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ABSTRACT 

Countries are making an effort to reach environmental goals to fight climate change. Buildings play a 

big part in the countries’ energy consumption, thus steps are being taken to reduce it through energy 

efficiency measures. To do so, it is important to understand the energy demand in buildings and its 

influencing parameters, having become the focus of many research studies. Universities can and 

should lead this pursuit of sustainability. However, having access to complex data regarding energy 

consumption is frequently a challenge. 

The purpose of this work is to develop a model to forecast end-uses energy demand in university 

buildings, using data commonly available in universities, such as a total electricity load and 

equipment’s and activity periods data, and try to find a relation between energy consumption and the 

type of activities of the building.  

Two buildings in the Alameda campus of IST served as case study: the Civil Building for model 

validation, and South Tower to test the extend of the model performance. Results show better 

performance for the Civil building than the South Tower, with an error of 12.57% and 22.36%, 

respectively. However, they show potential to be improved. The relation between energy consumption 

and types of areas in the building, seems to be greatly influenced by the existence of technical rooms, 

and other spaces such as offices and labs. The building’s electricity intensity for university buildings is 

found to range from 64.9 to 131.7 kWh/m2. HVAC is the most consuming end-use (24.62-70.53 

kWh/m2), followed by lighting (16.97-30.53 kWh/m2) and electronics (15.26-20.24 kWh/m2). Other 

equipment like pumps, elevators and lab equipment have a low significance (8.05-9.96 kWh/m2). 
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RESUMO 

Vários países têm se focado em combater as alterações climáticas. Para este efeito, estes países têm 

se comprometido a atingir diversas metas ambientais no que respeita ao consumo energético e às 

emissões de poluentes, nomeadamente CO2. Para alcançar estas metas é necessário reduzir o 

consumo total e investir na evolução da energia renovável. Apesar destas medidas dependerem da 

ação dos governos para setores como o dos transportes e da indústria, o setor dos edifícios pode 

acelerar este processo. Este setor contribui em grande parte para o consumo total de cada país e por 

isso é crucial reduzir o seu consumo através de medidas de eficiência energética. Mas primeiro é 

necessário compreender o consumo energético nos edifícios e os parâmetros que o influenciam, 

através de estudos. Sendo universidades locais de investigação e inovação científica, estas podem e 

devem ser líderes nesta procura de sustentabilidade. No entanto, para tal acontecer é necessário ter 

acesso a dados relativos ao consumo energético, algo que nem sempre é possível. 

Assim, o objetivo deste trabalho é desenvolver um modelo de desagregação energética em 

universidades nos diversos consumos finais, que utilize informação usualmente acessível a várias 

universidades. Estes dados incluem consumo elétrico total e dados relativo a equipamentos e aos 

períodos de atividade, como o calendário escolar. Ademais, uma análise será feita de modo a obter 

uma relação entre o consumo energético e os tipos de atividades que ocorrem nos edifícios. 

Para este trabalho dois edifícios do campus da Alameda do IST serviram de caso de estudo. O edifício 

de Civil serviu para validar o modelo, enquanto a Torre Sul serviu de teste de implementação do 

modelo noutros edifícios, de modo a analisar a performance do modelo. Resultados do caso de estudo 

mostraram que o modelo se comportou melhor para o edifício de Civil do que para a Torre Sul, 

apresentando erros relativos de 12,57% e 22,36%, respetivamente, contudo os resultados apontam 

para possíveis melhorias. A relação entre o consumo energético e o tipo de espaços por edifício 

aparenta ser fortemente influenciada pela existência de salas técnicas e também por outros espaços, 

nomeadamente gabinetes e laboratórios. Os resultados mostram que a intensidade energética de 

edifício para edifícios universitários varia entre 64,9 e 131,7 kWh/m2. O principal consumo final é o 

AVAC, variando entre 24,62 e 70,53 kWh/m2, seguido da iluminação (16,97-30,53 kWh/m2) e de 

equipamentos eletrónicos (15,26-20,24 kWh/m2). Finalmente, outros equipamentos como bombas de 

drenagem, elevadores e equipamento de laboratório têm pouco impacto no consumo total do edifício 

(8,05-9,96 kWh/m2).  

 

Palavras-chave: Consumo de Eletricidade; Energia em Edifícios; Modelação; Algoritmos Genéticos 

(GA); Intensidade Energética de Edifício   
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1 Introduction 

1.1 Motivation  

The demand for electricity worldwide has been increasing each year having reached approximately 

24740 TWh in 2018 [1]. The transportation and industry sectors have been responsible for most of the 

electricity use, however with the increasing investment on HVAC systems to provide thermal comfort, 

the electricity demand in residential and service buildings has increased considerably in the past years. 

From 1990 to 2000, the building consumption related to cooling increased by 14.6% each year, and it 

is expected that this consumption will increase at a rate of 3.4% a year from 2000 to 2030 [2]. 

Buildings account, on average, for around 40% of the energy use in Europe and one third of the CO2 

emissions (Figure 1 and Figure 2, respectively). 

 

 

 

 

 

  

 

 

It is believed that more than 50% of the energy consumption could be reduced by implementing 

measures to improve energy efficiency [5]. In terms of final energy consumption in buildings, natural 

gas has the highest share (36%), followed by electricity (32%). In Portugal, however, the energy 

demand in buildings is only 30% of the total national energy consumption [2]. This is due to the more 

moderate climate in the Iberian Peninsula that reduces the need for cooling and specially heating. This 

leads to a higher share of the energy demand in buildings being attributed to electricity (41% in 

residential and 77% in service buildings) [5]. 

Following the Council of Ministers approval of the “ECO.AP 2030“ [6], Public Administration entities 

have pledged to reduce the energy consumption of their buildings by 40% until 2030. Many universities 

have committed to reduce the energy consumption in their campi [7]. Knowing the energy demand of 

Industry
24%

Transports
28%

Buildings
37%

Others
11%

Figure 1 - Total energy consumption per sector 

in Europe (2019) [3] 
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4%

Figure 2 - CO2 emission per sector in Europe (2019)  [4] 
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each building is important in order to analyse the current situation and find more efficient energy 

systems. 

Modelling energy demand has, therefore, become of crucial importance. However, for most buildings 

this is still a difficult process due to the lack of public access to monitoring or detailed information 

regarding either its occupancy and their behaviour, as well as specific information about the energy 

systems installed in the buildings or their constructive solutions. Thus, it is of high importance to 

understand better and forecast how energy is used, especially on services buildings where electricity 

demand is higher, implying a high environmental impact. 

 

1.2 Objectives 

This study aims to address this problem by developing a top-down modelling framework to assess 

buildings’ end-uses electricity demand by analysing the hourly load of total electricity demand, 

equipment use by type of space and activity period, developing an optimization model to estimate the 

main end-uses (lighting, HVAC, electronics, and Others). This information will allow institutions to 

analyse their campi buildings in more detail, comparing and benchmarking with other high education 

institutions, by an electricity intensity index by type of end-use, being able to address possible causes 

of inefficiency on electricity demand, and readjust if needed, without harming or influencing end-

users’ comfort. 

By convenience of accessing data and for model validation purposes, this study will use IST as case 

study.  

This study has the following goals: 

• Analyse the hourly electricity demand of a higher education building; 

• Characterize equipment use by type of area and activity period; 

• Explore correlations between different electricity demand influencing parameters; 

• Disaggregate the electricity demand by end-use; 

• Report a range of end-uses electricity demand index per area unit (kWh/m2) according to each 

type of building. 

 

1.3 Structure of the thesis 

This study is organized as follows: 
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• Section 2: A comprehensive literature review about the different modelling methodology 

approaches and forecast optimization models is presented; 

• Section 3: the methodology regarding how the correlation between different influencing 

parameters of electricity demand in buildings is described followed by how the model was 

developed; 

• Section 4:  a description of the case study characteristics and data collection is reported; 

• Section 5: the model validation with IST case-study is performed, followed by the analysis of 

the model implementation to other buildings; 

• Section 6: the final statements and conclusions are made. 
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2 Literature review 

2.1 Modelling electricity demand in buildings 

Modelling electricity demand in buildings has been the focus of many studies due to the large impact 

to the total energy demand and CO2 emissions worldwide. 

Specifically, for services’ buildings there is a lot of energy overconsumption due to the lack of personal 

responsibility from the occupants. Studies show that implementing feedback systems of the energy 

consumption in residential buildings lead to energy reduction since the occupants have the incentive 

to reduce their bills [8,9]. However, these incentives do not exist for most service buildings occupants 

leading to poor equipment usage, such as leaving the lights or electrical equipment on after being 

used. During the period from 2000 to 2018 the energy consumption in the residential sector has 

decreased by 4.5%, while in the services sector the energy consumption has increased by 20.2%. In 

2018 service buildings accounted for 34.5% of the energy demand in buildings and this value is 

expected to increase [10]. 

