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ABSTRACT

The early and asymptomatic stages of Alzheimer’s Disease
(AD), such as mild cognitive impairment (MCI), are hard to
classify, even by experienced physicians. Deep learning ap-
proaches, such as convolutional neural networks (CNNs),
have been shown to help, achieving similar or even bet-
ter results. Although these methods have the advantage
that features are automatically extracted from images rather
than handcrafted, they do not allow for incorporating medi-
cal knowledge. In this thesis we propose to implement cur-
riculum learning (CL) strategies into CNNs designed to di-
agnose healthy subjects, MCI and AD, as a way to incorpo-
rate medical knowledge to boost the networks performance
for early AD diagnosis. CL is a training strategy of the
networks that tries to mimic the way humans, in this case
doctors, learn. Several CL strategies were implemented and
compared to commonly used baseline deep learning mod-
els. The results showed that they clearly improve the F1-
score (up to 3.3%) and overall accuracy (up to 4.5%), par-
ticularly that of MCI (up to 11.3%).

Index Terms— Alzheimer’s Disease; Curriculum
Learning; Convolutional Neural Network; Mild Cognitive
Impairment; Medical Knowledge

1. INTRODUCTION

Alzheimer’s Disease (AD) is a progressive neurodegenera-
tive disorder and one of the leading causes of death in de-
veloped countries, since there is not a cure available yet
[1]. In the early and asymptomatic stages of AD, patients
are classified as having mild cognitive impairment (MCI),
while healthy patients are denominated as normal controls
(NC). The clinical research developed towards finding ther-
apeutics and a cure for AD highly depends on the abil-
ity to diagnose patients accurately and at an early stage of
the disease, when it is still possible to delay the onset of
AD. AD diagnosis is performed by medical doctors, who
have access to patient’s information: medical images, ge-
netic data and cognitive tests, such as Mini Mental State
Examination (MMSE) and Clinica Dementia Ratio (CDR).
However, MCI stages are not easily identified solely by

following these traditional diagnostic approaches. Conse-
quently, AD research benefits from the use of deep learning
methods to make faster, earlier and more accurate diagnosis
[2, 3]. Currently, Convolutional Neural Networks (CNN5s),
which allow features being automatically extracted rather
than handcrafted, have already been successful in AD di-
agnosis through the classification of medical images [3].
Nevertheless, these recent approaches still have some draw-
backs, such as not being optimized to incorporate medical
knowledge and the vulnerability to overfitting problems,
which are often related to the the small size of available
medical datasets.

In this thesis, as a way to overcome these bottlenecks,
we propose to develop and evaluate novel curriculum learn-
ing (CL) strategies to more accurately diagnose early AD.
They will incorporate medical knowledge, such as the doc-
tors training pattern, scores of the patient’s cognitive tests
and regions of interest (ROI) for AD diagnosis, into neural
networks.

2. BACKGROUND AND RELATED WORK

2.1. Alzheimer’s disease

AD slowly destroys memory and the person’s ability to rea-
son and function independently, being the advancing of age
one of its greatest risk factors [3]. It can be characterized
as a combination of cognitive, motor and behavioural de-
terioration, which eventually becomes overwhelming and
devastating both to patients and their families [4].

The appropriate monitoring of AD’s biomarkers results
in earlier diagnosis and better patient care. The most com-
mon methods to measure the evolution of AD’s biomarkers
are 18F-Fluorodeoxyglucose - Positron Emission Tomogra-
phy (FDG-PET), Magnetic Resonance Imaging (MRI) and
cognitive tests. The first two allow to measure functional
and structural changes in the brain, respectively, whereas
the later assess the cognition level of the patients. Early
diagnosis includes recognition of the pre-demented condi-
tions, before clinical symptoms develop, allowing to iden-
tify those who would benefit from therapeutic intervention
and therefore, delaying the onset of the disease. Moreover,



earlier diagnosis can be extremely helpful to signal patients
to clinical trials, which is a crucial step for cure develop-
ment [5].

FDG-PET: Imaging technique that provides information
about physiological and biochemical processes of the body.
In FDG-PET measurements, patients with AD have charac-
teristic reductions in regional brain activity (temporopari-
etal hypometabolism), which are progressive and correlate
with dementia severity [6].

