number of
subjects from the PD group incorrectly diagnosed), provides confidence in the model information to
medical professionals.

To assess LIME’s results, average values of each feature were obtained from the bibliography (see
table 4.2) and are shown along with the values in each explanation, in order to compare each subject’s
feature values with its range for a healthy individual. This comparison will allow to evaluate the model’s
ability to detect abnormal values (or their absence) and select those features as justifications for a given
classification. Furthermore, a comparative analysis between the global contribution of each acoustic
feature was performed, therefore allowing to compare feature’s relevance for the model’s diagnostic.

4.7 Summary

The methodology followed during the execution of the present work was presented. Corpora, feature
selection, classification and explanation experiments were described. Finally, evaluation procedures and
metrics were presented.
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5Results and discussion

This chapter presents the results and discussion. First, classification experiments are presented, describ-
ing all three experiment types (baseline, semi language-independent, and language-independent) and
discussing model optimization. Next, the language independency topic is discussed, followed by the
explainability model’s results and a comparative analysis on the relevance of each acoustic feature.

5.1 Classification Experiments

In this work, three types of experiments were conducted, each using two different MLP architectures,
as described in the previous chapter. Results are shown in tables 5.1 and 5.2 (for the baseline experi-
ments), 5.3 and 5.4 (for the semi language-independent experiments), and 5.5 and 5.6 (for the language-
independent experiments). These tables show the five MLP parameter parameterizations with higher
accuracy for each experiment. Tables 5.1, 5.3 and 5.5 present the results for architecture 1, whereas tables
5.2, 5.4 and 5.6 show the results for architecture 2.

5.1.1 Baseline experiments

Both architectures 1 and 2 of the MLP yielded an accuracy of 90% with the best parameterization (tables
5.1 and 5.2 and figure 5.1).

All the best models parameterizations (for both architectures 1 and 2) achieved higher scores using
the GITA dataset. There are multiple reasons that can explain these results. In particular , the text read
by subjects for the creation of the GITA dataset contains the complete set of Spanish sounds, which
makes the data phonetically complete. Also, the audios from the MDVR KCL dataset were recorded
using phone calls, which uses audio compression with data loss, resulting in a dataset with inferior
quality. In addition, MDVR KCL has a significantly smaller recording time, which may limit the model
learning.

Initial experiments using either the sgd solver or #iterations = 1000 produced significantly lower
results compared to the other values. Therefore, these two values were removed. The distribution be-
tween MLP solvers (adam and lbfgs) on the top 5 model parameterizations for architecture 1 is similar,
whereas 4 out of the 5 best model parameterizations on architecture 2 use the adam solver. Both architec-
tures yielded better results when using smaller values (0.0001 and 0.001) for the alpha parameter, com-
paring to the results obtained using larger values (0.01). Finally, architecture 1 does not show significant
differences between models using 2000 and 5000 for the maximum number of iterations. In addition,
this difference is observable on architecture 2, where the four model configurations which yielded bet-
ter results by using the value of 5000 for this parameter regardless of the solver. The difference between
architectures can be explained by the higher complexity of architecture 2 which require the optimization
of a large number of parameters (52400 weights and 401 biases), compared with architecture 1, which
has only 3844 weights and 62 bias. A larger number of parameters requires more iterations for the model
to converge.

Architecture 1 yielded precision values between 0.75 and 1, meaning that 75% to 100% of the pa-
tients labeled as PD by the models were correctly classified. The precision of architecture 2 was slightly
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dataset solver alpha max. iterations accuracy precision recall specificity f1-score
gita adam 0.0001 5000 0.9 0.75 1.0 0.857 0.857
gita lbfgs 0.0001 2000 0.9 0.75 1.0 0.857 0.857
gita adam 0.001 2000 0.8 1.0 0.75 1.0 0.857
gita lbfgs 0.01 5000 0.8 0.833 0.833 0.75 0.833
gita lbfgs 0.01 2000 0.8 1.0 0.714 1.0 0.833