These studies have different purposes, such as forecasting electricity demand, analysing the effects of 

retrofitting measures or studying the parameters that influence energy consumption in buildings. To 

do so, these studies rely on various types of data, such as total and end-use load profiles, occupancy 

schedules, weather data. However, to effectively model electricity demand in buildings, there is the 

need for higher granularity of data, normally with hourly time-steps, which is not easy to access. A 

study intending to size an electric generation system found challenging to generate load profiles since 

the local utility company would only supply data from the previous month [11].  

Smart meters can provide hourly or sub-hourly data on electrical load, allowing for more detailed 

information of a building or house. However, overall monitoring is not enough to totally understand 

consumption in a building. In order to have a more detailed and customized energy efficiency 

measures, either machine learning algorithms or a higher number of smart meters would be needed, 

which requires a big investment making it unviable for a larger institution [12]. 

Thus, it is important to understand which are the influencing parameters in the building’s energy 

consumption. There are many different parameters that can influence the energy consumption in a 

building, such as climatic factors (temperature, solar radiation, geographical location), construction 

solutions (insulation, architecture) or activity related parameters. For example, more moderate 

climates have lower HVAC needs, while locations further from the Equator line have higher lighting 

demand due to less daylight time. F. Amara et al [13] found that temperature is one of the most 
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important factors that influence energy consumption. R. Mena et al [14] studied the energy 

consumption on a solar energy research centre and found that temperature and solar radiation were 

both influencing factors. 

Occupancy and schedules also impact the energy consumption. Not only in the more obvious way, 

more people in a room, the bigger the electricity demand will be, but also the schedule of occupancy. 

The type of activity in the building is also an influencing factor. An office will consume more electricity 

on computers and other electronic equipment, while gyms will spend more energy on HVAC. X. Gui et 

al [7] studied the impact that changing the academic calendar could have on the energy demand. They 

found that by changing from a semester to trimester system could reduce the electricity consumption. 

The building’s characteristics and construction materials also have an impact on building consumption. 

The walls’ materials could present more or less insulation, leading to different thermal gains. The same 

for the window area and material, type of glazing, or the orientation of the building, all these affect 

the thermal gains of the building. Therefore, there are many building characteristics that influence the 

envelope gains or losses, and consequently, the energy demand of the building. 

B. Arregi & R. Garay [15] analysed the energy consumption of three different buildings before and after 

retrofitting measures. The buildings studied were a university in the UK, a school in Sweden and an 

hospital in Spain. They found that the university showed a clear relation between temperature and 

consumption before retrofitting. That relation disappeared afterwards, and the consumption became 

constant throughout the seasons. The other buildings did not show the same relation between 

temperature and energy demand. The hospital showed the least difference between energy demand 

during the day and night, due to the high equipment usage during the night. 

J. C. Wang [16] conducted a study on energy consumption for education buildings of different 

education levels in Taiwan. Energy indicators per unit area were calculated and it was found that the 

higher the education level, the higher the indicators were. There was also a clear relation between the 

consumption and the temperature, since the months of higher temperature had higher energy 

consumption. 

These studies show the importance of understanding the parameters that can affect building 

consumption, but also comprehending the type of activities that occur in the building being studied, 

since this influences the role of these parameters in the energy demand. 

However, this information is not always available. While meteorological data is easily accessible for 

numerous places in the world, this is not the case for occupancy, schedules or even building 
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characteristics for example. Several studies try to develop prediction and forecasting models of this 

influencing factors to overcome this problem. 

Agnetis et al [17] try to develop models to predict the occupancy in buildings by using information 

from sensors and wireless sensor networks. K. Song et al [18] conducted a study with the goal of 

developing a tool that optimizes the university courses timetables to reduce the energy demand. This 

optimization would allow for an inexpensive energy efficiency improvement that would not require 

students to change their behaviours. Another study tried to find a correlation between occupation and 

energy demand, by detecting internet connections/disconnections and logging them throughout a 

period of three weeks [19]. 

All these studies highlight the importance of having access to information on energy consumption, 

load profiles, occupancy schedules and others to allow for research. Although there are various ways 

to get around the lack of more detailed information, it always requires assumptions and 

approximations. Therefore, a lot of work has been put on developing models that can forecast the 

energy consumption in buildings with information more easily accessible, such as weather data. 

 

2.2 Optimization of prediction algorithms 

There are many different models that try to predict energy consumption, and they are grouped into 

different methods. Stochastic time series models analyse time series data in order to separate it into 

different components, trend, seasonality and residual. The more used models from this family are the 

ARIMA, ARMA and autoregressive models. These models provide good results for linear systems, and 

when there is a large amount of data to analyse. However, they struggle for non-linear systems [20]. 

Regression models, like linear regression (LR) and multiple linear regression (MLR), try to find the 

relation between energy consumption and one or more parameters. Just as for stochastic models, they 

provide good results for linear systems, and they allow for a clear understanding of the relation 

between the independent and dependent variables. S. Asadi et al [21] developed a MLR model to 

understand the relation between consumption and 17 building characteristics for different building 

shapes. This allowed for a clear observation of the influence of each one of those parameters in the 

electricity demand. 

These models are simple and easy to implement, however they still present issues for nonlinear 

systems. With the development of computers, artificial intelligence (AI) methods, such as artificial 
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neural networks (ANN), support vector regression (SVR) and genetic algorithms (GA) have been the 

focus of many studies, since they can tackle this issue. 

ANNs are one of the most used models in building consumption forecasting [22]. They are based on 

the way the human brain works, and try to replicate its functioning to solve problems, by creating a 

network of neurons that transmit information from one another. These neurons are divided into 

different layers, input, output, and hidden layers. There is one input and one output layer, but there 

could be more than one hidden layer. The input layer received the input data, while the output layer 

provided the results of the evaluation. The hidden layers are responsible for predicting the results 

based on the input. This is done through training, using previous data to understand the relation 

between input and output. ANNs also have drawbacks, as the training requires a significant amount of 

data, which is often lacking, and it is time consuming to train and to run the model.  

D. Hawkins et al [23] studied the effects of adding different parameters to an ANN that predicts energy 

consumption. They found that the error reduced when building parameters were added to the ANN. 

H. Dagdougui et al [24] developed an ANN to forecast energy consumption in district buildings and 

analysed the influence of having different model design parameters, like the number of neurons, layers 

or inputs.  

Support vector machine (SVM) is a machine learning algorithm based on statistical learning theory. It 

separates sets of data into two different groups. Usually, this data cannot be separated linearly so the 

SVM projects this data into a hyperplane of higher dimension, by using kernel functions. There are 

different kernel functions, and many studies about them, due to their importance in the performance 

of the model [25]. SVR is a variant of SVM used for regression problems, where the linear relation 

between the separated data is determined. SVR is a good model for pattern recognition, and like other 

AI models, it provides good results for nonlinear problems. However, it requires a large computation 

time, even larger than ANNs. As mentioned, the kernel functions are very important to the model, the 

wrong choice can lead to very poor results [26]. 

J. Massana et al [27] studied the influence of taking into account different parameters for three 

different models, a MLR, an ANN and a SVR. Generally, the ANN and the SVR provided significantly 

better results than the MLR, however they also have much larger computation times. Reducing the 

parameters used to only outdoor temperature and occupancy attributes improved the computation 

time significantly, while also producing results with low errors. 

Genetic algorithm (GA) is a heuristic model inspired by Darwin’s theory of evolution. It generates many 

different solutions, and the best ones survive to the next generation, so that the optimal solution, or 
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at least a good solution, can be obtained. It is one of the most used models for optimization problems, 

especially for nonlinear optimization. Genetic algorithms can solve various types of optimization 

problems, regardless of their linearity, stationarity or if there is random noise. The model generates 

many different solutions, that are independent of one another, so many different possibilities can be 

evaluated, with each parameter in analysis having a wide range of possible exploration from the 

solutions. However, like the other AI methods, it has a higher computation time than stochastic 

methods. It is also important to select the appropriate parameters, specifically, the fitness function, 

the crossover and mutation rates and the selection criteria [28]. 

H. B. Gunay et al [29] used a genetic algorithm to help disaggregate the total loads of an academic 

office building into three different end-uses: lighting and plug loads, air handling units (AHUs), and 

chillers. The GA was used to determine the parameters that related each end-use load with 

information from equipment like fans and pumps, for example, when they are on or off, the air 

pressure or the temperature. They applied different constraints to the usage of each end-use, such as, 

the electricity used by chillers should increase with temperature, or the electricity demand from pumps 

is higher when the air pressure increases. 

F. Rosso et al [30] conducted a study on different possible retrofit measures and their impacts on 

energy consumption as well as cost of implementing those measures, where a genetic algorithm was 

used to determine the best options from different perspectives. The initial investment of the 

measures, the energy cost, the energy demand and the CO2 emissions were evaluated for each possible 

combination of measures, so that the building’s stakeholder could choose the best solution taking into 

account their own priorities. 

Energy indicators are a good way to analyse the consumption in a building, and there are some studies 

that focus on this. As mentioned in the previous section J. C. Wang. [16] determined the energy 

indicators of different educational buildings in Taiwan and collected information through other 

research papers about these indicators for different educational buildings from various countries. B. 

