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Abstract

Amyotrophic Lateral Sclerosis is a neurodegenerative disease, characterized by progressive degeneration of

upper and lower motor neurons in a few years from onset. In this context, any significant improvement

of the patient’s life expectancy and quality is of major relevance. Several studies have been made to

address problems such as ALS diagnosis, and more recently, prognosis. In this context, the thesis targets

prognostic prediction in ALS using machine learning models based on Patient Profiles, i.e. groups of

patients with similar characteristics at diagnosis or similar disease progression patterns. Given the limited

knowledge about the disease, this thesis aims to analyse and compare different stratification techniques.

In this work, an analysis of the data by constructing patient similarity networks is initiated, by using

different feature sets, distance measures and thresholds. Moreover, various clustering algorithms and

ensemble techniques are analysed, to identify subgroups of patients to allow the design of more specific

treatments to deal with the disease.

Keywords: Amyotrophic Lateral Sclerosis, Patient Profiles, Patient Stratification, Patient Network,

Clustering, Ensemble Learning





Resumo

A Esclerose Lateral Amiotrófica é uma doença neurodegenerativa caracterizada por uma progressão

geralmente rápida da degeneração muscular, geralmente levando à morte em poucos anos após o seu

ińıcio. Neste contexto, qualquer melhoramento significativo da esperança e qualidade de vida do paciente

é de grande relevância. Vários estudos têm sido feitos para abordar problemas como o diagnóstico

da ELA, e mais recentemente, o prognóstico. Neste contexto, esta tese visa a previsão prognóstica na

ELA, utilizando modelos de aprendizagem automática baseados em perfis de pacientes, ou seja, grupos

de pacientes com caracteŕısticas semelhantes no diagnóstico ou padrões semelhantes de progressão da

doença. Neste trabalho, é iniciada uma análise dos dados através da construção de redes de semelhança

de doentes, utilizando diferentes conjuntos de caracteŕısticas, medidas de distância e limiares. Além disso,

são utilizadas várias técnicas de ensemble learning e clustering, com o objectivo de identificar subgrupos

de pacientes para permitir a concepção de tratamentos mais espećıficos para lidar com a doença.

Palavras-chave: Esclerose Lateral Amiotrófica, Perfis de Paciente, Estratificação de Paciente, Patient

Network, Clustering, Ensemble Learning
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Chapter 1

Introduction

1.1 Motivation

Amyotrophic Lateral Sclerosis (ALS) is an aggressive neurodegenerative disease, characterized by progres-

sive degeneration of upper and lower motor neurons, resulting in paralysis and death from respiratory

failure. Research is motivated by the absence of a cure or effective treatment for ALS. Individuals

living with the disease experience progressive paralysis, including the muscles involved in breathing and

swallowing. In Italy and Europe, about 2 out of 100000 people are diagnosed with ALS in their lifetime,

typically between the age of 50 and 70. Most ALS cases are sporadic, while only about 8–10% are inherited.

The average survival time after ALS diagnosis is only three years. Still, about 20% of people with ALS

live five years, 10% will survive ten years and 5% will live 20 years or more. Thanks to the 2014 ice bucket

challenge, ALS recently gained new public awareness. Fueled by social media, the campaign prompted

millions of people to post videos of themselves dumping cold water on their heads and drove hundreds

of millions of dollars to the ALS Foundation. Even if drug developments typically take decades rather

than years, it appears that these donations spurred new developments in ALS research. While it is widely

accepted that neuron cell death is the reason for ALS symptoms, the underlying cause of ALS is still

unclear. In fact, ALS may be caused by a network of cellular pathways and that their respective relevance

changes with the course of the disease. Accordingly, several different therapeutic approaches are currently

pursued, each addressing a different possible reason for neuron cell death. Currently, available therapy

approaches only slow the progression of the disease. But with so many different approaches and clinical

studies underway, there is hope that eventually a cure for ALS can be found. In this context, rigorous

patient stratification would have an important role in addressing these shortcomings, contributing strongly

to ALS research. The short survival time, allied with the lack of an available cure, means the prognosis

for ALS patients is not usually the best for these patients. Prognostic studies in ALS have mostly been

focused on finding discriminatory prognostic features for survival prediction [1]. Since respiratory failure

is the most common cause of death [2], prognostic models able to anticipate the need for Non-Invasive

ventilation (NIV) prescription, can have a positive impact on the quality of life and extend survival. ALS
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CHAPTER 1. INTRODUCTION

is considered a syndrome due to its high variability in presentation, progression and genetics [3]. In

this work, a patient stratification approach is used, based on different sets of prognostic markers, called

Clinical Profiles. Stratification approaches in ALS are usually patient-based, i.e. patients belong to a

single group and all their observations are associated with that group. Subdividing patients into subgroups

homogeneous with respect to biology, disease progression, and/or response to treatment enables precision

medicine in ALS [4]. Precision medicine is an emerging approach for disease treatment and prevention,

that takes into account individual variability in genes, environment, and lifestyle for each person, and aims

to predict more accurately which treatment and prevention strategies are more suitable. In this context,

time-sensitive analysis of heterogeneous genotype-phenotype data, clinical temporal and remote patient

monitoring data, enable the development of automatic prognostic methods. Despite the enormous progress

recently made in understanding ALS, the information about clinical and biomarker differences between

patients, grouped according to the rate of disease progression, is incomplete. The aim is therefore to

optimally manage patients with different progression rates, in order to provide the best-suited treatment

for individual patients, according to a precision medicine approach. In an attempt to tackle precision

medicine expectations, sophisticated machine learning (ML) algorithms are thus needed to effectively

and efficiently extract and integrate knowledge from heterogeneous sources of genotype-phenotype data,

clinical temporal data, and data collected using telemedicine. Machine learning became thus instrumental

in inferring descriptive and predictive models from biomedical data [5–8]. Integrative learning approaches

are also emerging, taking advantage of heterogeneous data and producing promising results [9]. Recent

research further explores the potential of data heterogeneity, by learning models from repositories of health

records, where a high multiplicity of clinical attributes is monitored over time [5, 10–12]. Nonetheless,

most efforts in ALS research still focus on the analysis of a few biomarkers, such as gene expression [13]

or clinical measures [14–16]. In this context, advanced ML approaches, able to learn from heterogeneous

sources of data, unravel non-trivial models that can capture disease progression patterns over time and

highlight subgroups of patients with similar characteristics [4, 17–19]. The new National project, entitled

Advanced learning models using Patient profiles and disease progression patterns for prognostic prediction

in ALS (AIpALS), aims to advance precision medicine and improve supportive care in ALS. This thesis

is motivated by the AIpALS project and its results will be considered and possibly included. AIpALS

benefits from knowledge gathered during FCT project NEUROCLINOMICS2 (2016-03/2020, PI Sara C.

Madeira, ALS case study leader Mamede de Carvalho), whose goal was to unravel prognostic markers

in neurodegenerative diseases, through clinical and omics data integration, using ALS and Alzheimer’s

disease as case studies. In this context, AIpALS defines three major data-driven goals, such as discover

patient profiles, discover disease progression patterns, and propose prognostic models based on patient

profiles and disease progression patterns.

1.2 Work Objectives

Evaluating multiple methods to find the best one, is an important part of model development, due to the

absence of a model that fits all datasets. The ideal clinical risk model is accurate, is generalizable, provides

2



CHAPTER 1. INTRODUCTION

a prediction in a reasonable time frame for clinical decision making and is interpretable by a clinician. The

lack of knowledge about the disease demands the use of all available data, thus new analytic methodologies

are required to deal with the scale and complexity of data. In this context, the thesis targets prognostic

prediction in ALS by exploring, analysing and comparing different patient stratification techniques, based

on Clinical Profiles. These analyses use a large dataset of genotype-phenotype data and clinical temporal

data, already collected by national FCT project NEUROCLINOMICS2 (2016-2019, PI Sara C. Madeira)

and European JPND project OnWebDuals (2016-2019, PI Mamede de Carvalho). The AIpALS project is

motivated by several claims from the ALS community, actively investigating biomarkers, with the scope to

contribute to earlier diagnosis and more precise monitoring of disease progression, concerning the need for

advanced ML models to understand the heterogeneity of patients. Although complex genetic framework

changes may partly explain the heterogeneity of the disease, it would be important to understand what

are the reasons for the differences in the functional decline rate, using demographic, clinical phenotype,

environmental profiles, clinical follow-up and remote patient monitoring. This would provide relevant

information to design optimised disease strategies, including end-of-life decisions. Moreover, investigating

differences in the expression of neurofilaments (NFs) and inflammatory biomarkers, in groups of patients

stratified by disease progression rate, would allow the identification of optimal disease progression markers.

In this respect, an objective method of evaluating disease progression is needed, to overcome the constant

and so far frustrating effort to find an effective treatment. In this work, an approach using methodologies

typical of Network Science is used. Several patient networks are constructed, which allow the subdivision

of patients into groups, also in a visual sense, which are then analysed using different metrics. In detail,

parameters such as features to be considered, similarity distances and thresholds, are set to identify

homogeneous clusters. In addition, clustering algorithms and ensemble learning strategies are analysed, to

identify homogeneous patient groups, thus targeting more effective prognostic prediction models.

1.3 Related Work

1.3.1 Data Mining in ALS

In the context of ALS, the related work is mostly associated with a population-based approach, focusing

on common features significantly associated with reduced survival. In fact, we can divide the ALS studies

into two problems. The first is related to the patients’ diagnosis, investigating the heterogeneity in ALS

subtypes [20], or the relevance of certain clinical features in the diagnosis, such as the paraspinal muscle

EMG and motor-unit potentials (MUP) [21]. The second problem concerns the prognostic prediction,

which can be divided into two different analyses. The most explored is the study of ALS survival, and

the main associated features, including respiratory measures [22], but also the site of onset and the ALS

Functional Rating Scale (ALSFRS) score [23]. The other type of studies, least explored, are related to the

prediction of auxiliary respiration requirement, either with a tracheostomy, or Non-invasive ventilation

(NIV) [1,24,25]. A comprehensive, systematic, and critical review of ML initiatives in ALS is discussed

in this paper [1], together with their potential in research, clinical, and pharmacological applications.

The focus of this review is to provide a clinical-mathematical perspective on recent advances and future
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directions of the field. It also discusses the pitfalls and drawbacks of specific models, highlighting the

shortcomings of existing studies and providing methodological recommendations for future study designs.

This paper primarily focuses on Machine Learning (ML) methods utilized in ALS research, such as Random

Forests (RF), Support Vector Machines (SVM), Neural Networks (NN), Gaussian Mixture Models (GMM),

Boosting methods and k-Nearest Neighbors (k-NN). Despite the considerable sample size limitations,

ML techniques are successfully applied to ALS datasets and a number of promising diagnosis models

are proposed. Prognostic models are tested using core clinical variables, biological, and neuroimaging

data. These models also offer patient stratification opportunities for future clinical trials. Despite the

enormous potential of ML in ALS research, statistical assumptions are often violated, the choice of specific

statistical models is seldom justified, and the constraints of ML models are rarely enunciated. From this

article, several studies have derived crucial information, which has allowed further investigation of the

disease, expanding ALS research [26–28]. In the network context, a convolutional neural network (CNN)

is constructed in this work [29], coupled with a fully connected top layer for survival estimation. An

objective function is designed to directly estimate the probability of survival at discrete time intervals,

conditional to the patient not having incurred any adverse event at previous time points. The CNN and

objective function are tested on a large dataset of longitudinal data of patients with Amyotrophic Lateral

Sclerosis (ALS) and compared against other neural networks designed for survival analysis, and against

the optimization of Cox-partial-likelihood or a simple logistic classifier. The use of the objective function

outperforms both Cox-partial-likelihood and logistic classifier, independently of the network architecture,

and the deep CNN provides the best results in terms of AU-ROC, accuracy and mean absolute error. In

this work [30,31], a Dynamic Bayesian Network (DBN) model of ALS progression is presented to detect

probabilistic relationships among variables included in the Pooled Resource Open-Access ALS Clinical

Trials Database. A Bayesian Network is a mathematical model that represents the joint probability

distribution of a set of random variables as a directed acyclic graph (DAG). A DBN extends a Bayesian

Network to model dynamic processes, describing the dependencies among the variables along time [31].

The model unravels new dependencies among clinical variables in relation to ALS progressions, such as the

influence of basophil count or bicarbonate on movement, communication and respiratory functional state.

Furthermore, it provides an indication of ALS prognosis, in terms of the most probable disease trajectories

across time at the level of both patient population and the individual patient. The risk factors identified

by this DBN model could allow patients’ stratification based on the velocity of disease progression and

a sensitivity analysis on this latter in response to changes in input variables, i.e. variables measured

at diagnosis. In this study [32], the prognostic models for ALS are mapped to assess their potential

contribution and suggest future improvements on modeling strategy. A total of 28 studies describing the

development of 34 models and the external validation of 19 models were included. Among the models

predicting ALS progression or survival, the most frequently used predictors were age, ALS Functional

Rating Scale/ALS Functional Rating Scale-Revised, site of onset, and disease duration. The modeling

method adopted most are machine learning, and only one model is assessed with an overall low risk of

bias, suggesting a relatively reliable model for practice. The usefulness of the prognostic models reviewed

is questionable, due to several methodological pitfalls and the lack of external validation done by fully
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independent researchers. Different machine learning methods such as Dynamic Bayesian Network (DBN),

Random Forest (RF), etc., are adopted for modelling. The outcomes concerned are ALS progression (n =

12; 35%), change in weight (n = 1; 3%), respiratory insufficiency (n = 2; 6%), and survival (n = 19; 56%).

The most important finding of this systematic review was that most of the models have dual problems of

high risk of bias and low-quality reporting, based on the prediction model risk of bias assessment tool

(PROBAST). The high risk of bias was mainly due to the poor reporting of the number of participants with

the outcome, selection of predictors merely by univariable analyses, and inappropriate evaluation of model

performance. Only one model was assessed with an overall low risk of bias and it performed well in both

discrimination and calibration, suggesting a relatively reliable model for practice. Maybe it was due to the

fact that the modelling methodology has still been under improvement these years [33] and PROBAST was

just proposed in 2019. Besides the problem of modelling methodology, the low-quality reporting was also a

problem that cannot be ignored, which was mainly due to the poor model presentation, thus the full model

equation should be provided to enable independent external validation, update, and recalibration [34].

In future research, more models based on low- or middle-income countries should be established and

more attention should be paid to the addition of novel promising predictors, external validation, and

head-to-head comparisons of existing models. A prognostic model is presented [35] for functional decline

in ALS where outcome uncertainty is taken into account. Patient data are reduced and projected onto a

2D space using Uniform Manifold Approximation and Projection (UMAP), a novel non-linear dimension

reduction technique. Information from 3756 patients is included. Supervised learning models usually

require large amounts of data to avoid overfitting and lack of generalisation, which are not available in ALS

research. Unsupervised learning methods have the advantage of capturing distribution patterns without

data implications. Standard linear methods such as principal component analysis (PCA) [36] have been

used in ALS for gene expression analysis [37]. Unfortunately, these conventional linear-based methods

are not capable of describing non-linear relationships and have underperformed in this study context.

Non-linear methods provide new modelling possibilities given their comprehensive ability to describe

data correlations and have successfully been tried out for ALS phenotype identification on clinical trial

data [38] with t Student Stochastic Neighbour Embedding (t-SNE), the current state-of-the-art manifold

learning model [39]. UMAP is a neighbourhood based approach, that preserves data neighbourhood,

distances and density and works in two steps. UMAP projection of patients shows an informative 2D data

distribution. As limited data availability precluded complex model designs, the projection is divided into

three zones defined by a functional impairment range probability. Zone membership allowed individual

patient prediction. Patients belonging to the first zone has a probability of 83% (± 3%) to have an

ALSFRS score over 20 at a 1-year follow-up. Patients within the second zone had a probability of 89%

(± 4%) to have an ALSFRS score between 10 and 30 at a 1-year follow-up. Finally, patients within the

third zone had a probability of 88% (± 7%) to have an ALSFRS score lower than 20 at a 1-year follow-up.

This approach requires a limited set of features, is easily updated, improves with additional patient data,

and accounts for results uncertainty. This method could therefore be used in a clinical setting for patient

stratification and outcome projection. Various ALS staging methods are proposed in [40], used as a tool for

rehabilitation, rapid functional assessment, comparison of different treatment models, biomarker analysis
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and health economics. The most widely studied approaches are the Milano-Torino (MiToS) functional

staging and King’s clinical staging systems [41,42]. The MiToS system uses six stages, from 0 to 5 and is

based on functional ability as assessed by the ALS Functional Rating Scale-Revised (ALSFRS-R) [43],

with stage 0 being normal function and stage 5 being death. The King’s system uses five stages, from 1 to

5 and is based on disease burden as measured by clinical involvement and significant feeding or respiratory

failure, with stage 1 being symptom onset and stage 5 being death. King’s staging is mostly focused on

anatomical disease spread and significant involvement of respiratory muscles, whereas MiToS staging is

aimed more towards the distinction of functional capabilities during the spread of the disease. Therefore,

while the King’s clinical staging system is able to differentiate early to mid-disease well, the MiToS staging

is able to differentiate late stages in detail. To compare each staging system, King’s and MiToS scores

are plotted against frequency for all pairwise comparisons. These differences in disease description by

the two systems are also proved by a Spearman’s rank correlation of 0.54, showing some correspondences

between the two systems. Moreover, association testing shows that King’s stage 4 and MiToS stage 2

are the most strongly associated between all staging pairs. Linearly weighted kappa coefficient tests

the strength of agreement between two ordinal scales, with an increase of penalty based on the level of

disagreement. A commonly used scale to interpret kappa values, ranges from 0, which indicates a chance

agreement, to 1, i.e. a perfect agreement, with intervals of poor, slight, fair, moderate, substantial and

almost perfect. The analysis between King’s and MiToS staging systems showed a fair agreement with a

linearly weighted kappa coefficient of 0.21. These results support the use of both systems when staging,

as they summarise two different aspects of patient information. Clinical stages in amyotrophic lateral

sclerosis can be measured using a simple system based on the number of CNS regions involved and the

requirement for gastrostomy or noninvasive ventilation. In this study [44], a standard operating procedure

(SOP) is designed to define the standardized use and application of the King’s staging system. Case

vignettes representative of ALS patients at different disease stages are defined. Health care professionals

are first trained on how to use the SOP and then asked to stage the vignettes using the SOP. The extent

to which SOP staging corresponded with the correct clinical stage is measured. The reliability of staging

using the SOP is excellent, with a Spearman’s rank coefficient of 0.95, and is high for different groups of

health care professionals, and for those with different levels of experience in ALS. The limits of agreement

between SOP staging and actual clinical-stage lie within a single stage, confirming that there is a clinically

acceptable level of agreement between staging using the SOP and actual King’s clinical stage. There are

also no systematic biases of the SOP over the range of stages, either for over-staging or under-staging.

Thus, the staging SOP provides a reliable method of calculating clinical stages in ALS patients and

can be used prospectively by a range of health care professionals with different levels of experience. A

patient-driven model for ALS prognosis prediction of respiratory failure is proposed in [25]. However,

the strategies adopted for the most part of these studies rely on statistical tests, Kaplan-Meier survival

tables, and multivariable Cox proportional hazard regression models, which are typical of population-based

studies. Other studies [24,25] use strategies related to cluster temporally-related tests, yielding patient

snapshots, for prognostic prediction using patient snapshots and time windows. Those models are applied

to predict disease progression, i.e. if a patient that can breathe without help will be in need of NIV after
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90, 180 or 365 days. In the construction of the prognostic models, the impact of preprocessing techniques

is assessed, such as missing value imputation, knowledge-based discretization and feature selection, using

stratified 5 10-fold CV in the training set (70% of all instances, or snapshots). Feature selection processes

are also performed to help clinicians understand what are the best tests and medical exams to predict the

need for NIV. The main conclusion was that, even though the results did not improve significantly, the

prognostic models obtained were simpler, and thus presented an important advantage, since clinicians

can thus prescribe clinical tests according to their weight in the models, as well as their costs. The

models achieved AUC values of 78.87%, 79.11% and 78.86% for 90, 180 and 365 days, respectively, for

Naive Bayes, followed by Linear Regression and Random Forest. However, it is known that traditional

machine-learning approaches excel at performance, but often have limited interpretability, thus involving

research into new methods and approaches for dealing with ALS patient data.

1.3.2 Patient Similarity and Patient Stratification

Patient similarity assessment is an important task in the context of patient cohort identification for

comparative effectiveness studies and clinical decision support applications. The goal is to derive clinically

meaningful distance metrics to measure the similarity between patients represented by their key clinical

indicators [45]. Nevertheless, patient similarity, or distance, poses several different challenges, where the

subjective notion of similarity rises as one of the most critical. In fact, each physician may have a different

perspective about how similar two patients are, as they assign different weights to different features.