Table 5.1: Top five baseline experiment results using architecture 1.

dataset solver alpha max. iterations accuracy precision recall specificity f1-score
gita adam 0.001 5000 0.9 0.8 1.0 0.833 0.889
gita lbfgs 0.001 5000 0.9 1.0 0.833 1.0 0.909
gita adam 0.0001 5000 0.8 0.8 0.8 0.8 0.8
gita adam 0.01 5000 0.8 0.667 0.667 0.857 0.667
gita adam 0.001 2000 0.8 1.0 0.778 1.0 0.875

Table 5.2: Top five baseline experiment result using architecture 2.

worse, between 67% and 100%. Recall values (which corresponds to the percentage of PD patients were
correctly classified) were similar for the two architectures. Architectures 1 and 2 led to recall values in
the ranges [71-100]% and [67-100]%, respectively. Using the specificity metric (which corresponds to the
percentage of HC patients that were correctly classified) to compare the two architectures, architecture
2 outperformed architecture 1 by a small margin, producing a range of values between 80% and 100%,
whereas architecture 1 produced a range of values between 75% and 100%. Finally, comparing both
architectures using the F1-score metric, the performance of architecture 2 (up to 91%) is usually higher
than the one of architecture 2 (up to almost 86%).

Overall, we can conclude that there are no significant differences between the two architectures.

5.1.2 Semi-independent experiments

When testing a semi-independent approach, architecture 1 yielded better results than architecture 2 (ta-
bles 5.3 and 5.4 and figure 5.2). Although the two best model parameterization of both architectures
produced an accuracy of 90%, the following three model parameterization resulted in an accuracy of al-
most 86%, whereas architecture 2 only reached an accuracy of 80%. The same trend applies to precision.

Architecture 1 outperformed architecture 2 on precision, producing results between 0.83 and 1,
whereas architecture 2 yielded values between 0.6 and 1. While both architectures’ highest value was
the same, architecture 1 produced consistently better results, with a smaller range of values. Similar
results were achieved when using recall. Architecture 1 produced values between 0.75 and 1, and 3 of
the top 5 model parameterizations achieved 100% recall. Additionally, architecture 2 values for recall
ranged from 0.66 to 1. As F1-score combines the values from precision and recall (and architecture 1
outperformed architecture 2 on both these metrics), the F1-score metric leads to the same conclusions.
Values of this metric for architecture 1 varied between 0.85 and 0.92, whereas architecture 2 values
ranged from 0.75 to 0.88. Finally, architecture 2 produced better results when using specificity. This
architecture’s values varied between 0.71 and 1, with a much smaller variation between extremes when
compared to the results produced by architecture 1, which varied from 0.5 to 1. The results were similar
to the ones achieved on the baseline experiences using architecture 2. Architecture 1 had a slightly
better performance on the semi language-independent experiments, compared to the baselines. This
experiment confirms the conclusions of a similar work that tested semi language-independent models
(Orozco-Arroyave et al., 2016), which suggests that these models can be retrained using a small dataset
of a new language. These retrained models can be used on patients that speak the different language,
without loss of performance. This characteristic can be particularly useful, as lack of training data is
usually a limitation to train such models.
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Figure 5.1: Baseline experiment result using architecture 1 (left) and architecture 2 (right).
Correspondence to table 5.1 and 5.2: row 1 is orange, row 2 is green, row 3 is red, row 4 is purple, row 5
is brown.

dataset solver alpha max. iterations accuracy precision recall specificity f1-score
M + G adam 0.001 2000 0.9 0.857 1.0 0.75 0.923
F + G lbfgs 0.0001 5000 0.9 0.875 1.0 0.667 0.933
G + F adam 0.0001 2000 0.857 0.833 1.0 0.5 0.909
G + F adam 0.01 5000 0.857 0.889 0.889 0.8 0.889
G + F lbfgs 0.001 2000 0.857 1.0 0.75 1.0 0.857

Table 5.3: Top five semi language-independent experiment result using architecture 1.
Dataset column legend: M - MDVR KCL, F - FralusoPark, G - Gita. First dataset was used entirely for

training, the second one was partially used for training and partially for testing.