CDR: Global rating instrument used to characterize cogni-
tive and functional performance. The CDR score is cal-
culated on the basis of testing six different cognitive and
behavioral domains: memory, orientation, judgment and
problem solving, community affairs, home and hobbies per-
formance, and personal care. The CDR is based on a dis-
crete scale of 0-5, presented in Figure 1 (a) [7], which re-
flects the degree of Cognitive Impairment (CI).

MMSE: 30-point test used to measure thinking ability or
“cognitive impairment”. The MMSE scores are based in a
continuous scale. The scores and the corresponding level
of dementia are presented in Figure 1 (b) [8].
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Fig. 1. (a) CDR test scores: (b) MMSE test scores.

2.2. Deep learning for AD diagnosis
2.2.1. Relevance of machine learning for AD diagnosis

With new technologies arising, the amount and diversity
of patient data acquired over the years has exponentially
increased, leading to complex and heterogeneous health
datasets. Medical images, usually 3D images with high
resolution, are the most widely used data for AD diagnosis
but also the most complex to analyze, since they contain
complex patterns [3]. However, to analyse thousands of
images and learn their intrinsic discriminative patterns is
extremely laborious, requiring a lot of practise and time,
which most of clinicians do not have, even the most expe-
rienced ones. Consequently, neuroimaging was one of the

first areas of neurology to benefit from the application of
machine learning approaches to improve the interpretation
of such medical images, and thereby, the diagnosis. Deep
learning, which is a specific subfield of machine learning,
have already proven its potential for different classifica-
tion problems. The use of a particular type of deep neural
network, known as a convolutional neural network (CNN),
has led to significant performance improvements for image
classification [9].

2.2.2. Convolutional neural networks

A CNN architecture consists of an input layer, that should
receive image data, hidden layers and an output layer,
which outputs the predicted label/class. The hidden layers
are made up of several convolutional layers stacked with
pooling layers, followed by fully-connected layers and a
softmax or sigmoid layer in the end. The first layers work
as automatic feature extractors, extracting discriminative
features and the last layers allow task-specific classification
using those same features [3].

CNNs were first introduced in 1989 by LeCun and col-
leagues [10]. Currently, for AD detection, the main com-
petitor architectures are 3D CNNs and 2D CNNs (with or
without recurrent neural networks (RNNs)) [3].

3D CNNs: Since neuroimaging techniques mostly provide
3D images, 3D CNNs became popular for AD detection.
However, they are usually complex and associated with a
large number of parameters, which combined with small
sized datasets might result in overfitting [3]. Multiple
AD studies use their own architectures, which can differ
much on the number of convolutional layers used, their
number of filters and activation function, while other fo-
cus on fine tuning well-known architectures. Basaia et
al. [11] used twelve layers and Spasov et al. [12] used
seven, both for predicting NC from AD and MCI subjects.
Moreover, Béackstrom et al. [13] achieved an effective 3D
architecture by using five convolutional layers for feature
extraction, followed by three fully-connected layers for
AD/NC classification. Regarding well-known 3D architec-
tures, Karasawa et al. [14] proposed an effective novel 3D
CNN architecture, based on ResNet. Additionally, Cheng
and Liu [15] used a 3D CNN structure inspired by LeNet
with four convolutional layers for each image patch.

2D CNNs

2D CNNs were the first type of CNNs, which are specif-
ically designed to recognize patterns in 2D images. Most
of the studies that used 2D CNNs for 3D images either ex-
tract 2D information from the images by splitting volumet-
ric data into image slices (without the use of RNNs) or they
rely on the logic that a 3D image can be treated as a se-
quence of 2D images. In the former, studies using three
convolutional layers are most common [16, 17]. Moreover,



Kazemi and Houghten [18] demonstrated that well known
2D structures, such as AlexNet and GoogleNet performed
well on fMRI images for classifying different stages of AD.
In the latter, they use RNNs to extract the inter-slice fea-
tures (similar structures in adjacent slices) while the 2D
CNN captures the intra-slice features (similar structures in
a single slice) [3]. They have been successfully applied to
AD detection by Cheng and Liu [19] and Liu et al. [20].

