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Abstract

Neurons are spatially organized in columnar and laminar structures that measure hundreds of
micrometers and communicate between themselves on a millisecond timescale. Therefore, an fMRI
technique with increased spatial and temporal resolutions, such as line-scanning fMRI, is required for
the study of sub-millimeter structures of the brain and sub-second activity of cortical grey matter.
Because the BOLD response induced by neuronal activity only represents a small percentage of the
signal variance in fMRI, denoising the BOLD signal is a critical step in the processing pipeline of
task-based fMRI. Four healthy volunteers were scanned on a 7 Tesla MRI scanner while performing a
visual task. The sequence used included two slab-selective saturation pulses for outer volume
suppression. Subjects’ respiratory and cardiac fluctuations were simultaneously recorded using
external hardware. Thermal noise was removed using a weighted echo combination and an in-house
implementation of NORDIC PCA. The removal of other noise sources, such as physiological
fluctuations, was carried out by relying on the TE-dependence of fMRI signals, the results of an ICA
decomposition and the outcome of RETROICOR-based signal regression. Echo-combination, NORDIC
PCA and the regression of RETROICOR-based physiology regressors yielded significant reduction of
thermal noise and physiological fluctuations within line-scanning data. Overall, the denoising results
presented offer valuable insight into noise removal in line-scanning fMRI acquired at 7T, and NORDIC
PCA revealed the best potential for improving BOLD sensitivity.

Keywords: fMRI, line-scanning, noise removal, BOLD contrast, 7T
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Resumo

Neurónios estão organizados em estruturas colunares e laminares que medem centenas de
micrómetros e que comunicam entre si a uma escala temporal de milisegundos. Assim sendo, é
necessária uma técnica de ressonância magnética funcional com elevada resolução espacial e
temporal que possibilite o estudo de estruturas cerebrais sub-milimétricas e de atividade cortical
ultra-rápida, tal como line-scanning fMRI. O contraste dependente do nı́vel de oxigenação sanguı́nea
(BOLD) apenas representa uma pequena percentagem da variância do sinal de MRI funcional, pelo
que a remoção de ruı́do é essencial no processamento do sinal de fMRI. Quatro voluntários saudáveis
foram submetidos a uma sessão de fMRI adquirida a 7 Tesla e baseada numa tarefa visual. A
sequência utilizada incluiu dois pulsos de radiofrequência para a supressão do sinal fora da linha de
interesse. Os ciclos respiratórios e cardı́acos de cada voluntário foram adquiridos simultaneamente
através de hardware externo. A remoção de ruı́do térmico foi feita através da combinação ponderada
das várias aquisições de fMRI e usando uma implementação adaptada do algoritmo NORDIC PCA. A
extração de outras fontes de ruı́do, como variações do foro fisiológico, foi conseguida através do
estudo da relação entre os sinais de fMRI e os respetivos tempos de aquisição TE, da análise de
decomposições ICA e de regressões lineares usando diferentes modelos RETROICOR. Os resultados
aqui apresentados oferecem informação relevante sobre a remoção de ruı́do em dados de
line-scanning adquiridos a 7T, e a implementação de NORDIC PCA revelou o maior potencial para
melhorar a sensibilidade ao contraste BOLD.

Palavras-chave: imagem por ressonância magnética funcional, line-scanning, remoção de ruı́do,
contraste BOLD, 7T
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Chapter 1

Introduction

1.1 Motivation

Functional magnetic resonance imaging (fMRI) is a widely used tool in neuroscience to study evoked
responses in the brain. It has allowed for incredible advances in our understanding of human brain
function, in particular blood oxygenation level-dependent (BOLD) fMRI.

BOLD fMRI data is acquired with a temporal resolution of seconds and up to submillimeter spatial
resolution [1]. However, neurons are spatially organized in columnar and laminar structures (see Figure
1.1) that measure hundreds of micrometers [2] and communicate between themselves on a millisecond
timescale [3]. Thus, an fMRI technique with increased spatial and temporal resolutions is required for
the study of sub-millimeter structures of the brain and sub-second activity of cortical grey matter.

Figure 1.1: (Left) Illustration of cortical layers of the primary visual cortex V1. Adapted from [4]. (Right)
Schematic of cyto- and myeloarchitecture cortical layering. Adapted from [5].

The balance between high spatial and temporal resolutions presents as a challenge - very high spatial
resolution typically comes at the cost of low temporal resolution, resulting in slow sampling of the
hemodynamic response and subsequent prolonged scan times and loss of functional specificity [2].

Line-scanning fMRI at ultra-high magnetic field strengths (7T and above) is able to reach very high spatial
resolutions without compromising very high temporal resolutions. This is possible by sacrificing spatial
coverage of the brain volume. However, as shown by Kruger et al. in 2001 [6], the sensitivity of the
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fMRI signal to non-neuronal physiological contributions increases with higher field strengths. Therefore,
the ultra-high static magnetic field strength of 7T, the small voxel size (∼250µm) and the very short TR
(∼100ms) typically used in line-scanning fMRI, lead to appreciable contributions from both physiological
fluctuations and thermal noise.

The BOLD response induced by neuronal activity only represents a small percentage (2-3%) of the
variance of the fMRI signal [7]. Non-neuronal contributions to the BOLD fMRI signal within a voxel
include thermal noise inherent to the electrical circuits used for NMR signal reception, signal changes
due to head motion and physiological fluctuations (such as cardiac and respiratory noise), changes in
arterial CO2 concentration and vasomotion mechanisms. Hence, denoising the BOLD fMRI signal is a
critical step in the processing pipeline of task-based fMRI [8]. It is essential that established denoising
techniques, as well as new procedures, are adapted or implemented and applied to line-scanning fMRI
to take advantage of the great potential of this method.

1.2 Basic principles

1.2.1 Magnetic Resonance Imaging

Nuclear magnetic resonance (NMR) was simultaneously discovered by Felix Bloch and Edward
Purcell in 1947, and the Nobel Prize in Physics was shared by both in 1952. This non-invasive
technique allowed physicists to observe and measure the magnetic properties of nuclear particles, and
later provided the underlying physical principles for magnetic resonance imaging (MRI), which started
being used for medical applications in the 1970s.

MRI uses magnetic fields and radiofrequency pulses instead of the radiation used in X-ray imaging,
therefore avoiding exposure to the harmful effects of ionizing particles. This imaging technique relies on
the abundance of water molecules in the human body and on their magnetic properties, namely,
hydrogen protons within water molecules are usually targetted. The application of a very strong static
magnetic field (B0) causes the magnetic moments (”spins”) of hydrogen protons to align along the
direction of the magnetic field, providing a small, but measurable NMR signal that precesses around
the axis of B0 (see Figure 1.2).

Figure 1.2: Behaviour of a sample when placed inside a strong magnetic field: (Left) Initially, the nuclear
magnetic moments are randomly oriented. (Center) Once the sample is placed inside a strong magnetic
field, the nuclear magnetic moments gradually align either with the field or against it. (Right) The slightly
preferred alignment along the direction of the field results in a single magnetization vector M, represented
in blue. Adapted from [9].

Due to the way the scanner coils are arranged, changes in the net magnetization are only detected
in the plane orthogonal to the B0 axis (referred to as the transverse plane). An oscillatory magnetic
field B1, produced by radiofrequency coils, is briefly applied perpendicular to the static magnetic field
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B0 and causes the net magnetization to tip away from its initial alignment, onto the transverse plane
(excitation). The net magnetization does not persist indefinitely in the transverse plane and eventually
decays into its original state due to two relaxation processes that occur simultaneously - T1 and T(∗)

2

relaxation (Figure 1.3 illustrates the excitation and relaxation processes of the net magnetization vector).
Relaxation causes the net magnetization to vary with time and generate its own time-varying magnetic
fields. Consequently, time-varying currents are induced in a nearby receiver coil as a manifestation
of Faraday’s Law of Induction. The resulting oscillating signal decays under an exponential envelope,
commonly referred to as a free induction decay (FID) [9], as shown in Figure 1.3.

Figure 1.3: Schematic representation of the MRI (Left) excitation and (Center) relaxation phenomena in
a rotating reference frame. The brief application of a B1 pulse tips the magnetization onto the transverse
plane, which eventually returns to the initial state. (Right) Free induction decay.

Since its initial introduction in the clinical environment in the late 1970s, MRI has rapidly become a widely
accepted imaging modality to provide information regarding anatomical structures and, more recently,
biological function [10]. Other noninvasive techniques for the assessment of human brain function, such
as electroencephalography (EEG) and magnetoencephalography (MEG) also provide a measurement
of neuronal activity. However, these specific techniques are limited by sensitivity, localization and spatial
resolution issues [11]. Additional current methods of human functional brain imaging rely on indirect
measurements of neuronal activity, related to blood flow, oxygenation or metabolic activity. The most
common functional brain imaging technique is functional MRI.

1.2.2 The BOLD contrast

fMRI has offered unprecedented advances in our understanding of human brain function since the
early 1990s, when the BOLD principle was first described by Ogawa and colleagues [12]. This functional
imaging technique mostly relies on gradient recalled echo (GRE) sequences, due to their sensitivity to
variations in the T∗

2 decay time. The typical structure of an fMRI experiment is represented in Figure 1.4.

Figure 1.4: (Left) Canonical hemodynamic response function (HRF) reflecting the nature of the BOLD
signal. (Right) Schematic representation of a block-design fMRI paradigm. Adapted from [13].
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The BOLD effect is the basis for most fMRI studies done today to investigate the patterns of activation in
the working human brain [14]. Task-based fMRI experiments, particularly, are widely used to study the
functional activities and cognitive behaviours of the brain based on task-induced stimuli [15].

The BOLD contrast is not a direct measure of neuronal activity but rather results from the sensitivity of
the MR signal to local changes in perfusion and metabolism of brain tissue (see Figure 1.5).

Figure 1.5: Schematic diagram illustrating the hemodynamic variables that change during neuronal
activity. Adapted from [13].

Through neurovascular coupling mechanisms, a localized increase in neuronal activity causes
vasodilation and a consequent increase in cerebral blood flow (CBF) and cerebral blood volume (CBV),
as a response to the increased oxygen demand. However, the cerebral metabolic rate of oxygen
consumption (CMRO2) does not increase as drastically as the amount of oxygen being supplied. This
results in a reduction in the overall concentration of deoxyhemoglobin, which has paramagnetic
properties whereas oxyhemoglobin is diamagnetic. The presence of paramagnetic deoxyhemoglobin
molecules leads to local magnetic susceptibility gradients, causing a faster dephasing of excited spins
and ultimately shortening the T∗

2 value [16]. Therefore, neuronal activity inherently increases the value
of T∗

2 and, consequently, increases the BOLD signal. The signal intensity at each time point t can be
described as

S(t) = S0e
−t/T∗

2 (1.1)

where S0 denotes the initial magnetization after excitation.

1.2.3 Physiological noise fluctuations

The fMRI signal relies on signal changes that result from blood oxygenation or blood flow
fluctuations in the activated regions of the brain. However, pulsatility of blood flow within the brain,
respiration-induced changes in the magnetic field and motion artifacts (also due to respiration) may
cause substantial undesired perturbations of the fMRI signal [17].

Cardiac pulsatility generates inflow effects in and around blood vessels, making the added noise rather
localized in tissue regions close to large arteries and draining veins, such as the sagittal sinus or the
circle of Willis . Respiration effects are often more spatially dispersed, since they originate from thoracic
modulation of the magnetic field or from bulk head movements [17]. Additionally to the main components
related to the respiratory and cardiac cycles, the BOLD signal also inevitably contains physiological
fluctuations related to low frequency changes of respiration rate, cardiac rate and vasomotion, that
interact with each other and result in changes in arterial CO2, blood pressure and vascular tone [8].