5.1.3 Language-independent experiments

Language-independent models lead to substantially worse results compared to previous models (tables
5.5 and 5.6 and figure 5.3).

When using a language-independent model, architecture 1 achieved a maximum accuracy of 67%.
Architecture 2 yielded very similar results, scoring a maximum of 66% on this metric.

Combining the top five model parameterizations for both architectures, almost all (90%) obtained
their best scores when trained with the FraLusoPark and MDVR KCL, and tested with GITA. The same
percentage of the combination of the top five models of each architecture used the lbfgs solver, whereas
only 1 of these 10 model parameterizations used the adam solver. Similarly to the baseline and semi
language-independent experiments, the model’s performance is consistently higher for smaller values
of alpha. On both architectures, only 1 of the top five model parameterizations used alpha = 0.01. Finally,
no significant differences were found when comparing model’s performance based on the number of
iterations.

Considering the precision metric, architecture 1 scored slightly higher values than architecture 2.
It’s values range between 0.59 and 0.64 whereas architecture 2 yielded values between 0.57 and 0.61,
meaning that architecture 2 produced more false positives (patients from the HC group incorrectly clas-
sified as PD). Also, architecture 1 performed slightly worse when comparing the recall metric, only
achieving values ranging from 0.76 to 0.84, whereas architecture 2 scored recall values between 0.77
and 0.88, thus correctly classifying a higher number of patients from the PD group. Architecture 1 out-
performed architecture 2, when compared using the specificity metric. Architecture 2 only achieved a
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dataset solver alpha max. iterations accuracy precision recall specificity f1-score
M + G lbfgs 0.001 5000 0.9 1.0 0.8 1.0 0.889
F + G lbfgs 0.0001 2000 0.8 0.75 0.75 0.833 0.75
M + G adam 0.0001 5000 0.8 1.0 0.667 1.0 0.8
M + G adam 0.001 5000 0.8 0.6 1.0 0.714 0.75
M + G lbfgs 0.0001 5000 0.8 0.6 1.0 0.714 0.75

Table 5.4: Top five semi language-independent experiment result using architecture 2.
Dataset column legend: M - MDVR KCL, F - FralusoPark, G - Gita. First dataset was used entirely for

training, the second one was partially used for training and partially for testing.

Figure 5.2: Semi language-independent experiment result using architecture 1 (left) and architecture 2
(right).
Correspondence to table 5.3 and 5.4: row 1 is orange, row 2 is green, row 3 is red, row 4 is purple, row 5
is brown.

maximum of 0.46, compared to architecture 1, which scored a maximum of 0.58 on this metric. Lastly, as
F1-score combines precision and recall in the same metric, the results of both architectures on this metric
were equivalent.

We can conclude that the models have a similar performance on the PD detection task. Thus, ar-
chitecture 1 can be considered a better option for this task, as it is simpler, with only 3906 parameters
to optimize, than architecture 2, which comprises a total of 52801 parameters. This difference makes
architecture 1 much less resource-intensive, in both terms of time and computing power.

dataset solver alpha max. iterations accuracy precision recall specificity f1-score
gita lbfgs 0.001 5000 0.67 0.644 0.76 0.58 0.697
gita lbfgs 0.01 2000 0.65 0.612 0.82 0.48 0.701
gita lbfgs 0.001 2000 0.65 0.615 0.8 0.5 0.696
gita lbfgs 0.0001 2000 0.63 0.592 0.84 0.42 0.694
gita adam 0.0001 5000 0.63 0.6 0.78 0.48 0.678

Table 5.5: Top five independent experiment result using architecture 1.
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dataset solver alpha max. iterations accuracy precision recall specificity f1-score
gita lbfgs 0.01 5000 0.66 0.614 0.86 0.46 0.717
gita lbfgs 0.0001 2000 0.63 0.589 0.86 0.4 0.699
gita lbfgs 0.0001 5000 0.62 0.579 0.88 0.36 0.698
gita lbfgs 0.001 2000 0.6 0.571 0.8 0.4 0.667
fralusopark lbfgs 0.0001 5000 0.586 0.586 0.773 0.369 0.667

Table 5.6: Top five independent experiment result using architecture 2.