Some studies have proposed a way of learning these weights automatically [46], and others suggested

that the expert knowledge can be integrated, and used to learn a new unified similarity measure [45]. In

this paper [47], inspired by the analogy studies in psychology, a novel framework to predict diagnoses is

proposed, that computes discharge diagnosis similarity of patient pair, and take this value as the outcome

of a supervised prediction model. The input of the supervised prediction model is the feature vectors of

each patient pair in the cohort, which is a process that deriving the attribute similarity. The supervised

model is to assign weight to attributes automatically and the prediction of the target is a process that

deriving relational similarity. Extensive experimental results on real-world networks demonstrate that the

patient similarity-based model achieves better performances in the diagnostic prediction task. Several

noteworthy contributions are made, such as the idea of a general patient-similarity-based framework

for diagnostic prediction, which is inspired by the structure-mapping theory about analogy reasoning in

psychology. The measurement of patient similarity by using diagnoses helps machine learning models to

learn in ways that are not possible with existing binary targets alone. Rather than attempting to solve

the problem of predicting diagnoses just by k -nearest neighbours, a two-step method is instead explored,

that retrieves positive analogies to generate hypotheses and negative analogies to reject hypotheses. The

results demonstrate that the proposed model advances the performance of diagnostic prediction tasks.

Moreover, this method allows to identify analogous patients and predict diagnoses with better performance

than the baselines. In fact, the f-1 scores of positive-analogy-based prediction and positive-negative-

analogy-based prediction are 0.698, 0.703 respectively, while the f-1 scores of the baselines range from

0.368 to 0.661. In conclusion, the authors show that a patient-similarity-based model provides diagnostic
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decision support that is more accurate, generalizable, and interpretable than those of previous methods,

based on heterogeneous and incomplete data. The model also serves as a new application for the use of

clinical big data through artificial intelligence technology. The results obtained in this study [48], can

help accelerate disease understanding in several ways. In fact, the stratification scheme suggested in

this analysis offers novel insights that can be integrated into the development of novel ALS therapeutics,

aiding patient selection and interpretation of results. The method analyzes patient clusters, showing a

clear pattern of consistent and clinically relevant subgroups of patients that also enabled the reliable

classification of new patients. Other studies [49], propose a patient stratification approach using Clinical

and Patient Profiles to tackle the heterogeneity problem associated with ALS. Clustering techniques are

used to group patients’ observations according to predefined Clinical Profiles, i.e. Prognostic, Respiratory

and Functional [25], resulting in homogeneous groups, which are then used to learn specialized prognostic

models. The proposed approach resulted in three sets of ALS Patient Profiles, that were then used to

create specialized prognostic models capable of predicting early administration of NIV. Some of these

models outperformed the baseline model, highlighting the importance of patient stratification to improve

prognostic prediction in this heterogeneous disease. In the network context, studies rely on supervised

learning approaches, and it is not clear how temporal data can be addressed. Other works propose a novel

unsupervised learning strategy using a distance measure capable of dealing with multivariate time series

in order to build a network of patients, which can then be analyzed from a modular point of view [50].

The found modules, or patient communities, can be studied according to their particular characteristics,

possibly reflecting ALS subtypes, which might help to better understand the disease. Moreover, such

modules can then be used in a supervised learning fashion to train expert models for discriminating

subgroups of patients. In this study [48], a novel bottom-up method is designed for the identification of

consensus patient clusters and the determination of discriminating features, a challenging task since no

known ground truth exists for ALS patient stratification. No a priori assumptions are made regarding

patient sub-populations, but instead, patient clusters are defined by a consensus vote based on participants’

submitted algorithms. The results of this study aim to accelerate disease understanding in several ways.

The stratification scheme suggested offers novel insights that can be integrated into the development

of novel ALS therapeutics, aiding patient selection and interpretation of results. Novel differentiating

features, such as creatinine or SVC, can also help shed light on mechanisms related to disease progression,

as well as mechanisms related specifically to end of life in ALS, a topic of critical clinical importance. To

characterize clusters and the involved patients for clinical relevance, all pairs of clusters are compared,

using ANOVA and t-test, resulting in multiple-testing corrected false discovery rates or FDRs, to assess

which features have values specifically different between the clusters. The correlation between feature

values and clinical outcomes are examined in each cluster, to identify the features that are important

for prediction in some clusters but not in others. Overall this cluster helps integrate information, some

already accepted, such as the association of bulbar onset and respiratory signs with a poorer prognosis,

and some suggested, the potential predictive roles of creatinine, urine creatinine, neutrophil and others,

in a statistically supported unified framework, enabling discerning fast and slow progressing patients

earlier in their disease course, as well as markers helping to identify patient reaching the final stages
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of their disease. Consensus clusters can be broadly regarded as classifying patients as slow progressing,

fast progressing, early-stage or late stage. In order to demonstrate how the identified clusters can be

utilized in a clinical setup, whether new patients can be assigned into their respective clusters reliably

is also examined. Increasing prognostic models for Amyotrophic Lateral Sclerosis have been developed.

This study [51] is aimed to uncover new connections within the ALS network through a bioinformatic

analysis, by which C13orf18 is identified, recently named Pacer, as a new component of the autophagic

machinery and potentially involved in ALS pathogenesis. Expression of Pacer was then investigated in

vivo using spinal cord tissue from two ALS mouse models (SOD1G93A and TDP43A315T) and sporadic

ALS patients. Copy number variation (CNV) data are collected from 4 published studies [52–55]. A

total of 338 genes associated with ALS are included in the analysis. Additionally, genes linked to ALS

are collected from The Huge Navigator, an integrated knowledge base of human genome epidemiology.

The selected CNV and HuGE genes are uploaded into the Ingenuity Pathway Analysis (IPA) system

(Qiagen), which contains protein/protein interaction (PPI) and expression datasets. A “core analysis”

approach is used and 241 genes are obtained in 12 ALS-associated subnetworks. This approach allows to

build interaction networks with all ALS associated genes, thus uncovering new connections to previously

unrecognized genes/proteins as being part of the ALS disease network. Neurodegenerative diseases are

multifactorial, involving a combination of genetic and environmental factors. Genetic studies in ALS have

made significant advances in the understanding of disease pathogenesis by using whole genome or whole

exome sequencing strategies. However, the primary cause of approximately half of familial ALS cases

and the majority of sporadic ALS cases remains unexplained. The use of systems biology approaches, to

study neurodevelopmental and neurodegenerative diseases, has recently proven to aid our understanding

of underlying disease mechanisms by unravelling new genes, pathways or subnetworks responsible for an

illness that would not have been recognized using traditional approaches. Pacer expression is up-regulated

on the transcriptional and translational level upon autophagy induction, resembling the behaviour of

other autophagy genes.

9





Chapter 2

Data and Exploratory Data Analysis

Python Code: https://colab.research.google.com/drive/14VN-BUow_GF9Pe7zhPspLa04NK4MNVFt?

usp=sharing

2.1 Data

Data from a cohort of 1590 Portuguese ALS patients are used, followed between 1992 and 2021. For

each patient, demographic and genetic features are gathered, as well as results from multiple clinical

exams and tests. An accurate analysis of the features is reported in the study conducted by André V.

Carreiro [24], and Table 2.2 contains a description of the main features available in the dataset. Three

sets of clinically relevant features are used, called Clinical Profiles, composed of a set of features that are

focused on different aspects of the disease [49]. Features can be classified as static or temporal. Static

features do not change over time, such as demographic and genetic features. Temporal features are clinical

tests that are usually measured at each appointment, approximately every three months. The functional

scores (ALSFRS) in Table 2.2 are an aggregation of integer values on a scale 0− 4, where 0 is the worst

and 4 is the best, as observations of patient characteristics at a given time point. Table 2.1 compiles how

each of the functional scores can be calculated.

Functional Score Result
ALSFRS sum of Q1 to Q10
ALSFRS-R sum of Q1 to Q9 + QR1 + QR2 + QR3
ALSFRSb Q1 + Q2 + Q3
ALSFRSsUL Q4 + Q5 + Q6
ALSFRSsLL Q7 + Q8 + Q9
ALSFRSr Q10
R QR1 + QR2 + QR3

Table 2.1: Functional Scores and Sub-scores according ALS Functional Rating Scale (ALSFRS).
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The observations are the following:

– Q1 - Speech

– Q2 - Salivation

– Q3 - Swallowing

– Q4 - Handwriting

– Q5 - Cutting food and Handling Utensils

– Q6 - Dressing and Hygiene

– Q7 - Turning bed and adjusting bed clothes

– Q8 - Walking

– Q9 - Climbing Stairs

– Q10 - Respiration

– QR1 - Dyspnea

– QR2 - Orthopnea

– QR3 - Respiratory Insufficiency

Two datasets are used for the analysis. The first dataset is a flat table with size 7291x46, where the

items represent the ALS patients and the columns the attributes. In particular, for each patient, there

can be several items, due to the multiple tests and hospital check-ups over the years. In order to have a

coherent dataset, only the first row available for each patient is considered, also referred to as start time,

i.e. the first time the patient undergoes a check-up. The second dataset is a flat table with size 1181x8,

where patient IDs with the respective cluster are collected. The datasets are independent, so they contain

different patients. For the purpose of this analysis, only patients present in both datasets, i.e. patients

from the first dataset who have a corresponding group in the second dataset, are considered. The two

datasets are merged, obtaining a unique dataset of size 1104x47. Only numerical features are considered,

in order to use consistent similarity distances, as described in Section 3.1.3. When data are well prepared,

by using methods such as correcting, recording, scaling and missing value imputation (Section 2.4), the

next step is to perform statistical description and inference. Table 2.2 displays descriptive statistics of

the dataset, that give an estimation of the differences in baseline characteristics, providing evidence for

further multivariable analysis. Varieties of methods are available for univariate description and bivariate

inference. Mean and standard deviation are used to describe normally distributed data, while median and

interquartile ranges are employed for skewed data. For nominal data, the mode is used to describe the

central tendency.
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Name Temporal/Static Type SubGroup Mean/Mode
Gender Static Categorical Demographics Male
BMI Static Numeric Demographics 24.80
MND Static Categorical Medical/Family History No
UMN vs LMN Static Categorical Onset Evaluation LMN
Age at Onset Static Numeric Onset Evaluation 62.41
Onset Form Static Categorical Onset Evaluation Spinal
Disease Duration Static Numeric Onset Evaluation 18.33
EERC Static Categorical Onset Evaluation Probable
Expression C9orf72 Static Categorical Genetic Unknown
ALS-FRS Temporal Numeric Functional Scores 31.15
ALS-FRS-R Temporal Numeric Functional Scores 38.81
ALS-FRSb Temporal Numeric Functional Scores 10.13
ALS-FRSsUL Temporal Numeric Functional Scores 8.90
ALS-FRSsLL Temporal Numeric Functional Scores 8.51
ALS-FRSr Temporal Numeric Functional Scores 3.61
R Temporal Numeric Functional Scores 11.24
Vital Capacity (VC) Temporal Numeric Respiratory Tests 83.91
Forced VC (FVC) Temporal Numeric Respiratory Tests 84.58
P0.1 Temporal Numeric Respiratory Tests 98.47
SNIP Temporal Numeric Respiratory Tests 57.04
MIP Temporal Numeric Respiratory Tests 53.14
MEP Temporal Numeric Respiratory Tests 64.07
Date of NIV Temporal Date Respiratory Status -
PhrenMeanAmpl Temporal Numeric Neurophysiological Tests 0.51
PhrenMeanLat Temporal Numeric Neurophysiological Tests 8.47
Cervical Extension Temporal Numeric Other Physical Values 4.77
Cervical Flexion Temporal Numeric Other Physical Values 4.36
Prog group Temporal Categorical Progression Group Normal

Table 2.2: Main features in the Portuguese ALS dataset.

2.2 Data Preprocessing

Any machine learning algorithm that computes the distance between the data points needs Feature Scaling,

i.e. standardization and/or normalization. Therefore, data preprocessing techniques are applied to the

dataset in order to make it more clean, consistent and noise-free, thus improving the efficiency of clustering

algorithms. In fact, variables that are measured at different scales do not contribute equally to the analysis

and might end up creating a bias. There are various data normalization methods like Min-Max, Z-Score

and Decimal Scaling, the best normalization method depends on the data to be normalized. Here, the

normalize function is used to normalize the data, which takes an array as an input and normalizes its

values between 0 and 1, returning an array with the same dimension as output. The new point is computed

as:

xnew =
x− xmin

xmax − xmin

Standardization, or Z-Score normalization, is another scaling technique where the values are centred

around the mean with a unit standard deviation. Therefore, the mean of the attribute becomes zero and

the resultant distribution has a unit standard deviation. Standardizing the features is important when
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measurements that have different units are compared. The Z-score is computed as:

xnew =
x−mean(x)

Std(x)

2.3 Descriptive and Inferential statistics

Because the choice of statistical methods depends on the distribution of data, the skewness of data needs

to be examined. The distribution can be visualized using histogram, as shown in Figure 2.1. A histogram

Figure 2.1: Main numerical fearures histogram.

divides the values of a numerical variable into bins and counts the number of observations that fall into

each bin. By visualizing these binned counts in a columnar fashion, a very immediate and intuitive

sense of the distribution of values within a variable can be obtained. The distribution of the features

BMI, FVC and Age on onset appears to be symmetrical, while the other variables are skewed. However,

graphic visualization only gives a hint on the distribution of data. Two classes of techniques are used
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for checking whether a sample of data is Gaussian, which are Graphical Methods, for plotting data and

qualitatively evaluating whether they look Gaussian, and Statistical Tests, that calculate statistics on the

data and quantify the probability that they are drawn from a Gaussian distribution. Figure 2.2 shows the

quantile-quantile plots, or QQ plots for short, of features with symmetrical histogram, that could therefore

have a Gaussian distribution. Despite these checks are qualitative, so less accurate than the statistical

methods, if the distribution visually markedly differs from that expected, it is possible to draw reliable

conclusions. The resulting points are plotted as a scatter plot, with the idealized value on the x-axis

and the data sample on the y-axis. A perfect match for the distribution is shown by a line, dots on a

45-degree angle from the bottom left of the plot to the top right, thus deviations from the line correspond

to deviations from the expected distribution.

Figure 2.2: QQ Plot Normality Checks.

There are many statistical tests used to quantify whether a sample of data is drawn from a Gaussian

distribution. Each test calculates a test-specific statistic, which can aid in the interpretation of the result.

The p-value can be used to quickly and accurately interpret the statistic in practical applications. A

significance level of 5% is used in the following analysis to evaluate the test hypotheses. In a statistical

test, critical values are a range of predefined significance boundaries, at which the H0 can be failed to be

rejected. The results are interpreted by failing to reject the null hypothesis if the calculated test statistic

is less than the critical value, at the chosen significance level. Table 2.3 shows the results of the tests

described below. The Shapiro-Wilk test, named for Samuel Shapiro and Martin Wilk, evaluates a data

sample and quantifies how likely it is that is drawn from a Gaussian distribution. The p-value obtained for

the FVC attribute states that the feature is likely drawn from a Gaussian distribution. The D’Agostino’s

K2 test, named for Ralph D’Agostino, calculates summary statistics, namely kurtosis and skewness, to

determine if the data distribution departs from the normal distribution. Skew is a quantification of the

asymmetry in the distribution, while kurtosis quantifies how much of the distribution is in the tail. The

p-value is interpreted against a significance level equal to 5%, and finds that the test dataset does not

significantly deviate from normal, again with the exception of the FVC feature. Anderson-Darling Test is

a statistical test, named for Theodore Anderson and Donald Darling, used to evaluate whether a data

sample comes from one of among many known data samples. The test is a modified version of a more

sophisticated nonparametric goodness-of-fit statistical test called the Kolmogorov-Smirnov test. A feature

of the Anderson-Darling test is that it returns a list of critical values rather than a single p-value. At each

significance level, the test confirms that FVC follows a normal distribution.
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Test Feature Statistic p-value H0
BMI 0.9860 0.0020 reject H0

Shapiro-Wilk Age at onset 0.9820 0.0000 reject H0
FVC 0.9960 0.5700 accept H0
BMI 9.6040 0.0080 reject H0

D’Agostino’s K2 Age at onset 10.7030 0.0050 reject H0
FVC 1.3970 0.4970 accept H0
BMI 1.0280 0.0092 reject H0

Anderson-Darling Age at onset 1.4040 0.0010 reject H0
FVC 0.2920 0.5927 accept H0

Table 2.3: Statistical normality tests results.

Categorical data represent characteristics, that can be observed and sort into groups. If this data happens

to be numerical, then the numbers would not have any mathematical meaning or proper order. To graph

categorical data bar charts can be used, that use rectangular bars to plot qualitative data against its

quantity, as shown in Figure 2.3. One useful way to explore the relationship between a continuous and a

categorical variable is using a set of side by side box plots, one for each of the categories. Similarities

and differences between the category levels can be detected, in the length and position of the boxes and

whiskers. A box plot is a graph of the distribution of a continuous variable, based on the quartiles of

the variables. The quartiles divide a set of ordered values into four groups with the same number of

observations, the smallest values are in the first quartile and the largest values in the fourth quartiles.

The plot uses a box to show the values that are larger than the first quartile and smaller than the fourth

quartile, which is closest to the centre, i.e. the median, of the values. The values within the first and

fourth quartiles are shown as a line, referred to as whiskers, and are further from the centre of the

values. Boxplots are particularly useful for comparing the spread of categorical data, in Figure 2.4 the

numerical features are represented for each progression group in the data set, also distinguishing patients

according to the Gender feature. It clearly shows that for some features, such as ALS-FRS, ALS-FRS-R,

ALS-FRSb, ALS-FRSr ALS-FRSsUL and R, the Slow group is in a higher value range than the others,

while for features Age at onset and ALS-FRSsLL, the values appear lower. The box plot shows that the

distributions of the feature values are different within the three levels of progression groups, except for

the BMI attribute, which shows a similar shape for the three classes of patients. It is also noted that

the differentiation is attributable to the group, but not to the sex of the patients. From this analysis it

is therefore concluded that sex, for the purposes of clustering patients, is not a relevant characteristic,

confirming the previous studies carried out on this subject.

Correlation Analysis is a fundamental method of exploratory data analysis, used to find a relationship

between different attributes in a dataset. Statistically, correlation can be quantified by means of a

correlation coefficient, which is always in the range [−1, 1]. A value of −1 and 1 indicates a totally negative

and positive relationship, respectively. Any number close to zero represents a very low or non-existent

relationship. Pearson’s correlation coefficient is one of the statistical tests that measure the relationship, or

association, between two continuous variables. It gives information about the magnitude of the association,

or correlation, as well as the direction of the relationship. For the Pearson correlation, both variables

should be normally distributed, and other assumptions include linearity and homoscedasticity. Linearity
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Figure 2.3: Categorical features Bar plot.

Figure 2.4: Box plot.

assumes a straight-line relationship between each of the two variables and homoscedasticity assumes

that data is equally distributed about the regression line. For this reason, and because the dataset also
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contains categorical variables, the Spearman rank correlation is preferred. The Spearman correlation

method is a non-parametric test, that computes the correlation between the rank values of the variables.

The Spearman rank correlation test does not carry any assumptions about the distribution of the data

and is appropriate when the variables are measured on a scale that is at least ordinal. In the formula

below, n is the number of observations and di the difference between the ranks of corresponding variables.

ρ = 1− 6
∑

d2i
n(n2 − 1)

(2.1)

Correlation plots can be used to quickly calculate the correlation coefficients without dealing with a lot of

statistics, effectively helping to identify correlations in a dataset. A correlation matrix is a table, where

each cell shows the correlation between two variables, used to summarize data. Figure 2.5 shows the

correlation values between the features of the dataset. The line going from the top left to the bottom

right is the main diagonal, which shows that each variable always perfectly correlates with itself. The

matrix is symmetrical, thus the same correlation values are shown above and below the main diagonal, as

a mirror image, and the strength of the correlation is provided by the depth of the colour.

Figure 2.5: Correlation matrix.

The significance level of the correlation can be determined by using the correlation coefficient table, for

degrees of freedom df = n − 2, where n is the number of observation, or by calculating the t value as

follow:

t =
r√

1− r2

√
n− 2 (2.2)

If the p-value is less than 5%, the correlation between the attributes is significant. The matrix shows that

features belonging to the same subgroups have a higher correlation, confirming the consistent construction

of the Clinical Profiles. In particular, features from the respiratory and neurophysiological tests show a

significant correlation. The p-values obtained are consistent with the assumptions made previously and
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can be retrieved using the algorithm accessible at the following link, reported in Chapter 1.

2.4 Missing data

While most ML models require complete datasets for adequate learning, medical data are seldom complete

and missing features are also common. Missing data may originate from data censoring in longitudinal

studies or differences in data acquisition, which would be helpful to estimate the likelihood of diagnoses

and predict treatments effectiveness. Missing data may seriously compromise inferences, especially if

missing data are not handled appropriately. The potential bias due to missing data depends on the

mechanism causing the data to be missing, and the analytical methods applied to amend the missingness.