Howard et al [31] estimated the energy indicators in Manhattan for different types of buildings, such 

as offices, residential, schools and others. 
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Figure 3 - Simplified view of the methodology 

3 Methodology 

To create a model that is able to disaggregate the hourly electricity loads into the different end-uses, 

a genetic algorithm optimization was developed.  

First, data was collected and processed to remove any errors. Afterwards, this data was analysed to 

find correlations between electricity demand and its influencing parameters. Then, the model was 

developed, followed by the validation of the results. Finally, the model is tested for another building, 

and then results from both buildings are compared. 
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Nowadays, it is increasingly frequent for universities to have a sustainability and/or energy efficiency 

strategy in practice, which can range from collecting monthly data on energy demand through energy 

bill’s inspection, auditing equipment or running real-time buildings monitoring [32]. Thus, the type of 

data that can be accessed is very different, ranging between the total electricity consumption of the 

buildings, the end-use share of that consumption or energy demand profiles be it daily, hourly or sub-

hourly. 

With this in mind, this work had the objective of developing a model based on frequent available data, 

so that the model could be widely implemented in other universities.  

In this work, the total electricity demand and the end-use shares were used, as well as the hourly 

electricity consumption profile. Outdoor temperature data was used since it is easily accessible 

information in open-data resources. Data regarding equipment, such as the number of equipment and 

their nominal power, was also used, as many universities should have access to this type of 

information. For classifying energy demand, four main end-uses were defined: Lighting, Electronics, 

HVAC and Others. 

Although this work does not use occupancy data, due to the lack of accurate information, there are 

ways of qualitatively characterizing and taking it into account. In gross terms, occupancy is high during 

the day, and it is usually low if not zero during the night. Occupancy in the weekends is much lower 

than during the week, and it changes depending on the time of year. The occupancy changes over time 

and so does the energy consumption. During summer and winter, when temperatures are harsher, 

HVAC should increase. In the winter, lighting demand should increase, since there are less hours of 

daylight. 

Despite not having access to more complex occupancy data, taking these different periods of time into 

consideration as well as their impacts on energy consumption can improve the development of the 

model, by segmenting it into activity periods. Therefore, each day is divided into day (08:00-19:00) and 

night-time (00:00-07:00 and 20:00-24:00). The year was separated into different regimes considering 

the type of activity occurring during that time. So, 8 regimes were created and are shown in Table 1. 

 

 

 

 



 

11 
 

Table 1 - Regimes segmentation and characterization 

R1 

Sundays on periods of exams/outside of school period 

(Periods of time after exams and before the beginning of 

the next semester, when there are still administrative and 

research activities, but no classes) 

R2 
Saturdays on periods of exams/outside of school period 

 

R3 

Reduced activity (Two weeks in august). Most of common 

equipment, and HVAC are turned off. 

 

R4 Sundays during school period 

R5 Saturdays during school period 

R6 
Weekdays during periods of exams/outside of school 

period 

R7 Weekdays during school period 

R8 
Other periods of reduced activity (Mardi Gras, Easter 

break and last week of the year.) 

 

However, in order to be possible to best tune and validate the model, for the case study of Civil 

building, more information was available, such as: the hourly profile for the HVAC, which was used to 

compare the results of the model with and without access to this extra information. 

More details on the data mentioned in this section will be explained in chapter 4. 

 

3.1 Correlation of electricity demand influencing parameters 

To overcome the lack of information regarding occupancy, the relation between outdoor temperature 

and energy consumption was explored in order to find its correlation, specifically with HVAC demand. 

Outdoor temperature is a commonly used parameter in several studies on energy forecasting, and it 

is also easily accessible. 

To establish the relation between HVAC consumption and temperature, the correlation between these 

two variables was calculated. To prevent finding a weak correlation in average yearly terms and 

knowing that HVAC would also depend on the activity rate or occupancy profiles, the HVAC load profile 

was separated into the 8 different regimes established before, and according to the time of the year, 
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these regimes were attributed to heating or cooling seasons, in order to distinguish the patterns of 

functioning between the two seasons, that might be different. 

For establishing the correlation, only the loads during the day (08:00-19:00) were taken into 

consideration, since during the night the low consumption is due to the very low occupancy rather 

than the lower temperatures. So, to prevent false values of correlations, the night-time periods were 

excluded. 

Thus, the average of the HVAC loads of each day was calculated, as well as the daily average 

temperatures for the corresponding day. Then using the Matlab function “corrcoef”, the correlation 

coefficients for each regime were calculated, as shown in equation 1. The function “corrcoef” finds the 

correlation between two vectors by interpolating the data in a similar way to a linear regression. 

                                𝐶𝑜𝑟𝑟𝑐𝑜𝑒𝑓(𝐻𝑉𝐴𝐶𝑅,𝑆𝑒𝑎𝑠𝑜𝑛
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑅,𝑆𝑒𝑎𝑠𝑜𝑛

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) = 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑅,𝑆𝑒𝑎𝑠𝑜𝑛,                                   (1) 

, 𝑅 = {1,2, … ,8}, 𝑆𝑒𝑎𝑠𝑜𝑛 = {𝐻𝑒𝑎𝑡𝑖𝑛𝑔, 𝐶𝑜𝑜𝑙𝑖𝑛𝑔},  

 

3.2 Prediction model 

In order to predict the hourly end-uses demand profiles, a genetic optimization algorithm was chosen. 

Genetic algorithm is a heuristic optimization method that is based on the theory of natural selection, 

where from an initial population, will form other generations by crossing over, mutating and iterating 

through multiple generations [28].  

It is a method where the fittest members of the population survive and carry on their genes to the 

following generation. The method consists of generating various possible solutions for the problem in 

hand, being each one of these solutions one member of the total population of solutions. Each member 

will have simulated values for each one of its variables, which are their genes. With this randomness 

associated with the generation of values, there will be members of the population that are better 

solutions for the problem than others. With this in consideration, for this algorithm to follow the 

process of natural selection, the process of reproduction is implemented. This is where the fittest 

members of the population, that is, the solutions that are closer to the optimal one, have offspring. 

These offspring are created by two methods, crossover and mutation: 

• Crossover results from when the first members of the population, the parents, create one or 

more offspring. Some genes from one of the parents will be carried over to the offspring, while 

the other missing genes will come from the other parent; 
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• After creating the new offspring, some of them will suffer a process of mutation, where some 

of their genes will be altered, that is, the value will be changed. 

These two processes allow for the creation of a new generation, where some of the offspring will be 

better solutions than any of the first members of the population. The population will then consist of 

the parents and offspring. Finally, after this the entire population is evaluated. The fittest members of 

the population are the ones that survive, so only the better solutions carry on for the next generations, 

repeating this process again. The number of surviving members is equal to the initial number. So, if 

there were initially 100 members, and after crossover and mutation, there were 200 members, only 

the best 100 members of the 200 will be selected to continue the process. This process of reproduction 

and selection repeats itself throughout many generations, until an optimal solution is found or the 

stopping criteria is achieved. The algorithm developed in this study will be described in the remainder 

of section 3.2 and is schematized in Figure 5. 

 

3.2.1 Members of population 

 

For the model developed each member of the population (nPop) will have the simulated values of the 

hourly energy consumption. Each member will only simulate the hourly profile for one day, instead of 

simulating the profile for the entire year. There are two main reasons for this decision. The first one is 

a more practical reason. It would take significantly longer to run the algorithm if it optimized a profile 

of 8760 hours, which is the number of hours in a year. It is less time consuming to optimize each day 

individually and iterate throughout every day of the year. The second reason is that it allows for more 

independent results, that is, any day with atypical consumption will not interfere with the simulation 

of the other days. 

This way, the model will try to find the best solution for each day, delivering the hourly profile for that 

day. These hourly profiles will be separated into the 4 different end-uses. So, each member will have 

4 different hourly values, one for each end-use electricity consumption for each hour and will do this 

for 24 hours. Therefore, each member of the population will resemble a matrix of dimension 24 by 4. 

Each line will have the consumption values for one specific hour and each column will have the hourly 

profile of a specific end-use for that day. The first column will have the values for lighting, the second 

for electronics, the third is for HVAC and finally the last column is for the Others end-use. So, for 

example the value in the first line and column of the matrix corresponds to the simulated energy 

consumption in lighting from midnight to one in the morning. The matrix is represented in Figure 4. 
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This way, by summing the 4 columns in the same line the total electricity consumption for that hour is 

obtained (equation 2), while by summing the 24 values in one column, the consumption in one day for 

one end-use is calculated (equation 3). 

                                                 ∑ 𝑛𝑃𝑜𝑝ℎ,𝑒

4

𝑒=1

= 𝑇𝑜𝑡𝑎𝑙 𝐻𝑜𝑢𝑟𝑙𝑦 𝐸𝑛𝑒𝑟𝑔𝑦ℎ, ℎ = {1,2, … ,24}                                             (2) 

                                                 ∑ 𝑛𝑃𝑜𝑝ℎ,𝑒

24

ℎ=1

= 𝐷𝑎𝑖𝑙𝑦 𝐸𝑛𝑑 − 𝑢𝑠𝑒 𝐸𝑛𝑒𝑟𝑔𝑦𝑒 , 𝑒 = {1,2,3,4}                                            (3) 

 

3.2.2 Boundaries 

 

To assure the model finds the solutions most suitable to reality, it is important to implement 

information obtained from the analysed data that will approximate the simulations to reality. This is 

done with constraints and boundaries, that guide the optimization to improve the results, by reducing 

the final error and to make sure the end-use shares are close to reality. 