Some of these methods shown slightly lower accuracies
than the ones obtained with 3D CNNs. However, they train
faster because 3D CNN are associated with a larger number
of trainable parameters than 2D CNNs.

2.3. Curriculum learning

The process of data collection for medical domain studies
is often associated with high costs and complexity. This is
why these studies are usually characterized by limited sam-
ples, i.e. small-sized medical datasets [21]. As explained,
the lack of data in deep learning models can lead to overfit-
ing problems, which are usually solved by regularization
or data augmentation techniques. These solutions, even
though they effectively decrease model complexity, do not
introduce any new information [22].

In recent years, introducing information beyond the one
available in the dataset at hand has become a promising
approach to address the problem of small-sized medical
datasets. In the case of medical datasets the introduction
of medical knowledge has been explored with promising
results. One way of incorporating medical knowledge into
deep learning models is through curriculum learning.

CL is a strategy of training machine learning models by
mimicking the way humans learn. In this strategy, a cur-
riculum is designed, which defines the order in which the
data are presented to the model: the model is first trained
with easier data (or tasks) and gradually more complex data
(or tasks) are introduced, instead of being randomly pre-
sented [23]. Usually the curriculum is predefined (man-
ual strategies). However, since defining a good curriculum
manually is not an easy task, some strategies rely on learn-
ing the curriculum from the data, simultaneously with net-
work training (automatic strategies).

CL have recently shown to improve the performance of
CNNss for several medical image classification tasks [24,
25, 26]. Most approaches use a manual curriculum. For
instance, Tang et al. [24] built a curriculum by categoriz-
ing the severity of patient injuries according to X-ray re-
ports. By using it, they improved thoracic disease diag-
nosis from X-rays (AUC increased 3.19%). Haarburger et
al. [25] used manually selected lesion-patch images for pre
training the model and then fine tuned it with the whole
MRI images, improving the AUC for breast cancer diagno-
sis by 27%. Automatic CL strategies have also been pro-
posed. For example, Maicas et al. [26] proposed a meta

learning approach for breast screening classification from
DCE-MRI, which outperformed baseline approaches (AUC
improved from 86% to 90%). Despite the recent success of
CL strategies for medical image classification, they have
still not been applied to networks for AD diagnosis.

3. METHODOLOGY

3.1. Data

The data used in the implemented strategies were col-
lected from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database. ADNI is a global research study
that actively supports the investigationand development of
treatments that slow or stop the progression of AD. FDG-
PET images of 406 subjects, at baseline and at 6, 12 and
24 month follow-ups were used, labeled as Normal Control
(NC), MCI or AD. For each image, the corresponding CDR
and MMSE scores were also provided. The clinical profile
of the groups studied is presented in Table 1.

Additionaly, ten provided ROIs were delineated and
provided by an experienced physician, Professor Dr. Dur-
val Campos Costa.

Table 1. Demographic and clinical profile of the groups
studied (mean + standard deviation).

Group NC MCI AD
Number of subjects 104 207 95
Number of images 365 714 314
Age 76.9+48 76+73 T765+7.1
Sex (% M) 63.8 66.2 59.9
MMSE 291+1.1 266+32 21.6+44
CDR 0.02+£0.2 05£02 095+0.5

3.1.1. Data pre-processing

All FDG-PET scans were normalized, averaged and co-
registered by ADNI researchers, and were also further nor-
malized in the range of [0,1] and cropped from 60x128x128
to 40x98x98, in order to remove most of the non-relevant
area surrounding the brain.

The ten provided ROIs were rearranged into 8 different
ones: symetrical ROIs with respect to the vertical axis of
the coronal section of the brain were merged into one (since
AD is not related to specific brain hemisphere) and also all
ROIs were merged into one major ROI. Table 2 summarizes
the information about the ROIs provided and the ones used
in the project (first column).



Table 2. Available ROIs provided by Professor Dr. Durval
Campos Costa, their name, percentage of brain area they
occupy and the ROIs selected for this project.