Therefore, the analysis of data with missing values requires careful planning and attention. Imputation can

be conceptually split into methods that are applied prospectively, where a possibly complete or incomplete

training database is used to estimate missing values for an incomplete data vector, and methods that are

applied retrospectively, where information from an incomplete database is extracted to estimate its own

missing values. In a clinical context, prospective imputation is of greater utility, allowing new patient

records to be processed, although retrospective is more commonly used in research contexts in which an

entire database is often analysed at the same time [56]. The most common way of performing retrospective

imputation is case deletion, in which every sample with at least one missing value is removed from the

database. When there are a huge number of records with missing values, data omission may cause a major

loss of information. Missing data imputation is a very critical issue, especially when dealing with the

medical field, as diagnosis and treatment are affected by the models’ output. When the missed items are

limited, compared to the scale of the dataset, the missed data omission might be accepted. On the other

hand, if the number of missed items rises with the dimension of the dataset, data imputation is essential

to preserve and even increase the statistical power of the data. Table 2.4 shows the database features

with the respective number of missing values in the column Na. In this work, performance values of the

algorithms, reported in Chapter 4, obtained either by removing Na data or by imputation, are compared.

The results are not significantly different, thus leading to the momentary choice of not implementing any

data imputation method. This may be due to several factors, such as the limited size of the dataset, and

the small number of Na, the removal of which does not significantly affect the performance of the algorithm.

In fact, the feature with the highest number of Na values is PhrenMeanAmpl, present exclusively in

the Respiratory Profile dataset, which nevertheless returns good performance values, sometimes better

than the Prognostic and Functional Profile. Moreover, for the purpose of this work, that is to clustering

patients, exploring different techniques and setting algorithm parameters to increase the quality of the

clusters obtained, the imputation of values is superfluous and deviant. However, if all the data collected

in the dataset are considered, thus allowing a more complete and temporal analysis, imputation methods

may be useful to increase the performance of the algorithm. The description of the imputation techniques

given below is justified by their possible future use in more complex and comprehensive analyses.

The first step to missing data management is to explore the mechanisms behind missing data features.

Features can be missing completely at random, without modifying the overall data distribution, missing at
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Name Na
BMI 237
MND 86
Age at onset 1
ALS-FRS 113
ALS-FRS-R 112
ALS-FRSb 114
ALS-FRSsUL 117
ALS-FRSsLL 117
ALS-FRSr 117
R 117
PhrenMeanAmpl 473

Table 2.4: Portuguese ALS dataset Na values count.

random, when missing feature patterns are based on other features available in the dataset or non-missing

at random for the remaining cases. Depending on the type of missing data, an appropriate imputation

method should be selected. A possible solution to process missing data is given by the replacement of

the missed value with the mean value of its cluster, after eliminating the null values. The imputation is

done by dividing the dataset according to its classes, i.e. Slow, Normal and Fast, calculating the average

value for each class, searching for missed values and finally replacing the missed values with the average

of its class. Until recently, the most frequently used method for imputation was the mean or median

replacement in which the missing variables are replaced with a constant, specifically the mean or median

of the database as a whole [57, 58]. However, this reduces the variability in a database and thus can

bias down-stream statistical methods [58]. A common but more nuanced method for data imputation

is fitting a linear model to the data, in which individual variables are sequentially imputed in an entire

database using simple linear regression, starting with the variable with the least number of missing values

and using complete data points to initiate the process [59]. The downside of this approach is that it

is designed specifically for retrospective use, so it is unclear how accurate it would be on unseen data

that does not contribute to the construction of the model. Alternatively, Principal Component Analysis

(PCA) can be naturally extended to perform prospective imputation, by removing the PCA eigenvector

components corresponding to the missing values when calculating the PCA scores, but using the full

eigenvector when transforming the scores back into the data space [60]. Another method of dealing with

missing data is to use Autoencoders, which are a family of artificial neural networks, trained to reproduce

its input with a lower-dimensional immediate stage or bottleneck [61]. These networks often consist of a

series of encoding layers, leading up to a central bottleneck, which is then followed by symmetric series of

decoding layers. Autoencoder-based approaches to analysing medical data have been shown to provide

useful patient representations for screening broad disease classes [62].

2.5 Progression Groups

Although the average survival of an ALS patient is about 3-5 years, survival can vary between less than a

year to over 10 years, confirming the heterogeneity of the disease. Disease progression can be analyzed

by considering the ALS Functional Rating Scale (ALSFRS) decay in a period of time. The ALSFRS
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is a standard test, used by clinicians to estimate the outcome of a treatment or the progression of the

disease. Since this scale has only a small respiratory component, the ALS functional rating scale-revised

(ALSFRS-R) was later proposed, which adds additional respiratory assessments, becoming the preferred

test to quantify disease progression. The test is composed of 13 questions, to be answered by the patient

using a 5-point scale, ranging from 0 to 4, where 0 corresponds to the worse condition and 4 to the best.

The questions addressed by this scale are the following:

– Speech

– Salivation

– Swallowing

– Handwriting

– Cutting and handling utensils

– Dressing and hygiene

– Turning in bed and adjusting bedclothes

– Walking

– Climbing stairs

– Breathing

– Dyspnea

– Orthopnea

– The need for respiratory support

By measuring the change in ALSFRSR over time, the disease progressing can be estimated, computed using

the information about the time of the first occurrence of symptoms and the time of the first appointment:

ProgressionRate =
48−ALSFRSRV isit1

tV isit1 − tSymptoms1

(2.3)

where 48 is the maximum score of the ALSFRSR scale and the assumed score of a patient at the time of

its first symptoms, ALSFRSRV isit1 is the ALSFRSR score of a given patient at the beginning of the first

appointment, and ∆t1 = tV isit1 − tSymptoms1 is the time in months between the time of first symptoms

and the first visit. Given the heterogeneous nature of ALS, the progression rate is highly variable across

all patients. Moreover, patients with different progression rates usually have different prognoses. Three

Progression Groups are created, i.e. Slow, Neutral and Fast, from a cohort of 1590 patients using the

information at the time of disease onset and the ALSFRSR scale at the first appointment. Only 989

of 1590 patients (62.2%) can be used for analysis, as the other 601 patients lacked at least one of the

information needed to compute the progression rate. Using the progression rate of the selected patients,

the distribution presented in Figure 2.6 is obtained. The higher the progression rate, the faster the

patient’s disease development, while lower progression rates are usually associated with a slower disease
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progression. Following consensual clinical insight, patients are stratified into three disease progression

groups. The 25% of the patients with higher progression rates are grouped together and labeled as Fast

Progressors. The 25% of the patients with lower progression rates are also grouped together to create

the Slow Progressors group. The remaining 50%, with an average progression, are grouped together and

called Neutral or Normal Progressors. In the analysis carried out in Chapters 3 and 4, the possibility

of further subdivision of patients is examined. In fact, the performance of some algorithms is improved

by identifying 5 groups of patients, instead of the conventional Slow, Normal and Fast groups. The two

new groups are positioned at the borderline between one group and the other and can be referred to as

Normal-Slow and Normal-Fast, as shown in Figure 2.7. Network metrics, such as modularity, also show

the difficulty of effectively distinguishing groups, particularly the Slow from the Normal, and the Fast

from the Normal. Indeed, although the Slow and Fast progressors exhibit distinct characteristics, even

visually, the Normal group lies somewhere in between the two and represents roughly an average of the

two. However, it is important to notice that these new groups need validation, including by clinicians,

before they can actually be used and their performance verified. In Section 4.2, the 5 clusters are evaluated

only from a graphical point of view, given the impossibility of calculating the accuracy obtained, as the

two new proposed groups are not present in the original dataset.

Figure 2.6: Progression Rate Distribution among all patients.

Figure 2.7: Progression Rate Distribution among all patients, with 5 Progression Groups.

2.6 Creating datasets with Clinical Profiles

The groups obtained by clustering data via each Clinical Profile are then used to determine Patient

Profiles, in order to create patient groups that best reflect those identified by clinicians. Clinical Profiles

are sets of features that describe specific patient conditions, thus defined in close collaboration with clinical

experts. For each Clinical Profile, a new version of the dataset is created, by selecting the distinctive
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features. Three sets of clinically relevant features are used, such as Prognostic, Respiratory and Prognostic

sets, called Clinical Profiles [49], composed by a set of features that are focused on different aspects of the

disease:

– Prognostic Profile: the set of features described in the literature as good prognostic features for

ALS.

– Functional Profile: ALS-FRS and ALS-FRS-R scales and sub-scales assessing the functional status

of the patient.

– Respiratory Profile: the set of features describing the respiratory status of the patient.

Table 2.5 shows the features included in each Clinical Profile. Figure 2.8 shows the bar plots of the

progression group variable. It can be seen that all profiles have more patients classified as normal than

the others, as expected given the original composition of the dataset. In addition, the Functional Profile

has a higher number of patients than the other profiles, which is due to the selection of data and deletion

of missing data, as described in Section 2.4.

Clinical profile Features used
Prognostic BMI, MND, Age at Onset, FVC

ALS-FRS, ALS-FRS-R
Functional ALS-FRS, ALS-FRS-R, ALS-FRSb, ALS-FRSsUL

ALS-FRSsLL, ALS-FRSr, R
Respiratory FVC, PhrenMeanAmpl, ALS-FRSr, R

Table 2.5: Set of Features used to perform Clustering for each Clinical Profile.

Figure 2.8: Clinical Profiles Progression Group.

2.6.1 Prognostic Profile

A prognostic factor is any variable associated with a subsequent outcome, such as death or disability

among people with a disease or health condition, that can be used to estimate the chance of recovery from

a disease or the chance of the disease recurring. Prognostic factors range from simple measures, such as

age, gender, temperature, or pulse rate, to test results such as X-rays or psychological scores, whilst novel

biomarkers and genetic information are increasingly studied. Different values of a prognostic factor are

associated with a different prognosis and can be used to stratify overall prognosis estimates. In Figure 2.9,

the histograms of the features belonging to the Prognostic Profile are shown on the left, the correlation

matrix is shown on the right.
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Figure 2.9: Prognostic Profile Visualization.

2.6.2 Functional Profile

A functional diagnosis is an analytical description of the functional impairment of a patient’s psychophys-

ical state. Therefore, the Functional Profile concerns the abilities and functions of the subject under

examination, and synthesises this information within a psychological-functional framework, that enables

the scope of the pathology found at the time of assessment to be understood. The subgroup of Functional

Features is a cognitive tool that, starting from the impairment and its effects on the subject, aims to

identify the set of disabilities and difficulties induced by the disease. It also identifies the framework of

capacities and a developmental perspective, that highlights the developmental potential of each individual,

which is an extremely significant prediction for subsequent intervention.

Figure 2.10: Functional Profile Visualization.

2.6.3 Respiratory Profile

The Respiratory profile groups all the features of the dataset that concern the respiratory system, that

can help clinicians to diagnose and decide the treatment of certain lung disorders. Pulmonary function

tests (PFTs) are noninvasive tests, that show how well the lungs are working. The tests measure lung

volume, capacity, rates of flow, and gas exchange. Forced vital capacity (FVC) is the amount of air

exhaled forcefully and quickly after inhaling as much as a patient can. The amount of air inhaled and

exhaled in test results are compared both with the average values of other patients of the same age, height,

sex, and race and with other tests the same patient has previously undergone. Phrenic nerve stimulation
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is a non-volitional test, that can be performed quickly in most patients and it is a powerful predictor of

survival in ALS.

Figure 2.11: Respirtory Profile Visualization.

2.7 PCA

The Principal Component Analysis (PCA) is a widely used method of reducing the dimensionality of high-

dimensional data, followed by visualizing two of the components on a scatterplot. Standardization prior is

performed on the continuous initial variables so that each of them contributes equally to the analysis since

PCA is quite sensitive regarding the variances of the variables. In order to identify correlations between

the features, the covariance matrix is computed, to understand how the variables of the input data set are

varying from the mean with respect to each other, i.e. if there is any relationship between them, and to

identify any redundant information. The covariance matrix is a pxp symmetric matrix, where p is the

number of features, that shows the covariances associated with all possible pairs of the initial variables.

Since the covariance of a variable with itself corresponds to its variance, the main diagonal contains

the variances of each initial variable. Moreover, since the covariance is commutative, the entries of the

covariance matrix are symmetric with respect to the main diagonal, which means that the upper and the

lower triangular portions are equal. If the sign of the covariance is positive, the two variables increase or

decrease together, i.e. they are correlated, otherwise, one increases when the other decreases, i.e. they are

inversely correlated. Principal components are new variables that are constructed as linear combinations

or mixtures of the initial variables. These combinations are done in such a way that the new variables, i.e.

principal components, are uncorrelated and most of the information within the initial variables is squeezed

or compressed into the first components. Organizing information in principal components allows to reduce

dimensionality without losing much information, discarding the components with low information and

considering the remaining components as the new variables. However, it is important to notice that the

principal components are less interpretable and don’t have any real meaning, since they are constructed

as linear combinations of the initial variables. Geometrically speaking, principal components represent

the directions of the data that explain a maximal amount of variance, i.e. the lines that capture most

information of the data. The larger the variance carried by a line, the larger the dispersion of the data

points along with it, and the larger the dispersion along a line, the more information it has. As there are
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as many principal components as there are variables in the data, principal components are constructed in

such a manner that the first principal component accounts for the largest possible variance in the data set.

By definition, the direction of every single principal component is not uniquely determined, all points

are mirrored along with one of the axes, without changing the meaning of the plot. Groups are marked

with different colours, according to their progression group, in order to allow a comparison. Eigenvectors

and eigenvalues are linear algebra concepts, computed to determine the principal components of the data.

Computing the eigenvectors and ordering them by their eigenvalues in descending order, allows finding

the principal components in order of significance. The feature vector is a matrix, that has as columns the

eigenvectors of the components that are taken and not discarded. This enables a dimensionality reduction,

as choosing to keep only q eigenvectors out of p, the final data set will have only q dimensions. Finally, the

feature vector is used to reorient the data from the original axes to the ones represented by the principal

components. This can be done by multiplying the transpose of the original dataset by the transpose of

the feature vector:

FinalDataset = FeatureV ectorT ∗ StandardizedOriginalDatasetT (2.4)

PCA aims to estimate how many components are needed to describe the data, by looking at the cumulative

explained variance ratio as a function of the number of components. The Clinical Profiles curves are shown

in Figure 2.12, the first two components contain approximately 80% of the variance, while around three

components are needed to describe close to 90% of the variance. Figure 2.13 shows the two-dimensional

principal subspace for the Clinical Profiles.

Figure 2.12: Clinical Profiles Explained Variance Ratio.

Figure 2.13: Clinical Profiles PCA visualization.
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2.8 Summary

In this chapter the Portuguese ALS Dataset is analysed and explored, using descriptive and inferential

statistical techniques. The data are normalised and standardised, the correlation between attributes is

assessed both numerically and visually. An analysis of missing values is started, where different techniques

to deal with them are proposed. Finally, the construction of the Clinical Profiles, with the description of

each subgroup of features, is reported. The key contribution is the possibility of further subdividing the

patients, identifying other groups besides the Slow, Normal and Fast of the clinicians.
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Chapter 3

Patient stratification using Network

Science Approaches

A detailed analysis of the construction of a network that allows the stratification of patients is reported.

The groups obtained, by clustering data using each Clinical Profile, are then used to determine the

parameters of the network that allow the creation of patient groups that best reflect those identified by

clinicians. This chapter proposes an unsupervised learning strategy, where different distance measures

are used and tested, that builds networks of patients then analyzed using different metrics and from a

modular point of view. The found modules, or patient communities, can then be used in a supervised

learning fashion to train expert models for discriminating subgroups of patients. For the analysis done in

this work, Python 3 with the NetworkX library is used.

3.1 Methods

This section presents and discusses the methodology used in this work. The workflow is in Figure 3.1.

Dataset Data 
preprocessing

Find 
communities

Compute 
inter-patient 

similarity

Build a  
network 

of patients

Extract relevant 
information 

from the 
communities

Figure 3.1: Workflow used in this work for community finding and interpretation using a network of ALS patients.

3.1.1 Patient similarity networks

The patient similarity network (PSN) paradigm is a recently developed analytical framework, that addresses

a number of challenges in data analytics and is naturally interpretable [4]. In a PSN, each node is an

individual patient and an edge between two patients corresponds to the pairwise similarity for a given

feature. In this paradigm, each input patient data feature is represented as a network of pairwise patient
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similarities, used to identify patient subgroups or predict the outcome. As a simple example of the concept,

the progression of ALS disease can be represented as a PSN, as shown in Figure 3.2.

Dataset

Clustering algorithm 
design or selection

G1

G2

Identify 
Patient Clusters

Gk

Integrate

Integrate

Feature  
selection

. 

. 

.

Figure 3.2: PSNs for a hypothetical example of predicting ALS risk.

Nodes are patients and edge weights reflect the data type similarity. Patients affected by the disease,

whose progression is considered slow, would be tightly connected to each other and those with a fast

progression would separately be tightly connected. If a new patient presents feature values indicating a

slow development of the disease, he would be more similar to the slow group and the algorithm would

predict him as such. However, in Figure 3.2 there is a process that is not carried out in this preliminary

work, that will be explored in more extensive future research, namely integration. In this step, a single

network is created, using all the networks built using the Clinical Profiles, which generates a consensus

clustering and general patient profiles. When compared to other clustering and classification approaches,

these methods can demonstrate superior performance. PSNs naturally handle heterogeneous data, as any

data type can be converted into a similarity network by defining a similarity measure. Once converted, all

data are represented in the same manner as a network that can be directly input into analysis methods [50].

Missing data are also naturally handled, as a patient missing in one network may be in another and could

still be used. Furthermore, patient similarity measures are robust even if part of the input data vectors is

missing. Representing patients by similarity is conceptually intuitive because it can convert the data into

network views, where the decision boundary can be visually evident. Moreover, algorithms that take PSNs

as input use data transformed from the raw values, thus sensitive raw data are not directly used. However,

since the research community increasingly pools its patient cohorts, to expand the sample sizes for clinical

discovery, protocols and technologies for maintaining patient privacy are developed in parallel [63].

3.1.2 Building Network of Patients

In order to build a network of patients, a measure that reflects the relationship between two patients is

needed. An overall distance measure can be given by averaging the distance calculated for all attributes

in the Clinical Profiles, although a weighted version can be used to assign greater relevance to a sub-type

of data. Various measures of similarity can be analysed for this purpose and compared, such as Euclidean

distance, Hamming distance, Manhattan/City Block distance, Minkowski distance, Cosine distance,

Correlation distance, Mahalanobis distance, Yule distance and Matching distance [47]. After computing

the distance matrix for all the patients, the network or graph is built. However, in network analysis, it
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is usual to use similarities instead of distances, which can be derived in two distinct ways. The first is

computing the similarities as Sij = 1 −Dij, where S is the similarities matrix and D is the distances

matrix. The other is based on the binary adjacencies matrix A, defined as:

Aij = 1 ⇐⇒ Dij ≤ τ (3.1)

where τ is a given threshold. As stated above, in a network context, the graph nodes represent the

patients, whereas the edges represent their connection. When the similarities matrix is used, each edge

has an associated weight representing the similarity between both patients. Eventually, some edges with

lower similarities can be filtered out. In the case, where the adjacencies matrix is used, each edge states

that the two patients it connects are similar, i.e. their distance is below the threshold τ . Several networks

are built, visualized and analyzed, by using metrics such as the network density, modularity, average path

length and many others, as reported in Section 3.2.

3.1.3 Finding communities in the network of patients

The identification of communities in a network is of crucial importance, as it may help to uncover a priori

unknown functional modules. The problem of community detection requires the partition of a network

into communities of densely connected nodes, with the nodes belonging to different communities being

only sparsely connected. Each patient in the dataset is associated with a node. The following procedure is

applied to the subgroups of features identified, to the different distance measurements and to the various

threshold values. Suppose that communities are identified considering the subgroup of Functional Features,

using the Euclidean distance and with a threshold equal to 0.7. The algorithm runs all the nodes, i.e. the

patients, and compares them in pairs, calculating the similarity values for each feature. Subsequently, the

average of similarities is considered, and if it exceeds the threshold fixed, an edge is created between the

nodes. The result is a network, created by grouping nodes that are similar in general for that subgroup of

attributes. Therefore, the algorithm builds the networks considering the following three variables:

– Subgroup of features

– Distance measurement

– Threshold

Subgroup of features

Each set of Patient Profiles is obtained by clustering the patients using subsets of features, listed in Table

2.5. When a patient undergoes a hospital medical inspection, clinicians can decide which Clinical Profile,

or set of Clinical Profiles, are more adequate to predict the desired clinical outcome. For each Clinical

Profile selected, the patient’s data are compared with the average of those of the patients belonging to the

various clusters. The patient is then assigned to the Patient Profile more suitable. Then, the data can be

used as input to the specialized model for that Profile, in order to predict the need for NIV, or any other

outcome.
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Distance measurements

Distance measures play an important role in machine learning and are an objective score that summarizes

the relative difference between two objects in a problem domain. In this context, the two objects are rows

of data that describe a subject, i.e. a patient. When calculating the distance between two examples or

rows of data, it is possible that different data types are used for different columns, e.g. real, boolean,

categorical, and ordinal. Different distance measures may be required, that are then summed together

into a single distance score. Since numerical values may have different scales, the calculation of distance

measures can be highly impacted, thus it is a good practice to normalize or standardize numerical values

before computing the distance measures. In fact, if columns have values with differing scales, those

with larger values will dominate the distance measure. Below, a detailed description of the distance

measurements used is reported.