However, before the constraints it was necessary to determine the boundaries for each member of 

the population. This way, each simulated hourly value is limited between a minimum and a maximum 

value. These bounds were estimated for each end-use and for every regime, day and night. These 

boundaries, therefore, are the minimum and maximum energy consumed by each end-use in each 

hour. Having constraints might help the model simulate profiles closer to reality, though by adding to 

many constraints, the model can become very restricted, and have little freedom for optimizing and 

𝑛𝑃𝑜𝑝ℎ1,𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑛𝑃𝑜𝑝ℎ1,𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑠 𝑛𝑃𝑜𝑝ℎ1,𝐻𝑉𝐴𝐶  𝑛𝑃𝑜𝑝ℎ1,𝑂𝑡ℎ𝑒𝑟𝑠 

𝑛𝑃𝑜𝑝ℎ2,𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑛𝑃𝑜𝑝ℎ2,𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑠 𝑛𝑃𝑜𝑝ℎ2,𝐻𝑉𝐴𝐶  𝑛𝑃𝑜𝑝ℎ2,𝑂𝑡ℎ𝑒𝑟𝑠 

𝑛𝑃𝑜𝑝ℎ24,𝑂𝑡ℎ𝑒𝑟𝑠 𝑛𝑃𝑜𝑝ℎ24,𝐻𝑉𝐴𝐶  𝑛𝑃𝑜𝑝ℎ24,𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑠𝑛𝑃𝑜𝑝ℎ24,𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔

. 

. 

. 

. 

. 

. 

. 

. 

Figure 4 - Matrix representation 
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achieving an optimal solution. So, by adding boundaries that add information to the model will reduce 

the number of constraints required, as further explained in section 3.2.4. 

Other reason for implementing boundaries in the model, is that it allows for the reduction of the final 

error. Since these boundaries were obtained by analysis of data regarding end-use consumption in the 

Civil building, these ranges of values will help the initial estimates for each hourly consumption be 

within a reasonable distance of the real values. This way, the initial errors will be smaller and, 

therefore, so will the final errors. 

To determine the boundaries the equipment data mentioned in the beginning of the chapter and 

explained in section 4.1.3 was analysed. For each of the regimes in the data, the consumption of every 

equipment of a specific end-use was summed, to calculate the total consumption of that end-use for 

the regime. To calculate the average nominal power of the end-use, this total consumption was divided 

by the average working time of the equipment. This process is demonstrated in equations 4-6. 

               ∑ 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡𝑠

𝑁

= 𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙,𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒  𝑘𝑊ℎ/𝑦𝑒𝑎𝑟                     (4) 

                                         
∑ 𝐻𝑜𝑢𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡𝑠
= 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑊𝑜𝑟𝑘 𝑇𝑖𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒   ℎ                                                 (5) 

                                                   
𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙,𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒

𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑊𝑜𝑟𝑘 𝑇𝑖𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒

= 𝑃𝑜𝑤𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅
�̅�,𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒 𝑘𝑊,                                                 (6) 

, 𝑅 = {1,2, … ,8}, 𝐸𝑛𝑑 − 𝑢𝑠𝑒 = {𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔, 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑠, 𝐻𝑉𝐴𝐶, 𝑂𝑡ℎ𝑒𝑟𝑠} 

 

Since the hourly consumption of an equipment, when it is running at constant power, is equal in value 

to that power, the bounds values are equal to the average nominal power estimated. 

The energy spent while on standby was also a part of the data, so the same process was done with this 

data. The standby power was then added to the nominal power, as reported by equation 7. 

                                     𝑃𝑜𝑤𝑒𝑟𝑁,𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑃𝑜𝑤𝑒𝑟𝑆𝑡𝑎𝑛𝑑𝑏𝑦,𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑃𝑜𝑤𝑒𝑟𝑇𝑜𝑡𝑎𝑙,𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑘𝑊,                                       (7) 

, 𝑅 = {1,2, … ,8}, 𝐸𝑛𝑑 − 𝑢𝑠𝑒 = {𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔, 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑠, 𝐻𝑉𝐴𝐶, 𝑂𝑡ℎ𝑒𝑟𝑠} 

These values were used for the maximum values of the bounds. The minimum values were obtained 

from the permanent consumption for each end-use. This permanent consumption is the minimum 

consumption of one end-use, due to standby and residual loads, and it was available in the equipment 

data for each regime. So, at each hour, the minimum value possible for each end-use is equal to the 

permanent consumption. 
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                                                     𝑀𝑖𝑛𝐵𝑜𝑢𝑛𝑑𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒 = 𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒 ,                                               (8) 

, 𝑅 = {1,2, … ,8}, 𝐸𝑛𝑑 − 𝑢𝑠𝑒 = {𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔, 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑠, 𝐻𝑉𝐴𝐶, 𝑂𝑡ℎ𝑒𝑟𝑠} 

As mentioned before in this chapter, the results from the model using the bounds obtained from the 

equipment data were compared with results using the hourly HVAC profile, to see which performed 

better. To do so, the HVAC profile was used to obtain different bounds for HVAC than the ones 

obtained by the equipment data. 

The hourly HVAC profiles for each of the regimes, separated into day and night, and the two seasons, 

mentioned in section 3.1 were analysed. For each of these regimes, the boundaries were calculated by 

averaging the maximum and minimum values of HVAC consumption for each day and night, 

throughout the entire regime. So, the maximum boundary during the day for R1 is the average of each 

day in this regime’s highest consumption, as shown by equation 9. 

                                              𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑅,𝑆𝑒𝑎𝑠𝑜𝑛,𝐻𝑉𝐴𝐶 =
∑ 𝑚𝑎𝑥 (𝐻𝑉𝐴𝐶𝑅,𝑑,ℎ,𝑆𝑒𝑎𝑠𝑜𝑛)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑎𝑦𝑠𝑅,𝑆𝑒𝑎𝑠𝑜𝑛
,                                           (9) 

, ℎ = {8,9, … ,19},   𝑅 = {1,2, … ,8},   𝑑 = {1,2, … , 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑎𝑦𝑠},   𝑆𝑒𝑎𝑠𝑜𝑛 = {𝐻𝑒𝑎𝑡𝑖𝑛𝑔, 𝐶𝑜𝑜𝑙𝑖𝑛𝑔}        

This allows to determine more precise bounds than the estimates, since it uses the values from a HVAC 

profile, instead of using the equipment data. It also allows to divide the regimes even further. Unlike 

the equipment data, the HVAC profile allows to implement information regarding temperature. HVAC 

is used to help reach thermal comfort for the occupants. Therefore, when temperatures are more 

rigorous, the HVAC demand increases. So, it is expected that during the cooling season, the 

consumption increases the higher the temperature, and the inverse happens for the heating season. 

This way, by separating each week regime (R6 and R7) into two new regimes can introduce this extra 

information regarding temperature. The average daily temperature (𝑀𝑒𝑎𝑛𝑇) was determined for each 

regime and season. Then, each day was separated according to that temperature. If the average 

temperature (𝐷𝑎𝑖𝑙𝑦𝑀𝑒𝑎𝑛𝑇) of a day was higher than the average of the regime, then that day was 

selected to one of the new regimes, if it was lower, then it went to the other one. This way, the days 

with harsher temperatures would be in one regime, and the more moderate days would be in another. 

                                                               𝐷𝑎𝑖𝑙𝑦𝑀𝑒𝑎𝑛𝑇𝑑,𝑅,𝑆𝑒𝑎𝑠𝑜𝑛=

∑ 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑑,𝑅,𝑆𝑒𝑎𝑠𝑜𝑛

12 ℎ𝑜𝑢𝑟𝑠
                                                       (10) 

                                                               𝑀𝑒𝑎𝑛𝑇𝑅,𝑆𝑒𝑎𝑠𝑜𝑛 =
∑ 𝐷𝑎𝑖𝑙𝑦𝑀𝑒𝑎𝑛𝑇𝑑,𝑅,𝑆𝑒𝑎𝑠𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑎𝑦𝑠𝑅,𝑆𝑒𝑎𝑠𝑜𝑛
,                                                                  (11) 

𝑅 = {6,7},     𝑆𝑒𝑎𝑠𝑜𝑛 = {𝐻𝑒𝑎𝑡𝑖𝑛𝑔, 𝐶𝑜𝑜𝑙𝑖𝑛𝑔},     𝑑 = {1,2, … , 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑎𝑦𝑠} 
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3.2.3 Constraints 

To implement further information into the model, constraints were used. 

Different constraints were used in order to add different details and information regarding the 4 end-

uses. These constraints were implemented in the form of inequalities, as explained as follows. 