ROIs Name Area (%)
142 1 I_jeft lateral temporal 451
2 Right lateral temporal
344 3 I.deft mesiefl temporal 0.94
4 Right measial temporal
5 5  Inferior frontal gyrus/Orbitofrontal  0.84
6 Inferior anterior cingulate 0.71
748 7 L.eft dorsolateral pari.etal 266
8 Right dorsolateral parietal
9 9 Superior anterior cingulate 1.33
10 10  Posterior cingulate and precuneus  1.28

All All Rois _ 12.29

3.1.2. Data division

To train and test the models a 5-fold cross-validation was
performed. The subjects, and not the images, were sepa-
rated into five folds, to guarantee that brain scans from the
same subject were not present in different sets, avoiding
data leakage. Five models were trained and each model
used one of those folds for testing (around 20% of the
dataset) and the remaining four for training (around 80%
of the dataset). For each train, the subjects in the training
set were further divided into subjects for training the model
(80% out of the subjects of the original training test) and
subjects for the validation of the model (20% out of the
subjects of the original training test). In the end, to convert
the subjects sets into image sets, all images from the same
subject were added to the the correspondent set, originating
the final training set (with 64% of the images), the final
validation set (with 16% of the images) and the final test
set (with 20% of the images).

3.2. Architecture and experimental design

The CL strategies were applied to a 3D-CNN. Its architec-
ture consists of three convolutional blocks where the 3D
convolutional layers are composed of 8, 16 and 32 filters,
respectively, with ReLU activation function. Each convo-
lutional layer is followed by a 3D max-pooling layer and a
batch normalization layer. The output of the last convolu-
tion block is then flattened and fed into a fully connected
classifier network, with 64 units and a softmax layer in the
end, allowing the classification into 3 classes: NC, MCI and
AD.

The experiments were performed on a single NVIDIA
GeForce GTX 1070 GPU with 8GB of memory, in a ma-
chine with an Intel Core i7-6800K @ 3.40GHz CPU. For

training the models, the ADAM optimizer was used and
the categorical cross-entropy was chosen as the loss func-
tion. All models, expect for focal loss, were trained with
a weighted training strategy, where the weight of the class
was inversely proportional to the class frequencies in the
train set. Moreover, a batch size of 16 was used, for a total
number of 100 epochs, using an early stop criterion moni-
toring the validation loss with a patience of 50 epochs.

3.3. Curriculum learning strategies

To improve early AD diagnosis from medical images,
curriculum learning strategies were applied to CNNs. Dif-
ferent strategies were implemented, nine manual, three
automatic, eight use medical knowledge to build the cur-
riculum (such as MMSE and ROI) and four do not. The
manual strategies are further subdivided into complexity
focused strategies, ROI focused strategies, mixed strategies
and replicate automatic strategies, while the automatic ones
are subdivided into self-paced learning and self-paced cur-
riculum learning. All these strategies differ either on how
the curriculum is built or on the information they use to
build it.

3.3.1. Manual

Task strategy: In this approach, the samples are fed into the
network ordered by task complexity. It follows the transfer
learning proposal of [27], yet it is adapted to a CL strat-
egy consisting in two rounds of training: in the first one
the model is trained with only AD and NC samples (sam-
ples from only two classes and easier to distinguish between
them), and in the second round the MCI samples are added
(samples from three classes and harder to distinguish be-
tween them).

MMSE strategy: This strategy consists on feeding the net-
work with samples and tasks ordered by difficulty. There-
fore, the network first trains with a simpler task and the eas-
ier samples of that task and afterwards is challenged with
more difficult ones. This strategy corresponds to 3 rounds
of training, where in the end of the first two rounds, the
last fully connected layer of the model (which contains the
information about the predicted label) was replaced for ran-
domly initicalez one. The MMSE score was used to define
if a sample was easy or hard: an image was considered an
easy sample if its label (NC, MCI and AD) and its corre-
sponding MMSE score were in agreement. For example,
according to the MMSE scale, a score between 24 and 30 is
associated to no dementia (Figure 2), and all images labeled
as NC with MMSE score in that range are considered easy
samples. As depicted in Figure 2, in the first round only the
easy samples of AD and NC (according to the MMSE) were
included, to guarantee that the discriminative features of the
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Fig. 2. Manually defined curriculum based on MMSE. The
NC, MCI and AD samples included in each train are rep-
resented in green, blue and orange, respectively, and their
MMSE scores are presented in the vertical axis.
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Fig. 3. Manually defined curriculum based on MMSE. The
NC, MCI and AD samples included in each train are rep-
resented in green, blue and orange, respectively, and their
CDR scores are presented in the vertical axis.