The Euclidean distance coincides with the most basic physical idea of distance, and it is generalized to

multidimensional points. If a and b are points of Rn, where n is the number of dimensions considered, i.e.

variables, the Euclidean distance from a to b is given by:

dE(a,b) =

√√√√( n∑
i=1

(ai − bi)2
)

(3.2)

The Manhattan distance, also called the Taxicab distance, calculates the distance between two real-valued

vectors. Given a and b, it is computed as in (3.3).

dMa(a,b) =

n∑
i=1

| ai − bi | (3.3)

The Minkowski distance is a generalization of the Euclidean and the Manhattan distances, and adds

a parameter, called the order or p, that allows different distance measures to be calculated. When p

is set to 1, the calculation is the same as the Manhattan distance, while when set to 2, it is the same

as the Euclidean distance. Intermediate values provide a controlled balance between the two measures.

It is common to use Minkowski distance when implementing a machine learning algorithm that uses

distance measures, as it gives control over the type of distance measure used for real-valued vectors via

the hyperparameter p. The distance between a and b is given by:

dMi(a,b) =

( n∑
i=1

| ai − bi |p
)1/p

(3.4)

The Cosine distance measures the distance between two vectors of an inner product space. It is measured

by the cosine of the angle between two vectors and determines whether two vectors are pointing in roughly

the same direction. The smaller the angle, the lower the cosine distance, thus two vectors in exactly

opposite directions, i.e., 180° between them, would result in a value of −1, whereas two identical vectors,
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i.e., 0° between them, would yield a value of 1. Unlike measuring Euclidean distance, cosine similarity

captures the orientation and not the magnitude. If negative values are encountered in the input, the

cosine distances will not be computed. The distance between a and b is defined as:

dCos(a,b) = 1−
∑n

i=1 aibi√∑n
i=1 a

2
i

√∑n
i=1 b

2
i

(3.5)

Distance correlation is a measure of association strength between non-linear random variables. It goes

beyond Pearson’s correlation because it can spot more than linear associations and it can work multi-

dimensionally. Given a and b points of Rn, distance correlation can range from 0 to 1, where 0 implies

independence between a and b and 1 implies that the linear subspaces of a and b are equal. Distance

correlation is not the correlation between the distances themselves, but it is a correlation between the

scalar products. The distance correlation of two variables is obtained by dividing their distance covariance

by the product of their distance standard deviations. The formula for distance correlation is as follows,

where ā and b̄ indicate the average of the vector a and b, respectively:

dCor(a,b) = 1−
∑n

i=1(ai − ā)(bi − b̄)√∑n
i=1(ai − ā)2

√∑n
i=1(bi − b̄)2

(3.6)

Thresholds

Numerical attributes are geared to model edges, that connect nodes if they have the same values or

significantly close values. Two values are considered significantly close if the normalized difference d

between them is less than or equal to a specified threshold. The normalized difference d between two data

points ai and bi for the numerical attribute fi ∈ f1, ..., fp, with p equal to the total number of attributes

in the dataset considered, is defined according to the following equation:

d(a,b,i) =
dai,bi

| max(fi)−min(fi) |
(3.7)

where max(fi) and min(fi) represent the maximum and minimum values respectively of the attribute fi.

When a link is demonstrated between two nodes with numerical attributes, it is checked if the two nodes

have the same, or a significantly close value, for any numerical attribute. If the similarity between the

values of the patient attributes exceeds a certain threshold, a link is created between them. Four different

threshold values are analysed, i.e. 0.6, 0.7, 0.8 and 0.9.

3.2 Results evaluation and discussion

3.2.1 Experimental setup

The code, implemented using Python 3, all the needed packages are imported. In order to correctly

run the code, the directory path has to be changed, indicating the one where the additional data file
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dataWithoutDunnoNIV PP.csv and make prog groups.xlsx are located. The first part of the code con-

cerns the data preprocessing, i.e. the creation of three datasets using three different subgroups of features,

reported in Table 2.5, plus an attribute containing cluster labels, i.e. Slow, Normal and Fast [25], as addi-

tional information used for a further subgraphs analysis. Then, the function generateLinkingConditions()

is created, that given the indexes of two nodes and a dataset, returns three similar measures between them.

In each of the three datasets, all the attributes are numerical, except for the cluster label, but in different

scales, thus the function first normalizes them between 0 and 1. Then all the normalized values are

collected into two arrays, and five distance measures are computed, i.e. Euclidean, Manhattan, Minkowski,

with order p equal to the number of attributes analyzed, Cosine and Correlation distances, handling Nan

cases. Finally, the similarities measures are returned, obtained as described in Section 3.1.2, as a tuple.

Furthermore, twenty networks are constructed for each Clinical Profile, and generateLinkingConditions()

is used for each possible couple of nodes. Sixty networks are obtained, by exploring the five similarities

measures using different threshold values, i.e. 0.6, 0.7, 0.8 and 0.9. For each network, different metrics are

collected, reported in Section 3.2, such as the number of edges, density, average degree and centrality

measures, that consider all the graph and the subgraphs corresponding to the clusters known a priori, i.e.

Slow, Normal and Fast. The plots of each network and their metrics are given as output of the code, also

shown in Figure 3.3.

Algorithm analysis

For each of the three datasets, the function generateLinkingConditions(node1,node2,dataset) is computed

for all the possible node pairs of patients, leading to
(
1104
2

)
∗ 3 = 608856 ∗ 3 = 1826568 comparisons.

Moreover, varying three parameters, i.e. attribute subsets, similarity measures and thresholds, 60 networks

are constructed and for each of them, several metrics are computed. The high number of comparisons is

justified by the need to confirm the hypotheses formulated and the conclusions drawn on the networks. In

fact, the possibility of observing the constructed graphs and interpreting the results makes it possible to

obtain more detailed and reliable information. In conclusion, it has to be highlighted that the code needs

around 6− 7 hours to run. Despite the time and computational complexity, this kind of analysis is useful

to compare different network models, allowing the possible inclusion of further network parameters to be

explored in the future.

3.2.2 Network metrics

In the following subsections, several network metrics are computed and analysed. For some measures,

the values obtained both on the whole graph, indicated as G, and on the three subgraphs obtained using

the progression groups provided by the clinicians, G Slow,G Normal and G Fast, are explored. The

results obtained are reported in the Appendix A.1. In particular, the values shown below refer either

to the entire subgraph or to the individual nodes, depending on how the measurement is defined. For

measurements related to individual nodes, the results shown are obtained by averaging the node values.

Considering the variable parameters described above, 60 different networks are obtained for each subgroup

of features. The different networks are indicated as Gijk, where i indicates the subgroup of features
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considered with i = 1, . . . , 3, i.e. the subgroup relative to the Prognostic, Functional and Respiratory

Profile, respectively. The threshold considered is indicated with j = 1, . . . , 4, i.e. a threshold equal to 0.6,

0.7, 0.8 and 0.9, respectively. Finally k indicates the distance measurement used, with k = 1, . . . , 5, which

are the Euclidean, the Manhattan, the Minkowski, the Cosine and the Correlation, respectively.

Density

Density captures how many edges there are in a network, divided by the total possible number of edges.

In an undirected network of size n, there will be (n ∗ (n− 1))/2 possible edges. Considering the matrix

underlying each network, (n ∗ (n− 1)) refers to the number of rows times the number of columns minus 1

so that the diagonal is excluded, i.e. ties to oneself. The number is then divided by 2 in the case of an

undirected network since it is symmetrical. The density for undirected graphs is defined as in the equation

3.8, where n is the number of nodes and m is the number of edges. The values obtained for the number of

edges is reported in the Appendix A.1. The density values are shown in Tables A.1 and 3.1, respectively.

d =
2m

n(n− 1)
(3.8)

Threshold Distance Prognostic profile Functional profile Respiratory profile
Euclidean 0.49801 0.1819 0.7094
Manhattan 0.2625 0.0524 0.5717

0.6 Minkowski 0.6240 0.3514 0.7472
Cosine 0.9838 0.8023 0.9107
Correlation 0.6357 0.2847 0.4331
Euclidean 0.3322 0.0897 0.5704
Manhattan 0.1713 0.0337 0.4607

0.7 Minkowski 0.4461 0.2163 0.6144
Cosine 0.9578 0.7953 0.9097
Correlation 0.5679 0.2246 0.4279
Euclidean 0.1690 0.0423 0.3941
Manhattan 0.0909 0.0215 0.3792

0.8 Minkowski 0.2316 0.0739 0.3990
Cosine 0.8953 0.7762 0.9041
Correlation 0.4739 0.1639 0.4183
Euclidean 0.0494 0.0146 0.2676
Manhattan 0.0319 0.0056 0.2650

0.9 Minkowski 0.0614 0.0254 0.2685
Cosine 0.8081 0.7079 0.8967
Correlation 0.3359 0.0996 0.3861

Table 3.1: Density.

Average degree

The average degree of an undirected graph is used to measure the number of edges compared to the number

of nodes, given by the average number of edges per node in the graph. Since this type of measurement

works better for the undirected case compared to the directed, the datasets used in this work are suitable.

Given n the number of nodes and m the number of edges, reported in Table A.1, the average degree is
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computed as in (3.9) and the values obtained are collected in Table 3.2.

AverageDegree =
TotalEdges

TotalNodes
=

m

n
(3.9)

Threshold Distance Prognostic profile Functional profile Respiratory profile
Euclidean 234.610 165.172 276.578
Manhattan 174.550 137.924 244.742

0.6 Minkowski 273.858 211.820 298.924
Cosine 813.867 714.322 773.795
Correlation 622.918 430.429 511.785
Euclidean 191.874 145.490 235.242
Manhattan 154.902 133.334 227.274

0.7 Minkowski 222.292 162.150 237.538
Cosine 799.612 710.493 773.197
Correlation 585.721 397.416 508.980
Euclidean 154.718 135.156 209.232
Manhattan 139.224 130.574 203.910

0.8 Minkowski 168.994 142.638 211.036
Cosine 765.320 699.980 770.134
Correlation 534.171 364.130 503.682
Euclidean 301.343 282.237 421.030
Manhattan 291.722 277.343 419.622

0.9 Minkowski 307.940 288.204 421.525
Cosine 717.519 662.511 766.076
Correlation 458.469 328.907 486.029

Table 3.2: Average degree.

Shortest path length

Defining the length as the number of intermediate edges contained in the path between two nodes, it is

possible to define the shortest path length. It is calculated by finding the shortest path between all pairs

of nodes and taking the average over all these paths. Since the graphs are disconnected, this metric is not

defined.

Diameter

Diameter is a similar metric to the average shortest path length, i.e. the longest of all the calculated

shortest paths in a network. Therefore, this metric is not defined, or infinite, for the entire graph.

Eigenvector centrality

A natural extension of the simple degree centrality is eigenvector centrality, i.e. the assignment of a

centrality point for every network neighbor a vertex has. The importance of a vertex in a network is

increased by having connections to other vertices that are themselves important, thus eigenvector centrality

gives each vertex a score proportional to the sum of the scores of its neighbors. A small value is therefore

expected for this graphs, and this hypothesis is confirmed by the empirical results, as shown in Table 3.3.
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Threshold Distance Prognostic profile Functional profile Respiratory profile
Euclidean 0.0275 0.0215 0.0288
Manhattan 0.0259 0.0167 0.0277

0.6 Minkowski 0.0282 0.0247 0.0289
Cosine 0.0302 0.0286 0.0298
Correlation 0.0284 0.0235 0.0254
Euclidean 0.0263 0.0186 0.0277
Manhattan 0.0248 0.0147 0.0258

0.7 Minkowski 0.0271 0.0225 0.0281
Cosine 0.0011 0.0285 0.0298
Correlation 0.0301 0.0225 0.0253
Euclidean 0.0244 0.0156 0.0249
Manhattan 0.0229 0.0135 0.0248

0.8 Minkowski 0.0252 0.0180 0.0249
Cosine 0.0297 0.0284 0.0298
Correlation 0.0278 0.0211 0.0253
Euclidean 0.0208 0.0116 0.0230
Manhattan 0.0195 0.0088 0.0231

0.9 Minkowski 0.0215 0.0128 0.0230
Cosine 0.0290 0.0278 0.0298
Correlation 0.0272 0.0182 0.0250

Table 3.3: Average Eigenvector centrality.

Closeness centrality

The closeness centrality measures the mean distance from a vertex to other vertices. Specifically, it is the

inverse of the average shortest distance between the vertex and all other vertices in the network. The

formula to compute it is given by 1/average distance to all other vertices. The inverse is used so that a

higher closeness centrality indicates a more desirable centrality score. The values obtained are shown in

Table 3.4.

Betweenness centrality

The betweenness centrality measures the extent to which a vertex lies on paths between other vertices.

The betweenness centrality of any vertex in a complete graph is zero, since no vertex lies in between any

geodesic as every geodesic is of length 1. The betweenness centrality increases with the number of vertices

in the network, so a normalized version is often considered with the centrality values scaled to between 0

and 1. For the networks constructed here, a value close to 0 is expected. Table ?? provides the values for

the metric.

The Pagerank

The Pagerank is a variant of the eigenvector centrality score, that uses backlinks/in-degrees. A number

equal to 1/n = 0.0009 is obtained, where n is the number of nodes, but this result does not bring any

relevant information, since the network constructed is undirected.
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Threshold Distance Prognostic profile Functional profile Respiratory profile
Euclidean 0.6787 0.3634 0.7711
Manhattan 0.5814 0.2010 0.6916

0.6 Minkowski 0.7434 0.4921 0.7982
Cosine 0.9852 0.8030 0.9233
Correlation 0.7422 0.4724 0.4754
Euclidean 0.6023 0.2718 0.6858
Manhattan 0.5430 0.1625 0.6265

0.7 Minkowski 0.6501 0.3947 0.7128
Cosine 0.9641 0.7971 0.9224
Correlation 0.7042 0.4445 0.4720
Euclidean 0.5205 0.1730 0.5789
Manhattan 0.4907 0.1005 0.5705

0.8 Minkowski 0.5437 0.2416 0.5807
Cosine 0.9184 0.7818 0.9186
Correlation 0.6566 0.4155 0.4653
Euclidean 0.3858 0.0696 0.4802
Manhattan 0.3665 0.0332 0.4794

0.9 Minkowski 0.3953 0.0909 0.4805
Cosine 0.8593 0.7279 0.9120
Correlation 0.5963 0.3722 0.4445

Table 3.4: Average Closeness centrality.

Threshold Distance Prognostic profile Functional profile Respiratory profile
Euclidean 0.0005 0.0010 0.0003
Manhattan 0.0007 0.0016 0.0004

0.6 Minkowski 0.0003 0.0005 0.0002
Cosine 0.0000 0.0000 0.0000
Correlation 0.0003 0.0005 0.0001
Euclidean 0.0006 0.0013 0.0004
Manhattan 0.0008 0.0014 0.0005

0.7 Minkowski 0.0005 0.0008 0.0004
Cosine 0.0000 0.0000 0.0000
Correlation 0.0004 0.0006 0.0001
Euclidean 0.0009 0.0017 0.0007
Manhattan 0.0010 0.0014 0.0007

0.8 Minkowski 0.0008 0.0014 0.0006
Cosine 0.0000 0.0000 0.0000
Correlation 0.0005 0.0007 0.0002
Euclidean 0.0015 0.0004 0.0010
Manhattan 0.0015 7.7715 0.0010

0.9 Minkowski 0.0014 0.0007 0.0010
Cosine 0.0002 0.0000 0.0000
Correlation 0.0006 0.0009 0.0001

Table 3.5: Average Betweenness centrality.

Clustering coefficient

The clustering coefficient measures the average probability that two neighbours of a vertex are neighbours

themselves. The clustering coefficient of a node is the ratio of the number of connections in the neighbour-

hood of a node and the number of connections if the neighbourhood is fully connected, Table 3.6. To

prove that there is a significant community structure, the results are compared to the clusters provided

by the clinicians. From the results reported in the Appendix A.1, it can be seen that the Slow group
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always presents greater values for this coefficient. This is in accordance with the expectations, as Slow

progressors have a slower progression rate, meaning they survive longer. The number of patients for each

time window is also higher in Slow progressors than in Fast progressors, despite the fact that is composed

of approximately the same number of patients. This is because Fast progressors evolve faster and some

of them arrive at the hospital already using NIV, thus they are not considered as learning instances. In

addition, Respiratory features show a higher coefficient, demonstrating a greater ability to group similar

patients into clusters. However, all the Profiles return good values for this coefficient, which tells how

well connected the neighbourhood of a node is. If the neighbourhood is fully connected, the clustering

coefficient is 1, while values close to 0 mean that there are few connections in the neighbourhood.

Threshold Distance Prognostic profile Functional profile Respiratory profile
Euclidean 0.7899 0.5970 0.8389
Manhattan 0.6976 0.5263 0.7491

0.6 Minkowski 0.8414 0.6959 0.8691
Cosine 0.9872 0.8963 0.9514
Correlation 0.8358 0.7014 0.6944
Euclidean 0.7111 0.5410 0.7606
Manhattan 0.6554 0.4984 0.7382

0.7 Minkowski 0.7437 0.6225 0.7968
Cosine 0.9738 0.8922 0.9505
Correlation 0.8008 0.6888 0.6905
Euclidean 0.6019 0.8845 0.7291
Manhattan 0.6079 0.6815 0.6999

0.8 Minkowski 0.5871 0.8564 0.7375
Cosine 0.9580 0.8845 0.9508
Correlation 0.7539 0.6815 0.6816
Euclidean 0.5467 0.3809 0.6524
Manhattan 0.5322 0.4109 0.6453

0.9 Minkowski 0.5230 0.4639 0.6543
Cosine 0.9490 0.8564 0.9445
Correlation 0.6818 0.6732 0.6508

Table 3.6: Average Clustering coefficient.

Modularity

The goal of this work is to investigate communities within networks of patients, each presenting particular

characteristics that might bring new insights into the disease. Thus, one of the most relevant metrics

is modularity, since it is related to how well the network can be divided into modules. This metric can

be seen as the difference between the number of edges within identified communities and the random

expectation. A higher value means that the network presents a modular structure, hence vertices in each

community are more similar [50]. Modularity is computed for all the Profiles, by setting the values of

the distance and threshold parameters to Cosine and 0.7, i.e. those that lead to the best performance.

The community.best partition() function is used, which compute the partition of the graph nodes that

maximises the modularity, through the Louvain heuristics. Slow and Fast groups are distinguished from

each other, while it is more difficult to separate the Slow and Normal groups and the Fast and Normal

groups. New communities can be then identified, indicated as N-S and N-F, respectively. These results are
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expected since the data are not balanced, e.g the number of patients for the Slow group is 276, 562 for the

Normal and 260 for the Fast. Furthermore, although Slow and Fast groups have different characteristics, it

is more difficult to distinguish them from the Normal group, which is almost an average between the two.

The number of communities found for the Prognostic, Functional and Respiratory profile is respectively 4,

118 and 13. The values obtained for communities containing at least 2 nodes are given in Table 3.7.

Profile Community Slow subgraph Normal subgraph Fast subgraph
1 0.4211 0.4689 0.1100

Prognostic 2 0.0685 0.5178 0.4137
3 0.2222 0.5778 0.200
4 0.3113 0.5472 0.1415
1 0.4280 0.4703 0.1017

Functional 2 0.2075 0.6321 0.1604
3 0.0667 0.4638 0.4696
4 0.4421 0.4895 0.0684
1 0.3488 0.4794 0.1717

Respiratory 2 0.2513 0.5327 0.2161
3 0.0848 0.5515 0.3636

Table 3.7: Profiles modularity.

3.2.3 Networks analysis

The features selected to construct the datasets are recognized in the literature as prognostic indicators

in ALS patients. Since a respiratory target is predicted, respiratory features are expected to be more

important than features concerning other aspects of the disease. In fact, from an analysis of the metrics

carried out in Section 3.2.2 and visually exploring the networks obtained (Figure 3.3), it is possible to

conclude that the Respiratory subgroup of features best identifies the clusters. In this study, Euclidean,

Manhattan, Minkowski, Cosine and Correlation distance metrics are used to estimate distances from

patients. From the values obtained and reported above, it is possible to conclude that Cosine similarity

always leads to better results when compared to the other distance measures, showing, in particular,

better performance for the first subgroup of features, i.e. the Prognostic profile. However, since ALS

is a disease that affects the respiratory system, it is expected that the most promising values should

be obtained for the subgroup of features belonging to the Respiratory Profile. A qualitative analysis of

the values obtained is necessary, e.g. by calculating some disease prediction measures, such as accuracy,

precision, recall, F1 score and patient clustering measure, i.e. Rand index (RI), purity, modularity and

normalized mutual information (NMI), in order to evaluate the performance of all the patient similarity

learning approaches on disease prediction. Figure 3.3 shows the networks obtained from the three Profiles,

considering the Minkowski distance and a threshold equal to 0.7. It can be noticed that the graph related

to the Respiratory profile is very distinct in the clusters formed, compared to the others.