The main cardiac-related components of the fMRI signal have frequencies of about 1 Hz, whereas
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respiration-related components typically fluctuate around 0.3 Hz [18]. Both of these frequency values are
relatively high when compared to standard evoked BOLD responses, where the hemodynamic process
acts as a low-pass filter with a cuttoff frequency below 0.25 Hz [8][19].

Figure 1.6 shows the model timecourses for both the cardiac and respiratory cycles, and the respective
frequency spectra. The described noise components have demonstrated to be comparable to the
signals of interest, thus degrading the sensitivity to neuronal activation detection and compromising the
statistical significance of event-related analysis. Because of its significant negative impact on fMRI
data, several methods have been developed for physiological noise removal.

Figure 1.6: (Left) Model timecourses for the cardiac cycle in red (∼1 Hz) and the respiratory cycle in
blue (∼0.3 Hz). (Right) Power spectrum of the respiratory cycle - highlighted in blue - and cardiac cycle
- highlighted in red. Adapted from [17].

1.3 State-of-the-Art

1.3.1 Ultra-high field MRI

The increase in strength of the static magnetic field (B0) has had a huge impact in the field of MRI.
Initial experiments were performed at field strengths of 1.5 Tesla, which were eventually followed by high
field strengths of 3-4 Tesla and ultra-high field strengths of 7 Tesla and beyond [2].

Figure 1.7: Temporal signal-to-noise ratio (tSNR) for three different field strengths as a function of
voxel volume for T∗

2-weighted imaging. Ultra-high field strenghts (7T) show improved sensitivity overall,
and particularly for smaller voxel volumes, thus making it ideal for exploring brain structures at the
mesoscopic scale. Adapted from [20].
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Ultra-high field MRI provides several advantages for neuroscience, as well as some challenges. The
increased field strengths result in an increase in the available magnetization, and ultimately improve
the signal-to-noise ratio (SNR). Ultra-high field strengths are being successfully used in conventional
spatial resolution functional imaging (>1mm), allowing the exploration of brain function and macroscopic
organization at an unprecedented level of detail [21].

Ultra-high field MRI is additionally used to characterize a new organization level of the human brain at
the mesoscopic scale, by delineating laminar and columnar cortical structures, which typically require
voxel sizes below 1 mm. Very high spatial resolutions (<1 mm) usually come at the cost of low temporal
resolution, resulting in a slow sampling rate of the hemodynamic brain response and subsequent loss of
functional specificity. Additionally, a slow acquisition of the MRI signal results in prolonged scan times,
which is not only unpleasant for the subjects but also increases the chances of artifacts due to motion.
For these high spatial resolutions, SNR and sensitivity remain a challenge. However, these can be
improved with the use of surface coils [22], at the expense of reduced spatial coverage.

1.3.2 Line-scanning fMRI

As introduced in Section 1.3.1, the increased availability of ultra-high field human MRI scanners and
the development of new fMRI acquisition techniques have made it possible to achieve sub-millimeter
spatial resolutions and, therefore, allow the non-invasive assessment of laminar structures that are
essential for functional processing in humans [23].

Human cortical thickness varies between 1 and 4.5mm, averaging at approximately 2.5mm overall [24].
Thus, to resolve brain activation at a laminar scale, the sub-millimeter spatial resolution provided by
ultra-high field strengths is of paramount importance.

Additionally, a very high temporal resolution is necessary to accurately locate microvessel responses
and characterize the distribution of blood flow across the cortical depth [25]. Different methods have
been developed to achieve higher temporal resolutions, such as undersampling techniques and parallel
imaging. However, to reach a combination of very high temporal and spatial resolutions, specific
strategies need to be adopted.

One promising technique that achieves the required spatial and temporal resolutions for laminar studies
is line-scanning fMRI. This method sacrifices volume coverage and resolution across the cortical surface,
however, it has the potential to achieve very high spatial and temporal resolutions (200 µm and 100 ms,
respectively) using ultra high-field 7T fMRI [26].

Figure 1.8: Schematic representation of a line-scanning fMRI acquisition. Outer volume suppression
(OVS) is achieved through the placement of saturation slabs outside the line of interest to suppress
unwanted signal.
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Line-scanning fMRI, as the name suggests, consists of acquiring only one line of fMRI data. Two
saturation pulses are positioned outside the relevant cortical area to suppress the MRI signal, the
phase-encoding gradient in the direction perpendicular to the line is turned off [1] and the signal is
acquired into a single line profile across the cortical depth (see Figure 1.8). The slice selection step
during the radiofrequency excitation, combined with the application of saturation pulses, ensure that the
signal is predominantly coming from the relevant cortical area [27].

Line-scanning fMRI capitalizes on high resolution spatial and temporal information of BOLD responses
across cortical depth. Isolating and characterizing microvessel spatiotemporal behaviour clarifies
microvascular function in health and disease, and provides important insights on laminar information
flow and microvascular pathophysiological mechanisms of certain brain disorders [25].

Moreover, characterizing the microvascular hemodynamics through line-scanning could potentially help
neuroscientists understand neurovascular coupling and how capillary blood flow and oxygen distribute
across cortical layers to meet the local metabolic demand [1]. This knowledge will help neuroscientists
but will also translate to clinical neuroscience, since the cortical processing unit and its columnar and
laminar components may be altered in a wide range of clinical conditions [2].

1.3.3 Strategies for denoising fMRI data

To benefit from the increased BOLD contrast at higher field strengths, thermal noise should be larger
in magnitude than non-neuronal physiological fluctuations, which can be achieved by reducing the voxel
size. However, the increased spatial resolution turns the fMRI time series more sensitive to physiology
and motion-related fluctuations [8].

As described in Section 1.2.2, the BOLD signal is an indirect measure of neuronal activity that arises
from a complex mixture of neuronal, metabolic and vascular processes. This signal is significantly
corrupted by non-neuronal fluctuations of instrumental, physiological or subject-specific origin.
Techniques targetting the identification and removal of these confounds include data-driven
approaches and methods that require external recordings. Some commonly used methods will be
described in this section and are summarized in Figure 1.9.

Figure 1.9: Summary of the fMRI denoising methods established for 2D and 3D data covered in this
work.
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Notch filter

Most current MR scanners include equipment for physiological monitoring of respiration and cardiac
pulse. Typically, respiration is measured through a pneumatic belt placed around the subject’s abdomen,
whereas the cardiac pulse is measured by placing a pulse oxymeter or a photoplethysmograph (PPG) in
the pad of a finger. Specific peaks of the frequency spectra of these external recordings correspond to
the fundamental frequencies of the cardiac and respiratory fluctuations, and therefore, notch filters can
be implemented at these frequencies to remove the physiological fluctuations from the acquired fMRI
signal.

However, notch filtering will also remove any BOLD fluctuations of interest that may exist at those
frequencies. Due to this disadvantage, multiple modelling approaches have been developed to
retrospectively reduce the effects of the cardiac cycle and respiratory fluctuations.

RETROICOR and RETROKCOR

The most common of the modelling approaches proposed is RETROICOR, which assumes that the fMRI
time series in a voxel is corrupted by quasi-periodic additive noise related to the cardiac and respiratory
cycles. RETROICOR uses external recordings of the cardiac and respiratory states monitored during the
scan and models these physiological fluctuations as low-order Fourier series with time-varying cardiac
and respiratory phases, as shown in Equation 1.2.

yδ(t) =

M∑
m=1

acmcos(mφc(t)) + bcmsin(mφc(t)) + armcos(mφr(t)) + brmsin(mφr(t)) (1.2)

where yδ(t) is the physiological noise component of the mathematical model of the data, the superscripts
on the coefficients a and b refer to the cardiac or respiratory function and φc(t) and φr(t) are the phases
of the respective cardiac and respiratory cycles [17]. The physiological noise models obtained for both
cycles are then fit to the data as nuisance regressors in a general linear model (GLM) analysis [8].

Thus, the fMRI data can be corrected by subtracting yδ(t) from the acquired signal y(t) (see Figure
1.10).

Figure 1.10: (Left) Time series without (top) and with (bottom) RETROICOR correction. (Right)
Frequency spectra of time series without correction (top) and with respiratory and cardiac corrections
(bottom). In this example, the cardiac and respiratory spectra are resolved with peaks near 0.8 and 0.15
Hz, respectively. Adapted from [17].
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Previously to RETROICOR, a method later referred to as RETROKCOR was proposed by Hu et al.
in 1995 [28], which fits a set of Fourier terms defined from physiological recordings directly to the k-
space, whereas RETROICOR operates in the image space by fitting and reducing the physiological noise
in each voxel time series independently. Therefore, RETROICOR overcomes some of the drawbacks
of RETROKCOR, since it avoids the calculations in the magnitude and phase k-space data for each
individual channel.

Global Signal Regression (GSR)

One of the most straightforward denoising methods is global signal regression (GSR) and it is based on
the assumption that any process that is detected across the entire brain cannot be linked to neuronal
activity. The average fMRI signal across all the voxels in the brain is computed and removed from the
data, as it represents all the processes that confound the BOLD signal [8].

CSF and White Matter regressors

Similarly, nuisance regressors that explain non-neuronal activity can be generated from the averaged
signal of white matter (WM) and ventricular cerebrospinal fluid (CSF) voxels, which are usually identified
through segmentation algorithms as illustrated in Figure 1.11. It is generally thought that fluctuations of
neuronal origin are not significantly present in these tissues, but rather only physiological and hardware
noise, which contaminates grey matter (GM) as well [29]. Using the signals from these tissues as
nuisance regressors has become fairly common in both resting state and task-based fMRI, however,
some consider erroneous to overlook white matter fMRI activation strictly as a confound component
[30].

Figure 1.11: An example of brain tissue segmentation by FSL’s automated segmentation toolbox (FAST)
- probability maps of GM, WM and CSF. Adapted from [31].

Alternatively to averaging isolated signals, several principal component analysis (PCA) based
methods have been developed for denoising the fMRI signal.

CompCor

CompCor is a widely-used noise modelling method based on a PCA decomposition of voxels where no
BOLD fMRI signals of neuronal origin are expected. This approach defines multiple nuisance regressors
from the principal components of WM and CSF voxels, instead of using the average signal of those
tissues and without requiring external monitoring of physiological fluctuations [32]. PCA decomposition
is also commonly used to generate nuisance regressors from the PCs of voxels located on the outer
edges of the brain to account for motion-related and respiration-induced signal fluctuations.

GLMdenoise

Additionally, Kay and colleagues have developed GLMdenoise, an automated technique for denoising
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task-based fMRI [33]. This approach identifies task-unrelated voxels from an initial model fit and uses
them in a PCA decomposition to derive noise regressors, that can then be used in a GLM analysis of
the data. GLMdenoise does not require any external physiological monitoring, thus it can be applied
retrospectively to any existing dataset.

Figure 1.12: Schematic representation of GLMdenoise - inputs and outputs. GLMdenoise takes as
input a design matrix indicating the experimental design and an fMRI dataset consisting of multiple runs,
and returns as output an estimate of the hemodynamic response function (HRF) and BOLD response
amplitudes (beta weights). Adapted from [33].

NOise Reduction with DIstribution Corrected (NORDIC) PCA

An alternative PCA-based denoising technique is the recently proposed NOise Reduction with
DIstribution Corrected (NORDIC) PCA framework, that relies on a singular value decomposition (SVD)
to ultimately improve the SNR, without compromising any information [34]. Using locally low-rank (LLR)
PCA, NORDIC ensures the elimination of independent, identically distributed, zero-mean Gaussian
entries, thus removing components that cannot be distinguished from Gaussian thermal noise. A
flowchart illustrating this method is included in Figure 1.13.