 

3.2.3.1 Constraints regarding activity patterns 

 

The ratio between the minimum and maximum consumption of HVAC was calculated for both day and 

night and for each regime. The boundaries obtained from the HVAC profile were used for this process. 

For each regime, the minimum boundary during the day was divided by the maximum during that day 

to obtain the min/max ratio (Equation 12). This was also done for the night-time and for both seasons. 

                                                             
𝑀𝑖𝑛𝐵𝑜𝑢𝑛𝑑𝑅,𝐷𝑎𝑦𝑡𝑖𝑚𝑒,𝑆𝑒𝑎𝑠𝑜𝑛

𝑀𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝑅,𝐷𝑎𝑦𝑡𝑖𝑚𝑒,𝑆𝑒𝑎𝑠𝑜𝑛
= 𝐻𝑉𝐴𝐶𝑅𝑎𝑡𝑖𝑜𝑅,𝐷𝑎𝑦𝑡𝑖𝑚𝑒,𝑆𝑒𝑎𝑠𝑜𝑛,                                            (12) 

, 𝑅 = {1,2, … ,8}, 𝐷𝑎𝑦𝑡𝑖𝑚𝑒 = {𝐷𝑎𝑦, 𝑁𝑖𝑔ℎ𝑡}, 𝑆𝑒𝑎𝑠𝑜𝑛 = {𝐶𝑜𝑜𝑙𝑖𝑛𝑔, 𝐻𝑒𝑎𝑡𝑖𝑛𝑔} 

 

In the simulation, the model imposes that the ratio of the simulated values must be equal or higher 

than the previously calculated ones (𝐻𝑉𝐴𝐶𝑅𝑎𝑡𝑖𝑜𝑅𝑒𝑎𝑙), as shown in equation 13. 

                                             (
𝐻𝑉𝐴𝐶𝑚𝑖𝑛

𝐻𝑉𝐴𝐶𝑚𝑎𝑥

)
𝑆𝑖𝑚𝑅,𝐷𝑎𝑦𝑡𝑖𝑚𝑒,𝑆𝑒𝑎𝑠𝑜𝑛

≥ 𝐻𝑉𝐴𝐶𝑅𝑎𝑡𝑖𝑜𝑅𝑒𝑎𝑙𝑅,𝐷𝑎𝑦𝑡𝑖𝑚𝑒,𝑆𝑒𝑎𝑠𝑜𝑛
 ,                                            (13) 

                             , 𝑅 = {1,2, … ,8}, 𝐷𝑎𝑦𝑡𝑖𝑚𝑒 = {𝐷𝑎𝑦, 𝑁𝑖𝑔ℎ𝑡}, 𝑆𝑒𝑎𝑠𝑜𝑛 = {𝐶𝑜𝑜𝑙𝑖𝑛𝑔, 𝐻𝑒𝑎𝑡𝑖𝑛𝑔}                                       

     

Despite not knowing how the consumption changes from hour to hour, it is known that the 

consumption during the day is higher than during the night. So, the first hour of the daytime must 

consume more electricity than the last hour of the night, and the same applies for the last hour of the 

daytime and the first hour of the night. Thus, the model checks if this is complied. 

                                              𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑆𝑖𝑚(08: 00) > 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑆𝑖𝑚(07: 00)                                         (14) 

                                              𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑆𝑖𝑚(19: 00) > 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑆𝑖𝑚(20: 00)                                         (15) 

 

Finally, to assure the end-use shares will be close to reality, some data regarding end-use shares should 

be implemented. However, since the algorithm runs each day at a time, it is impossible to check if the 
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end-use shares in the end are correct. So, to add this information to the model, the end-use shares will 

be evaluated only for the weekdays during school and exam periods (R6 and R7). Since the weekdays 

are the more numerous days of the year, they will have the highest contribution to the total energy 

consumption in the year. Therefore, they will have the closest patterns to the yearly average 

consumption. So, it is assumed that these regimes will have relatively similar end-use shares to the 

yearly ones. 

To allow for some variation, instead of checking if the end-use shares are the same as the real ones 

obtained from the equipment data, the model will check if the simulated shares are in a range of values 

close to the real ones, as shown in equation 16. To calculate the ranges, the real shares were deviated 

with a value 𝛿 ranging from around 5 to 10%. When the end-use share was smaller, 𝛿 was also smaller 

(closer to 5%) so the end-use share range did not deviate too far from the real value. On the other 

hand, when the end-use share was larger so was 𝛿. 

                 𝐸𝑛𝑒𝑟𝑔𝑦 𝑆ℎ𝑎𝑟𝑒
𝑆𝑖𝑚,𝐸𝑛𝑑−𝑢𝑠𝑒

∈ [𝐸𝑛𝑒𝑟𝑔𝑦 𝑆ℎ𝑎𝑟𝑒
𝑅𝑒𝑎𝑙,𝐸𝑛𝑑−𝑢𝑠𝑒

− 𝛿; 𝐸𝑛𝑒𝑟𝑔𝑦 𝑆ℎ𝑎𝑟𝑒
𝑅𝑒𝑎𝑙,𝐸𝑛𝑑−𝑢𝑠𝑒

+ 𝛿],                 (16)              

𝐸𝑛𝑑 − 𝑢𝑠𝑒 = {𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔, 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑠, 𝐻𝑉𝐴𝐶, 𝑂𝑡ℎ𝑒𝑟𝑠} 

                          

3.2.3.2 Inter end-use constraints 

 

Although during the night the occupancy is usually zero, and the consumption is low, there are 

situations where this not the case, i.e., when there are people at night in the building, either students 

in study spaces, or cleaning staff, the lights will be turned on and so some electronic equipment or 

HVAC. Thus, this relation between usage of end-uses was also implemented in the model. When the 

generated loads for lighting are above a certain value (150% of the lower bound of the corresponding 

end-use), the model checks if the consumption for electronics and HVAC are also above a certain value. 

It was considered that consumption below 150% of the lower bound was consumption due to standby 

and other residual loads. So, this separates the periods of time when the only consumption is on 

standby, so when occupancy is zero, and when there is more consumption due to usage of equipment 

when there are occupants in the building. This will assure that when lights are turned on, other 

equipment will also be turned on. 

                           𝐿𝑖𝑔ℎ𝑡
𝑁

̅̅ ̅̅ ̅̅ ̅̅ > 1.5 ∗ 𝐿𝑖𝑔ℎ𝑡
𝑁𝑀𝑖𝑛

 ∧ 𝐸𝑙𝑒𝑡𝑟𝑁
̅̅ ̅̅ ̅̅ ̅̅ > 1.5 ∗ 𝐸𝑙𝑒𝑡𝑟𝑁𝑀𝑖𝑛

 ∧ 𝐻𝑉𝐴𝐶𝑁
̅̅ ̅̅ ̅̅ ̅̅ ̅ > 1.5 ∗ 𝐻𝑉𝐴𝐶𝑁𝑀𝑖𝑛

 ,                          (17)          

, 𝑁 = 𝑁𝑖𝑔ℎ𝑡, 𝑀𝑖𝑛 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚   
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3.2.3.3 Constraints regarding HVAC consumption and temperature 

 

Finally, constraints that relate HVAC consumption with the outdoor temperature were also added. This 

was also implemented since outdoor temperature data is easily accessible for practically any city in the 

world and for various periods of time. The correlations obtained in section 3.1 were used for this 

purpose. 

The results presented in section 4.2.1 show more correlation between HVAC consumption and 

temperature during regimes of normal activity (R6 and R7), in comparison to other regimes. It also 

shows that on those two regimes the HVAC consumption increases with temperature in the cooling 

season but decreases during the heating season. 

So, to implement this information, the model needs to check if these relations are observed in the 

simulation. The algorithm checks if the correlation between the generated HVAC loads during the day 

and the average temperature (𝑇𝐴𝑣𝑒𝑟𝑎𝑔𝑒) for that day are higher than a base value (𝐵𝑎𝑠𝑒𝐶𝑜𝑟𝑟) during 

regimes of activity. For the other regimes, it checks if the correlation is lower than the base value for 

these regimes. The algorithm also checks if the correlation is negative during heating season and 

positive during cooling season, for the regimes of activity. 