Figure 5.3: Independent experiment result using architecture 1 (left) and architecture 2 (right).
Correspondence to table 5.5 and 5.6: row 1 is orange, row 2 is green, row 3 is red, row 4 is purple, row 5
is brown.

5.1.4 Model optimization

When comparing models’ results per parameter, it is possible to find the best values for each parameter.

Smaller values for alpha (0.0001 and 0.001) consistently produced superior results when compared
with 0.01. Considering language-dependent and semi language-dependent models, there is no clear
difference between the use of the lbfgs and adam solvers. For both experiments, around half of the top
five model parameterizations used each solver. In addition, for language-independent experiments,
models using the lbfgs solver outperformed those using the adam solver. Between the top five model
parameterizations of each architecture, only 1 was trained using adam (tables 5.5 and 5.6). Lastly, com-
paring the results based on the number of maximum number of iterations (#interations), there is no
clear difference between models trained with #iterations = 2000 and #iterations = 5000 in any of the
experiments performed. This shows that, in most cases, 2000 iterations should be sufficient to train the
model, and convergence is reached without executing the maximum number of iterations.

5.2 Language Independency

Both architectures used during this work yielded an accuracy of 90% on the semi language-independent
experiments. One the one hand, these results are inferior to the ones achieved on a similar work
((Orozco-Arroyave et al., 2016)), where the authors were able to achieve a maximum accuracy of 96%
when training a model with a German dataset and 80% of a Spanish dataset and testing with the re-
maining 20%. On the other hand, this model was outperformed by architecture 1 when using the recall
metric, producing recall values of 95%, whereas architecture 1 produced a recall of 100% for the top 3
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Figure 5.4: Example explanation report generated by LIME.

model parameterizations. Contrary to this work, results produced by our model were inferior when
using the specificity metric, where the authors were able to achieve a score of 97%, compared to the
75% produced by our model. Based on the recall metric, we can conclude that our solution has better
ability to indicate when a subject belongs in the PD group. This contrasts with the ability to classify
subjects from the HC group, where our model has an inferior performance. As previously described
in section 5.1.3, architecture 1 produced an accuracy of 67% on the language-independent experiments.
This result is slightly inferior to the one achieved on a different article (Orozco-Arroyave et al., 2016),
where a language-independent model yielded an accuracy of 77% when trained with a Czech dataset
and tested with a German dataset. Comparing the models using the recall and specificity metrics, the
results are identical to the ones achieved on the semi language-independent models’ comparison in this
work. Our model with highest accuracy produced a recall of 76% whereas the authors were only able
to score 53% on this metric. On the other hand, architecture 1 produced a score of 58% on the specificity
metric, significantly inferior to the 95% achieved by the other work.

It is possible to conclude that the performance of both architectures used in this work were not able
to produce state-of-the-art results on the language independency topic. Regarding the recall metric, both
architectures outperformed the state-of-the-art, which demonstrates better capacity in detecting PD.

5.3 Explainability

LIME was used to generate explanations for each test subject. These are local explanations, as they
are able to explain the classification of each test subject. Results obtained following this process are
described in section 5.3.1. By analyzing the complete set of explanations produced in this work, the
global contribution (weight) of each feature was evaluated for the classification. Results for the global
analysis are described in section 5.3.2.