Figure 1.13: Flowchart of the NORDIC algorithm. In this example from Moeller et al. (2021), NORDIC
PCA is applied to diffusion-weigthed MRI data obtained from an accelerated parallel imaging acquisition.
Adapted from [34].

In the original application of NORDIC PCA to fMRI data (described in [35]), the authors acquired 2D slice
selective fMRI data accelerated through parallel imaging. Due to the undersampling pattern intrinsic to
parallel imaging, the noise within the data undergoes a spatially varying amplification characterized by
the geometry-factor (g-factor). From the g-factor maps obtained, the complex fMRI data is normalized,
ensuring zero-mean spatially identical noise. For LLR processing, a fixed patch of g-factor corrected
complex fMRI data (Y ) is extracted for each volume. In essence, the denoising problem consists of
recovering matrix X, based on the model

Y = X +N (1.3)

where N is additive Gaussian noise.
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The noisy data Y is subjected to a singular value decomposition determined as Y = USV H (see
Figure 1.14), where U and V are unitary matrices and S is a diagonal matrix containing the ordered
singular values. Any singular value below a predetermined threshold λthres(t) is replaced with zero
(hard thresholding), while the other singular values are unaffected. This threshold can be selected
either empirically - based on which components exhibit relevant spatio-temporal features, - or it can be
selected according to the largest singular value of the noise matrix N [34]. Using the new diagonal
matrix Sthresh, the low-rank estimate of Y , X, is given as YL = USthreshV

H .

Figure 1.14: Schematic representation of a singular value decomposition.

ICA-based denoising

Other methods for denoising fMRI are based on independent component analyses (ICA), which can
be performed in FSL’s MELODIC [36], for example. The success of these methods relies on accurately
labelling independent components (IC) that can be related to neuronal mechanisms or to noise sources.
This classification can be manual, semi-automated or automated. Manual classification is the gold
standard, but it is time consuming nonetheless, lacks in reproducibility and requires expertise [37]. Due
to this, automated and semi-automated classification algorithms that label the components based on
their temporal and spatial features have emerged.

Figure 1.15: Schematic illustration of spatial ICA of fMRI data. Adapted from [38].

Multi-echo fMRI

In most fMRI protocols, the application of a radiofrequency excitation pulse is followed by the acquisition
of a single image at a certain optimal echo time (TE), which depends on various factors, such as field
strength, target tissue and target relaxation constant. Typically, TE is set as close as possible to the T∗

2

of grey matter, in order to maximize the sensitivity to BOLD fluctuations [8]. However, different voxels
have different T∗

2 values depending on tissue properties and changes in the local magnetic field [39] and
thus, T∗

2 varies considerably across the brain.
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To address the spatial variation of T∗
2, the sampling strategy can be modified to allow the acquisition

of multiple images in rapid succession at different predetermined TEs - multi-echo fMRI. By covering
a larger range of potential T∗

2 values, multi-echo fMRI improves BOLD contrast-to noise ratio (CNR).
However, the highest contrast for different brain regions will be spread over the different TE images [40].
Therefore, rather than being analyzed individually, multi-echo data can be combined into a single image.
For this purpose, different weighting strategies have been suggested based on global or local estimates
of T∗

2 (where T∗
2 values can be estimated from the data based on how signals scale across echoes) or

the measure of voxel-wise CNR [41]. Ultimately, the weighted combination of multiple echoes results in
significant artifact reduction and improves BOLD sensitivity and CNR [40].

Similarly to Equation 1.1, the signal intensity at each TE can be described as S(TE) = S0e
−TE/T∗

2 .
Therefore, data acquired with a very short TE1 has minimal T∗

2-weighting and high sensitivity to
fluctuations in S0, and can be used as a nuisance regressor for denoising the remaining echoes.

Figure 1.16: Combination of echo images from a multi-echo fMRI acquisition at 7T. The optimal echo
combination weights towards early TE signals in regions with shorter T∗

2 to counteract signal dropout
artifacts. Adapted from [39].

TE-dependence assessment

Additionally, studying the TE-dependence of a signal (i.e., how a signal evolves across the different
images of a multi-echo fMRI acquisition [39]) can be used to differentiate BOLD from non-BOLD signals,
allowing the latter to be removed without any conventional noise modelling [42].

As described in Section 1.2.2, the cerebrovascular hemodynamics of blood oxygenation modulate T∗
2

due to changes in concentration of deoxyhemoglobin, but, in practice, the BOLD response to neuronal
activation also affects blood flow and volume, thus changing the amount of available nuclear spins and,
consequently, modulating S0 as well [39]. However, BOLD-related changes modulate T∗

2 much more
substantially than S0, making S0 a reliable indicator of artifacts such as head motion, CSF fluctuations
and cerebrovascular pulsatility. Therefore, a signal time series with a high T∗

2 and low S0 contributions
is most likely to be related to changes in blood oxygenation, and thus functional brain activity, whereas
components with higher S0-weighting, independently of its correlation with a T∗

2 mono-exponential decay,
can be considered to be associated with artifacts (see Figure 1.17).

This principle can be applied not only to single-voxel time series across TEs, but also to averaged
region-of-interest (ROI) signals and independent components obtained through ICA decompositions.
By studying the TE-dependence or independence of fMRI signals, it is possible to distinguish neurally-
related activity from artifacts.
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Figure 1.17: TE-independence of non-BOLD versus TE-dependence of BOLD fMRI signal changes.
(Top) Computed difference in signal at different TEs due to (left) artifact-related changes in S0 and (right)
BOLD-related changes in R∗

2. (Bottom) Percent signal change at different TEs for (left) artifact-related
changes in S0 and (right) BOLD-related changes in R∗

2. Adapted from [42].

Phase-based methods

Although fMRI is initially acquired as complex-valued image pairs (see Figure 1.18), the denoising
techniques previously mentioned only use magnitude data. However, the phase signal contains
relevant biological information about magnetic susceptibility changes in and around vasculature in
response to neuronal activity and is useful for the identification of different tissue types [43]. Therefore,
considering both magnitude and phase changes improves the mapping of the BOLD response in terms
of sensitivity and spatial specificity.

Figure 1.18: (Left) Magnitude and (Right) phase images of a representative MRI acquisition.
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Large vessels can be several millimeters away from the primary site of neuronal activity [8], thus
hampering spatial localization of neuronal activation and negatively impacting high-resolution fMRI
studies [44]. Due to the sensitivity of the phase signal to blood flow - particularly within large vessels
[8], - phase data can be used to reduce the macrovascular weighting of the fMRI signal by relying on
phase regression [44]. With this method, large-vessel BOLD contamination is estimated from the phase
data, and is then subtracted from the magnitude data, reducing the macrovascular bias intrinsic to
BOLD fMRI without using any additional venous identification [45].

The steps included in an fMRI preprocessing pipeline and their relative order should be decided
according to the characteristics of each dataset. The optimal denoising pipeline for any given data will
depend on the MR acquisition parameters (type of sequence, voxel size, TR), subject-specific traits that
modulate the type of noise included in the data (head motion, respiration pattern, heart rate variability,
blood pressure), and the type of experiment (resting state or task-based fMRI, with a block or
event-related design) [8].

1.4 Goals and approach

This study focused on line-scanning fMRI data and its intrinsic BOLD and non-BOLD signal
fluctuations. The main goals of the presented work are:

1) To highlight the great potential of line-scanning fMRI for the future of neuroscience and clinical
applications - the fMRI technique is explained in detail as well as the data acquired, its advantages and
its current challenges.

2) To review the existing methods for denoising 2D and 3D fMRI data - understand their implementation,
advantages and drawbacks.

3) To assess the validity of the application of different denoising methods to line-scanning fMRI data
- some already well-established for 2D and 3D fMRI data and other more recent techniques - for the
identification of different signal sources and noise within the original data.

4) To evaluate the quality of the line-scanning fMRI data after denoising - the performance of the different
algorithms is qualitatively and quantitatively analyzed.

1.5 Thesis outline

This report is divided into four main chapters. In the present chapter, Chapter 1, the main concepts
behind the topic of this study are described, as well as the problem at hand and the approach adopted
to address it. Chapter 2 covers the materials and methods utilized during this study, including hardware
equipment, data acquisition techniques, computational frameworks for data analysis and noise removal
and the metrics used to evaluate said frameworks. In Chapter 3, the physiological and fMRI data
acquired are characterized in detail and the performances of the multiple noise removal algorithms
tested are compared. Lastly, Chapter 4 outlines the main contributions and limitations of this study,
followed by some suggestions to be implemented in future work.
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Chapter 2

Methods

2.1 Methods overview

The methodology used in all stages of this project is outlined in Figure 2.1 and described in greater
detail throughout the present chapter. Firstly, the acquisition protocol of fMRI and physiological data is
explained, covering the hardware and software tools required (see Section 2.2). This is then followed by
a description of the techniques selected for data analysis (see Section 2.3) - in particular, the frequency-
and time-domain characteristics of the acquired fMRI and physiological data are examined. At last, the
processing pipeline used for identifying non-BOLD fluctuations within the fMRI data is described and the
methods included are explained.

Figure 2.1: Flow diagram summarizing the protocol followed to acquire and process the line-scanning
fMRI data and the physiological recordings.
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2.2 Data acquisition

2.2.1 MRI data acquisition

Four healthy volunteers were scanned at the Spinoza Centre for Neuroimaging on a 7T Philips
Achieva MRI scanner, equipped with a 2-channel transmit and 32-channel receive head coil from Nova
Medical (see Figure 2.2). All participants were screened prior to the experiment in order to ensure MR
compatibility.

Figure 2.2: (Left) Nova Medical Head Coil 2TX/32RX. (Right) Philips Achieva 7T MRI scanner.

Line-scanning fMRI data was acquired using a modified 2D multi-echo gradient-echo (ME-GRE)
sequence, illustrated in Figure 2.3. Both respiratory and cardiac fluctuations were simultaneously
recorded using external hardware (see Section 2.2.4). Two slab-selective saturation radiofrequency
(RF) pulses, with a duration of 7.76 ms, were applied for outer volume suppression (OVS) before slice
excitation [1]. Fat suppression was applied before the saturation pulses using the Philips
implementation of spectral presaturation with inversion recovery (SPIR). Five echoes with an echo
spacing of ∆TE = 8ms (TEs = 6, 14, 22, 30, 38 ms) were acquired after slice excitation. The pre-pulses
(fat suppression and OVS) were repeated every TR and the phase-encoding gradient in the direction
perpendicular to the line of interest was turned off [25], resulting in the the projection of all the signal
into a single line profile.

Figure 2.3: (Left) Schematic representation of the multi-echo gradient-echo line-scanning sequence.
Two OVS pulses suppress the signal outside the area of interest and the remaining signal is projected
onto a line profile. Five echoes were acquired after excitation. (Right) Sampling pattern of k-space
characteristic to line-scanning - repeated acquisition of kFE=0 at every TR. Adapted from [1].
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The planning of each experiment included placing the slice and saturation slabs in such a way that
the resulting line was positioned within the visual cortex for detecting neuronal activation during visual
tasks. The line-scanning acquisition in each session was preceded by the acquisition of a structural
MRI slice with no saturation pulses, and B0 shimming was performed before each run to correct any
unwanted inhomogeneities of the static magnetic field B0, which can lead to erroneous voxel localization
and spectral broadening [46]. B0 shimming relies on the superposition principle by creating and adding
a corrective magnetic field to B0, in order to homogenize the original static magnetic field distribution.
Although hardware imperfections exist, the majority of the B0 field inhomogeneities found in vivo are
induced by the sample itself, i.e. the subject, due to the different magnetic susceptibilities of brain
tissues [46]. Figure 2.4 shows the placement of the shimming ”box” for one of the scanning sessions
and the frequency distribution of B0 before and after applying the correction.