                                                               |𝐶𝑜𝑟𝑟(𝐻𝑉𝐴𝐶, 𝑇𝐴𝑣𝑒𝑟𝑎𝑔𝑒)𝑆𝑖𝑚,𝐷| > 𝐵𝑎𝑠𝑒𝐶𝑜𝑟𝑟𝑅,        𝑅 = 6,7                                         (18)  

                                                      |𝐶𝑜𝑟𝑟(𝐻𝑉𝐴𝐶, 𝑇𝐴𝑣𝑒𝑟𝑎𝑔𝑒)𝑆𝑖𝑚,𝐷| < 𝐵𝑎𝑠𝑒𝐶𝑜𝑟𝑟𝑅, 𝑅 = 1,2,3,4,5,8                                   (19) 

                                                   𝐶𝑜𝑟𝑟(𝐻𝑉𝐴𝐶, 𝑇𝐴𝑣𝑒𝑟𝑎𝑔𝑒)𝑆𝑖𝑚,𝐷 > 0     𝑅 = 6,7,         𝑆𝑒𝑎𝑠𝑜𝑛 = 𝐶𝑜𝑜𝑙𝑖𝑛𝑔                                (20)  

                                                  𝐶𝑜𝑟𝑟(𝐻𝑉𝐴𝐶, 𝑇𝐴𝑣𝑒𝑟𝑎𝑔𝑒)𝑆𝑖𝑚,𝐷 < 0     𝑅 = 6,7, 𝑆𝑒𝑎𝑠𝑜𝑛 = 𝐻𝑒𝑎𝑡𝑖𝑛𝑔                                (21) 

𝐷 = 𝐷𝑎𝑦, 𝑆𝑖𝑚 = 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

 

The value of 𝐵𝑎𝑠𝑒𝐶𝑜𝑟𝑟 was determined by analysing the results and it will be explained in section 4.2.1. 

 

3.2.4 Evaluation and creating offspring 

 

To determine the best members (nPop) for each iteration, first it was necessary to define what 

parameters of evaluation should be used. Two parameters were used:  

• the error (CCost);  

• the count of constraints not complied (CCount). 
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The error is the mean absolute error for the entire day, comparing the total consumption 

(𝑇𝑜𝑡𝑎𝑙 𝐻𝑜𝑢𝑟𝑙𝑦 𝐸𝑛𝑒𝑟𝑔𝑦) for each hour (summing the end-uses) with the real value for that hour 

(𝑅𝑒𝑎𝑙 𝐻𝑜𝑢𝑟𝑙𝑦 𝐸𝑛𝑒𝑟𝑔𝑦), for the corresponding building. The absolute value of this difference is the 

hourly error, and CCost is the average of these hourly errors, thus the lower the error the better the 

solution is. 

                    |𝑇𝑜𝑡𝑎𝑙 𝐻𝑜𝑢𝑟𝑙𝑦 𝐸𝑛𝑒𝑟𝑔𝑦ℎ − 𝑅𝑒𝑎𝑙 𝐻𝑜𝑢𝑟𝑙𝑦 𝐸𝑛𝑒𝑟𝑔𝑦ℎ| = 𝐻𝑜𝑢𝑟𝑙𝑦 𝐸𝑟𝑟𝑜𝑟ℎ, ℎ = {1,2, … ,24}                         (22) 

                                                                                       𝐶𝐶𝑜𝑠𝑡 =
∑ 𝐻𝑜𝑢𝑟𝑙𝑦 𝐸𝑟𝑟𝑜𝑟ℎ

24
                                                                              (23) 

 

The other parameter used is the CCount. This parameter counts the number of constraints mentioned 

in the previous section, that the member of population does not comply with. As stated before, the 

constraints were used to assure the results would be as close as possible to reality, and that the model 

would be able to accurately forecast the end-uses electricity demand. 

Since the model simulates 4 different end-uses profiles, if it only sorted the members by the error, this 

could lead to situations where the error could be close to 0, however failing to deliver end-use load 

disaggregation that would make sense. For example, there could be a situation where the simulation 

predicted the total load, but the only load occurring would be lighting.  

As such, complying with constraints is the priority of the model, followed by achieving the minimum 

error. Therefore, one nPop that has an error of 20 but complies with all constraints is a better solution 

than one nPop with an error of 0 but that does not comply with all constraints. 

However, since the model prioritizes the CCount of each population member, when there are many 

constraints, this leads to a loss of importance of the error of each nPop. For example, if there are 20 

constraints, on an initial guess, the best member of the population may comply with four or five, but 

it still does not comply with 15 constraints, so its CCount is 15. Each iteration will try to find a member 

that has a lower CCount than before, at the cost of a higher error. This cycle repeats itself until either 

the best solution complies with all constraints or it could still not comply with all of them. When the 

number of constraints is low, this does not cause problems. However, when the solution has to verify 

many constraints, the cycle of finding the lowest CCount but increasing the error occurs for many 

iterations. So, even if the CCount reaches zero at some point, this will be at a high number of iterations, 

so there will not be many more iterations to reduce the error. This way, the performance is severely 

lowered with the increase of constraints in the model. 

 



 

21 
 

3.2.4.1 Selection 

 

The selection method used to choose the parents that would be used for the crossover was the 

roulette wheel selection. This method gives different probabilities depending on the fitness of each 

member of the population. The fitter the member is, the higher the chance of being chosen as a parent. 

For this selection the fitness parameter used was the CCost. This way, the lower the CCost of a member, 

the more likely it is for that member to become a parent.  

Although the CCount is a priority, it would not work very well as a fitness parameter as it would not 

differentiate a lot the different members. Since the CCount is equal to the number of constraints not 

fulfilled, the parameter would only have a few values to compare with, and if most members had a 

CCount equal to zero, there would not be any differentiation between them. 

 

3.2.4.2 Crossover 

 

The uniform crossover was used in this algorithm. This method creates offspring by randomly choosing 

each gene from one of the parents. The number of offspring will be the same as the number of original 

members. 

 

3.2.4.3 Mutation 

 

Mutation changes some genes from some of the newly created members, by replacing those genes 

with a different value. This value is obtained from a normal distribution with a 2% probability. 

 

3.2.5 Sorting and survival of the best 

 

After the reproduction, the parents and the offspring are joined, duplicating the population size, and 

are then sorted from best to worst. Each member was sorted first by the lowest values of CCount and 

then by CCost. Then, for each of these groups with equal CCount, each member was sorted according 

to their CCost. After this sorting, the worst members are eliminated and the population size reverts to 

the original one. At the end of each iteration the mean relative error (MRE) for the best member of 

the population is calculated. 
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                                                    𝑀𝑅𝐸ℎ =
|𝑇𝑜𝑡𝑎𝑙 𝐻𝑜𝑢𝑟𝑙𝑦 𝐸𝑛𝑒𝑟𝑔𝑦ℎ − 𝑅𝑒𝑎𝑙 𝐻𝑜𝑢𝑟𝑙𝑦 𝐸𝑛𝑒𝑟𝑔𝑦ℎ|

𝑅𝑒𝑎𝑙 𝐻𝑜𝑢𝑟𝑙𝑦 𝐸𝑛𝑒𝑟𝑔𝑦ℎ
,                                             (24) 

                                                                                                𝑀𝑅𝐸 =
∑ 𝑀𝑅𝐸ℎ

24
,                                                                                     (25)  

ℎ = {1,2, … ,24} 

This entire process, from selection to the sorting of the best, occurs until the number of iterations, 

previously decided, is achieved. This number was decided based on testing simulations to see when 

the error started to stabilize. Although the error could be improved with more iterations, the 

improvement would not be very significant, and it would come at the cost of a longer running time. 

However, if the MRE of an iteration was lower than 5%, the cycle stops (stopping criteria) at that 

iteration and the best member of the population becomes the solution for that day. This was 

implemented to reduce the time needed to simulate the entire year while keeping a reasonable error. 

ASHRAE guideline 14 [33] suggests two measures of error to assess the accuracy of simulations relative 

to the real data. These are the normalized mean bias error (NMBE) and the coefficient of variation of 

the root mean square error (CVRMSE). The guideline states that, for hourly predictions, the limit of 

NMBE is 10% and for CVRMSE is 30%. So, a MRE of 5% was used as an acceptable value. 
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Figure 5 - Genetic Algorithm representation 
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4 Case-study description 

The Alameda campus of the Instituto Superior Técnico was chosen to be the case study due to the 

accessibility of data and the knowledge of the buildings and activities of the campus. The campus has 

24 buildings and is located in Lisbon, Portugal, which has a moderate climate.  

Most data available regards five buildings of campus. Despite being around only a fifth of all buildings, 

these 5 buildings account for 57% of the total electricity consumption of the campus. This way, each 

one of these buildings is a representative case study for analysis. 

The Civil building was chosen for developing and validating the model, since there is more information 

available. Once the model is validated it is ready to be tested in other buildings. Since there was the 

same amount of data available for the other four buildings, the South Tower was chosen for testing 

due to the better prior knowledge of this building’s layout. 

 

4.1 Data collection and processing 

The first step was to characterize buildings electricity demand, by collecting and processing different 

types of data regarding the buildings to be studied. This information was collected from various 

sources, with different usage and relevance in the development of the model, such as readings from 

smart-meters, audits and/or simulations from different models. These details are further explained in 

the following subsections. All the data is related to buildings on the Alameda campus of IST. 

 

4.1.1 Total electricity hourly loads 

 

The total hourly loads, measured by smart meters, were provided by the “Campus Sustentável” project 

[32], for the year 2019, for five buildings of Alameda Campus: North Tower, South Tower, Central 

Building, Civil Building and Mathematics Building. As they were provided in Ah (Ampere hour), 

equation 26 was used to convert these loads into kWh. 

              𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑘𝑊ℎ) =
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑙𝑜𝑎𝑑 (𝐴ℎ) ∗ 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝑉) ∗ 𝑃𝑜𝑤𝑒𝑟 𝐹𝑎𝑐𝑡𝑜𝑟 (𝑃𝐹𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔) 

1000
,             (26) 

𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 = {𝐶𝑒𝑛𝑡𝑟𝑎𝑙, 𝐶𝑖𝑣𝑖𝑙, 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠, 𝑁𝑜𝑟𝑡ℎ 𝑇𝑜𝑤𝑒𝑟, 𝑆𝑜𝑢𝑡ℎ 𝑇𝑜𝑤𝑒𝑟}, 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 = 230𝑉 

 



 

25 
 

After the conversion, some data points were missing due to the meter malfunctioning during certain 

hours. Therefore, it was necessary to interpolate these missing values, which was done in two ways. 

When there was an occasional missing point, the average between the values from the hour prior and 

after was calculated and replaced the missing value. However, this method could not be employed for 

every missing value since there were situations where they span some hours or even days in a row. So, 

in those situations, the missing values were replaced by the value of the same day and hour of the 

week prior or after. This assures, or at least makes it more likely, that the missing values will be 

replaced by a value close to what it was in reality, given weekdays and weekends activity.  

Regarding other possible outliers in the data, there were some peak values, which were reoccurring 

and seemed to follow a pattern of consumption throughout the year. During the weekdays, those 

peaks were higher in winter and summer, when the climate is more extreme, so they seemed to 

indicate some kind of seasonality. Therefore, it was assumed these values were not outliers and were 

kept in the dataset.  

 

4.1.2 End-use hourly monitoring  

 

In order to be able to validate the end-use prediction model and further understand end-uses patterns, 

hourly end-use data was needed. However, real monitored data was only available for HVAC for the 

Civil Building for the 2017 and 2018, though, simulated hourly profiles previously developed in Energy 

Plus software [34] of other end-uses, such as, lighting and equipment were also provided. However, 

real HVAC profiles report to 2017 and 2018, while total electricity data is from 2019. So, it was 

necessary to extrapolate HVAC 2017 profile data to match it to the consumption profile for 2019. 

This was done by first dividing the hourly HVAC consumption in 2017 by the total hourly consumption 

in the same year, to find the hourly HVAC share at each hour. This way the pattern of HVAC 

consumption could be extrapolated for the year of 2019, by multiplying each percentage by the total 

load in 2019. Assuming that the HVAC behaviour did not change significantly from 2017 to 2019. 

This HVAC profile was divided into the 8 regimes to match with the data from 2019.  
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4.1.3 Equipment data per end-use and area 

 

Energy consumption data was collected and characterized by the “Campus Sustentável” team, through 

an audit, for the 24 buildings on Alameda campus, by end-use and type of space, as systematized in 

Table 2. The energy consumption data detailed the total electricity consumption in 2019, separated by 

each end-use and type of space, for every building. The area that each room/space takes in each 

building was also made available. 

There were 8 different end-uses, however, for the purpose of this thesis, the end-uses were grouped 

into 4 major ones according to their similarities, as also shown in Table 2. 

Table 2 - End-Uses and corresponding equipment 

End-Use Equipment Final end-uses 

Lighting Light bulbs Lighting 

Computer Equipment CPUs, printers, servers 

Electronics Plug In Equipment 
Washing machines, TV screens, 

projectors 

Catering Ovens, fridges, vending machines 

Local HVAC Local split unit, fans 
HVAC 

Central HVAC Chillers, boilers, VRV units 

Common systems Elevators, drain pumps 

Others Investigation Specific Equipment 

(ISE) 
Equipment for lab/workshop use 

 

Equipment data was also collected for the building of Civil only. It detailed type of equipment, number, 

nominal power, and average functioning time of each equipment. The total yearly consumption, 

standby consumption, and permanent consumption (minimum value of consumption) for each end-

use was available. This data was obtained through an audit [35], where all electricity consuming 

equipment in the building was registered. This data was also divided into different regimes, in a similar 

way to the division mentioned in the previous section. However, these regimes were slightly different 

and were divided as shown in Table 3. 
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Table 3 - Regimes in audit 

AR1 Weekdays 

AR2 Holidays 

AR3 Saturdays 

AR4 Sundays 

AR5 Period of reduced activity 

 

In order to merge this data into the previously mentioned regimes, it was necessary to aggregate this 

data, as shown in Table 4.  

Table 4 - Grouping of regimes 

HVAC profile regimes R1, R4 R2, R5 R6, R7 R3 R8 

Audit regimes AR4 AR3 AR1 AR5 AR2 

 

All this data was separated into the different end-uses mentioned before, and for each one, the 

permanent energy for each regime was also available, that is, the minimum energy consumption for 

each end-use on a specific regime. 

With the reported data it is possible to estimate the end-uses’ electricity demand and calculate its 

share, regarding the total energy consumption in a building. Further, two other analyses can be done: 

• obtain the end-use share for each type of space, allowing to understand how energy is spent 

in each different type of room; 

• obtain the electricity consumption share per type of room, regarding the total building 

electricity consumption. This would help understanding which rooms/spaces are most 

important or will have a greater impact when forecasting energy consumption in university 

buildings. 

 

4.1.4 Weather data 

 

The weather data in the city of Lisbon was obtained from Renewable Ninja [36], namely hourly profiles 

for outdoor temperature, solar radiation and wind speed, for the year of 2019. 
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4.2 Civil Building  

The Civil building has a gross floor area of 25183 m2 and eight floors, three of them being underground. 

Floor -1 has amphitheatres for classes and some reunion rooms, while floor -2 also has meeting rooms 

and some small labs. The library takes space on both floors. Floor -3 has a few storage and technical 

rooms and a few reunion rooms. The ground floor has a bar, a cafeteria and a few classrooms/study 

spaces. The first floor has many classrooms while the second floor has the teachers’ offices. There are 

also some offices on the third floor alongside some small workshops. The top floor has just a few 

archive rooms and technical rooms. 

Figure 7 shows the area allocation in the building of Civil for each important space. These spaces are 

considered important, since these are the spaces that consume the most electricity in the entire 

building.  
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Figure 7 - Area allocation – Civil Building 

Figure 6 - Side view of the Civil building 
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Figure 8 reports the electricity demand per type of space. As it can be seen, the space that consumes 

the most electricity, by far, are the technical rooms, followed by offices and hallways. Classrooms, 

study spaces and research labs also consume a somewhat significant amount of energy, while all the 

other spaces only contribute to around 8% of the total consumption in the building, so these spaces 

are not worthwhile analysing. 

To better understand how each room affects the electricity consumption in the building, the end-use 

shares of each type of space were calculated. This way it is possible to know how important a specific 

end-use is to each of these rooms. The results are shown in Table 5, and in red is highlighted the end-

use with largest demand per type of space. 

Table 5 - End-use share per type of space - Civil 

 

 

As it can be seen, hallways predominantly spend energy on lighting, while technical rooms mostly 

consume HVAC. This makes sense considering the type of spaces they are. Hallways do not have many 

 Lighting (%) Electronics (%) HVAC (%) Others (%) 

Classrooms 56,19 21,18 22,63 0 

Study Spaces 34,87 58,94 6,2 0 

Technical Rooms 0,07 0,02 81,3 18,6 

Offices 21,62 44,71 33,68 0 

Research Labs 73,37 23,11 3,51 0 

Hallways 94,08 3,35 2,58 0 

Classrooms
5% Study Spaces

6%

Technical Rooms
49%

Offices
18%

Research Labs
4%

Hallways
10%

Other
8%

Figure 8 - Electricity consumption share per space - Civil 
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equipment, so most consumption is related to lighting, while technical rooms are divisions that have 

equipment related to HVAC, like pumps, fans or other parts of HVAC equipment.  

Comparing classrooms and study spaces there are some noticeable differences. Despite being used for 

similar purposes, most classrooms do not have many electronic equipment apart from a projector and 

some wall plugs, which are not used very often. So, most consumption regards lighting and HVAC. 

However, in study spaces, students can spend several hours in the same room, so they charge their 

laptops or phones. Also, some study spaces have desktop computers available for students to use. The 

same logic applies to offices, since every office has a computer per occupant, and many offices are 

used by more than one teacher. 

Research labs stand out a bit in this analysis. The high lighting share is to be expected, but not that 

high. This value should be more balanced with higher consumption of HVAC and others, due to some 

lab equipment. However, the lab equipment consumption might be accounted for in the technical 

room. 

The data present in section 4.1.3 also allowed for calculating the end-use shares (Figure 9) in Civil, 

which were used to determine the range of values to be used in the end-use share constraints 

(mentioned in section 3.2.3), shown in Table 6. 
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Figure 9 - End-use share - Civil 
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Table 6 - Model end-use share range - Civil 

 

4.2.1 Correlation results 

 

As mentioned in section 3.1, the correlation between HVAC consumption and outdoor temperature 

was calculated, as is reported in Table 7. 