5.3.1 Local Explanations

To generate an explanation, the top five features with the highest contribution to the diagnostic were
selected. Figure 5.4 illustrates an explanation, containing the percentage attributed to each class (PD
and HC), the features with the highest contribution to the diagnostic, their corresponding weights (val-
ues ranging between [-1,1]), the subject’s average value on that feature, the range of normal values
for a healthy subject (extracted from the bibliography), and a short description of the feature. This
information provides a clearer insight of the model’s classification to the medical professional. The per-
centage attributed to each class allows to evaluate the degree of confidence of the model in the decision,
whereas the average value can be compared to the normal range of values to check for abnormal param-



5.3. EXPLAINABILITY 27

feature percentage of subjects contribution (weight)
PLP[0] 77.2 5.4
MFCC[0] 65.3 4.8
PLP[1] 55.4 3.9
MFCC[1] 44.6 4.7
MFCC[12] 38.6 5.0
PLP[5] 37.6 4.9
PLP[3] 26.7 3.1
MFCC[2] 20.8 5.8
MFCC[3] 17.8 2.7
Shimmer 16.8 4.6

Table 5.7: Top 10 more common features on explanations.

feature percentage of subjects contribution (weight)
MFCC[10] 5.9 7.6
∆MFCC[1] 5.0 6.8
MFCC[2] 20.8 5.8
PLP[0] 77.2 5.4
∆∆MFCC[0] 1.0 5.3
∆MFCC[7] 2.0 5.1
MFCC[12] 38.6 5.0
PLP[5] 37.6 4.9
MFCC[0] 65.3 4.8
MFCC[1] 44.6 4.7

Table 5.8: Top 10 features ordered by average contribution (weight) to explanations.

eters. Finally, the feature description links the mathematical definition of the features with its physical
manifestation, thus simplifying the interpretation of the results by the medical professional.

5.3.2 Global Feature Contribution

The top 10 features were sorted by their frequency on the complete set of explanations produced in this
work and by average contribution to the models’ classification, (tables 5.7 and 5.8).

PLP and MFCC are different mathematical representations of sound that simulate the way humans
perceive it. These two sets of features constitute the majority of the top features with highest contri-
bution to the largest number of test subjects (tables 5.7 and 5.8). Comparing the MFCCs and PLPs by
percentage of subjects, there are no significant differences between these features. On the other hand,
8 of the 10 features with highest contribution are MFCC parameters. In addition, shimmer is also on
the top features ordered by number of subjects for which they are the most relevant. Finally, jitter and
F0 produce significant contributions to few test subjects (11.9% jitter and 1% for F0). These features’
contributions are inferior to the ones shown on the table (2.9% for F0, and 2% for jitter). HNR was never
one of the top five features for any subject.

The global contribution (weight) for each feature can be observed in figure 5.5. The contribution
of two features with lowest weight is significantly smaller than the remaining. In addition, there is a
significant difference between the weight of the three features with highest contribution and the others,
which can be defined as a threshold to separate the features into two groups (relevant and irrelevant).

The best performing features are similar in both analysis, with a strong presence of MFCC and PLP
group of features. A significant difference can be observed between the 6th and the 7th top features
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(sorted by number of subjects), which can also be defined as the threshold to separate the features into
relevant and irrelevant groups.

Combining both analysis, the combined threshold can be defined as the top six features, meaning
that this should be the group of features that the medical professional should focus on.

5.4 Summary

Results achieved during the execution of the present work were presented and discussed in this chap-
ter. First, classification results from the multiple experiments are shown, followed by discussions on
model optimization and language independency. Additionally, explanation reports generated for the
test subjects were described. Finally, the global contribution of each acoustic feature to the diagnostic
was evaluated.
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Figure 5.5: Global contribution (weight) by feature.



30 CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.6: Percentage of subjects for which the feature was in the top five with highest contribution.



6Conclusions
This work addressed two issues of the PD diagnosis task: language independency and explainability.
Firstly, lack of training data for PD diagnostic creates a necessity for pre-trained models that can be re-
trained with a small dataset of speech from a new language and be able to diagnose patients speaking
the new language. Secondly, lack of ability to understand black-box models’ diagnosis is a barrier to
real-world usage of such models, which can be solved using explainability models.