Figure 2.4: (Left) Overview of the planning of the line-scanning fMRI acquisition: Sagittal view of the
placement of the saturation pulses and the acquired slice, represented in blue and orange, respectively.
The green rectangle represents the B0 shimming ”box”. (Right) B0 field distribution before and after
shimming.

The placement of the spatial saturation pulses ensures significant signal suppression outside the
targetted line of interest (see Figure 2.5), and the resulting line-scanning data is defined as the
projection of the signal from the entire slice with OVS slabs onto a line along the phase-encoding
direction. The line is positioned across the two hemispheres and orthogonally to the cortical surface to
minimize the presence of different tissues within the same voxel (partial volume effects) [26].

Figure 2.5: (Left) Acquired slice. (Center) Placement of OVS slabs to suppress signal from outside the
line of interest. (Right) Saturation effect of the OVS slabs on the acquired slice with phase-encoding
enabled. Adapted from [1].

17



For accurate physiological denoising, selecting an adequate TR is critical to correctly sample cardiac
and respiration fluctuations within the fMRI data. Based on the characteristic frequencies of first-order
respiration- and cardiac-related components (0.3 Hz and 1 Hz, respectively), the Nyquist principle
stipulates that the fMRI sampling rate should be greater than 0.6 Hz (TR<1.6 s) and 2 Hz (TR<0.5 s)
to prevent aliasing of the lowest order harmonics of the respiratory and cardiac cycles [8]. Therefore, a
repetition time of 105 ms was selected for this study.

Thus, the parameters for the multi-echo line-scanning functional acquisitions were the following: TR
= 105 ms, TE1 = 6 ms, echo spacing = 8 ms, flip angle = 16o, line spatial resolution = 250 µm, line
thickness = 2.5 mm, line length = 180 mm (i.e. 720 voxels), line width (gap between the two saturation
pulses) = 4 mm and 3200 time points (i.e. 336 seconds).

2.2.2 Task paradigm

One run of functional MRI data was acquired for each volunteer using a block design visual task
consisting of a 20Hz black and white flickering checkerboard presented for 10 seconds, followed by 10
second rest periods (see Figure 2.6). Each session started with one dummy scan, to ensure the system
was on a steady state before beginning acquisition, and included 16 task blocks, having a total duration
of 336 seconds (3200 time points). Subjects were asked to fixate in the center of the checkerboard
during the the ON condition to elicit strong BOLD responses in the primary visual cortex V1.

Figure 2.6: (Top) Visual task model - stimulus blocks for 10 seconds ON/OFF. (Bottom) Task description
- ON condition with a 20Hz flickering checkerboard; OFF condition with grey screen and white cross.

The visual stimulus was presented on a MRI compatible 32” LCD BOLD screen from Cambridge
Research Systems, placed behind the scanner bore. The participants were able to view the stimulus
screen via an angled mirror mounted inside the head coil.

2.2.3 MRI data reconstruction

The reconstruction of the MRI data was performed offline with in-house software previously
implemented using Matlab (Mathworks Inc.) and MRecon (Gyrotools). To combine the multi-channel
line-scanning data, a weighted sum of squares (SoS) was calculated according to Equation 2.1.

S(x) =

∑Nc

i wi(x) ∗ Si(x)√∑Nc

i |wi(x)|2
(2.1)

where S is the MRI signal and Nc is the total number of channels (in this case, 32 channels).
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The weight wi(x) for each channel was obtained using the tSNR per coil element, as well as coil
sensitivity maps (Figure 2.7) obtained for each of the four subjects [1].

Figure 2.7: Coil sensitivity maps acquired for the 32 channels of a representative subject.

For each echo time (TE), the reconstructed line-scanning fMRI data can be described as a 720-by-
3200 data matrix, in which each row represents the time series of the corresponding voxel. Because
the MR signal starts to decay immediately after excitation due to relaxation processes, the multi-echo
acquisitions show a gradual decrease in signal intensity throughout time as shown in Figure 2.8.

Figure 2.8: Line-scanning fMRI data - five multi-echo acquisitions for one run of a representative subject.

2.2.4 Physiological data acquisition

Simultaneously to the fMRI acquisition, the cardiac and respiratory fluctuations were monitored
using the scanner’s built-in PPG unit and respiratory belt, respectively. Both signals were acquired at a
sampling rate of 500 Hz.
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The respiratory belt was strapped around the subject’s upper abdomen to measure changes in chest
diameter, whereas the pulse-oximeter was placed on the right index finger to assess variations in global
blood oxygenation by measuring the absorption of infrared light transmitted through the tissue [8], as
illustrated in Figure 2.9. The waveforms acquired were used to determine the phase of the cardiac and
breathing cycles at each time point of the fMRI data.

Figure 2.9: (Left) Schematic representation of a finger-based PPG sensor. Changes in light absorption
are indicative of different phases of the cardiac cycle due to variations in blood volume and blood
oxygenation. (Right) Respiration belt transducer.

2.3 Data processing

2.3.1 Physiological data analysis

The external physiological recordings were obtained during the fMRI experiment with the purpose of
generating timecourse regressors from these signals, which could later be included in a GLM multiple
regression analysis (further described in Section 2.3.5) to quantify their impact on the BOLD signal.

To guarantee the quality of the acquired physiological recordings, their timecourses were examined, as
well as their frequency spectra, to ensure the presence of relevant time and frequency domain
characteristics. A digital low-pass filter with a cutoff frequency of fc = 5 Hz was first applied to both
signals to discard any unequivocal noise contributions that would be responsible for non-physiological
peaks. The cutoff frequency selected ensures that the first fundamental harmonics of the cardiac and
respiratory cycles are preserved.

2.3.2 fMRI data analysis

The analysis of functional MRI data and the application of multiple denoising approaches comprised
the bulk of this study. The data was processed using Matlab (version R2021a, Mathworks Inc.), the
Statistical Parametric Mapping software package (SPM12, https://www.fil.ion.ucl.ac.uk/spm/) and some
of the tools available in the FMRIB Software Library (FSL 6.0.4, https:/fsl.fmrib.ox.ac.uk/fsl).

Similarly to the analysis of physiological data, the time series and frequency content of the functional
data were inspected to understand how the visual activation task and the acquisition parameters
influenced the fMRI dataset. The five multi-echo acquisitions were analyzed separately.

Additionally, to isolate different brain tissues and study their responses to the visual activation task
individually, tissue segmentation was performed using in-house software previously written in Python.
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The averaged signals from GM, WM and CSF regions-of-interest (ROI) and their frequency distribution
were interpreted in light of the structural characteristics of each tissue.

Following a preliminary analysis of the acquired line-scanning fMRI data, several denoising strategies
were implemented and compared (as described in Sections 2.3.3 to 2.3.6). After the application of
each of these methods, the resulting data was compared to the SoS-combined line-scanning fMRI data,
which was used as a reference. Additionally, the evolution of relevant metrics were examined, such as
the tSNR (evaluated through Equation 2.2).

tSNR =
S(t)

σ(S(t))
(2.2)

where S(t) is the mean signal over all time points and σ(S(t)) is the standard deviation of the signal
across time [1].

2.3.3 Thermal noise removal

Improving the spatiotemporal resolution of fMRI measurements, such as in line-scanning fMRI,
ultimately compromises the signal-to-noise and functional contrast-to-noise ratios, which remain
relatively low in BOLD-fMRI despite many advances. In this study, the contribution of thermal noise is
particularly significant due to the small voxel size of 0.25x2.5x4 mm3 used.

Therefore, efforts to effectively improve the SNR, namely by removing thermal noise, are crucial for
taking advantage of the full potential of line-scanning as well as other high resolution fMRI techniques.

Weighted combination of Multi-Echo data

The five multi-echo acquisitions were combined offline using in-house code previously implemented in
Matlab. Based on the echo-combination modalities covered in Raimondo et al [47], the two strategies
that revealed the highest BOLD sensitivity were selected for this study: a simple and computationally
inexpensive SoS combination and a tSNR-weighted combination as proposed by Poser et al [40]. As its
name implies, the tSNR-weighted combination uses the temporal SNR measured at each TE to compute
the weighting coefficient for the corresponding echo signal. The equations used to merge the five signals
into a single data matrix in both methods are presented in Table 2.1.

SoS tSNR

√∑N=5
n=1 |S0|n

2

∑N=5
n=1 [|S0|n.w(tSNR)n]

where w(tSNR)n = tSNRn.TEn∑
(tSNRn).TEn

[40]

Table 2.1: Equations used in the covered echo-combination weighting strategies.

The echo-combination method yielding the highest tSNR was used as a reference for subsequent
analyses of the data acquired.

NOise reduction with DIstribution Corrected (NORDIC) PCA denoising

Additionally, a method based on the novel NOise Reduction with DIstribution Corrected (NORDIC) PCA
method was implemented using Matlab and was included in the reconstruction pipeline before the coil
and echo combination steps.
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As described in Section 1.3.3, the original method involves hard thresholding of a singular value
decomposition of the line-scanning fMRI data, in which all singular values below a selected threshold
are set to zero. The proposed threshold-estimation process relies on geometry-factor maps,
characteristic of parallel imaging studies. In this work, as an alternative to selecting a numerical
threshold, increasing percentages of the lowest singular values obtained were set to zero (as illustrated
in Figure 2.10) to remove components indistinguishable from zero-mean Gaussian-distributed noise,
such as thermal noise.

Figure 2.10: Schematic representation of a singular value decomposition submitted to hard thresholding.
The singular values set to zero eliminate the contributions of the corresponding left and right singular
vectors, resulting in a new data matrix, Ŷ .

Reconstruction with and without NORDIC-based denoising were compared in terms of tSNR, t-statistics
and percent signal change within an ROI of interest for 4 different thresholds - 20, 50, 70 and 90% of
the singular values obtained were set to zero. To validate the application of this denoising method to
line-scanning fMRI data, the coherence between these results and the conclusions from the original
NORDIC PCA publication [35] was assessed.

2.3.4 Differentiating BOLD and non-BOLD signals through TE-dependence

To characterize the evolution of different fMRI timecourses across echo-times, two well-defined
ROIs were considered - one containing voxels within the superior sagittal sinus (typically significantly
contaminated by cerebrovascular pulsatility, and thus with a high S0 contribution), and the other
including GM voxels with the highest relative activation for each subject (and consequently having a
high T∗

2 contribution).

The signal from each ROI was classified as BOLD-like or not BOLD-like by analyzing the degree to
which the fMRI timecourse at each TE fit a relevant regressor, to determine whether they were S0- or
T∗
2-weighted. The sagittal sinus ROI was compared to a subject-specific physiological regressor, while

the grey matter ROI was fit to the predicted BOLD response. Goodness-of-fit was quantified via the
adjusted-R2 metric.

By selecting these specific well-characterized regions, the accuracy of this method at categorizing other
line-scanning fMRI signals as BOLD or non-BOLD can be assessed. The evolution of the adjusted-R2

value (or an alternative goodness-of-fit metric of relevance) throughout echo-times for these specific
signals can be considered as the standard progression for both T∗

2-weighted and S0-weighted signals.
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2.3.5 GLM-based denoising

The General Linear Model (GLM) describes the recorded BOLD signal as a linear combination of
explanatory variables, also known as regressors (see Equation 2.3).

y(t) = βX(t) + ε(t) (2.3)

where y(t) is the fMRI time series, X(t) is the design matrix containing the explanatory variables of
interest as well as confounds, β is the vector of coefficients that quantify the relative contributions of
each component and ε(t) is a vector of random Gaussian-distributed noise.