AD and NC concepts are well learnt, without noisy infor-
mation. Then, in the second round, the MCI samples are
added to the training data. In the last round, the AD hard
samples are added to the training data, which now com-
prises all training samples.

CDR strategy: CDR test scores were used to manually
build the curriculum schematized in Figure 3, also based
on increasing complexity of the samples and increasing
complexity of the tasks.

ROI focused strategy: This manual strategy focus on pro-
gressively adding to the training set more complex regions
of the images. The model was first trained with the dataset
images multiplied by a ROI mask (1 inside the ROI, 0 out-
side), then it was retrained (fine-tuned) using the complete
images. Two ROIs were used, one containing all ROIs for
AD (All ROIs) and another corresponding to the gyrus, cin-
gulate and precuneus, which match the most discriminative
regions for AD (ROI 5+9+10) [28].

Mix 1 strategy (based on CDR and ROI): 1t follows the
strategy described in Figure 3, only that the first two rounds
of training use the samples multiplied by the ROI mask,

while the last train and test are performed using the com-
plete images (without multiplying them by the ROI mask).

Mix 2 strategy (based on MMSE and ROI): Similarly to
the strategy described in figure 2, only the first two rounds
of training use the images multiplied by the ROI mask and
the last train and test are performed using the complete im-
ages.

Mix 3 strategy (based on CDR, MMSE and ROI) In this
strategy the model goes though two training stages: first it
is fed with samples that are considered easy according to
both MMSE and CDR scores, multiplied by the ROI mask.
In the second train, the model trains with all (both easy and
hard) complete brain scans.

Replicate strategy: In this strategy we manually built a
curriculum equivalent to the one automatically generated
in automatic CL strategies. It corresponds to three rounds
of training, where in the first round, the model is fed only
with AD labeled samples, adding the NC labeled samples
in the second round and finishing in the third round by feed-
ing the complete dataset into the model (AD, NC and MCI
samples).

3.3.2. Automatic

Self-paced Learning: Self-paced learning (SPL) is an au-
tomatic CL strategy where data are sorted while training,
based on sample training loss [29]. A threshold, A, is de-
fined and the samples with loss below (above) A are consid-
ered easy (hard). During training the threshold is updated,
according to a growing factor (= 1.5), from including only
the lower loss samples, to including all samples in the final
epochs. This strategy does not take prior medical knowl-
edge into account.

Self-paced Curriculum Learning (SPCL): SPCL results
from the merge of manual CL with SPL, taking into ac-
count both prior knowledge and the learning progress of the
model during training. In this strategy, the predetermined
curriculum, where prior knowledge is encoded, is given as
input and updated at each epoch.

In this paper, a SPCL algorithm was implemented (Al-
gorithm 1), inspired in the implementation performed in
[30], yet adapted to the current classification problem.

In Algorithm 1, training_samples contains the sam-
ples the model should train with, at each epoch. More-
over, «y consists on the curriculum, which is updated dur-
ing training through element wise multiplication (®) with
the losses vector. N represents the total number of training
samples and E represents the total number of epochs.

The predefined curriculum, ~, and the growing func-
tion, A(t), given as input, were defined according to:



Algorithm 1 Self-paced curriculum learning algorithm

1: training_samples = [s1, Sa, ..., SN]

20 Y = [VsysVsos - VSsy] > Predetermined curriculum
30 (1) > Growing function
4: for tin [0, E] do:

5: Train the model using training_samples

6: losses = [ls1,1s2, ..., IN] > Normalized loss
7: v =7vQ®losses > Update curriculum
8
9

threshold = \(t) > Update threshold
: updated = []
10: foreach x € [0, ..., N] do:
11: if 75, <= threshold then:
12: updated = updated + [s;]
13: end if
14: end for
15: training_samples = updated
16: end for