6.1 Conclusions

In the first part of this work, we evaluated the performance of a new language-independent model for
the PD diagnosis task. Baseline results (training and testing the model with speech from subjects speak-
ing the same language) achieved a maximum accuracy of 90% with the two MLP architectures tested.
These architectures differ in the number of layers and number of nodes per layer. An intermediate
step was taken between the baseline and a language-independent model, in which models were trained
with one dataset and with 90% of another dataset (with different language speakers) and tested with
the remaining 10% of the second dataset. Both architectures yielded a maximum accuracy of 90% in
the intermediate setting, without loosing performance compared to the baseline. This demonstrated the
capacity of these models to be applied to a different language with a smaller amount of training data
when pre-trained with a different language. This characteristic can be useful as the size of the available
datasets limits the quality of the training. Although results of the present work were very promising, the
percentage of the new language dataset used for training (90%) is still high. Reducing the amount of data
to re-train a model is worth investigating in the future. When training a language-independent model
(trained with two datasets and tested with a different one, from a new language), accuracy dropped
to two thirds for both architectures. Results were inferior to the state-of-the-art regarding the accuracy
metric, as a similar work achieved an accuracy of 77% with a language-independent model (Orozco-
Arroyave et al., 2016). Our model with highest accuracy yielded a maximum value of 76% on the recall
metric, significantly higher than the 53% achieved by the work of Orozco-Arroyave, et al. (2016). There-
fore, the present work produces less false negatives (PD subjects classified as HC), thus being a more
robust tool to support the medical activity.

In the second part of the work, the LIME model was used to generate an explanation for each di-
agnostic. This step allowed to explain the classification results in a way understandable by medical
professionals, thus providing trust in the model. This explanation can foster the adoption of computa-
tional diagnostic models to be used in clinical scenarios, as these models often produce more accurate
diagnostics than medical professionals. The LIME explanation report indicated the probability of each
subject belonging to one of the classes (PD and HC), as well as the top five acoustic features which con-
tribute the most to the model’s classification. For each feature, the contribution weight and the subject’s
average value were also included, together with the range of values of a healthy patient and a small
description of the feature. This report largely extends the information produced by the classification
model, which only indicates the final diagnostic, thus providing the medical professional with informa-
tion that allows to make an informed diagnostic. Finally, a global analysis was conducted to evaluate the
average contribution of each acoustic feature extracted and the percentage of test subjects for which each
feature was one of the top five with the highest contribution. Combining both results, we concluded that
MFCC and PLP features represent better information for the PD diagnostic task than F0, jitter, shimmer,
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and HNR. Note that both MFCC and PLP are abstract mathematical representations of sound, and are
therefore difficult to explain to a medical professional. Additionally, to the best of our knowledge, there
is no known range of values for both MFCC and PLP parameters that defines a healthy patient, which
prevents our model to generate a complete report on these features.

6.2 Future Work

First, the current pipeline presents some limitations that should be addressed. As previously described,
there are complexity limitations associated with abstract features, such as PLPs and MFCCs. Using
simpler features, such as Logarithmic Filter Banks (McGee & Zhang, 1990) (instead of MFCC), would
increase the clarity, and therefore the trustworthiness/reliability of the model’s diagnostic. In addition,
graphical representations of the physical manifestation of each feature can be added to the explanation.
The normal values for some features, such as F0, depend on meta features (the normal values for F0 for
males is range between 105 and 160 Hz and between 175 to 245 Hz for females). Thus, adding the gender
as a feature for the model could help improve the model’s performance.

Both the classification and the explanation pipeline’s steps can be further improved. First, the simi-
larity between the average contribution (weight) of all features on the explanation model suggests some
correlation between features. This hypothesis can be further studied, using a model to evaluate the
interactions between features, such as factorization machines (Rendle, 2010). Detecting redundant fea-
tures could help reduce the model’s complexity, thus reducing resource requirements. Also, the results
achieved on the semi language-independent experiments showed performance was not affected when
training a model with two languages. Further analysis on the impact of varying the training percentage
of the test language would shed light into the relation between data quantity used to re-train a model
and the possible performance loss. Finally, both for the classification and the explanation steps, different
models can be used to make a comparative analysis. This would allow to both assess the classification
ability of multiple models, and to compare the explanations generated by various models and the trust
provided to the medical professionals.