Different regressors that could be deemed as confounds were defined in an attempt to accurately
represent the MR signal fluctuations unrelated to neuronal activation. GLM fitting was carried out using
Matlab and, after computing the β coefficients for each of the regressors added to the design matrix,
these components were removed from the original fMRI data. A regressor describing the visual task
was generated using the SPM software package with Matlab, based on the block design task convolved
with a canonical HRF (see Figure 2.11 (Top)). This regressor was included in every GLM analysis
along with confound regressors.

Figure 2.11: (Top) Task regressor representing the predicted BOLD response to a 10s ON/OFF flickering
checkerboard visual task. (Bottom) Frequency spectrum of the visual task regressor. A strong peak at
0.05 Hz is descriptive of this task, since the task block is repeated every 20 s.

Short TE1 signal as a nuisance regressor

The very first echo in all multi-echo fMRI experiments in this study was acquired 6 ms after slice
excitation. Due to the short echo-time, the contribution of BOLD-related fluctuations in the TE1 signal
was considered to be negligible. Thus, this signal was used as a voxel-wise regressor for fMRI data
acquired at a later TE to ensure higher BOLD sensitivity.
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Because more than two echoes were collected, a weighted combination of the five echoes was first
performed. GLM fitting was carried out considering the task regressor and a second regressor generated
from the averaged timecourses of all voxels within the brain for the first echo acquisition (see Figure
2.12). Prior to being included in the design matrix, the TE1 regressor of each session was re-scaled
using a standard min-max normalization.

Figure 2.12: TE1 regressor of a representative subject defined as the average of the timecourses of all
brain voxels.

After calculating the β coefficients, the TE1 regressor was subtracted from the echo-combination signal,
and the quality of the resulting data was assessed.

White matter and CSF regressors

Relying on the brain tissue segmentation described in Section 2.3.2, two regressors where generated
from the average timecourses of white matter and CSF voxels, which went through a min-max
normalization (see Figure 3.6). ROIs with a total of 90 and 30 voxels were considered for WM and CSF,
respectively.

Figure 2.13: Average WM and CSF regressors for an example subject after normalization.

The characteristics of the tissue-specific signals were examined and compared to known confounding
sources of the fMRI signal, such as the pulse oximetry recording from the PPG sensor.

The design matrix considered for the GLM analysis included both nuisance regressors described above
and the task regressor. The β coefficients computed were used to subtract the contributions of WM and
CSF from the combined-echo data and the result was analysed.
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RETROICOR physiology regressors

As opposed to the data-driven noise regression methods previously described, this section relied on a
model-based denoising approach using the PhysIO Toolbox. This toolbox offers a model-based
physiological noise correction alternative and is freely available as part of the open source TAPAS
software (Translational Algorithms for Psychiatry-Advancing Science 2021, version 5.1.2,
https://www.tnu.ethz.ch/en/software/tapas). Additionally, PhysIO features a full integration with SPM’s
Batch Editor Tool, offering a user-friendly and GUI-based experience for preprocessing and modeling
the physiological data [48].

The peripheral physiological recordings were imported into the Batch Editor module, preprocessed and
synchronized to its corresponding fMRI acquisition, considering the two different sampling rates. The
automatized preprocessing steps included peak detection, band-pass filtering, cardiac and respiratory
phase estimation, heart rate estimation and respiratory volume estimation [48].

RETROICOR is one of the noise modeling approaches integrated into the PhysIO toolbox, and the
orders for the cardiac and respiratory Fourier expansions are fully customizable within the Batch Editor
Tool (see Figure 2.14).

Figure 2.14: (Left) SPM software main menu. (Right) Batch Editor Tool in which the physiological
recordings are selected as well as the order of the Fourier expansions for the cardiac, respiration and
cardiacXrespiration interaction models.

Different models were generated including cardiac and respiratory regressors of multiple orders, as well
as multiplicative Fourier terms to account for interactions between the respiratory and cardiac cycles as
proposed by Harvey et al. [49] (described by Equation 2.4). All RETROICOR models will be referred
to using the notation ”xCyRzX”, i.e., xth order cardiac model, yth order respiratory model and zth order
interaction model.

ycXr(t) =

M∑
m=1

[am · cos(mφc(t)) · cos(mφr(t))]

+[bm · sin(mφc(t)) · cos(mφr(t))]

+[cm · cos(mφc(t)) · sin(mφr(t))]

+[dm · sin(mφc(t)) · sin(mφr(t))]

(2.4)

Similarly to other nuisance regression approaches, adding more physiological noise regressors to the
design matrix does not necessarily lead to improvements in BOLD sensitivity or statistical significance
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due to the loss in degrees of freedom and possible noise overfitting [48]. Hence, 8 different models
were generated in this study. The ”3C4R1X” model was considered the optimal RETROICOR model
for physiological noise extraction [49], and any models with higher order regressors were not included.
Figure 2.15 presents the design matrix of the ”3C4R1X” model.

Figure 2.15: Design matrix used in the GLM analysis including the ”3C4R1X” physiological confound
model (18 physiological regressors), the task-related regressor and baseline. A total of 20 regressors
were considered.

Each added order to the cardiac or respiration Fourier models generates two sinusoidal components -
a sine term and a cosine term, as described by Equation 1.2. The corresponding cardiac or respiration
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regressors result from the weighted sum of the two terms, using the respective GLM coefficients, as
illustrated in Figure 2.16.

Figure 2.16: First order respiration regressor for a representative session. The resulting regressor is
equivalent to a Fourier expansion with a sine term and a cosine term (shown in the two plots on top),
weighted by their respective coefficients. The two sinusoidal terms were generated using the PhysIO
toolbox.

The original fMRI time series was then fit to each of the generated models and the goodness-of-fit was
determined by calculating the adjusted-R2. A GLM analysis for the RETROICOR models assigned β

coefficients for each component of the design matrix, allowing for the physiological regressors to be
subtracted from the data according to their respective contribution.

2.3.6 ICA-based denoising

Lastly, an independent component analysis was performed using FSL’s MELODIC ICA tool. Due to
compatibility issues with line-scanning fMRI data, the command-line MELODIC was used instead of the
GUI. Unlike most FSL modules, the MELODIC GUI is not equivalent to the command-line function, since
the GUI-based implementation will call different preprocessing steps such as motion correction, spatial
smoothing and registration, whereas the command-line MELODIC only performs the ICA decomposition
and provides more control over its parameters. In particular, the arguments specified when calling
command-line MELODIC were the following:

- d , to specify the number of ICs to which the original data should be reduced to
- - nobet , to switch off the brain extraction tool
- - update mask , to disable mask updating
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The selection of an optimal number of independent components for an ICA decomposition of fMRI data
is not straightforward. In fact, there as been no consensus on the most pertinent method for choosing the
ideal number of ICs [50]. Due to the high dimensionality and high noise level of fMRI data, applying ICA
on the full spatial or temporal dimension is likely to overfit the data and degrade the ICA estimation [51].
Therefore, the number of informative independent components is often assumed to be much less than
the spatial or temporal dimension of the fMRI data. In this study, a total of 10 independent components
was defined (based on the results from [50]).

A typical ICA model assumes that the fMRI data can be modeled as a linear combination of independent
sources with an unknown linear mixing process [52]. The fMRI signal can be represented by a space-
time data matrix X (see Equation 2.5).

Xmxn = Amxm · Smxn (2.5)

where A is an unknown mixing matrix and S is a matrix of statistically independent source signals. The
goal of ICA is to estimate an unmixing matrix W such that Ŝ is a good approximation to the true sources
S (see Equation 2.6).

Ŝmxn = Wmxm ·Xmxn (2.6)

The mixing matrix A and the spatial activation maps of the estimated sources Ŝ were generated as
outputs of the MELODIC command.

Once the ICA was computed, the estimated components were distinguished between neuronal-related
and artifact-related using a manual classification approach. In general, manual classification of
independent components is time consuming and lacks in reproducibility, but the unique dimensions of
line-scanning fMRI data render the existing classification methods unreliable. Thus, the timecourses
and frequency spectra of the generated ICs were carefully inspected and compared to the features of
the task model and physiological regressors. The order in which the ICs were generated was taken into
account as well, since their respective eigenvalues are arranged in descending order, indicating the
amount of explained variance within each IC. Additionally, the TE-dependence of the resulting ICs was
analysed as described in Section 2.3.4.

The removal of ICA components within FSL is usually carried out using the fsl regfilt command.
However, also due to compatibility issues with line-scanning data, this method could not be applied.
Instead, a GLM analysis including all 10 ICs as explanatory variables was carried out in Matlab. Any
components classified as noise were multiplied to the β coefficients computed during GLM fitting and
subtracted from the original data matrix. The quality of the denoised line-scanning data was assessed
as previously described.
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Chapter 3

Results and discussion

The following chapter describes the main results obtained throughout this study. The quality of the
acquired physiological recordings was first assessed, to ensure the subsequent generation of accurate
physiological regressors. The line-scanning fMRI data was also inspected, and the features of the BOLD
signal for the multiple echoes and different brain tissues were evaluated.

After becoming acquainted with the fMRI data, the outcome of applying several denoising techniques is
presented. Firstly, the effects of thermal noise removal through: (1) weighted echo combination and (2)
the implementation of NORDIC PCA described in Section 2.3.3 are shown and discussed. The removal
of other noise sources, such as physiological fluctuations, is then also discussed by relying on the TE-
dependence of fMRI signals and examining the results of an ICA decomposition and GLM analyses with
different linear models.

3.1 Physiological data analysis

Figure 3.1 shows the pulse oximetry and respiration belt signals acquired during the scanning
session of one participant.

Figure 3.1: Representative examples of the (left) pulse oximetry and (right) respiratory amplitude
signals acquired in this study.

Both physiological signals present the expected behaviour for all subjects - the pulse oximetry waves
exhibit the characteristic R-peaks followed by T-waves and the respiratory amplitude signals present
maximum and minimum peaks corresponding to the ends of inspiration and expiration, respectively. The
filtered respiration signal in particular still shows considerable influence from noise.
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The frequency spectra of the physiological recordings show distinctive peaks at 1 Hz and 0.3 Hz, related
to the first harmonics of the cardiac and respiratory cycles, respectively (see Figure 3.2). Additionally,
the frequency distribution of the cardiac signal shows two additional peaks at ∼2 Hz and ∼3 Hz, likely
associated to higher order harmonic components of the signal. The PPG and respiratory belt recordings
were inspected for all four subjects, and were deemed as accurate representations of these physiology
cycles.

Figure 3.2: Filtered frequency spectra of the (left) cardiac and (right) respiratory trace for one
representative subject.

3.2 fMRI data analysis

Following the physiological data analysis, the multi-echo fMRI acquisitions were inspected. Figure
3.3 shows the line-scanning data matrices for the five echo times and the frequency spectra for three of
the acquisitions.

Figure 3.3: (Top) Line-scanning fMRI data for all five multi-echo acquisitions of a representative run.
(Bottom) Frequency spectra for the first, second and fifth echo time signals averaged over all voxels in
the line for a representative run. The red and green arrows point to the frequency peaks associated to
the cardiac cycle ∼1Hz component and the ∼0.05Hz visual task BOLD response, respectively.
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The reconstructed data matrices of the five multi-echo acquisitions are arranged in ascending order of
echo-times. As expected, the earliest echo time has the highest signal intensity since the MR signal was
only allowed to decay for a short amount of time (6ms). In contrast, the latter echoes show voxels in
which the signal has decayed completely (signal dropout artifacts), which is due to the short T∗

2 values
characteristic of brain regions with high magnetic susceptibility.