* 7 is an array with values in [0,1], as the normalized
losses vector, where each instance ~yg;, corresponds to
the weight of each training sample, s;. The easier sam-
ples have lower y,; values, since they are the ones that
should be learnt first in the training process. Two SPCL
strategies were implemented, differing only on the pre-
determined curriculum. In SPCL 1, each entry of the
predefined curriculum vector was defined as: v,, =
0.33 if s; is an easy AD or NC sample; 75, = 0.66
if s; is a MCI sample or s, = 0.99 if s; is a hard AD
sample. This follows the same curriculum used in the
manual CL strategy described in Figure 2: first training
with easy AD and NC samples, then MCI samples are
added and afterwards hard AD samples are also added.
In the other strategy, SPCL 2, the predetermined cur-
riculum follows the curriculum of the task strategy and
« is defined as: v, = 0.33 if s; is an AD or NC sample
and vy, = 0.99 if s; is a MCI sample.

 The growing function, A(¢), dictates how the threshold
grows. Similarly to [31], A(t) was defined so training
would start with only 2% of samples at the first itera-
tion, t=0, and then exponentially increase to include all
samples in 3/4 of the maximum epoch, in epoch t=75.

3.4. Baseline methods

The CL strategies were compared to two baseline meth-
ods, Simple model and Focal loss. Although none of the
baseline methods use curriculum learning, the focal loss
model takes into account the model’s feedback and Sam-
ple weights model takes into account medical knowledge
prior to training, such as MMSE scores.

Simple model: The same CNN architecture trained without
CL, i.e. the entire dataset was presented to the network at
every training epoch.

Focal loss: In this method the model was trained like the
Simple model, but the loss function used was a balanced
focal loss (FL) function. The FL function was introduced
to deal with class imbalance and is described by equation 1
[32]:

FL(y,p,) = —a(l — py)° = log(py) (1)

where y = [0, ..., K — 1] is an integer class label (K denotes
the number of classes), p, = [po, ..., Pr—1] is a vector rep-
resenting an estimated probability distribution over the K
classes and « represents the balance factor. FL, according
to d, smoothly adjusts the rate at which easy examples (cor-
rectly classified) are down weighted. In our implementation
we used o = 0.25 and § = 2.

Sample weights: In the Sample weights (SW) strategy the
model was trained in the same way as the Simple model,
only rather than using class weights, sample weights were
implemented. Each sample was associated with a specific
weight during training. This weight specifies how much in-
fluence each sample in a batch should have, in the compu-
tation of the total loss. Here, easier samples are associated
with higher weights in the beginning so that they are given
more relevance. This corresponds to being the first ones
to be added to train in the SPCL strategies. Then, as we
evolve through the epochs, their weight decreases. Con-
trarily, harder samples are associated with lower weights
in the first epochs, which increase as the model progresses
through the epochs. Similarly to SPCL 1, the samples were
divided into 3 groups: A which comprises easy AD and
NC samples, B which comprises MCI samples and C with
comprises hard AD samples. The weight value, weights,,
of each sample, s;, is defined according to table 3, where
i € [1, N] and N corresponds to the total number of train-
ing samples.

Table 3. Value of weights, with respect to s; and the epoch
number (t).

Si

wezghtsi s;i€A s, €B s;€C
t <30 1.33 1 0.77
Epoch number (t) 30 <t < 60 1 1.33 0.77
t> 60 0.77 1 1.33
4. RESULTS

The overall results are presented in Figures 4 and 5. The re-
sults per class, for all methods implemented, are presented
in Figure 6. They show that the use of the CL strategies
improve the overall accuracy and F1-score of the classifica-
tions, up to 4.5% and 4.3%, respectively, when comparing



the Simple model and the best CL strategy, SPCL 1. Re-
garding the baseline models, the Simple model presents the
poorest overall accuracy, F1-score and MCI accuracy. It can
be considered the least suitable for the selected dataset and
for early AD diagnosis. The results show that taking the
model’s feedback into account (Focal loss) or incorporat-
ing medical knowledge into the models (Sample weights)
is advantageous for improving the overall and MCI accu-
racy, being that the later had a higher contribution for such
improvements. However, in the Sample weights strategy,
the improvement of MCI accuracy is achieved at the cost of
AD and NC accuracy, which suffer a considerable decrease
(See Figure 6).