Network validation

The clusters C = C1, C2, . . . , Cm are compared to a potentially different partition data P = P1, P2, . . . , Ps,

which represent the expert knowledge of the analyst, prior knowledge of the data in the form of class

40



CHAPTER 3. PATIENT STRATIFICATION USING NETWORK SCIENCE APPROACHES

Figure 3.3: From left to right networks G123, G223, G323.

labels. The clustering results are evaluated using Rand index (RI), which measures the percentage of

correct decisions, can be calculated via:

RI =
TP + TN

TP + TN + FP + FN
=

a+ b(
n
2

) (3.10)

where a is incremented each time two nodes belonging to the same group are joined, while b is a factor

incremented each time an edge is not created between nodes belonging to different groups. The higher the

RI, the better the clustering result is, including values between 0 and 1, with 0 indicating that the two

data clusters do not agree on any pair of points and 1 indicating that the data clustering is exactly the

same. The values obtained for the different network parameters, shown in Figure 3.4, enable a qualitative

evaluation of the similarity measures and thresholds, while also providing an analysis of the composition

of the clusters and the Profiles that best identify them. It is therefore concluded that Cosine similarity is

the most accurate measure for all profiles, with better results for the Respiratory profile, as expected,

and for all threshold values selected, confirming the inferences made examining the values of the network

metrics.

Figure 3.4: Rand index.
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3.3 Summary

The most original approach introduced in this work concerns the exploration of data using the graph

theory, to construct a patient network. In a Patient Similarity Network (PSN), each node represents a

patient and the edge that connects them the existence of similarity between them. The implemented

algorithm considers three variables to build the network, such as Feature Subgroup, Similarity Measures

and Thresholds. Thus, for each Profile, two patients are considered similar if the chosen similarity measure

has a value greater than a certain threshold. A total of 60 networks are constructed and analysed using

different metrics.
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Chapter 4

Patient stratification using Clustering

Classification systems are either supervised or unsupervised, depending on whether they assign new inputs

to one of a finite number of discrete supervised classes or unsupervised categories, respectively [64–66]. In

supervised classification, the mapping from a set of input data vectors to a finite set of discrete class labels

is modeled in terms of some mathematical function. The aim is to minimize an empirical risk functional on

a finite data set of input-output examples [64,65,67]. When the inducer reaches convergence or terminates,

an induced classifier is generated [67]. In unsupervised classification, called clustering or exploratory data

analysis, no labeled data are available [68,69]. In cluster analysis, a group of objects is split up into several

more or less homogeneous subgroups, based on a chosen measure of similarity, such that the similarity

between objects within a subgroup is larger than the similarity between objects belonging to different

subgroups [70]. Both the similarity and the dissimilarity should be examinable in a clear and meaningful

way. Given a set of input patterns X = (x1, . . . ,xj , . . . ,xn), where xi = (xi1, xi2, . . . , xid)
T ∈ Rd and

each measure xid is said to be a feature. Partitional clustering attempts to seek a k -partition of X,

C = (C1, . . . , Ck), with k ≤ n, such that:

– Ci ̸= ∅, i = 1, . . . , k

– ∪k
i=1Ci = X

– Ci ∩ Cj = ∅, i, j = 1, . . . , k, i ̸= j

Figure 4.1 depicts the procedure of cluster analysis with four basic steps. Ideal features should be of use

in distinguishing patterns belonging to different clusters, immune to noise, easy to extract and interpret.

The clustering algorithm design or selection is usually combined with the selection of a corresponding

proximity measure and the construction of a criterion function. Patients are grouped according to whether

they resemble each other. The proximity measure directly affects the formation of the resulting clusters.

Almost all clustering algorithms are explicitly or implicitly connected to some definition of proximity

measure. Once a proximity measure is chosen, the construction of a clustering criterion function makes

the partition of clusters an optimization problem, well defined mathematically.

Clustering is ubiquitous, and a wealth of clustering algorithms has been developed to solve different
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Figure 4.1: Clustering procedure.

problems in specific fields. However, no clustering algorithm can be universally used to solve all problems.

Therefore, it is important to carefully investigate the characteristics of the problem treated, to select or

design an appropriate clustering strategy. The quality of clustering results depends both on how the

algorithms are implemented, and on their ability to find the underlying and hidden knowledge that governs

the data. The traditional clustering algorithms can be divided into 9 categories which mainly contain 26

commonly used ones, summarized in Table 4.1. In Section 4.2, some of these algorithms are implemented

and applied to the ALS dataset. Training clustering algorithms is a random process, thus each time

different results might be obtained for the same algorithm. Therefore, the experiments below are repeated

three times and also the final choices made mediate the results obtained in these three tests. However, for

simplicity, below are reported only the values obtained for the first one. The source of randomness comes

from the random number generator, which is generated by a deterministic process and is seeded with an

initial random number. The seed is a state, storing the previous random number, which generates the

sequence of random numbers.

Category Typical algorithm
Clustering algorithm based on partition K-means, K-medoids, PAM, CLARA, CLARANS
Clustering algorithm based on hierarchy BIRCH, CURE, ROCK, Chameleon
Clustering algorithm based on fuzzy theory FCM, FCS, MM
Clustering algorithm based on distribution DBCLASD, GMM, BGM
Clustering algorithm based on density DBSCAN, OPTICS, Mean-shift
Clustering algorithm based on graph theory CLICK, MST
Clustering algorithm based on grid STING, CLIQUE
Clustering algorithm based on fractal theory FC
Clustering algorithm based on model COBWEB, GMM, BGM, SOM, ART

Table 4.1: Traditional algorithms.

Given a dataset, each clustering algorithm can always generate a division, no matter whether the structure

exists or not. Moreover, different approaches usually lead to different clusters and even for the same

algorithm, parameter identification or the presentation order of input patterns may affect the final results.

Note that the flow chart (Figure 4.1) also includes a feedback pathway cluster analysis is not a one-shot

process. In many circumstances, it needs a series of trials and repetitions. Moreover, there are no universal

and effective criteria to guide the selection of features and clustering schemes. Validation criteria provide

some insights on the quality of clustering solutions, but also the choice of criteria to be used requires effort.

Therefore, in the next sections, the analysis of the clustering algorithms is presented, the parameters
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are set to achieve the best performance and resemble as closely as possible the groups identified by the

clinicians. Generally, there are three categories of testing criteria, i.e. external indices, internal indices, and

relative indices, which are defined on three types of clustering structures, known as partitional clustering,

hierarchical clustering, and individual clusters [69]. A more detailed description of these metrics is given in

Section 4.1. In this chapter, both data clustering and visualization are investigated, discovering important

patterns in the dataset. Data visualization has a long history behind it and can be applied to any step of

the data analysis, to find ways of presenting the results of clustering, so that it is easy to understand the

clustering results and draw valuable conclusions about the dataset. For each Profile, features are selected

that enable good visualisation of the data in 2-dimensions. Different combinations of features are explored

for each Clinical Profile, also following the correlation matrices in Section 2.6, shown in Figures 4.2. In the

following analysis, clusters that visually present almost the same division of the patients, in the xy-plane,

are expected. For the Prognostic Profile ALS-FRS and FVC are chosen, while for the Functional Profile

ALS-FRS-R and R. For the Respiratory Profile, which groups together features different from the previous

ones, FVC and PhrenMeanAmpl are selected. It can be seen that the three Profiles appear similar thanks

to the presence of patients classified as Slow, generally in the top right-hand part of the graph, and those

Fast in the part closest to the origin. Finally, the patients identified as Normal, stay in a range between

the two, as expected.

Figure 4.2: Clinical Profiles features visualization.
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4.1 Clustering evaluation

Evaluating the results of a clustering algorithm is a very important part of the process of clustering data.

In supervised learning, the evaluation of the resulting classification model is an integral part of the process

of developing a classification model, and there are well-accepted evaluation measures and procedures [71].

In unsupervised learning, because of its very nature, cluster evaluation, also known as cluster validation,

is not as well-developed. Thus, it is not easy to determine the quality of a clustering algorithm, giving

rise to multiple evaluation techniques.

4.1.1 Internal validation

Internal validation methods make it possible to establish the quality of the clustering structure without

having access to external information, i.e. they are based on the information provided by the data used as

input to the clustering algorithm. In general, two types of internal validation metrics can be combined,

which are cohesion and separation measures. Cohesion evaluates how closely the elements of the same

cluster are to each other, while separation quantifies the level of separation between clusters. These

measures are also known as internal indices because they are computed from the input data without

any external information [71]. Internal indices are usually employed in conjunction with two clustering

algorithm families, i.e. hierarchical clustering algorithms and partitional algorithms [72]. Internal validation

is used when there is no additional information available. In most cases, the particular metrics used by

the evaluation methods are the same metrics that the clustering algorithm tries to optimize, which can

be counterproductive in determining the quality of a clustering algorithm and deliver unfair validation

results. On the other hand, in the absence of other sources of information, these metrics allow different

algorithms to be compared under the same evaluation criterion [73], yet care must be taken not to report

biased results. Internal evaluation methods are commonly classified according to the type of clustering

algorithm they are used with. For partitional algorithms, metrics based on the proximity matrix, as well

as metrics of cohesion and separation, such as the Silhouette coefficient, are often used. For hierarchical

algorithms, the cophenetic coefficient is the most common. In general, the internal validation value of a

set of k clusters can be decomposed as the sum of the validation values for each cluster.

general validity =

k∑
i=1

wi validity(Ci) (4.1)

This measure of validity can be cohesion, separation, or some combination of both. Quite often, the

weights that appear in the previous expression correspond to cluster size. The individual measures of

cohesion and separation are defined as follows:

cohesion(Ci) =
∑

xi∈Ci,xj∈Ci

proximity(xi,xj) (4.2)

separation(Ci, Cj) =
∑

xi∈Ci,xj∈Cj

proximity(xi,xj) (4.3)
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Both cohesion and separation are both based on a proximity function that determines how similar a pair of

examples is. These metrics can also be defined for prototype-based clustering techniques, where proximity

is measured from data examples to cluster centroids of medoids. It should be noted that the cohesion

metric defined above is equivalent to the cluster SSE (Sum of Squared Errors), also known as SSW (Sum

of Squared Errors Within Cluster), when the proximity function is the squared Euclidean distance:

SSE(Ci) =
∑

xi∈Ci

d(ci,x)
2 =

1

2mi

∑
xi∈Ci,xj∈Cj

d(xi,xj)
2 (4.4)

where xi is an example in the cluster, ci is a cluster representative, e.g. its centroid, and mi is the number

of examples in the cluster Ci. When using the SSE metric, small values indicate a good cluster quality.

This metric is minimized in those clusters that were built from SSE-optimization-based algorithms such as

k-means but are suboptimal for clusters detected using other techniques, such as density-based algorithms,

e.g. DBSCAN. Likewise, we can maximize the distance between clusters using a separation metric. This

approach leads to the between-group sum of squares or SSB:

SSB =

k∑
i=1

mid(ci, c)
2 =

1

2k

k∑
i,j=1

m

K
d(ci, cj)

2 (4.5)

where ci is the mean of the ith cluster and c is the overall mean. Unlike the SSE metric, a good cluster

quality is given by the high SSB values. As before, SSB is biased in favour of algorithms based on

maximizing the separation distances among cluster centroids. As mentioned above, clustering is considered

to be good when it has a high separation between clusters and high cohesion within clusters [74]. Instead

of dealing with separate metrics for cohesion and separation, several metrics try to quantify the level of

separation and cohesion in a single measure [75]. The Dunn index is the ratio of the smallest distance

between data from different clusters and the largest distance between clusters. Again, this ratio should be

maximized [76]:

D = min
1<i<k

{
min

1<j<k,i̸=j

{
δ(Ci, Cj)

max1<l<k ∆Cl

}}
(4.6)

∆Ci = max
xi,xj∈ci

{d(xi,xj)} (4.7)

δ(Ci, Cj) = min
xi∈Ci,xj∈Cj

{d(xi,xj)} (4.8)

The Silhouette coefficient is the most common way to combine the metrics of cohesion and separation in a

single measure. Computing the Silhouette coefficient at a particular point consists of the following steps.

For each example, the average distance a(i) to all the examples in the same cluster, is computed:

a(i) =
1

Ca

∑
j∈Ca,i̸=j

d(i, j) (4.9)
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For each example, the minimum average distance b(i), between the example and the examples contained

in each cluster that do not contain the analyzed example, is given by the following equation:

b(i) = min
Cb ̸=Ca

1

Cb

∑
j∈Cb

d(i, j) (4.10)

For each example, the Silhouette coefficient is determined by the following expression:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(4.11)

The Silhouette coefficient is defined in the interval [−1, 1] for each example in the dataset. Unfortunately,

one of the main drawbacks of the Silhouette coefficient is its high computational complexity, O(dn2),

which makes it impractical when dealing with huge datasets. The global Silhouette coefficient is just the

average of the particular Silhouette coefficients for each example:

S =
1

n

n∑
i=1

s(i) (4.12)

Another validation method uses the similarity matrix of a dataset and the clustering obtained by a

clustering algorithm. The actual proximity matrix can be compared to an ideal version of the proximity

matrix, that is based on the provided clustering. Reordering rows and columns, so that all the examples

of the same cluster appear together, the ideal proximity matrix has a block diagonal structure. A high

correlation between the actual and ideal proximity matrices indicates that the subjects in the same cluster

are close to each other, although it might not be a good measure for density-based clusters. Unfortunately,

the mere construction of the whole proximity matrix is computationally expensive, O(n2), and this

validation method cannot be used without sampling for large datasets.

4.1.2 External validation

External validation methods can be associated with a supervised learning problem. External validation

proceeds by incorporating additional information in the clustering validation process, i.e. external class

labels for the training examples. Since unsupervised learning techniques are primarily used when such

information is not available, external validation methods are not used on most clustering problems.

However, since the ALS dataset contains the progression groups provided by the clinicians, the following

is a description of the metrics, which are used to evaluate the performance of the clustering algorithms in

Section 4.2. Like internal validation methods, it is also possible to classify external metrics depending

on the algorithmic approach of the clustering technique used, to solve a particular clustering problem.

Different external validation metrics can be used to compare two sets of clusters, the first one obtained

by the clustering algorithm under evaluation and the second one provided by an external source. The

result of a clustering algorithm C = C1, C2, . . . , Cm are compared to a potentially different partition data

P = P1, P2, . . . , Ps, which represent the expert knowledge of the analyst, prior knowledge of the data in

the form of class labels. To carry out this analysis, a contingency matrix must be built to evaluate the
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clusters detected by the algorithm. This contingency matrix contains the number of data pairs found in

the same cluster, both in C and in P , the number of data pairs found in the same cluster in C but in

different clusters in P , the number of data pairs found in different clusters in C but in the same cluster

in P , the number of data pairs found in different clusters, both in C and in P . These numbers are

referred to as indicators TP, FP, FN and TN, respectively. From these four indicators, m1 and m2 can be

obtained, which are the number of pairs found in the same cluster in C, i.e. m1 = TP + FP , and the

number of pairs found in the same cluster in P , i.e. m2 = TP + FN . Obviously, the total number of

pairs must be M = TP + FP + FN + TN = n(n− 1)/2. Since multi-class classification is performed, by

dividing patients into Slow, Normal and Fast groups, according to the speed of disease progression, the

measurements for binary classification cannot be directly used. Therefore, macro-averaging [77] is used to

evaluate how the algorithms work overall across the sets of data.

Matching Sets

The first family of external validation methods, that can be used to compare two partitions of data,

consists of those methods that identify the relationship between each cluster detected in C and its natural

correspondence to the classes in the reference result defined by P . Several measures can be defined to

measure the similarity between the clusters in C, obtained by the clustering algorithm, and the clusters in

P , corresponding to the prior knowledge. Precision counts the true positives, i.e. how many examples are

properly classified within the same cluster:

Precision =
TP

TP + FP
=

TP

P
=

pij
pi

(4.13)

Recall evaluates the percentage of elements that are properly included in the same cluster:

Recall =
TP

TP + FN
=

pij
pj

(4.14)

Purity evaluates whether each cluster contains only examples from the same class:

Purity =
∑
i

pi max
pij
pi

(4.15)

In the expressions above, pi = ni/n, pj = nj/n, and pij = nij/n, where nij is the number of examples

belonging to the class i found in the cluster j and ni (nj) is the number of examples in the cluster i (j).

The upper bound of Purity is 1, which indicates perfect match between the partitions.

Peer-to-peer Correlation

Some metrics based on measuring the correlation between pairs are the Jaccard and the Rand coefficients.

The Jaccard coefficient assesses the similarity of the detected clusters C to the provided partition P :

J =
TP

TP + FP + FN
=

∑
ij

(
nij

2

)∑
i

(
ni

2

)
+
∑

j

(
nj

2

)
−
∑

ij

(
nij

2

) (4.16)
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The Rand coefficient is similar to the Jaccard coefficient, yet it is measured against the total dataset, thus

it is equivalent to accuracy in a supervised machine learning setting:

RI =
TP + TN

M
=

(
n
2

)
−

∑
i

(
ni

2

)
+

∑
j

(
nj

2

)
−

∑
ij

(
nij

2

)(
n
2

) (4.17)

The adjusted Rand index is the corrected-for-chance version of the Rand index. Such a correction

for chance establishes a baseline by using the expected similarity of all pair-wise comparisons between

clusterings, specified by a random model. Though the Rand Index may only yield a value between 0 and

1, the adjusted Rand index can yield negative values, if the index is less than the expected index.

ARI =
RI − Expected(RI)

max(RI)− Expected(RI)

=

∑
ij

(
nij

2

)
− [

∑
i

(
ni

2

)
+

∑
j

(
nj

2

)
]/
(
n
2

)
1
2 [
∑

i

(
ni

2

)
+
∑

j

(
nj

2

)
]− [

∑
i

(
ni

2

)
+

∑
j

(
nj

2

)
]/
(
n
2

) (4.18)

Measures Based on Information Theory

A third family of external cluster validation metrics is based on Information Theory concepts, such as

the existing uncertainty in the prediction of the natural classes provided by the partition P . This family

includes basic measures such as entropy and mutual information, as well as their respective normalized

variants. Entropy is a reciprocal measure of purity that allows us to measure the degree of disorder in the

clustering results:

H = −
∑
i

pi

(∑
j

pij
pi

log
pij
pi

)
(4.19)

Mutual information measures the reduction in uncertainty about the clustering results, given the prior

partition:

MI =
∑
i

∑
j

pij log
pij
pipj

(4.20)

Again, pi = ni/n, pj = nj/n, and pij = nij/n. The mutual information has many possible upper bounds,

that might be used to obtain the Normalized Mutual Information (NMI).

MI(C,P ) ≤ min{H(C), H(P )} ≤
√

H(C)H(P ) ≤ 1

2
(H(C) +H(P ))

≤ max{H(C), H(P )} ≤ H(C,P )

(4.21)

The value of NMI also can vary between 0 and 1 and achieves its maximum value when grouping clusterings

are the same as the real cohorts. Unlike the purity, but like the Rand Index, it is symmetric. The approach

used in [78], consists in dividing the mutual information by the arithmetic mean of the entropies:

NMI(C,P ) =
2I(C,P )

H(C) +H(P )
=

−2
∑

ij pij log(pi/pipj)∑
i log pi +

∑
j log pj

(4.22)
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4.2 Clustering Algorithms

4.2.1 K-means

K -means is a well-known partitioning method, which classifies objects into k groups, with k chosen a priori.

Cluster membership is determined by computing the centroid for each group, i.e. the multidimensional

version of the mean, and assigning each object to the group with the closest centroid. This approach

minimizes the overall within-cluster dispersion by iterative reallocation of cluster members. In a general

sense, a k-partitioning algorithm takes as input a set C of objects and an integer k, and outputs a partition

of C into subsets C1, C2, . . . , Ck. It uses the sum of squares as the optimization criterion. Let xi
r be the

rth element of Ci, |Ci| be the number of elements in Ci, and d(xi
r,x

i
s) be the distance between xi

r and xi
s.

The sum of squares criterion is defined by the cost function:

c(Ci) =

|Ci|∑
r=1

|Ci|∑
s=1

(d(xi
r,x

i
s))

2 (4.23)

In particular, as mentioned above, k -means works by calculating the centroid of each cluster Ci, denoted

x−i, and optimizing the cost function 4.24. The goal of the algorithm is to minimize the total cost

c(Ci) + ...+ c(Ck).

c(Ci) =

|Ci|∑
r=1

(d(x−i,xi
r))

2 (4.24)

The time complexity is O(nkl), where n is the number of patterns, k is the number of clusters, and l is

the number of iterations taken by the algorithm to converge. Its space complexity is O(k + n) and it

requires additional space to store the data matrix. Moreover, it is order-independent, thus for a given

initial seed set of cluster centres, it generates the same partition of the data irrespective of the order in

which the patterns are presented to the algorithm. K -means requires k as an input, which in this case is

set to 3, following the number of groups identified by the clinicians. However, two metrics such as the

Elbow method and the Silhouette analysis are used, to confirm the number k of patient groups and to

identify which subgroup of features best identifies this number. The results obtained are shown in Figures

4.3 and 4.4. The Elbow method selects the number of clusters k based on the sum of squared distance

Figure 4.3: Sum of squared distance (K -means Clustering Model).