The goal of generating explanations is to provide the medical professionals with a tool that can
shed light into the black-box classification models. Thus, these models should be tested in real-world
scenarios, to rate their adequacy to perform this task. During the real-world evaluation, a comparative
analysis could be conducted between explainability models, in order to assess which ones provide more
trust to the end-users of the product (the medical professionals). This can be done by generating expla-
nations for the same user using different explainability models and assessing the degree of confidence
of the medical professional in each one of them. This evaluation could also lead to the conclusion that a
combination of both methods provides more information, which would provide a higher level of trust
by the medical professional on the classification models. Feature types (such as audio or images) should
also be compared, as to understand which are better accepted by medical professionals. For example,
the explanations generated by the model developed during this work could be compared with the ones
produced by the work described on section 3.3, in which LIME was used to explain PD diagnostic with
SPECT DaTSCAN images of the brain.
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Růika, E. (2013). Imprecise vowel articulation as a potential early marker of parkinson’s disease:
effect of speaking task. The Journal of the Acoustical Society of America, 2171-2181.

Shrikumar, A., Greenside, P., & Kundaje, A. (2017). Learning important features through propagating
activation differences. CoRR.

Sundararajan, M., Taly, A., & Yan, Q. (2017). Axiomatic attribution for deep networks. In Icml.
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Glossary

AD Alzheimer’s Disease. 1, 7

AI Artificial Intelligence. 1, 9

ARD Automatic Relevance Determination. 5, 6

BC Boosting Classifier. 6

CAV Concept Activation Vectors. 10

DDK Diadochokinesia. 4–6, 15, 16

DeepLIFT DeepLIFT. 12

DL Deep Learning. 9

DMLP Deep Multi-Layer Perceptrons. 7

DNN Deep Neural Networks. 7, 10, 11

DT Decision Trees. 6, 7

F0 Fundamental Frequency. ix, 3, 5–7, 17, 27, 31, 32

GMM-UBM Gaussian Mixture Model - Universal Background Model. 5–7

GNR Glottal-to-Noise Ratio. 3, 5

GPC Gaussian Process Classification. 5, 6

H&Y Hoehn and Yahr. 4

HC Healthy Controls. ix, 3, 5–7, 16, 18, 22, 23, 26, 31

HNR Harmonics-to-Noise Ratio. ix, 3, 5, 17, 27

IG Integrated Gradients. 10

KNN K-Nearest Neighbours. 6, 7

LIME Local Interpretable Model-agnostic Explanation. 9, 11

LR Logistic Regression. 6, 7

LRP Layer-wise Relevance Propagation. 9, 11

MDS Movement Disorder Society. 4

MFCC Mel-frequency cepstral coefficients. 6, 27, 31, 32

ML Machine Learning. 1, 4–7, 9, 10, 12

MLP Multi-Layer Perceptrons. 6, 7, 17, 18, 21, 31

NAM Neural Additive Models. 11

NHR Noise-to-Harmonics Ratio. 3, 5

NN Neural Networks. 5, 6, 10–12

PD Parkinson’s Disease. i, ix, 1, 3–7, 9, 12, 13, 15, 16, 18, 19, 21–24, 26, 31, 32

PLDA Probabilistic Linear Discriminant Analysis. 6

PLP Perceptual Linear Predictive. 17, 27, 31, 32
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Rasta-PLP Rasta-Perceptual Linear Predictive. 6

RF Random Forests. 5–7

RISE Randomized Input Sampling for Explanation. 10, 11

SVM Support Vector Machines. 5, 6

TDU Text-dependent Utterances. 4–6

UPDRS Unified Parkinson’s Disease Rating Scale. 4

VTI Voice Turbulence Index. 3, 5

XAI Explainable Artificial Intelligence. 1, 9
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