Additionally, the aforementioned figure shows the frequency spectra of the signals from three of the TE
acquisitions. The first echo revealed the most significant contributions of cardiac-related fluctuations (∼1
Hz) and thermal noise, evident by the uniform distribution of frequencies across the entire spectrum. As
expected, at TE1 = 6ms the signal has no significant BOLD-weighting, validating the use of short-echo
data for correcting motion and physiological noise. For the following echo times, the power density of
physiological frequencies gradually decreases, while the power density of the frequency associated to
the visual task response (∼0.05 Hz) increases for the second echo signal and then drops steadily for
the remaining acquisitions, while still maintaining relevance within the respective frequency spectra.

For further analysis of the line-scanning data, a tissue segmentation protocol was used to generate
masks of different brain regions - grey matter, white matter and CSF. The segmentation results for one
of the participants are shown in Figure 3.4.

Figure 3.4: Tissue probability maps of grey matter, white matter and CSF for one representative subject.
Segmentation was performed for the entire slice.

Relying on the segmentation results, the averaged signal of grey matter, white matter and CSF ROIs
were analyzed separately.

Figure 3.5: Frequency spectra of the averaged signal from (left) CSF, (center) white matter and (right)
grey matter voxels. The red and green arrows point to the frequency peaks associated to the cardiac
cycle ∼1 Hz component and the ∼0.05 Hz visual task BOLD response, respectively.

The CSF signal revealed a significant contribution from cardiac noise (associated to the 1 Hz frequency
peak in Figure 3.5). However, the spectral density of the cardiac-related fluctuations was comparable to
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that of the task BOLD-response, despite the lack of neuronal activation in this tissue. Although a single
voxel may contain several types of tissues, the finite spatial resolution of fMRI imposes
misclassifications under the assumption that each voxel contains a single and pure tissue type. This
phenomenon is referred to as partial volume effects (PVE) and occurs especially at tissue boundaries,
causing errors in tissue segmentation and tissue property quantification [53]. Therefore, considering
the frequency spectrum obtained for the averaged CSF signal, voxels with substantial T∗

2-weighting
were likely incorrectly classified as CSF during tissue segmentation, resulting in a prominent peak at
the visual task frequency. Moreover, the presence of thermal noise was the most pronounced in the
CSF signal, compared to the other tissue types.

The averaged WM signal showed a relevant presence of both cardiac- and BOLD-related fluctuations,
similarly to the CSF signal. Figure 3.6 compares the average WM and CSF time series to the external
PPG recording of one participant.

Figure 3.6: Average WM and CSF signals and PPG recording for a representative subject. The three
signals were normalized.

Relatively to the WM time series, the CSF-related signal shows the most resemblances to the PPG
recording, likely due to cerebrospinal fluid pulsation and proximity to major arteries and vessels [54].
The 1 Hz fluctuations are visibly present in both signals, however, other contributions other than simply
cardiac are evident as well, as reported in the literature [55].

The frequency spectrum for the grey matter ROI in Figure 3.5 reveals that the signal is significantly
contaminated by cardiac physiological noise, although less than the WM and CSF signals, as could be
expected according to the literature [54]. This spectrum contains a very pronounced peak at the visual
task frequency (0.05 Hz), which corresponds to the expected as well, due to the greater cerebral blood
flow and volume of grey matter when compared to white matter, which has an impact on the BOLD signal
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[56]. Additionally, the fMRI signal has been associated with post-synaptic potentials (mainly localized in
grey matter), which further corroborates the prominent spectral peak at the visual task frequency.

Figure 3.7 overlays the visual task regressor onto the timecourse of the grey matter ROI. The raw signal
time series for this ROI is represented in grey and, although it is relatively noisy, the moments in which
the visual stimulus was presented to the subject are apparent due to the robust activation elicited in grey
matter by the block design visual task implemented.

Figure 3.7: Visual task regressor fit for the average grey matter ROI signal.

In single-echo experiments, the fMRI signal is acquired at a predetermined TE optimized for BOLD
contrast, which is typically close to the average T∗

2 value of grey matter in a targeted region [8].
However, different voxels have different T∗

2 decay rates depending on tissue properties and local
magnetic field inhomogeneities. Relying on multi-echo fMRI, tissue properties can be parameterized
through T∗

2 relaxometry, in which the T∗
2 constant of each voxel can be estimated from the data based

on how the signal scales across echoes [39]. One such approach is fitting the signal across TEs to a
monoexponential decay S(TE) = S0 · e−TE/T

∗
2 . Figure 3.8 shows the T∗

2 relaxation curves for WM, GM
and CSF voxels, as well as the decay curve for the averaged signal of the brain voxels of a
representative participant. Moreover, a comparison between the average fMRI signal for all voxels
within the brain across TEs and the monoexponential T∗

2 fit for those same voxels are compared as
well.

Figure 3.8: (Left) T∗
2 relaxation curves for WM, GM, CSF and all brain voxels. (Right) Comparison

between the fMRI data across echo-times and the monoexponential T∗
2 fit for all brain voxels of a

representative subject.

Fitting the data to a monoexponential decay model resulted in the estimation of the T∗
2 measurements

presented in Table 3.1 for each tissue type. The values obtained were reasonably consistent with those
previously described in the literature for fMRI at 7T [57][58][59], although some differences were
expected due to distinct voxel sizes and ROI definition approaches. The estimated T∗

2 measurements
are lower than expected, which can be attributed to ”partial voluming” and to the relatively thicker slice,
since this leads to increased dephasing of spins within the slice and ultimately shortens the T∗

2.
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Although the estimated values are overall lower than expected, the shorter T∗
2 for white matter, followed

by the higher values for grey matter and, at last, CSF, are coherent with the literature.

Tissue Estimated T∗
2 (ms) Reference T∗

2 (ms)
White matter 19.2 (± 1.6) 26.8 (± 1.3)
Grey matter 22.7 (± 2.0) 33.2 (± 1.2)

CSF 37.5 (± 7.4) 168 (± 12)
Brain average 21.2 (± 1.5) -

Table 3.1: Average T∗
2 measurements estimated in this study for all participants and reference T∗

2

measurements from Haast (2018) [58] and references therein.

It can be concluded that T∗
2 relaxometry can be used in line-scanning fMRI data to relate signals to

their generative physical processes, providing important insight on the inner structure of tissues at a
submillimeter scale [60]. By individually fitting the signal of each voxel to the monoexponential curve,
tissue characteristics can be identified and artifactual contributions to the BOLD signal can be isolated
and later removed.

3.3 Thermal noise removal

In this section, thermal noise removal was carried out using the implementation of NORDIC PCA
described in Section 2.3.3 and two distinct combination strategies for multi-echo data. The respective
results of each method were analyzed.

3.3.1 Weighted combination of Multi-Echo data

Multi-echo fMRI experiments are heavily used for validating BOLD-related signal origins, not only
through relaxometry (as demonstrated in Section 3.2) but also through echo combination strategies to
compensate for signal dropout effects. Although it may require a slight increase in TR to account for
the acquisition of multiple echoes, ME-fMRI effectively improves sensitivity to BOLD signal, reduces the
effects of thermal noise and does not imply an increase in specific absorption rate (SAR) as there are
no additional excitation pulses [8]. The temporal SNR plots for each of the TE acquisitions are shown
in Figure 3.9, along with the combined dataset resulting from a tSNR-weighted echo combination based
on Poser et al [40].

Figure 3.9: (Left) Temporal SNR plots for the five multi-echo fMRI acquisitions of a representative
subject. (Center) Line-scanning data matrix after tSNR-weighted echo combination. (Right) Frequency
spectrum of the tSNR-weighted echo combination signal over all voxels. The green and red arrows
indicate relatively substantial peaks at the visual task and cardiac cycle frequencies, respectively.
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The tSNR values for each echo were used to calculate their corresponding weighting coefficients and,
as expected, gradually decrease along the five acquistions. Due to the contribution of the final echoes,
the overall signal intensity of the combined data decreased in comparison to the first TE acquisition.
However, the signal intensity of the combined data remained the highest for voxels in which relevant
neuronal activation was consistently present throughout echoes.

Figure 3.10 shows the data matrix obtained after a sum-of-squares (SoS) echo-combination, as well as
its respective frequency spectrum.

Figure 3.10: (Left) Line-scanning data matrix after SoS echo combination. (Right) Frequency spectrum
of the SoS-combined line-scanning data over all voxels. The green and red arrows indicate substantial
peaks at the visual task and cardiac cycle frequencies, respectively.

Overall, echo combination through SoS resulted in higher signal intensity for most participants. This
was expected due to the more significant weighting coefficient attributed to the first echo in the SoS
combination in comparison to the tSNR-weigthed coefficient, which is influenced by the 6ms TE1 (see
equations in Table 2.1). A fast Fourier transform (FFT) was computed for the tSNR-weighted and the
SoS-combined datasets, and the cardiac and task frequency peaks were evident in both spectra.

To determine which of the combination strategies should be used for the subsequent analyses of the
line-scanning fMRI data, the tSNR and t-values were analyzed for each of the combined datasets, as
shown in Figure 3.11.

Figure 3.11: (Left) Temporal SNR plots and (right) t-values distribution for SoS and tSNR-weighted
echo combinations for a representative subject. The arrows indicate an increase in the number of voxels
with higher t-values for the SoS echo-combination method.

The SoS echo combination displayed slightly higher tSNR relatively to the tSNR-weighted combination
in several of the voxels. Additionally, an increase in the number of voxels with higher t-values could be
observed for the SoS-combined dataset, indicating a more statistically relevant correlation between the
SoS-combined data and the predicted BOLD response.
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Table 3.2 compares the mean tSNR and t-value for the two methods within an ROI showing significant
activation (voxels with t-values above a selected threshold) for each of the four subjects.

Subject
SoS combination tSNR-weighted combination

Mean tSNR Mean t-value Mean tSNR Mean t-value

1 9.79 18.04 8.94 18.32

2 11.70 1.49 10.87 1.60

3 11.78 9.90 10.70 9.82

4 11.24 0.47 11.47 0.35

Table 3.2: Mean tSNR and t-statistics values within an ROI showing relevant activation for the four
participants.

For the majority of the subjects, the mean tSNR values were significantly greater for the SoS echo-
combination, while the mean absolute t-values were only slightly weakened. Based on these results, the
SoS echo-combination data was selected as the reference for all further denoising strategies applied.

3.3.2 NOise reduction with DIstribution Corrected (NORDIC) PCA denoising

After setting different percentages of the lowest singular values to zero, reconstruction of the line-
scanning data involved coil and echo combination steps, which resulted in the data matrices shown in
Figure 3.12. In this figure, the original data (on the left) can be compared to the denoised data after
the removal of 50% and 90% of the SVD components. The signal outside of the brain (i.e., the top and
bottom of the data matrices) was visibly reduced for both thresholds due to the removal of thermal noise.

Figure 3.12: Line-scanning fMRI data matrices for a representative subject: (Left) Original data.
(Center) Denoised data after the removal of 50% of the SVD components. (Right) Denoised data
after the removal of 90% of the SVD components.

Additionally, for each acquisition, a 10-voxel ROI was defined in a region showing considerable neuronal
activation. Figure 3.13 shows the tSNR and percent signal change (PSC) for the different thresholds for a
representative subject. Similarly to the results in the literature [35], tSNR values increased significantly
across all voxels after the removal of SVD components, particularly after setting 90% of the singular
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values to zero. Furthermore, the average of the percent signal change within the same ROI remained
roughly constant after the application of NORDIC PCA, as also described in the literature.

Figure 3.13: (Left) Temporal SNR comparison of the original line-scanning fMRI data and the NORDIC-
denoised data for the different thresholds. (Right) Single-run percent signal change averaged across all
voxels within the predetermined ROI for the different thresholds. The error bars represent the standard
error across all voxels in the ROI.

The distribution of t-values across the line of interest for the different thresholds and for all four subjects
was also analysed, as shown in Figure 3.14. Overall, more voxels with higher t-values were found for
all participants as more components were removed, indicating a more statistically relevant correlation
between the denoised data and the predicted BOLD response.