(SSE) between data points and their assigned clusters’ centroids. The spot where SSE starts to flatten out

and forming an elbow is chosen as the k value. Silhouette analysis can be used to study the separation

distance between the resulting clusters. The Silhouette plot displays a measure of how close each point in
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Figure 4.4: Silhouette (K -means Clustering Model).

one cluster is to points in the neighbouring clusters, thus providing a way to assess parameters, like the

number of clusters, visually. This measure has a range of [−1, 1]. Silhouette coefficients near 1 indicate

that the cluster is dense and well-separated from other clusters. A value of 0 indicates that the sample is

on or very close to the decision boundary between two neighbouring clusters and negative values indicate

that those samples might have been assigned to the wrong cluster. Table 4.2 also shows the obtained

values of the metrics used to evaluate the clusters for the three Profiles. Finally, Figure 4.5 shows the

clusters identified by the algorithm. A comparison with the clusters identified by the clinicians in Figure

3.2, reveals some differences in terms of group composition, which is also underlined by the low NMI

values obtained. Figure 4.6 shows the graphs representing the dataset divided into five clusters.

Profile ARI NMI Silhouette SSE
Prognostic Profile 0.0601 0.0994 0.2359 282.8184
Functional Profile 0.1019 0.1401 0.3323 466.8319
Respiratory Profile 0.0214 0.0409 0.3922 146.2140

Table 4.2: K -means performance for the Clinical Profiles.

Figure 4.5: 3 Clusters of Patients (K -means Clustering Model)

Figure 4.6: 5 Clusters of Patients (K -means Clustering Model)
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4.2.2 K-medoids

K -means clustering iteratively finds the k centroids and assigns every object to the nearest centroid.

Unfortunately, k -means clustering is known to be sensitive to the outliers although it is quite efficient

in terms of the computational time. In k -medoids clustering representative objects, called medoids, are

considered instead of centroids. K -medoids is a clustering algorithm related to the k -means and the

medoidshift algorithms. Both the k -means and k -medoids algorithms are partitioning techniques of

clustering that clusters a dataset of n objects into k clusters, with k known a priori. However, while

k -means attempts to minimize the total squared error, k -medoids minimizes the sum of dissimilarities

between points labeled to be in a cluster and a point designated as the centre of that cluster. A medoid

can be defined as the point in the cluster, whose dissimilarities with all the other points in the cluster

is minimum. Because it is based on the most centrally located object in a cluster, it is less sensitive to

outliers in comparison with the k -means clustering. The samples are grouped into k (k < n) clusters,

where n is the number of patterns and k is the number of clusters assumed to be given and set to 3,

following the number of groups identified by the clinicians. The time complexity is O(k(n− k)2), which

makes it much slower than the k -means algorithm. Again, the Elbow method and the Silhouette analysis

are used. The results obtained are shown below in Figures 4.7 and 4.8. The SSE values obtained are not

very informative, whereas the Silhouette score shows for the Prognostic Profile a higher peak at some

clusters other than three, thus different from what was expected. Tables 4.3 and 4.4 show the ARI and

Figure 4.7: Sum of squared distance (K -medoids Clustering Model).

Figure 4.8: Silhouette (K -medoids Clustering Model).

NMI values, obtained by testing different parameters, such as the distance metrics reported in Section

3.1.3, and the algorithm used to compute the nearest neighbours. Possible values of the method parameter

are alternate, which is faster and pam, which is more accurate and leads to better performance for all

the Profiles, as expected. Finally, Figure 4.9 shows the clusters identified by the pam algorithm, using

Euclidean distance. The results are similar to the ones identified by the clinicians (Figure 3.2), even
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though the ARI and NMI values obtained are not very high. Figure 4.10 shows the graphs representing the

dataset divided into five clusters. No profile shows a substantial visual improvement in the composition

of the clusters, although the Prognostic Profile shows a peak value of the Silhouette in 5, suggesting a

possible further subdivision of patients.

Method Distance Prognostic profile Functional profile Respiratory profile
Euclidean 0.0514 0.0759 0.0157
Manhattan 0.0471 0.0865 0.0174

Alternate Minkowski 0.0453 0.0916 0.0141
Cosine 0.0444 0.0821 0.0123
Correlation 0.0393 0.0282 0.0032
Euclidean 0.0509 0.0606 0.0113
Manhattan 0.0479 0.0864 0.0109

Pam Minkowski 0.0509 0.0775 0.0113
Cosine 0.0396 0.0783 0.0109
Correlation 0.0315 0.0345 0.0007

Table 4.3: K -medoids Adjusted Rand Index (ARI).

Method Distance Prognostic profile Functional profile Respiratory profile
Euclidean 0.0989 0.1179 0.0299
Manhattan 0.0893 0.1315 0.0440

Alternate Minkowski 0.0795 0.1295 0.0367
Cosine 0.0857 0.1242 0.0405
Correlation 0.0814 0.0282 0.0071
Euclidean 0.0925 0.1052 0.0345
Manhattan 0.0959 0.1296 0.0353

Pam Minkowski 0.0925 0.1192 0.0345
Cosine 0.0763 0.1191 0.0341
Correlation 0.0610 0.0556 0.0078

Table 4.4: K -medoids Normalized Mutual Information (NMI).

Figure 4.9: 3 Clusters of Patients (K -medoids Clustering Model)

Figure 4.10: 5 Clusters of Patients (K -medoids Clustering Model)
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4.2.3 DBSCAN

Density-Based Spatial Clustering of Applications with Noise is a non-parametric, density-based clustering

technique. Compared to non-density based clustering methods, the DBSCAN algorithm has unique and

advanced features that are useful when detecting a class of different shapes and sizes. In addition to

the possibility of detecting clusters of arbitrary shapes, DBSCAN is relatively fast when clustering small

and medium datasets and is robust to outliers. The space complexity is O(n), while the complexity of

DBSCAN is at least O(nlog(n)). The most time-consuming step of clustering is the calculation of the

similarity measure between data objects, while the clustering itself requires only a single scan through the

data objects. K -Means clustering may cluster loosely related observations together. Every observation

becomes a part of some cluster eventually, even if the observations are scattered far away in the vector

space. Since clusters depend on the mean value of cluster elements, each data point plays a role in forming

the clusters. A slight change in data points might affect the clustering outcome. This problem is greatly

reduced in DBSCAN, due to the way clusters are formed. Unlike k -Means, where the number of centroids

needs to be specified, DBSCAN requires only two parameters, i.e. epsilon, that is the radius of the circle

to be created around each data point to check the density, and the minimum number of data points

required inside that circle for that data point to be classified as a core point. The key idea of DBSCAN is

that for each object of a cluster, the neighbourhood of a given radius ϵ has to contain at least a minimum

number of objects, which means that the cardinality of the neighbourhood has to exceed some threshold.

The ϵ-neighborhood of an arbitrary point xi is defined as:

Nϵ = {xi ∈ X/dist(xi,xj) < ϵ} (4.25)

where X is the database of objects. If the ϵ–neighbourhoods of a point xi at least contain a minimal number

of points, it is called core point. A point is a core point if Nϵ(xi) > min samples, where min samples is

the minimum number of points in the ϵ-neighborhood of a core point. Epsilon values equal to 0.5, 0.6

and 0.7 are analysed, while the min samples parameter is varied in a range from 5 to 7. Tables 4.5 and

4.6 show the ARI and NMI values for the different distances obtained for an epsilon equal to 0.7, which

yields better performance. Figure 4.11 shows the graphs representing the Profiles clusters obtained by

k -means and DBSCAN, which does not properly identify the clusters, thus suggesting a standard form

of the clusters. For all the Clinical Profiles, DBSCAN clusters patients into almost a single type, which

corresponds to the Normal group. This may be due either to data imbalance or to the inability of the

algorithm to recognise the particular characteristics that make a patient Slow or Fast, confirmed by the

accuracy values obtained.

4.2.4 GMM

Unlike similarity-based clustering, which generates hard partition of data, model-based clustering can

generate soft partition which is sometimes more flexible. Model-based methods use mixture distributions to

fit the data and the conditional probabilities of data points are naturally used to assign probabilistic labels.

Gaussian Mixture Model is one of the most widely used mixture models for clustering [79]. Each Gaussian
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Samples Distance Prognostic profile Functional profile Respiratory profile
Euclidean 0.0079 -0.0008 0.0000
Manhattan 0.0626 -0.0129 0.0164

5 Minkowski 0.0626 -0.0129 0.0164
Cosine 0.0000 0.0000 0.0000
Correlation 0.0000 0.0000 0.0000
Euclidean 0.0079 -0.0017 0.0036
Manhattan 0.0645 -0.0183 0.0197

6 Minkowski 0.0645 -0.0183 0.0197
Cosine 0.0000 0.0000 0.0000
Correlation 0.0000 0.0000 0.0000
Euclidean 0.0079 -0.0017 0.0036
Manhattan 0.0671 -0.0210 0.0141

7 Minkowski 0.0671 -0.0210 0.0141
Cosine 0.0000 0.0000 0.0000
Correlation 0.0000 0.0000 0.0000

Table 4.5: DBSCAN Adjusted Rand Index (ARI).

Samples Distance Prognostic profile Functional profile Respiratory profile
Euclidean 0.0133 0.0013 0.0000
Manhattan 0.1129 0.0139 0.0174

5 Minkowski 0.1129 0.0139 0.0174
Cosine 0.0000 0.0000 0.0000
Correlation 0.0000 0.0000 0.0000
Euclidean 0.0133 0.0026 0.0082
Manhattan 0.1167 0.0140 0.0050

6 Minkowski 0.1167 0.0140 0.0050
Cosine 0.0000 0.0000 0.0000
Correlation 0.0000 0.0000 0.0000
Euclidean 0.0133 0.0026 0.0082
Manhattan 0.1200 0.0171 0.0026

7 Minkowski 0.1200 0.0171 0.0026
Cosine 0.0000 0.0000 0.0000
Correlation 0.0000 0.0000 0.0000

Table 4.6: DBSCAN Normalized Mutual Information (NMI).

Figure 4.11: Comparison between DBSCAN and K -means.

density is called a component of the mixture and has its own mean and covariance. In many applications,

their parameters are determined by maximising likelihood, typically using the Expectation-Maximization

algorithm [80]. From a model-based perspective, each cluster can be mathematically represented by a

parametric distribution. Therefore, the entire dataset is modeled by a mixture of these distributions. The
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most widely used model in practice is the mixture of Gaussians:

P (x|Θ) =

k∑
i=1

αipi(x|θi) (4.26)

where the parameters are Θ = (α1, . . . , αk, θ1, . . . , θk) such that
∑k

i=1 αi = 1 and each pi is a Gaussian

density function parameterized by θi. In other words, k component densities are mixed together with

k mixing coefficients αi. Let X = (x1, . . . ,xn) be a set of data points. The goal is to find Θ such that

p(X|Θ) is a maximum. This is known as the Maximum Likelihood (ML) estimate for Θ. In order to

estimate Θ, it is typical to introduce the logarithmic likelihood function, defined as follows:

L(Θ) = logP (X|Θ) = log

n∏
i=1

P (xi|Θ)

=

n∑
i=1

log

 k∑
j=1

αjpj(xi|θj)

 (4.27)

which is difficult to optimize because it contains the logarithm of the sum. If we know the value of

y = (y1, . . . , yn), the likelihood becomes:

L(Θ) = logP (X,y|Θ) = log

n∏
i=1

P (xi, yi|Θ)

=

n∑
i=1

logP (xi|yi)P (yi) =

n∑
i=1

log(αyi
pyi

(xi|θyi
)) (4.28)

which can be optimized using a variety of techniques, such as the Expectation-Maximization algorithm.

The time complexity is O(nk3), where n is the number of iterations and k is the number of parameters.

Comparison of the k -means algorithm with the EM algorithm for Gaussian mixtures shows that there

is a close similarity [79]. Whereas the k -means algorithm performs a hard assignment of data points to

clusters, in which each data point is associated uniquely with one cluster, the EM algorithm makes a soft

assignment based on the posterior probabilities. The fact that GMM is a generative model gives us a

natural means of determining the optimal number of components for a given dataset. A generative model

is inherently a probability distribution for the dataset, and so the likelihood of the data can be simply

evaluated under the model, using cross-validation to avoid over-fitting. Another means of correcting for

over-fitting is to adjust the model likelihoods using some analytic criteria, such as the Akaike information

criterion (AIC) or the Bayesian information criterion (BIC). The best known of the information criteria

used for determining the number of components is Akaike’s Information Criterion (AIC). The AIC is

calculated for mixtures as:

AIC = −2 logL(Θ) + 2K (4.29)

where K is the number of free parameters in the mixture. The theoretical justification for AIC is that

choosing the minimum value of the AIC asymptotically minimizes the mean Kullback-Leibler information

for discrimination between the proposed distribution and the true distribution, i.e. the model with the
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minimum value of the AIC should be asymptotically closest in Kullback-Leibler distance to the true

model. However, several studies have found that the AIC overestimates the number of components for

mixtures, most likely due to violations of the regularity conditions required for the approximation to hold.

Compared to BIC, the AIC penalizes models with larger numbers of parameters less, leading to the choice

of more mixture components. AIC also has a Bayesian interpretation, leading to the MAP estimate in

regular models, when the amount of the information in the prior is of the same order as the amount of

information in the data. This is a highly informative prior, and will not be plausible in most cases, so

the Bayesian interpretation of AIC is questionable in many situations. The BIC provides a widely used

approximation to the integrated likelihood for regular models. It is defined as:

BIC = 2L(Θ) +K log n (4.30)

where K is the number of free parameters in the mixture model. For regular models, BIC is derived as an

approximation to twice the logarithm integrated likelihood using the Laplace method, but the necessary

regularity conditions do not hold for mixture models in general. However, it is known from the literature

that BIC leads to a consistent estimator of the mixture density and is consistent for choosing the number

of components in a mixture model. Figure 4.12 shows the AIC and BIC as a function of the number of

GMM components for the dataset. The optimal number of clusters is the value that minimizes the AIC or

BIC, so clearly three for the Prognostic Profile, while for the other profiles the choice seems uncertain,

particularly for the Respiratory Profile, where the minimum point is four. AIC and BIC also show a

similar trend for all the Profiles, even if usually the BIC recommends a simpler model.

Figure 4.12: AIC and BIC values (GMM Clustering Model).

Tables 4.7 and 4.8 show the ARI and NMI values, for the three Profiles, obtained by exploring the

parameters of the function. The covariance type option controls the degrees of freedom in the shape of

each cluster. The default is diag , which means that the size of the cluster along each dimension can

be set independently, with the resulting ellipse constrained to align with the axes. A slightly simpler

and faster model is spherical , which constrains the shape of the cluster such that all dimensions are

equal. The resulting clustering will have similar characteristics to that of k -means. A more complex

and computationally expensive model uses full , which allows each cluster to be modeled as an ellipse

with arbitrary orientation. The method used to initialize the weights, the means and the precisions, is

controlled by the init params hyperparameter. It must be one of kmeans or random, i.e. responsibilities

are initialized using k -means or randomly respectively. A Gaussian mixture model attempts to find a
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mixture of multi-dimensional Gaussian probability distributions that best model any input dataset. This is

done using the predict proba method, which returns a matrix of size [n samples, n clusters], which measures

the probability that any point belongs to the given cluster.

Init params Covariance Prognostic profile Functional profile Respiratory profile
full 0.0234 0.0310 0.0172
tied 0.0738 0.0681 0.0206

kmeans
diag 0.0781 0.1317 0.0078
spherical 0.0468 0.0843 0.0215
full 0.0234 0.0037 0.0098
tied 0.0339 0.0060 0.0184

random
diag 0.0922 0.1317 0.0045
spherical 0.0455 0.1197 0.0215

Table 4.7: GMM Adjusted Rand Index (ARI).

Init params Covariance Prognostic profile Functional profile Respiratory profile
full 0.0350 0.0567 0.0436
tied 0.1325 0.0946 0.0422

kmeans
diag 0.1314 0.1571 0.0530
spherical 0.0936 0.1197 0.0370
full 0.0350 0.0052 0.0535
tied 0.0556 0.0291 0.0331

random
diag 0.1294 0.1571 0.0421
spherical 0.0966 0.1431 0.0371

Table 4.8: GMM Normalized Mutual Information (NMI).

This uncertainty can be visualized by making the size of each point proportional to the certainty of its

prediction, as in Figures 4.13 and 4.14.

Figure 4.13: 3 Clusters of Patients (GMM Clustering Model).

Figure 4.14: 5 Clusters of Patients (GMM Clustering Model).
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4.2.5 BGM

A Gaussian Mixture Model assumes the data to be segregated into clusters in such a way that each

data point in a given cluster follows a particular multi-variate Gaussian distribution, independent of

the others. To cluster data in such a model, the posterior probability of a data point needs to be

calculated. An approximate method for this purpose is the Variational Bayesian Inference method, which

incorporates the prior structure of the Gaussian mixture model with almost no penalty for the reasoning

time. Variational reasoning is an extension of Expectation-Maximization that maximizes the lower bound

of model evidence, including a priori, rather than the data likelihood function. The principle is the same,

but the variational approach integrates prior distribution information to increase the regularization limit.

This avoids the singularity, that is often expected to maximize the solution, but it also introduces slight

deviations from the model. The variational method calculation process is usually significantly slower,

but it is usually not slow enough to be used. The primary two parameters of the Bayesian Gaussian

Mixture Class are n components and covariance type, which determine the maximum number of clusters

in the given data and the type of covariance parameters to be used, respectively. In the below-given

steps, the parameter n components is fixed at 3, while the parameter covariance type varies, to explore

the impact of this parameter on the clustering. Due to its Bayesian nature, the variational algorithm

requires more hyperparameters than the EM, the most important of which is the concentration parameter

weight concentration prior. The concentration prior gives most of the components in the hybrid model

a certain weight. The parameter implementation of the Bayesian Gaussian Mixture class proposes two

weight distribution priors, i.e. the Dirichlet distribution finite mixture model and the Dirichlet Process

infinite mixture model. In practical applications, the Dirichlet Process inference algorithm uses a truncated

approximated distribution and a fixed maximum component number. It can be found that the value

of the weight concentration prior parameter has not a great influence on the number of valid activation

components obtained, however when the prior is of the type dirichlet distribution, higher values in terms

of performance are achieved. Moreover, there is no substantial difference in terms of the weights of each

mixture component, which is almost identical for both the prior types, with generally the 60%, 30% and

10% of the patients being randomly allocated to the three classes of patients. Tables 4.9 and 4.10 show

the ARI and NMI values, obtained by comparing different types of weight concentration prior, by keeping

parameters covariance type and init params fixed to full and kmeans respectively, which led to the best

performance for the GMM algorithm. Figures 4.15 and 4.16 shows the clusters obtained considering the

default prior dirichlet process, and wights equal to 0.33, i.e. 1/ncomponents. Again, there are options to

limit the different types of estimated covariance, as in the GMM algorithm.

4.2.6 Hierarchical Clustering

Partitioning algorithms are based on specifying an initial number of groups and iteratively reallocating

objects among groups to convergence. In contrast, hierarchical algorithms combine or divide existing

groups, creating a hierarchical structure that reflects the order in which groups are merged or divided. In

an agglomerative method, which builds the hierarchy by merging, the objects initially belong to a list of
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Prior type Weights Prognostic profile Functional profile Respiratory profile
0.01 0.0234 0.0569 0.0172
0.10 0.0234 0.0294 0.0172

dirichlet process 0.33 0.0234 0.0294 0.0172
0.50 0.0234 0.0682 0.0172
1.00 0.0234 0.0294 0.0172
0.01 0.0234 0.0310 0.0172
0.10 0.0234 0.0310 0.0172

dirichlet distribution 0.33 0.0234 0.0294 0.0172
0.50 0.0234 0.0294 0.0063
1.00 0.0234 0.0294 0.0172

Table 4.9: BGM Adjusted Rand Index (ARI).

Prior type Weights Prognostic profile Functional profile Respiratory profile
0.01 0.0350 0.0675 0.0436
0.10 0.0350 0.0567 0.0436

dirichlet process 0.33 0.0350 0.0567 0.0436
0.50 0.0350 0.0758 0.0436
1.00 0.0350 0.0567 0.0436
0.01 0.0350 0.0567 0.0436
0.10 0.0350 0.0567 0.0436

dirichlet distribution 0.33 0.0350 0.0567 0.0436
0.50 0.0350 0.0567 0.0410
1.00 0.0350 0.0567 0.0436

Table 4.10: BGM Normalized Mutual Information (NMI).