Regarding the manual strategies, the Replicate is the
one that presents highest F1-score and MCI accuracy. How-
ever, the ROI strategy using ROI 5+9+10 is the one with
highest overall accuracy, directly followed by the Replicate
strategy and the Task strategy. On the one hand, comparing
the strategies that incorporate the scores of the cognitive
tests in the process of building the curriculum, the MMSE
has proven to be the best regarding both overall and MCI
accuracy. On the other hand, comparing the strategies that
incorporate ROI information, the use of ROI 5+9+10 has
shown to be advantageous, improving the overall accuracy
by 1%, when compared to All ROI. Regarding the mixed
strategies, we can see that there is no advantage in com-
bining both information of cognitive tests and ROI to build
the curriculum, since the results were the poorest out of all
manual curriculum learning strategies.

Regarding the automatic strategies, we can observe that
SPCL 1 yields the best results. SPCL strategies, in com-
parison with SPL, require the extra work of building the
curriculum. Nevertheless, they complement SPL and prove
that incorporating medical knowledge prior to training into
the models brings an added advantage. SPCL 1 improves
the overall accuracy of SPL by 1.3%, achieving the best
overall performance. Comparing the two SPCL strategies,
the first one shows higher overall and MCI accuracy and
Fl1-score. This shows that combining information about the
MMSE scores and task complexity (SPCL 1 proceeding)
for building the training curriculum is more advantageous
than using only information about task complexity (SPCL
2 proceeding).

Comparing the manual and automatic strategies, by
analysing Figure 6, it can be verified that the manual ones,
despite achieving higher MCI accuracy, they also have
higher uncertainty and higher discrepancy between MCI
and AD/NC accuracies, making the automatic ones the
most robust. Regarding Figures 4 and 5, the SPCL 1 strat-
egy (automatic) has yielded the best results in terms of
overall accuracy and Fl1-score, followed by five strategies,
four of them manual, Task, ROI 5+19+10, Replicate and
MMSE, and one automatic, SPCL 2.

The incorporation of the model’s feedback and medical

knowledge into the models has shown to be effective to im-
prove overall and MCI accuracy. This is true for baseline
methods (Focal loss and Sample weights) as well for all
curriculum learning strategies applied. However, the later
show less discrepancy between MCI and AD/NC accura-
cies, achieving similar MCI accuracy to the Sample weights
model, but always better accuracy for AD and NC (See Fig-
ure 6). Thereby, CL strategies can be considered superior
to all baseline methods, even those which incorporate ex-
tra information. Moreover, the incorporation of medical
knowledge into the process of building the curriculum have
proven to be advantageous for early AD diagnosis, since all
strategies that incorporate it yield better MCI accuracy re-
sults than SPL, Focal loss and Simple model, which do not
take it into account (Figure 6).

To assess the statistical significance of the results ob-
tained, the Wilcoxon signed-rank test was used. Table 4
summarized the p-values of the statistical tests performed
between the results of the curriculum learning strategies
and each of the baselines methods. The p-values were lower
than the threshold (0.05) for four out of the six best curricu-
lum strategies, such as Task, MMSE, Replicate and SPCL
1. This indicates that the differences between their results
and those of the baseline methods are statistically relevant.
Moreover, regarding the SPCL 1 results, they show statis-
tical relevance when compared to the results of the Simple
model and Focal loss, but not when compared to the Sam-
ple weights model. This can be explained by the fact that
these two models use equivalent curricula. In general, it
was verified that the difference between the results of cur-
riculum learning and baseline methods are statistically rele-
vant, which contributes for the robustness of CL strategies.