Figure 3.14: T-values distribution for all four participants. The arrows indicate an increase in the number
of voxels with higher t-values for the denoised data.

The timecourses averaged over the ROI for the original data and for the denoised data after the removal
of 50% and 90% of the singular values are plotted in Figure 3.15. The BOLD response to the visual task
was maintained in all time series despite the removal of SVD components, as endorsed by the presence
of 16 peaks within the timecourse, which correspond to the visual task blocks. Moreover, considering
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the decrease in variance as more components were removed, it can be concluded that a substantial
amount of thermal noise was eliminated from the fMRI signal.

Figure 3.15: Time series of the line-scanning fMRI data in a predetermined 10-voxel ROI for a
representative run. Three timecourses are shown - original data, denoised data after the removal of
50% of the singular values and denoised data after the removal of 90% of the singular values.

Although removing up to 90% of the SVD components may raise concerns about eliminating BOLD-
related fluctuations, it is worth noting that the elements of the diagonal singular value matrices obtained
in each decomposition were arranged in descending order, and the singular values removed were always
selected from lowest to greatest. Because only a small number of singular values in each matrix were
significantly greater than the others, a significant portion of the signal variance was still preserved when
using the 90% threshold.

3.4 Differentiating BOLD and non-BOLD signals

In this section, two ROIs were selected for each single-subject analysis - one containing voxels within
the superior sagittal sinus, and the other including grey matter voxels with the highest relative activation.
Figure 3.16 illustrates the degree of correlation between: (left) the sagittal sinus ROI signal and a subject-
specific physiological regressor (S0-weigthed) and (right) the GM ROI signal and the predicted BOLD
response (T∗

2-weighted). Goodness-of-fit was quantified across the five echo-times using the adjusted
R2 metric, particularly useful in this context as it penalizes the addition of unnecessary regressors to the
model, thus avoiding overfitting the data.

Figure 3.16: (Left) TE-independence of the sagittal sinus ROI signal changes. (Right) TE-dependence
of the grey matter ROI signal changes. As described in Kundu et al [39], the predicted evolution of the
goodness-of-fit for non-BOLD and BOLD-related fMRI signal changes is highlighted in red and green,
respectively, for comparison purposes.
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Across the five echoes, the fMRI signal within the sagittal sinus ROI followed the behaviour expected
for non-BOLD fluctuations. The adjusted R2 values quantifying the goodness-of-fit between the fMRI
data and the physiological regressor declined steadily throughout the five echo acquisitions, indicating
a worse fit across echoes due to the inevitable decay of the MR signal.

Contrastingly, the grey matter ROI signal showed an adjusted R2 evolution comparable to BOLD-related
fluctuations. For the first TE, the fMRI data revealed a low correlation to the predicted BOLD response,
followed by a drastic increment in the second echo acquisition, which is consistent with the effects
of neurovascular coupling mechanisms. The adjusted R2 values for the remaining echoes gradually
decreased also due to signal decay.

The evolution of the goodness-of-fit of line-scanning fMRI data to S0- and T∗
2-weigthed regressors across

echo-times was coherent with the results from Kundu et al [39], thus validating the use of this method for
classifying signal sources of both BOLD and non-BOLD nature within line-scanning datasets. Therefore,
this evaluation procedure can be applied to potential nuisance regressors prior to their removal, in order
to verify their relevance, or lack thereof, to the fMRI experiment.

3.5 Regression of non-BOLD fluctuations

In this section, the effects of eliminating different non-BOLD signal contributions from the original
echo-combined fMRI data were analyzed.

3.5.1 GLM-based denoising

Short TE1 signal as a nuisance regressor

The first echo acquisition of each session was averaged across voxels to obtain a time series that could
be used as a nuisance regressor in a GLM analysis. The resulting regressor for a representative
participant is plotted in Figure 3.17, along its frequency spectrum. It is worth noting that this regressor
was generated by only considering the voxels within the brain, which explains the less significant
presence of thermal noise in its frequency spectrum when compared to the complete first echo
acquisition spectrum, shown in Figure 3.3.

Figure 3.17: (Left) TE1 regressor - fMRI signal from the first TE acquisition averaged across all brain
voxels. (Right) Frequency spectrum of the TE1 regressor. The green and red arrows indicate peaks at
the visual task and cardiac cycle frequencies, respectively.

As it is not feasible to acquire data at TE = 0ms, it is possible that task-correlated blood volume effects
are responsible for signal variance within the TE1 data [61]. The frequency spectrum presented above
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confirms the contribution of task-related BOLD signal in the acquired short echo-time signal, which
can be attenuated (but not fully resolved) by further reducing TE1. Figure 3.18 presents a comparison
between the original line-scanning data and the resulting matrix after regressing the short TE signal.

Figure 3.18: (Left) Original fMRI data matrix. (Center) fMRI data matrix after regressing out the
average TE1 signal. (Right) Difference between the two previous matrices, depicting the effects of
such regression.

The difference between the original and corrected line-scanning fMRI data reveals that the signal
sources included in the TE1 regressor affected voxels across the entire line. However, in this particular
subject, the largest differences were registered in voxels within the left hemisphere of the brain.

Figure 3.19 includes the original fMRI time series as well as the corrected timecourse resulting from TE1
regression. The amplitude of the signal was not affected, as could be concluded from the data matrices
in Figure 3.18, while the signal variance decreased very slightly.

Figure 3.19: Comparison between the original and corrected fMRI time series, after TE1 regression.

Due to its characteristic acquisition time, regression of short TE data can potentially explain
appreciable variance and increase significance of neuronal activations when there are large amounts of
motion, thermal noise or physiology-related BOLD contamination [61]. To evaluate the effect of short
TE regression, the temporal SNR and t-values distribution of the original and corrected datasets are
compared in Figure 3.20.
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Figure 3.20: (Left) Temporal SNR plots and (right) t-values distribution for the original and corrected
fMRI datasets. The arrows indicate an increase in the number of voxels with slightly higher t-values for
the corrected data.

In general, short TE regression resulted in minor changes for both temporal SNR and t-values in
comparison to the features of the original data, and ultimately did not improve task-related BOLD
sensitivity.

White matter and CSF regressors

As described in Section 1.3.3, the fMRI time series from WM and CSF voxels are often used as nuisance
regressors. Despite the substantial visual task frequency peak in the WM spectrum shown in Figure 3.5,
the relative contribution of physiological fluctuations, namely the prominent 1Hz peak associated to the
first harmonic component of the cardiac cycle, could not be overlooked. Figure 3.21 compares the
original data to the corrected data after removing variance contributions from WM and CSF voxels.

Figure 3.21: (Left) Original fMRI data matrix. (Center) fMRI data matrix after WM and CSF signal
regression. (Right) Difference between the two previous matrices, depicting the effects of such
regression.

In this case, the signal intensity decreased substantially in voxels within the brain. Although literature
suggests that the fMRI signal from cerebrospinal fluid contains the greatest proportion of nuisance
variance out of the three brain tissues studied, including motion, thermal noise and some physiological
effects [62], voxels along the great longitudinal fissure (which separates the two brain hemispheres and
coincides with the superior sagittal sinus) reveal a much less significant signal difference. The very
small relative signal change in voxels within the sagittal sinus points to an unbalanced relationship
between the β coefficients attributed to the WM and CSF ROIs in the GLM analysis, thus indicating that
the WM regressor is likely describing more signal sources other than physiological fluctuations.
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In Figure 3.22, the time series of the original signal is compared to the result of WM and CSF regression.

Figure 3.22: Comparison between the original and corrected fMRI time series, after WM and CSF signal
regression.

Temporal SNR was reduced across the entire line and less voxels with higher t-values were obtained
for the resulting data, as shown in Figure 3.23. These outcomes can suggest that the ROI defined may
contain voxels with significant task-related BOLD signal (possibly even misclassified grey matter voxels).

Figure 3.23: (Left) Temporal SNR plots and (right) t-values distribution for the original and corrected
fMRI datasets. The red arrow indicates a higher number of voxels with higher t-values for the original
data, which was not the desired effect.

In addition, and as previously mentioned in Section 1.3.3, some consider outdated to use WM fMRI
activation as a nuisance regressor, as it contains relevant BOLD fluctuations [30]. To investigate further,
the same regression process was repeated, but only considering the CSF signal as a nuisance
regressor. Figure 3.24 shows the comparison between the original data and the corrected data.

Figure 3.24: (Left) Original fMRI data matrix. (Center) fMRI data matrix after regressing out the
average CSF signal. (Right) Difference between the two previous matrices, depicting the effects of
such regression.
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As expected, and as opposed to the regression of both WM and CSF signals, the signal difference is
the greatest in the voxels between the two hemispheres. However, CSF regression removed signal from
voxels across the entire line, including inside and outside the brain. These results may indicate the
removal of both thermal noise and physiological fluctuations, which is corroborated by the literature as it
considers the CSF signal to be a very complete tissue-based nuisance regressor [62].

Additionally, the time series of the original line-scanning data was compared to the data matrix resulting
from CSF signal regression (see Figure 3.25). The removal of the CSF contribution resulted in a
decrease of the signal variance, without affecting the signal amplitude, indicating that no BOLD
components relevant to the experiment were removed.

Figure 3.25: Comparison between the original and corrected fMRI time series, after CSF signal
regression.

The temporal SNR and distribution of t-values for the data resulting from CSF regression are compared
to the original data in Figure 3.26.

Figure 3.26: (Left) Temporal SNR plots and (right) t-values distribution for the original and corrected
fMRI datasets. The arrows indicate the increase in the number of voxels with higher t-values for the
corrected data.

Overall, the regression of CSF signal resulted in subtle changes for both temporal SNR and t-values
distribution. Nevertheless, the statistical relevance of the denoised fMRI signal was not significantly
improved nor degraded in comparison to the reference data, as occurred with the regression of both
WM and CSF signals.

RETROICOR physiology regressors

Using the external physiological recordings acquired simultaneously to the line-scanning fMRI data,
several multivariate linear regression models comprised of subject-specific physiology regressors were
computed. Based on the RETROICOR noise modelling approach [17], cardiac and respiration
regressors were generated, as well as multiplicative terms to account for the interaction between the
cardiac and respiration cycles. The fMRI signal of a relevant voxel was fit to each RETROICOR model,
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and the correlation between the two was quantified by calculating the adjusted R2, which only
increases if each regressor added explains more of the signal variance than what would be expected
by chance (i.e., if a random regressor were to be included in the model). Table 3.3 summarizes the
adjusted R2 values obtained for each model fit.

Order of Regressors
Adjusted-R2

Cardiac Respiration Interaction

0 0 0 0.5979

1 0 0 1.1380

0 1 0 0.7156

1 1 0 1.2600

1 1 1 1.3358

2 2 1 1.5113

3 3 1 1.7548

3 4 1 1.9165

4 4 1 1.9864

4 4 2 2.0291

Table 3.3: Adjusted R2 values for each RETROICOR model generated for a representative subject.

To better interpret the results from Table 3.3, the adjusted R2 values obtained for each model are plotted
in Figure 3.27 as a function of the number of regressors included in the design matrix.

Figure 3.27: (Left) Adjusted R2 evolution as a function of the number of physiology regressors included
in the RETROICOR model. The point represented in black corresponds to the 3C4R1X model, with
a total of 18 physiological regressors. (Right) RETROICOR 3C4R1X model fit to the time series of a
relevant voxel.