Figure 4.15: 3 Clusters of Patients (BGM Clustering Model).

Figure 4.16: 5 Clusters of Patients (BGM Clustering Model).

singleton sets C1, C2, . . . , Cn. Then a cost function is used to find the pair of sets Ci, Cj from the list to

merge. Once merged, Ci and Cj are removed from the list of sets and replaced with Ci ∪Cj . The value of

their similarity is retained and used to draw the typical result of these techniques, the dendrogram. This

process iterates until all objects are in a single group. Different variants of agglomerative hierarchical

clustering algorithms may use different cost functions. Complete linkage, average linkage, and single
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linkage methods use maximum, average, and minimum distances between the members of two clusters,

respectively. With n objects, the final cluster is obtained after (n−1) steps. The hierarchy is a consequence

of the fact that larger clusters are always obtained by the merger of smaller ones. The space required

for the Hierarchical clustering Technique is very high when the number of data points is high, as the

similarity matrix is stored in the RAM. The space complexity is the order of the square of n, i.e. O(n2)

where n is the number of data points. Since n iterations are performed in each iteration, the similarity

matrix is updated and restored, the time complexity is the order of cube of n, i.e. O(n3) where n is the

number of data points. Hierarchical clustering algorithms have embedded flexibility regarding a level

of granularity, and are more versatile, e.g. can handle any form of similarity and any attribute type.

Agglomerative hierarchical clustering algorithms can be characterized as greedy, in the algorithmic sense.

A sequence of irreversible algorithm steps is used to construct the desired data structure. The following

is an analysis of the algorithm, obtained by modifying the parameters of the AgglomerativeClustering()

function in Python, concerning the number of clusters, the metric used to compute the linkage and the

linkage criterion. Tables 4.11 and 4.12 show the ARI and NMI values as the linkage parameter changes,

considering a number of clusters equal to 3, for all the similarity measures reported in section 3.1.3. The

linkage criterion determines which distance to use between sets of observation. The algorithm will merge

the pairs of the cluster that minimize this criterion. Possible values are complete, which uses the maximum

distances between all observations of the sets, average, which uses the average of the distances of each

observation of the sets, and single, which uses the minimum of the distances between all observations of

the sets. The ward criterion, which minimizes the variance of the clusters being merged, is not considered

as it is only compatible with the Euclidean distance, thus not allowing a more complete and consistent

analysis with those made previously. It is clear that using the average distances between all observations,

the algorithm leads to better performance for all the Profiles.

Linkage Distance Prognostic profile Functional profile Respiratory profile
Euclidean 0.0351 0.0510 0.0150
Manhattan 0.0500 0.0823 0.0199

Complete Minkowski 0.0351 0.0510 0.0150
Cosine 0.0351 0.0510 0.0150
Correlation 0.0288 0.0166 -0.0045
Euclidean 0.0718 0.0913 0.0012
Manhattan 0.0626 0.0770 0.0202

Average Minkowski 0.0718 0.0913 0.0012
Cosine 0.0778 0.0901 0.0002
Correlation 0.0328 0.0412 -0.0013
Euclidean 0.0119 -0.0017 0.0078
Manhattan 0.0119 -0.0008 0.0010

Single Minkowski 0.0119 -0.0017 0.0078
Cosine 0.0119 -0.0017 0.0078
Correlation -0.0041 0.0000 -0.0016

Table 4.11: HC Adjusted Rand Index (ARI).

The dendrogram is the graphical representation of the clustering. Usually, it is drawn backwards, starting

from the final cluster with all the objects and a similarity equal to 0. At the similarity where two clusters

are merged to generate the final cluster, the final cluster splits into the two-parent clusters and so on.
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Linkage Distance Prognostic profile Functional profile Respiratory profile
Euclidean 0.0643 0.0679 0.0363
Manhattan 0.0824 0.1170 0.0447

Complete Minkowski 0.0643 0.0679 0.0363
Cosine 0.0643 0.0679 0.0363
Correlation 0.0533 0.0180 0.0038
Euclidean 0.0942 0.1267 0.0440
Manhattan 0.0823 0.1065 0.0468

Average Minkowski 0.0942 0.1267 0.0440
Cosine 0.1082 0.1261 0.0421
Correlation 0.0522 0.0539 0.0006
Euclidean 0.0085 0.0026 0.0162
Manhattan 0.0085 0.0027 0.0109

Single Minkowski 0.0085 0.0026 0.0162
Cosine 0.0085 0.0026 0.0162
Correlation 0.0048 0.0040 0.0445

Table 4.12: HC Normalized Mutual Information (NMI).

Figure 4.17 represents the dendrograms for the Profiles. The length of the vertical lines measures the

separation between the merged clusters, so that it is common practice to cut the dendrogram at the

similarity corresponding to the longest branches, to obtain significant clusters [81]. The dendrograms

represented show on the y-axis the distance that leads to the best accuracy value, i.e. the Euclidean for

the Prognostic and Functional Profile, and the Manhattan for the Respiratory. The linkage criterion

used is as discussed above. The optimal choice of the number of clusters appears to coincide with that

identified by the clinicians. The graphs representing the Profiles divided into three and five clusters are

shown in Figure 4.18 and 4.19. In this case, for none of the three feature subgroups is there any visual

improvement by further subdividing patients.

Figure 4.17: Dendrograms of the Clinical Profiles (Hierarchical Clustering Model).

Figure 4.18: 3 Clusters of Patients (Hierarchical Clustering Model).

63



CHAPTER 4. PATIENT STRATIFICATION USING CLUSTERING

Figure 4.19: 5 Clusters of Patients (Hierarchical Clustering Model).

4.3 Summary

Clustering algorithms identify subgroups of patients in such a way that the similarity between objects within

a subgroup is greater than the similarity between objects belonging to different subgroups, according to a

certain similarity measure. The clustering algorithms analysed include k -means, k -medoids, DBSSCAN,

Gaussian and Bayesian Mixture model and Hierarchical clustering. For each algorithm, all possible

parameter values of the implemented function were explored and the final clusters are obtained by

maximising the performance of each algorithm. The adjusted rand index and the Normalized Mutual

Information are used to evaluate the obtained clusters. Two main aspects emerge from this analysis, such

as the importance of the choice of the clusters and the setting of the hyperparameters, which have to

be chosen also based on the features considered, and the possibility of identifying 5 groups of patients

through a visual and coefficient analysis, such as that of Silhouette.
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Chapter 5

Patient stratification using a

Clustering Ensemble

Ensemble techniques have been successfully applied in supervised learning to improve the accuracy and

stability of classification algorithms [82,83]. Ensemble techniques require three key issues to be addressed,

i.e. generate a collection of base clusterings from which the ensemble is composed, determine the number

of clusterings required to give a stable accurate solution, combine the ensemble members to produce the

final partition. The term clusterer refers to the clustering algorithms used for the ensemble. The lack of

training labels makes the design of ensemble methods for unsupervised learning much more difficult than

that for supervised learning. Applying different methods, or the same methods with different parameter

choices to the same data, varying clustering results can be obtained. A clustering ensemble framework

typically produces a large set of clustering results and then combines them using a consensus function to

create a final clustering that is considered to encompass all the information contained in the ensemble.

In practice, a cluster ensemble can be obtained in many different ways. Multiple clustering algorithms,

different representations of the data, and different parameter choices can all be used to produce a diverse

set of clustering solutions. One of the arguments for the ensemble approach is the absence of a universal

clustering algorithm since each method has a specific area of its implementation. Some algorithms give

more accurate results on data described by spherical patterns in multidimensional feature space, while

other methods are intended for searching strip-like clusters or groups of other complicated forms. To deal

with complex datasets the advised approach is to apply not a single algorithm, but an organized collection

of highly specialized algorithms. A serious problem lies in the possible ambiguous interpretation of

obtained clustering solutions. Methods based on different approaches can produce incompatible variants of

grouping. In this chapter, a process for aligning the clusters discovered by different clusterers is developed,

which works by measuring the similarity between the clusteres by counting their overlapped data items.

Then, four methods for combining the aligned clusterers are proposed. They are voting, weighted-voting

where the mutual information weights are used in voting, selective voting where the mutual information

weights are used to select a subset of clusterers to vote, and selective weighted-voting where the mutual

65



CHAPTER 5. PATIENT STRATIFICATION USING A CLUSTERING ENSEMBLE

information weights are used not only in selecting but also in voting. A common clustering ensemble

framework is represented in Figure 5.1, which consists of three components: ensemble member generation,

consensus function and evaluation. As can be seen, the input of the clustering ensemble framework is a

given dataset to be clustered, and the output is the final clustering result of this dataset.

Dataset
Ensemble 
member 

generation
Function 

F

λ(1)

λ(2)

λ(t)

Evaluation
Final Clusters 

λ. 
. 
.

Figure 5.1: A generic clustering ensemble framework.

5.1 Generate component clusterers

Let X = x1,x2, . . . ,xn ⊂ Rd denotes an unlabeled data set in a feature space of dimension d. The ith

data item xi is a d-dimensional feature vector [xi1, xi2, . . . , xid]
T , where T denotes vector transpose. Here

all the features are numerical, i.e. xij , with i = 1, . . . , n and j = 1, . . . , d, is numerical. A clusterer

dividing X into k clusters, could be regarded as a label vector λ ∈ Nn, which assigns the data item

xi to the λith cluster, i.e. Cλi , where λi ∈ {1, 2, . . . , k}. A clusterer ensemble with size t comprises

t clusterers, i.e. {λ(1), λ(2), . . . , λ(t)}, which could also be regarded as a label vector λ, λ ∈ Nn and

λ = F({λ(1), λ(2), . . . , λ(t)}), where F(·) is a function corresponding to the combining methods presented

in Section 5.2.

5.2 Combine component clusterers

The algorithms selected in the ensemble are those that performed best, described in detail in Section 4.2.

The simplest combining method is voting, where the ith component of the label vector corresponding

to the ensemble, i.e. λi, is determined by the plurality voting result of λ(1), λ(2), . . . , λ(t). The plurality

is determined in different ways, using mean, median and the mode function. Tables 5.2 and 5.3 show

the results obtained using the complete dataset, i.e. the dataset including the features of all the Clinical

Profiles, and the Clinical Profiles. The second method, i.e. weighted-voting, employs mutual information

between a pair of clusterers [84] to compute the weight for each clusterer. For two label vectors, i.e. λ(a)

and λ(b), suppose there are n objects where ni are in cluster Ci(a), nj are in cluster C
(b)
j , and nij are in

both Ci(a) and Cj(b). The [0, 1]-normalized mutual information ΦNMI can be defined as:

ΦNMI(λ(a), λ(b)) =
2

n

K∑
i=1

K∑
j=1

nij logk2

(
nnij

ninj

)
(5.1)
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Then, for every clusterer, the average mutual information can be computed as follows, with m = 1, . . . , t:

βm =
1

t− 1

t∑
l=1,l ̸=m

ΦNMI(λ(m), λ(l)) (5.2)

The bigger the value of βm is, the less statistical information contained by the m-th clusterer has not

been contained by other clusterers. Therefore, the weights of the clusterers can be defined as:

wm =
1

βmZ
(5.3)

where Z is used to normalize the weights so that wm > 0 and
∑t

m=1 wm = 1. In [85], it is shown that

selective ensemble methods that select a subset of learners to ensemble may be superior to ensembling all

the component learners.

Algorithms Complete Dataset Prognostic profile Functional profile Respiratory profile
K -means 0.1984 0.2047 0.1988 0.2373
K -medoids 0.1956 0.2175 0.2024 0.2388
GMM 0.3991 0.4340 0.3613 0.2695
HC 0.2069 0.3293 0.2375 0.2545

Table 5.1: Clusters weights.

Voting Complete Dataset Prognostic profile Functional profile Respiratory profile
Mean -0.0122 0.0543 0.0827 0.0052
Median 0.0550 0.0542 0.0861 0.0273
Mode 0.0526 0.0351 0.0837 0.0231
Weighted -0.0131 0.0488 0.0691 -0.0036

Table 5.2: Plurality voting Adjusted Rand Index (ARI).

Voting Complete Dataset Prognostic profile Functional profile Respiratory profile
Mean 0.1015 0.0667 0.0781 0.0993
Median 0.0801 0.0580 0.0632 0.0878
Mode 0.0899 0.0589 0.0681 0.0763
Weighted 0.0967 0.0621 0.0693 0.0846

Table 5.3: Plurality voting Normalized Mutual Information (NMI).

Figures 5.2 and 5.3 below show the plots of the Clinical Profiles, obtained using the mean and weighted

mean of the algorithms, which yield the best performance. From the literature on ensemble learning, it

could be found that voting is an effective combining method that is often used in building ensembles

of supervised learning algorithms. However, the figures and values of ARI and NMI, show that voting

performs quite poor. Combining by the arithmetic mean the algorithms best identify the patient groups,

which most closely resemble those identified by the clinicians. A possible explanation can be found in

the almost similar performance of the algorithms. Furthermore, as mentioned in the previous chapters,

each algorithm is more suitable and leads to better performance for different Profiles, so the combination

of all cluster methods enables satisfactory results to be achieved. The mutual information weights, i.e.

{w1, w2, . . . , wt}, can be used to select the clusterers. This is realized by excluding from the ensemble the

clusterers whose mutual information weight is smaller than a threshold. In this work, the threshold is set
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to 1/t = 1/4 = 0.25. The selected clusterers can be combined via voting or weighted-voting, based on

re-normalized mutual information weights of the selected clusterers. Thus, another two combining methods,

i.e. selective voting and selective weighted-voting, are obtained. In the case of the Complete Dataset and

the Functional Profile, only one algorithm has a weight that exceeds the threshold value, so the ensemble

loses meaning. In the case of the Prognostic and the Respiratory Profile, the GMM and HC algorithms are

selected, however, the performance improves insignificantly. The time cost of weighted-voting, selective

voting, and selective weighted-voting are comparable, while that of voting is slightly less because it does

not require the computation of the mutual information weights. However, the time cost of computing the

mutual information weights is negligible if comparing with that of the clustering process. Therefore, the

time cost of building an ensemble of clustering algorithms by the proposed methods is roughly m times

that of training a single clusterer, where m is the number of clusterers that are trained to be considered

for ensembling.

Figure 5.2: Mean Voting Ensemble Clusters.

Figure 5.3: Average Voting Ensemble Clusters.

5.3 Summary

Ensemble techniques have been applied to improve the accuracy and performance of clustering algorithms.

The simplest method of combination is voting, which can be defined by mean, median or mode function.

Weighted voting assigns a weight to the algorithms based on their performance values, so algorithms with

better performance are given more weight. From the results obtained, it can be deduced that the best

grouping is obtained through the mean, which is expected both because the algorithms present almost the

same results in terms of rand index and NMI, and because of the limited number of algorithms considered.
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Chapter 6

Conclusions

Machine Learning models have enormous academic and clinical potential in ALS. ML is a rapidly evolving

field of applied mathematics, focusing on the development and implementation of computer software

that can learn autonomously. In medicine, it has promising diagnostic, prognostic, and risk stratification

applications. With the increasing availability of large datasets, multicentre initiatives, high-performance

computer platforms, open-source analysis suites, the insights provided by flexible ML models are likely

to supersede those gained from conventional statistical approaches. The choice of the ML model needs

to be carefully tailored to a proposed application, based on the characteristics of the available data and

the flexibility, assumption and limitation profile of the candidate model. While ALS research to date

has overwhelmingly relied on conventional ML approaches, emerging models and network architectures

have considerable potential to advance the field. The overarching intention of this work is to outline

best practice recommendations for ML applications in ALS. Machine learning encompasses two main

approaches, i.e. supervised and unsupervised learning. Unsupervised learning can be particularly helpful

in addressing patient stratification problems. Clustering methods can be superior to current clinical

criteria, which are often based on a limited set of clinical observations, rigid thresholds, and conservative

inclusion/exclusion criteria for class membership. Moreover, unsupervised learning methods have been

successfully used in other fields of medicine [2, 86–89], thus giving hope that their use will also boost ALS

research. The new National project, entitled Advanced learning models using Patient profiles and disease

progression patterns for prognostic prediction in ALS (AIpALS), aims to advance precision medicine and

improve supportive care in ALS. This thesis is motivated by the AIpALS project and its results will be

considered and possibly included.

6.1 Achievements

The analysis presented in this work, use a large dataset of genotype-phenotype data and clinical temporal

data, collected by the national FCT project NEUROCLINOMICS2 (2016-2019, PI Sara C. Madeira)

and European JPND project OnWebDuals (2016-2019, PI Mamede de Carvalho). Since they are so
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fundamental to data analytics, descriptive and inferential statistics are explored, which focus on describing

the visible characteristics of a dataset and on making predictions or generalizations about a dataset,

respectively. Moreover, given the importance of the data type in the implementation of ML algorithms,

an analysis of missing values and possible methods for dealing with them is initialised. Finding the best

configuration for the parameters of an algorithm is known as hyperparameter tuning. Properly selecting

hyperparameters can significantly speed up the search for a proper generalized model without sacrificing

performance. In this work, much importance is given to the choice of hyperparameters, which are explored

and analysed to set values that lead to a good performance of the algorithm. The implemented algorithms

are constructed to test all possible values of a parameter, and the choice combines the best values for

each parameter of the function. This allows, in a more detailed future research, the reuse of these

algorithms, which according to the dataset provided as input, will set the hyperparameters to maximise

the performance of the algorithm. The major achievement of the present work concerns the exploration of

data using graph theory to construct a patient network. Several patient networks are constructed, which

allow the subdivision of patients into groups, also in a visual sense, which are then analysed using different

metrics. Patients are compared in a pairwise manner, clinical features are integrated into a vector and

the diagnostic similarity is computed. In detail, parameters such as features to be considered, similarity

distances and thresholds, are set to identify homogeneous clusters and predict diagnoses, i.e. demonstrate

or verify that the clusters created to reflect those identified by clinicians. In addition, clustering algorithms

and ensemble learning strategies are analysed, to identify homogeneous patient groups and the best

approach to treat ALS disease. The results obtained show the ability of the implemented algorithms to

identify homogeneous subgroups of patients, which similarly reflect those provided by clinicians. They

also suggest the possibility, in future research, of dividing patients into a larger number of groups, to

increase the homogeneity within each cluster. As in the case of the network approach, the values that can

be assumed by the parameters are explored, to derive the best results from the algorithms and optimise

their performance. From the analysis reported in this dissertation, it is possible to derive important

information for future ALS research, using the preliminary results and the implemented algorithms. In

particular, the work suggests the possibility of revising the groups of patients identified by the clinicians,

introducing new ones that are more able to describe the peculiarities of the patients. The construction of

more homogeneous subgroups should promote the effectiveness of prognostic prediction models.

6.2 Future Work

Machine Learning models have considerable advantages over traditional statistical approaches for modeling

complex datasets. Most ML models, including the approaches presented in Section 4.2, do not require

stringent assumptions on data characteristics. Despite the pragmatic advantages, the application of

ML models requires a clear understanding of what determines model performance and the potential

pitfalls of specific models. The most common shortcomings concern data sparsity, data bias, and causality

assumptions. Good practice recommendations for model design include the management of missing data,

model overfitting, model validation, and performance reporting. Data sparsity refers to working and
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interpreting limited datasets, which is particularly common in medical applications. Medical data is often

costly, difficult to acquire, frequently require invasive, uncomfortable, or time-consuming procedures. Other

factors contributing to the sparsity of medical data include strict anonymization procedures, requirements

for informed consent, institutional, and cross-border data management regulations, ethics approvals, and

other governance issues. The processing, storage, and labeling of medical data is also costly and often

requires specific funding to upkeep registries, DNA banks, brain banks, biofluid facilities, or magnetic

resonance repositories. Multicenter protocols are particularly challenging and require additional logistics,

harmonization of data acquisition, standardized operating procedures, and bio-sample processing, such

as cooling, freezing, spinning, staining, etc. Most ML models have originally been intended, developed,

and optimized for huge quantities of data. Accordingly, the generalizability of most ML models depends

heavily on the number of samples upon which they can effectively learn. Additionally, the number of

samples required for a specific level of accuracy grows exponentially with the number of features [90].

If the number of samples is restrictively low, then the features lose their discriminating power, as all

samples in the dataset seem very distinct from one another [91]. Also discussing data bias is particularly

pertinent when dealing with medical data. The entire spectrum of data distribution should be represented

in the dataset, just as observed in the overall population, otherwise, the model is not able to generalize

properly. Medical data are particularly prone to suffer from a variety of data biases that affect recorded

data at different analysis levels. The four most common types of bias include the study participation

bias, the study attrition bias, the prognostic factor measurement bias and the outcome measurement

bias [92]. In ALS, study participation bias is by far the most significant. It affects prognostic modeling in

particular, as patients in clinical trials do not reflect the general ALS population. Unfortunately, very

little can be done to correct for participation bias post-hoc, therefore its potential impact needs to be

carefully considered when interpreting the results. Study attrition bias also influences ALS studies, as

data censoring is not always systematically recorded. Prognostic factor measurements can be influenced

by subjective and qualitative medical assessments and by machine bias in imaging data interpretation.