Additionally, Table 5 presents the p-values between
the results of comparable curriculum learning strategies,
whether by the fact that they use equivalent curricula or
whether to compare the effect of incorporating medical
knowledge vs not incorporating it. In order to further
compare the results of automatic strategies, the p-values
between those that do not incorporate medical knowledge
(SPL) and those that do (SPCL), were obtained. It was ver-
ified that there is no statistically relevance between these
results, despite the fact that their accuracy and F1-scores
differ up to 1.3% and 1.2%, respectively. Additionally, to
compare the results of Task strategy, which only incorpo-
rates the knowledge of task complexity, and MMSE and
CDR, which incorporate both knowledge of task complex-
ity and the cognitive test results, the p-values between their
results were obtained. They reflect that there is a signifi-
cant difference in the results. Moreover, to fairly compare
automatic strategies with manual ones, we obtained the
p-values between the results of these two types of strategies
using equivalent curricula: SPL vs Replicate, SPCL 1 vs
MMSE and SPCL 2 vs Task. The p-values are bellow the
threshold in all these three cases, allowing us to conclude
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that the differences in performance between the results of
manual and automatic strategies are statistically relevant.

Table 4. P-value between the predictions of the baseline
methods and curriculum learning strategies. The p-values
below the threshold (0.05) are highlighted in gray.

Baseline methods

p-value Simple model Focal loss Sample weights
Task 0.006 0.011 0.020
MMSE 0.007 0.003 1.56e—10
CDR 0.098 0.073 0.012
All ROI 0.061 0.062 0.065
ROI 5+9+10 0.061 0.067 0.065
MMSE+ROI 0.024 0.025 0.064
CDR+ROI 0.046 0.037 0.027
MMSE+CDR+ROI 0.026 0.005 0.003
Replicate 0.004 0.019 0.014
SPL 0.052 0.065 0.061
SPCL 1 0.038 0.028 0.075
SPCL 2 0.056 0.052 0.05

Table 5. P-value between the predictions of curriculum
learning strategies. The p-values below the threshold (0.05)
are highlighted in gray.

p-value SPL Task SPCL 1 SPCL 2
SPCL 1 0.087 — — —
SPCL 2 0.12 — — —
Replicate  0.009 — — —
Task — — 7.33e—5
MMSE — 5.10e—11 2.41e—6 —
CDR — 3.04e—4 — —

5. CONCLUSION AND FUTURE WORK

This thesis was, as far as we know, the first work inves-
tigating the use of curriculum learning for early AD di-
agnosis from neuroimaging. Twelve different CL strate-
gies, nine manual and three automatic, incorporating dif-
ferent kinds of medical knowledge were implemented. The
knowledge could be in the form of task complexity (Task
and SPCL 2), ROI information (ROI all and ROI 5+9+10)
or a combination of different types of information, such as
mixing cognitive test scores with task complexity (MMSE,
CDR, SPCL 1) or with ROI information (Mix 1, Mix 2 and
Mix 3). Moreover, one automatic strategy (SPL) and one
manual (Replicate) were also defined, for comparison pur-
poses, since none of them incorporated any kind of medical
knowledge.

The results show that all the proposed CL strategies
improve both overall and MCI classification (early AD)
performances. SPCL 1 has obtained the highest overall
accuracy and Fl-score, making the automatic strategies
the preferred ones. The incorporation of medical informa-
tion (Task complexity information, ROI information and
MMSE/CDR scores) in the CL strategies has proven to be
advantageous in all cases, improving the overall accuracy,
F1-score and MCI accuracy.

The results obtained in this paper show that the order in
which data is fed into the CNNs, for early AD diagnosis, is
meaningful. That said, CL strategies incorporating medical
knowledge when building the curriculum allow for a bet-
ter earlier AD diagnosis, which can contribute to the ongo-
ing search for treatments to delay the onset or prevent this
devastating disease. Even though the results obtained were
distinctly positive, there is still a lot of room for improve-
ments. For example, other types of external information,
such as medical imaging reports or evidence maps obtained
during training, could be used for developing different cur-
ricula for CL strategies. Moreover, to make a more accurate
early AD prediction, these strategies could be applied to a
dataset that allows for MClIc vs MClnc distinction, allow-
ing to distinguish early AD from other unrelated dementia
cases. These strategies could also be applied to other type
of input images, different from PET, such as MRI or others,
or yet adapted to the diagnosis of other neurogenerative dis-
orders, like Parkinson’s or Huntington’s disease.
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