Although the adjusted R2 value increases for larger sets of explanatory variables (indicating an
improvement of the model fit), resolving additional variance by adding more physiological regressors
comes at the cost of losing degrees of freedom, and thus degrading the statistical significance of the
results. The adjusted R2 curve in Figure 3.27 eventually reached a plateau, suggesting the increases in
adjusted R2 were not worth the subsequent loss of degrees of freedom. The optimal model considered
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for this study was the winning RETROICOR model determined by Harvey et al [49], which included a
third order cardiac model (6 sine/cosine terms), a fourth order respiratory model (8 sine/cosine terms)
and a first order interaction model (4 sine/cosine terms) - ”3C4R1X”. The fMRI time series of a relevant
voxel was fit to the optimal model as shown in Figure 3.27.

After GLM fitting, the physiological contributions to the fMRI signal, weighted by their β coefficients,
were removed from the data. Figure 3.28 compares the original matrix to the data after the regression
of physiological noise

Figure 3.28: (Left) Original fMRI data matrix. (Center) fMRI data matrix after removing any signal
correlated to the physiological regressors generated in RETROICOR. (Right) Difference between the
two previous matrices, depicting the effects of such regression.

Interestingly, the BOLD signal changes are concentrated within the brain voxels and can be described
as vertical stripes that extend through several neighbouring voxels. The disposition of the signal
changes resembles a 2-dimensional sinusoidal wave, indicating an association to periodic physiological
fluctuations.

In Figure 3.29, the time series of the reference line-scanning data is compared to the signal resulting from
the described regression of physiological components. Similarly to TE1 and CSF regression, the signal
amplitude was unaffected by the removal of physiological contributions, whereas the signal variance
decreased slightly.

Figure 3.29: Comparison between the original and corrected fMRI time series, after removing the signal
contributions correlated to the physiological regressors generated in RETROICOR.
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Moreover, the temporal SNR and t-values distribution for the two datasets (original and corrected) are
compared in Figure 3.30.

Figure 3.30: (Left) Temporal SNR plots and (right) t-values distribution for the original and corrected
fMRI datasets. The arrows indicate an increase in the number of voxels with higher t-values for the
corrected data.

In general, the regression of RETROICOR-based physiological regressors did not elicit major changes
in terms of tSNR or t-values. However, both metrics suffered a marginal increase for some of the most
activated voxels within the brain.

3.5.2 ICA-based denoising

The ten ICA components generated in FSL MELODIC for a representative dataset are shown in this
section and were used as explanatory variables in a GLM analysis. Figure 3.31 presents the
statistically independent spatial maps, which indicate the voxels activated by the independent signal
sources identified within the original data. Additionally, a slice image acquired for the same participant
was included in the figure below to associate activated voxels within the spatial maps to specific
regions or tissues in the 2D image.

Figure 3.31: (Left) Spatial maps of the ten independent components generated by FSL MELODIC.
(Right) Slice image indicating the most relevant regions activated by the independent signal sources.
The red rectangles are associated to regions of non-BOLD fluctuations, whereas the green rectangles
indicate grey matter voxels with strong neuronal activation.
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The independent components generated through MELODIC are arranged in descending order of
amounts of explained variance. The spatial maps of two of the most descriptive components are shown
in Figures 3.32 and 3.33, overlayed on top of the slice image. Moreover, their respective time series
and frequency spectrum are included as well, to assist manual classification.

The first independent component revealed statistically significant activation in voxels located in the right
hemisphere of the brain. Its time series coincides with the behaviour of the blocked design visual task,
and the frequency spectrum includes considerable peaks at the predicted BOLD response frequency
(∼0.05 Hz). Thus, this component was classified as BOLD-related with reasonable certainty.

Figure 3.32: (Left) IC1 activation map over the slice image. (Right) Corresponding IC1 time series and
frequency spectrum.

For the fourth independent component, the activated voxels were located within the subarachnoid
space (a CSF-filled compartment which houses several major cerebral blood vessels) and the superior
sagittal sinus (the largest of the sagittal sinuses). Additionally, its time series presents discernible ∼1
Hz fluctuations, as corroborated by the corresponding frequency spectrum. The classification of this
component relies not only on the features of the time series and frequency spectrum, but also on the
characteristics of the anatomical structures in which there was significant activation. This component
was classified as artifact-related (non-BOLD) - in particular, it is associated with cardiac pulsatility
effects within CSF and large blood vessels.

Figure 3.33: (Left) IC4 activation map over the slice image. (Right) Corresponding IC4 time series and
frequency spectrum.

To analyze the TE-dependence of the contributions from these two independent components to the fMRI
signal, the original data was fit to each IC time series for the five echo times, as shown in Figure 3.34.
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Figure 3.34: (Left) TE-independence of IC4-related signal changes. (Right) TE-dependence of IC1-
related signal changes. The predicted evolution of the goodness-of-fit for non-BOLD and BOLD-related
fMRI signal changes, as seen in Kundu et al [39], is highlighted in red and green, respectively, for
comparison purposes.

As the IC4 time series is heavily S0-weighted, its correlation to the fMRI signal decreases throughout
echo times, as the magnetization decays. In the case of IC1, its time series is undoubtedly BOLD-
related, which makes it a heavily T∗

2-weigthed signal. Thus, the IC1 fit to the fMRI data across echoes
follows the adjusted R2 evolution characteristic of BOLD-related fluctuations, with the highest correlation
between the two signals at the second echo-time.

A GLM analysis included all independent components as explanatory variables. All non-BOLD
components (such as the time series associated to IC4), were subsequently removed from the original
data, weighted by their respective β coefficients. In Figure 3.35, the original data is compared to the
result of removing ICA components.

Figure 3.35: (Left) Original fMRI data matrix. (Center) fMRI data matrix after regressing out non-BOLD
related independent components. (Right) Difference between the two previous matrices, depicting the
effects of such regression.
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The BOLD signal changes are evident across the entire line and, once again, can be described as
vertical stripes throughout the data matrix, indicating a significant removal of periodic physiological noise,
particularly, cardiac fluctuations.

Figure 3.36 compares the original to the corrected time series, and reveals a more considerable
decrease in signal variance when compared to previously covered methods, without compromising any
signal intensity.

Figure 3.36: Comparison between the original and corrected fMRI time series, after regression of non-
BOLD related independent components.

The effects of this particular correction on temporal SNR and on the distribution of t-values were
evaluated in Figure 3.37.

Figure 3.37: (Left) Temporal SNR plots and (right) t-values distribution for the original and corrected
fMRI datasets. The arrows indicate an increase in the number of voxels with higher t-values for the
corrected data.

The temporal SNR was generally lower for all voxels within the line when compared to the original fMRI
data. However, there was an increment in the number of voxels with higher t-values.

In general, the effects of each method were coherent across subjects and suggest significant reduction
of thermal noise and physiological fluctuations within line-scanning fMRI data. Table 3.4 summarizes
the features of the data resulting from each noise correction strategy averaged for all four subjects, as
well as the standard errors associated to these measures.
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Mean tSNR Mean t-values

Reference
(SoS echo-combination)

11.13 ± 0.46 7.48 ± 4.11

NORDIC PCA 26.87 ± 1.46 8.78 ± 5.70

TE1 regression 10.60 ± 0.83 6.92 ± 3.49

WM+CSF regression 10.38 ± 0.70 6.88 ± 3.59

CSF regression 11.03 ± 0.52 7.37 ± 3.99

RETROICOR 11.21 ± 0.44 7.52 ± 4.18

ICA denoising 9.99 ± 0.71 7.23 ± 3.83

Table 3.4: Mean tSNR and t-values of a 10-voxel ROI averaged across all subjects for the denoising
methods covered. The cells with a green overlay highlight the denoising methods for which the mean
temporal SNR and t-values improved significantly.

The outcomes of applying the NORDIC PCA-based procedure and removing RETROICOR-based
physiological regressors were particularly positive across subjects and improved the data significantly.
The application of the remaining methods was less favorable.
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Chapter 4

Conclusion

The presented work aimed to assess the performance of several signal source identification and
denoising procedures (implemented for 2D and 3D fMRI) when applied to high-resolution line-scanning
fMRI data acquired at 7T. At first, the nature of physiological noise sources and its role in fMRI was
explored. A comprehensive review of the existing denoising strategies for fMRI data was carried out,
and several of the methods described were selected to be implemented and evaluated in this study.

Due to the novelty aspect of line-scanning fMRI, the acquired multi-echo data was thoroughly inspected
and the effects of applying each denoising procedure to the reference SoS-combined fMRI dataset were
characterized both qualitatively and quantitatively. At last, and considering the results obtained during
this project, the feasibility of implementing an optimized noise removal pipeline for high-resolution line-
scanning fMRI at 7T can be assessed.

4.1 Contributions and concluding remarks

The results obtained throughout this work offer valuable insight regarding noise removal in
line-scanning fMRI data acquired at 7T, and suggest optimistic perspectives for successful BOLD fMRI
cleanup.

Although some software packages had to be adapted to ensure compatibility with line-scanning data,
all the denoising techniques covered could be applied. The isolated cases of software incompatibilities
due to the unique dimensions of line-scanning data (e.g., FSL MELODIC), ultimately provide important
information about what tools require improvements.

Relying on the clear BOLD responses from the four subjects scanned, the efficacy of the hereby covered
noise removal methods could be assessed. The NORDIC PCA-based implementation provided the
largest increase in BOLD sensitivity and RETROICOR-based regression improved the quality of the fMRI
data as well. The results presented validate the application of both NORDIC PCA and RETROICOR-
based regression to line-scanning fMRI.

4.2 Limitations and future work

Some constraints and drawbacks have arised throughout this work, which could be addressed in
future studies.

Due to the limited number of participants scanned, this study lacks in statistical power. Thus, the
methods to be included in a general denoising pipeline for line-scanning fMRI data, as well as their
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relative order, could not be decided. Instead, an optimal denoising pipeline must be created according
to the characteristics of each dataset.

Prior to GLM fitting of the short-TE regressor, a frequency analysis of the TE1 signal showed
contributions from task-related BOLD fluctuations. To address this BOLD contamination, the short-TE
signal was included in the GLM analysis as a nuisance regressor along with the regressor of interest
(predicted BOLD response). Even so, short-TE1 regression revealed to be unsuccessful across all four
subjects. Therefore, TE1 should be selected as close to zero as possible, in order to minimize BOLD
contamination even further.

The less satisfactory performance of WM and CSF signal regression can be mainly attributed to
inaccurate tissue segmentation due to partial volume effects, which is validated by the prominent peaks
at the visual task frequency present in the spectra of these tissues (presented in Figure 3.5). The
implementation of more accurate tissue segmentation algorithms, in particular for line-scanning fMRI
data, is crucial for improving tissue-specific signal regression.

The NORDIC PCA-based implementation used in this study yielded a significant increase in BOLD
sensitivity. For future work, NORDIC-denoised data should be used as the reference for the application of
the remaining aforementioned denoising strategies, since thermal noise removal facilitates the detection
of physiological noise [8]. Additionally, in the interest of improving the results obtained even further,
a similar threshold-selecting approach to the one described in the literature can be applied [35][34].
Dynamic noise scans acquired during the fMRI scanning session could be utilized for estimating an
ideal numerical threshold, as all they encompass is the noise floor of the MRI scanner (see Figure 4.1).

Figure 4.1: (Left) Slice image for a representative subject. (Right) Noise scan for the same subject -
the radiofrequency pulses are turned off, which prevents not only slice excitation but also the placement
of the OVS pulses.

To address the software incompatibilities encountered, existing frameworks should be improved and
adapted to a wider range of dataset types and dimensionalities. Furthermore, new methods specific to
line-scanning fMRI data can be established.

One of the main limitations of this study is the small sample size, as mentioned above. Future work
should include a larger group of participants in order to confirm the results hereby obtained and to enable
the implementation of a general preprocessing pipeline with adequate denoising for line-scanning fMRI
data.
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