The single most important principle to manage these factors, especially if limited data are available, is

overtly discussing the type of bias affecting a particular study, and openly reporting them. An extension

of the work concerns the possibility of considering all available patient data, i.e. the results of every test

carried out over the years, by solving the data quality problem. Furthermore, the approaches implemented

are evaluated only with numerical data, whereas distributed clinical data possibly included images and

text. The applicability of the proposed methods to different types of data and data gathered from many

independent hospitals should be verified in the future. This would provide a larger dataset allowing for

more in-depth and detailed analysis and thus more accurate stratification. A possible way of integrating

more data into the algorithms is proposed here, where each hospital appointment of a patient is treated

as a different patient. Each item in the dataset is then renamed, with the original patient identification

number in each row, to verify, once clusters have been identified, how patients are classified over time.

For example, a patient who undergoes 10 visits has 10 rows related to him/her in the dataset, which are

renamed as ij where i indicates the patient ID and j the appointment number considered. As a result of

the clustering process, it can be seen whether the various appointments of the patient, now considered
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as different patients, fall within the same progression group. From this analysis, it is then possible to

demonstrate whether the stratification is effective, i.e. if the appointments of the same patient are grouped

in the same cluster. One of the future directions which concern the construction of networks will be to

further investigate which weights should be given to each type of data, and each particular feature. This

weighting could be performed automatically [46], or based on expert knowledge. By using feature weights,

a single network can be constructed, as shown in Figure 3.2, using all the networks built using the Clinical

Profiles, which generates a consensus clustering and general patient profiles. Feedback analysis is also

intended to be conducted, recalculating the distance/similarity between patients using only the relevant

features for the modular structure. Methodologies such as this look promising in terms of knowledge

discovery with little or no prior knowledge, where the conclusions are achieved in an unsupervised fashion

and may help to gain new insights on different diseases. Finally, such modules could be used to train

expert models for classification problems regarding subgroups of patients, possibly discriminating the ones

with different disease progression rates. Future works should further explore these approaches by using

more data, other clustering approaches and similarity measures.
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[76] Joseph C Dunn. Well-separated clusters and optimal fuzzy partitions. Journal of cybernetics,

4(1):95–104, 1974.

[77] Marina Sokolova and Guy Lapalme. A systematic analysis of performance measures for classification

tasks. Information processing & management, 45(4):427–437, 2009.

[78] LNF Ana and Anil K Jain. Robust data clustering. In 2003 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2003. Proceedings., volume 2, pages II–II. IEEE, 2003.

[79] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data

via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):1–22,

1977.

[80] Pak K Chan, Martine DF Schlag, and Jason Y Zien. Spectral k-way ratio-cut partitioning and

clustering. IEEE Transactions on computer-aided design of integrated circuits and systems, 13(9):1088–

1096, 1994.

[81] M Forina, C Armanino, and V Raggio. Clustering with dendrograms on interpretation variables.

Analytica Chimica Acta, 454(1):13–19, 2002.

[82] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[83] Alexey Tsymbal, Mykola Pechenizkiy, and Pádraig Cunningham. Diversity in ensemble feature
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Appendix A

A.1 Network metrics

Threshold Distance Prognostic profile Functional profile Respiratory profile

Euclidean 299926 109523 427244

Manhattan 158116 31556 344289

0.6 Minkowski 375808 211616 449994

Cosine 592499 483200 548500

Correlation 382838 171484 260813

Euclidean 200070 54016 343551

Manhattan 103181 20310 277471

0.7 Minkowski 268654 130279 370025

Cosine 576847 478995 547844

Correlation 341995 135236 257734

Euclidean 101756 25452 237346

Manhattan 54765 12919 228365

0.8 Minkowski 139510 44517 240302

Cosine 539195 467451 544481

Correlation 285393 98688 251916

Euclidean 29748 8770 161164

Manhattan 19184 3396 159618

0.9 Minkowski 36992 15322 161708

Cosine 486709 426310 540025

Correlation 202272 60013 232533

Table A.1: Number of edges m.
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Threshold Distance Complete graph Slow subgraph Normal subgraph Fast subgraph

Euclidean 0.0403 0.0859 0.0560 0.08367

Manhattan 0.0372 0.0787 0.0515 0.07656

0.6 Minkowski 0.0417 0.0876 0.0578 0.0867

Cosine 0.0302 0.0602 0.0422 0.0620

Correlation 0.0284 0.0567 0.0399 0.0594

Euclidean 0.0381 0.0809 0.0529 0.0795

Manhattan 0.0350 0.0733 0.0483 0.0714

0.7 Minkowski 0.0396 0.0844 0.0552 0.0825

Cosine 0.0301 0.0601 0.0421 0.0617

Correlation 0.0282 0.0561 0.0395 0.0587

Euclidean 0.0346 0.0725 0.0479 0.0722

Manhattan 0.0314 0.0648 0.0432 0.0630

0.8 Minkowski 0.0362 0.0762 0.0506 0.0761

Cosine 0.0297 0.0596 0.0415 0.0610

Correlation 0.0290 0.0574 0.0407 0.0601

Euclidean 0.0208 0.0404 0.0286 0.0422

Manhattan 0.0195 0.0369 0.0271 0.0396

0.9 Minkowski 0.0215 0.0418 0.0296 0.0437

Cosine 0.0272 0.0537 0.0376 0.0549

Correlation 0.0278 0.0552 0.0389 0.0574

Table A.2: Prognostic group: average Eigenvector centrality

Threshold Distance Complete graph Slow subgraph Normal subgraph Fast subgraph

Euclidean 0.0011 0.0045 0.0018 0.0055

Manhattan 0.0017 0.0077 0.0031 0.0082

0.6 Minkowski 0.0008 0.0035 0.0012 0.0039

Cosine 0.0000 0.0000 0.0000 0.0000

Correlation 0.0003 0.0011 0.0006 0.0012

Euclidean 0.0015 0.0069 0.0027 0.0073

Manhattan 0.0020 0.0091 0.0037 0.0098

0.7 Minkowski 0.0013 0.0057 0.0020 0.0063

Cosine 0.0000 0.0001 0.0000 0.0002

Correlation 0.0004 0.0013 0.0007 0.0015

Euclidean 0.0023 0.0106 0.0042 0.0103

Manhattan 0.0027 0.0129 0.0050 0.0126

0.8 Minkowski 0.0020 0.0102 0.0036 0.0100

Cosine 0.0000 0.0003 0.0002 0.0004

Correlation 0.0005 0.0015 0.0009 0.0019

Euclidean 0.0015 0.0074 0.0029 0.0064

Manhattan 0.0015 0.0077 0.0029 0.0056

0.9 Minkowski 0.0014 0.0071 0.0028 0.0060

Cosine 0.0002 0.0007 0.0003 0.0007

Correlation 0.0006 0.0020 0.0011 0.0025

Table A.3: Prognostic group: average Betweenness centrality
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Threshold Distance Complete graph Slow subgraph Normal subgraph Fast subgraph

Euclidean 0.6501 0.6862 0.6859 0.6253

Manhattan 0.5476 0.5548 0.5602 0.5113

0.6 Minkowski 0.7275 0.7409 0.7748 0.7058

Cosine 0.9853 0.9867 0.9898 0.9857

Correlation 0.7422 0.7912 0.7707 0.7735

Euclidean 0.5696 0.5818 0.5920 0.5383

Manhattan 0.4980 0.4689 0.5041 0.4405

0.7 Minkowski 0.6214 0.6300 0.6577 0.5890

Cosine 0.9641 0.9747 0.9715 0.9630

Correlation 0.7042 0.7628 0.7296 0.7323

Euclidean 0.4716 0.4383 0.4827 0.4069

Manhattan 0.4137 0.3260 0.4076 0.3046

0.8 Minkowski 0.5017 0.4875 0.5230 0.4504

Cosine 0.9184 0.9297 0.9276 0.9287

Correlation 0.6566 0.7212 0.6751 0.6828

Euclidean 0.3858 0.3218 0.3792 0.3344

Manhattan 0.3665 0.2702 0.3442 0.2802

0.9 Minkowski 0.3953 0.3430 0.3927 0.3499

Cosine 0.8593 0.8567 0.8843 0.8655

Correlation 0.5963 0.6562 0.6046 0.6172

Table A.4: Prognostic group: average Closeness centrality

Threshold Distance Complete graph Slow subgraph Normal subgraph Fast subgraph

Euclidean 0.7596 0.7750 0.7514 0.7639

Manhattan 0.6802 0.6721 0.6863 0.6739

0.6 Minkowski 0.8153 0.8338 0.8094 0.8111

Cosine 0.9872 0.9879 0.9869 0.9871

Correlation 0.8358 0.8565 0.8265 0.8339

Euclidean 0.6822 0.6909 0.6771 0.6859

Manhattan 0.6427 0.6237 0.6535 0.6363

0.7 Minkowski 0.7054 0.7235 0.6981 0.7049

Cosine 0.9738 0.9725 0.9733 0.9761

Correlation 0.8008 0.8213 0.7910 0.8000

Euclidean 0.6019 0.5921 0.6077 0.5979

Manhattan 0.6079 0.5661 0.6256 0.6070

0.8 Minkowski 0.5871 0.6038 0.0036 0.5708

Cosine 0.9580 0.9471 0.9582 0.9690

Correlation 0.7539 0.7719 0.7443 0.7554

Euclidean 0.5467 0.5364 0.5563 0.5369

Manhattan 0.5322 0.5069 0.5465 0.5279

0.9 Minkowski 0.5230 0.5122 0.5291 0.5213

Cosine 0.9490 0.9555 0.9492 0.9418

Correlation 0.6818 0.6928 0.6766 0.6813

Table A.5: Prognostic group: average Clustering coefficient
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Threshold Distance Complete graph Slow subgraph Normal subgraph Fast subgraph

Euclidean 0.0307 0.0813 0.0435 0.0538

Manhattan 0.0251 0.0705 0.0376 0.0248

0.6 Minkowski 0.0366 0.0852 0.0513 0.0744

Cosine 0.0286 0.0575 0.0397 0.0588

Correlation 0.0235 0.0461 0.0316 0.0499

Euclidean 0.0272 0.0747 0.0397 0.0403

Manhattan 0.0234 0.0649 0.0327 0.0225

0.7 Minkowski 0.0292 0.0786 0.0404 0.0479

Cosine 0.0285 0.0574 0.0397 0.0587

Correlation 0.0225 0.0438 0.0299 0.0474

Euclidean 0.0237 0.0670 0.0363 0.0236

Manhattan 0.0222 0.0615 0.0270 0.0168

0.8 Minkowski 0.0262 0.0718 0.0391 0.0368

Cosine 0.0284 0.0573 0.0397 0.0582

Correlation 0.0211 0.0416 0.0277 0.0437

Euclidean 0.0116 0.0338 0.0190 0.0128

Manhattan 0.0088 0.0262 0.0127 0.0077

0.9 Minkowski 0.0128 0.0372 0.0213 0.0149

Cosine 0.0280 0.0571 0.0393 0.0562

Correlation 0.0182 0.0389 0.0241 0.0375

Table A.6: Functional group: average Eigenvector centrality

Threshold Distance Complete graph Slow subgraph Normal subgraph Fast subgraph

Euclidean 0.0017 0.0026 0.0028 0.0102

Manhattan 0.0028 0.0043 0.0052 0.0005

0.6 Minkowski 0.0010 0.0013 0.0015 0.0062

Cosine 0.0000 0.0000 0.0000 0.0000

Correlation 0.0005 0.0020 0.0011 0.0027

Euclidean 0.0022 0.0040 0.0036 0.0039

Manhattan 0.0023 0.0051 0.0023 0.0000

0.7 Minkowski 0.0022 0.0030 0.0030 0.0032

Cosine 0.0000 0.0000 0.0000 0.0001

Correlation 0.0006 0.0021 0.0013 0.0034

Euclidean 0.0025 0.0052 0.0047 0.0001

Manhattan 0.0013 0.0054 0.0012 0.0000

0.8 Minkowski 0.0025 0.0044 0.0044 0.0039

Cosine 0.0000 0.0000 0.0000 0.0002

Correlation 0.0007 0.0020 0.0014 0.0051

Euclidean 0.0004 0.0021 0.0006 0.0000

Manhattan 0.0000 0.0014 0.0000 0.0000

0.9 Minkowski 0.0007 0.0022 0.0009 0.0009

Cosine 0.0000 0.0001 0.0001 0.0009

Correlation 0.0009 0.0021 0.0018 0.0076

Table A.7: Functional group: average Betweenness centrality
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Threshold Distance Complete graph Slow subgraph Normal subgraph Fast subgraph

Euclidean 0.3444 0.5427 0.3635 0.2126

Manhattan 0.1892 0.4155 0.2012 0.0157

0.6 Minkowski 0.4791 0.6419 0.5039 0.4159

Cosine 0.8030 0.8331 0.7879 0.8038

Correlation 0.4724 0.5066 0.4496 0.4636

Euclidean 0.2581 0.4563 0.2788 0.0658

Manhattan 0.1510 0.3731 0.1494 0.0072

0.7 Minkowski 0.3165 0.5215 0.3417 0.1323

Cosine 0.7971 0.8273 0.7858 0.7904

Correlation 0.4445 0.4837 0.4245 0.4066

Euclidean 0.1739 0.3833 0.1796 0.0111

Manhattan 0.1052 0.3306 0.1045 0.0039

0.8 Minkowski 0.2339 0.4269 0.2479 0.0579

Cosine 0.7818 0.8234 0.7763 0.7492

Correlation 0.4155 0.4654 0.3971 0.3313

Euclidean 0.0696 0.2443 0.0580 0.0029

Manhattan 0.0332 0.1458 0.0212 0.0006

0.9 Minkowski 0.0909 0.2781 0.0788 0.0110

Cosine 0.7279 0.8056 0.7347 0.6453

Correlation 0.3723 0.4350 0.3486 0.2170

Table A.8: Functional group: average Closeness centrality

Threshold Distance Complete graph Slow subgraph Normal subgraph Fast subgraph

Euclidean 0.5745 0.6504 0.5765 0.4978

Manhattan 0.5030 0.6434 0.5124 0.3484

0.6 Minkowski 0.6804 0.7465 0.6800 0.6187

Cosine 0.8963 0.9116 0.8863 0.9018

Correlation 0.7014 0.7601 0.6912 0.6610

Euclidean 0.5496 0.6364 0.5561 0.4524

Manhattan 0.4624 0.6750 0.4491 0.2913

0.7 Minkowski 0.6141 0.7036 0.6171 0.5223

Cosine 0.8922 0.9079 0.8824 0.8966

Correlation 0.6888 0.7548 0.6764 0.6455

Euclidean 0.4935 0.6743 0.4923 0.3245

Manhattan 0.4191 0.6611 0.4120 0.2057

0.8 Minkowski 0.5549 0.6582 0.5560 0.4546

Cosine 0.8845 0.9008 0.8754 0.8867

Correlation 0.6815 0.7498 0.6704 0.6330

Euclidean 0.3809 0.6048 0.3730 0.1605

Manhattan 0.4109 0.7049 0.3925 0.1384

0.9 Minkowski 0.4639 0.6263 0.4622 0.2952

Cosine 0.8564 0.8738 0.8512 0.8491

Correlation 0.6732 0.7500 0.6637 0.6124

Table A.9: Functional group: average Clustering coefficient
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Threshold Distance Complete graph Slow subgraph Normal subgraph Fast subgraph

Euclidean 0.0422 0.0926 0.0577 0.0878

Manhattan 0.0395 0.0896 0.0543 0.0853

0.6 Minkowski 0.0430 0.0932 0.0588 0.0883

Cosine 0.0298 0.0594 0.0417 0.0615

Correlation 0.0254 0.0474 0.0361 0.0539

Euclidean 0.0388 0.0885 0.0534 0.0835

Manhattan 0.0385 0.0883 0.0530 0.0786

0.7 Minkowski 0.0389 0.0885 0.0535 0.0846

Cosine 0.0298 0.0594 0.0417 0.0615

Correlation 0.0253 0.0474 0.0360 0.0538

Euclidean 0.0373 0.0868 0.0515 0.0725

Manhattan 0.0370 0.0865 0.0510 0.0705

0.8 Minkowski 0.0373 0.0868 0.0516 0.0734

Cosine 0.0298 0.0594 0.0417 0.0611

Correlation 0.0253 0.0473 0.0359 0.0536

Euclidean 0.0231 0.0530 0.0318 0.0411

Manhattan 0.0230 0.0529 0.0318 0.0410

0.9 Minkowski 0.0231 0.0530 0.0319 0.0411

Cosine 0.0298 0.0594 0.0416 0.0610

Correlation 0.0250 0.0472 0.0356 0.0529

Table A.10: Respiratory group: average Eigenvector centrality

Threshold Distance Complete graph Slow subgraph Normal subgraph Fast subgraph

Euclidean 0.0008 0.0018 0.0014 0.0044

Manhattan 0.0010 0.0028 0.0019 0.0059

0.6 Minkowski 0.0006 0.0014 0.0010 0.0035

Cosine 0.0000 0.0002 0.0001 0.0003

Correlation 0.0001 0.0004 0.0003 0.0008

Euclidean 0.0012 0.0035 0.0021 0.0067

Manhattan 0.0012 0.0038 0.0022 0.0071

0.7 Minkowski 0.0011 0.0035 0.0020 0.0066

Cosine 0.0000 0.0002 0.0001 0.0003

Correlation 0.0001 0.0004 0.0003 0.0008

Euclidean 0.0015 0.0048 0.0028 0.0084

Manhattan 0.0016 0.0050 0.0029 0.0087

0.8 Minkowski 0.0015 0.0047 0.0027 0.0084

Cosine 0.0000 0.0002 0.0001 0.0004

Correlation 0.0002 0.0004 0.0003 0.0009

Euclidean 0.0010 0.0027 0.0019 0.0050

Manhattan 0.0010 0.0027 0.0019 0.0051

0.9 Minkowski 0.0010 0.0026 0.0019 0.0050

Cosine 0.0000 0.0002 0.0001 0.0005

Correlation 0.0002 0.0005 0.0004 0.0011

Table A.11: Respiratory group: average Betweenness centrality
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Threshold Distance Complete graph Slow subgraph Normal subgraph Fast subgraph

Euclidean 0.7231 0.8446 0.7252 0.6714

Manhattan 0.6603 0.7810 0.6600 0.6015

0.6 Minkowski 0.7747 0.8749 0.7877 0.7228

Cosine 0.9233 0.9238 0.9181 0.9372

Correlation 0.4754 0.3692 0.5078 0.5312

Euclidean 0.6378 0.7392 0.6384 0.5725

Manhattan 0.6232 0.7234 0.6233 0.5577

0.7 Minkowski 0.6415 0.7431 0.6424 0.5766

Cosine 0.9224 0.9238 0.9181 0.9321

Correlation 0.4720 0.3681 0.5036 0.5260

Euclidean 0.5745 0.6750 0.5717 0.5131

Manhattan 0.5643 0.6644 0.5611 0.5050

0.8 Minkowski 0.5771 0.6775 0.5747 0.5155

Cosine 0.9186 0.9238 0.9176 0.9186

Correlation 0.4653 0.3651 0.4979 0.5134

Euclidean 0.4802 0.5863 0.4675 0.4222

Manhattan 0.4794 0.5853 0.4665 0.4216

0.9 Minkowski 0.4805 0.5868 0.4678 0.4223

Cosine 0.9120 0.9227 0.9103 0.8988

Correlation 0.4445 0.3562 0.4744 0.4867

Table A.12: Respiratory group: average Closeness centrality

Threshold Distance Complete graph Slow subgraph Normal subgraph Fast subgraph

Euclidean 0.7766 0.8022 0.7700 0.7675

Manhattan 0.7574 0.7928 0.7522 0.7357

0.6 Minkowski 0.8226 0.8468 0.8155 0.8156

Cosine 0.9514 0.9544 0.9470 0.9575

Correlation 0.6944 0.6192 0.7094 0.7418

Euclidean 0.7559 0.7821 0.7509 0.7424

Manhattan 0.7122 0.7474 0.7091 0.6862

0.7 Minkowski 0.7677 0.7925 0.7625 0.7561

Cosine 0.9505 0.9534 0.9462 0.9567

Correlation 0.6905 0.6161 0.7052 0.7377

Euclidean 0.6782 0.7040 0.6758 0.6589

Manhattan 0.6449 0.6769 0.6437 0.6171

0.8 Minkowski 0.6865 0.7122 0.6842 0.6673

Cosine 0.9508 0.9542 0.9466 0.9564

Correlation 0.6816 0.6086 0.6956 0.7289

Euclidean 0.6524 0.7052 0.6471 0.6077

Manhattan 0.6453 0.6996 0.6394 0.6004

0.9 Minkowski 0.6543 0.7068 0.6491 0.6097

Cosine 0.9445 0.9480 0.9401 0.9502

Correlation 0.6508 0.5819 0.6644 0.6946

Table A.13: Respiratory group: average Clustering coefficient
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