Table 7 - Correlations between HVAC and outdoor temperature per regime 

 

Checking Table 7, the following conclusions can be drawn: 

• The correlations are, usually, higher, in absolute value, during the regimes of activity (R6 and 

R7) (20-50%) than during weekends and other regimes of reduced activity, apart from R8 (0-

30%);  

• There is a positive relation between HVAC consumption and temperature during cooling 

season, and a negative one in heating season. This relation is evident during the week (R6 and 

R7) but not so much on other regimes; 

The first point is explained by the reduced occupancy during weekends, which significantly reduces the 

importance of thermal comfort, and thus on HVAC functioning. Therefore, during these regimes, the 

HVAC consumption does not have a high dependence on the temperature.  

The second point shows that the HVAC consumption increases with the rise of temperature in cooling 

seasons and decreases with the increase of temperature during heating seasons. Although this is 

observable during the week, this linearity does not appear during regimes of reduced activity. This is 

due to the same reasons as explained for the previous point. 

With these results in mind, the model was updated so that for each day, the algorithm checks if the 

correlation between the generated HVAC loads during the day and the average temperature for that 

day, is high during regimes of activity, and low for the other ones, like it was mentioned in section 

 Lighting (%) Electronics (%) HVAC (%) Others (%) 

Real share 25 18 48 9 

Range of acceptable 

values 
20-30 14-22 40-55 3-15 

 R1 R2 R3 R4 R5 R6 R7 R8 

Heating -0.0127 -0.1604 - -0.1109 -0.1973 -0.5176 -0.2691 0.8779 

Cooling -0.3137 0.0485 -0.1699 0.4049 0.1045 0.2268 0.4656 0.2469 
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3.2.3. Therefore, the BaseCorr for normal weekdays (R6 and R7) is 20% while for the other regimes it 

is 30%. 

The results for the regime of holidays (R8) were not taken in consideration, since they are very different 

from what was expected from regimes of reduced activity. These results can be explained by the low 

number of days for that regime, which resulted in unreliable results. So, for the model, this regime 

used the same BaseCorr as the other regimes of reduced activity. 

 

4.2.2 Boundaries calculation 

 

The boundaries obtained by using equations 4-6, mentioned in section 3.2.2 are shown in Figure 10-

Figure 14. 
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Figure 10 - Lighting bounds from audit 
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Figure 11 - Electronics bounds from audit 
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Figure 12 - HVAC bounds (cooling season) from audit 
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Figure 13 - HVAC bounds (heating season) from audit 
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Figure 14 - Others bounds from audit 
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When implementing these boundaries in the model, the max bounds were increased slightly, to reduce 

the errors in some days where a peak of consumption could occur. So, each bound was rounded up to 

the next multiple of 5. For example, if the max bound is 22.7 the bound implemented was 25, if it was 

37.3 it was rounded up to 40. 

Another aspect to consider is that the max bounds for HVAC during weekdays were too high, so they 

were limited to a maximum of 300 kWh in the model, as seen in Figure 15, instead of the values in 

Figure 12 and Figure 13. Since the regime of vacations in august (AR5) only requires cooling, there are 

no bounds for heating during that regime.  

 

4.2.3 HVAC ratios 

 

As mentioned in section 3.2.3 the ratio between minimum and maximum hourly HVAC consumption 

was calculated to add more information about the pattern of HVAC consumption to the model. The 

ratios for each regime, separated by season and, by day and night, are presented in Figure 16 and 

Figure 17. 
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Figure 15 - HVAC bounds before and after correction 
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Figure 16 - HVAC ratios – Heating season 

 

 

 

 

 

 

 

 

 

From the results, it can be seen that, generally, the ratio is higher (more than 70%), during the 

weekends, in comparison with the ratios during weekdays (around 40% or less). This difference can be 

explained by the reduced usage of HVAC equipment during the weekends, so the consumption does 

not fluctuate significantly, most of the consumption is related to equipment on standby and residual 

loads form pumps and fans. On the other hand, during the week, there are different levels of 

occupancy, therefore during the day, this consumption can vary significantly. It also explains why the 

ratio is higher during the night rather than during the day, again due to the reduced activity during the 

night. The ratios during the night in R6 and R7 are similar or even lower than during the day, which 

might be due to some transition hours, where systems are being turned on so the maximum HVAC 

consumption is much higher than the minimum. 
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Figure 17 - HVAC ratios – Cooling season 
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4.3 South Tower 

The South Tower is a building with a gross floor area of 11104 m2, it has sixteen floors, and three of 

them are underground. These floors have a mix of various types of rooms, which area allocation is 

shown in Figure 19. 

 

        

Just as for Civil Building, more than 90% of the total electricity consumption in the building is related 

to the six types of spaces stated before, as it can be seen in Figure 20. 
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Figure 19 - Area allocation - South Tower 

Figure 18 - Frontal view of the South Tower 
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Figure 20 - Electricity consumption share per space - South Tower 
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To verify if the end-use share per type of space seen for Civil is similar to the South Tower, the same 

analysis was made. Table 8 shows that the end-use shares are consistent throughout the buildings. The 

biggest difference is the bigger consumption in research labs regarding HVAC and Others. This allows 

to conclude that the pattern of consumption in each of these spaces is similar between the two 

buildings. 

Table 8 - End-use share per type of space – South Tower 

 Lighting Electronics HVAC Others 

Classrooms 81.14 4.78 14.08 0 

Study Spaces 43.14 55.7 1.16 0 

Technical Rooms 0.07 0.31 96.64 2.98 

Offices 26.04 65.01 8.95 0 

Research Labs 40.7 14.96 23.99 20.36 

Hallways 70.42 1.89 22.29 5.41 
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Figure 21 - End-use share - South Tower 

 

 

 

Just as for Civil Building, to run the model the end-use shares for the South Tower are needed. These 

shares are shown in Figure 21, and so the range of shares for the South Tower simulation are presented 

in Table 9. 

Table 9 - Model end-use share range - South Tower 

 

4.3.1 Boundaries calculation 

 

For the purpose of testing the model for the South Tower, new boundaries were calculated. While for 

the Civil Building, boundaries data was obtained from an audit, similar data was not available for the 

South Tower. Hence, to calculate the boundaries, some assumptions were made. It was assumed that 

the pattern of consumption of the different regimes would be similar for every end-use, and that the 

average time of operation of equipment was also the same. Since the use of equipment is highly 

related to occupancy, these assumptions are reasonable due to the similarity of occupancy and activity 

patterns, like types of activities and classes schedules, between buildings. 

 Lighting (%) Electronics (%) HVAC (%) Others (%) 

Real share 17 9 67 7 

Range of acceptable 

values 
12-22 5-15 60-70 1-12 

Lighting
17%

Electronics
9%

HVAC
67%

Others
7%
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This way, the same process used for calculating the Civil building boundaries could be used, with a 

simple modification, since only the total consumption for each end-use was available, and it was not 

separated by different regimes. So, by finding the share of energy consumption of each regime for Civil 

building and then applying the result to the total consumption for the South Tower, boundaries for 

every regime were obtained, as exemplified by equations 27-30. 

                                                          
𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙,𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒,𝐶𝑖𝑣𝑖𝑙      

𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙,𝐸𝑛𝑑−𝑢𝑠𝑒,𝐶𝑖𝑣𝑖𝑙      
= 𝑅𝑒𝑔𝑖𝑚𝑒 𝑆ℎ𝑎𝑟𝑒𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒                                                        (27) 

𝑅𝑒𝑔𝑖𝑚𝑒 𝑆ℎ𝑎𝑟𝑒𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒 ∗ 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝐸𝑛𝑑−𝑢𝑠𝑒,𝑆𝑜𝑢𝑡ℎ 𝑇𝑜𝑤𝑒𝑟 = 𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙,𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒,𝑆𝑜𝑢𝑡ℎ 𝑇𝑜𝑤𝑒𝑟   𝑘𝑊ℎ/𝑦𝑒𝑎𝑟   (28) 

                                                        
∑ 𝐻𝑜𝑢𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡𝑠
= 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑊𝑜𝑟𝑘 𝑇𝑖𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒   ℎ                                         (29) 

                                                                 
𝐸𝑛𝑒𝑟𝑔𝑦𝑇𝑜𝑡𝑎𝑙,𝑅,𝐸𝑛𝑑−𝑢𝑠𝑒,𝑆𝑜𝑢𝑡ℎ 𝑇𝑜𝑤𝑒𝑟

𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑊𝑜𝑟𝑘 𝑇𝑖𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
= 𝑃𝑜𝑤𝑒𝑟̅̅ ̅̅ ̅̅ ̅̅

�̅�,𝐸𝑛𝑑−𝑢𝑠𝑒  ,                                                      (30) 

, 𝑅 = {1,2, … ,8}, 𝐸𝑛𝑑 − 𝑢𝑠𝑒 = {𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔, 𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐𝑠, 𝐻𝑉𝐴𝐶, 𝑂𝑡ℎ𝑒𝑟𝑠} 
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5 Results 

5.1 Model validation 

 

To validate the model, the civil Building was used, and two simulations were made. The first one used 

the boundaries derived from the real HVAC profile. The second one used the HVAC boundaries 

obtained from the audit file. This was done to compare the errors between the two simulations, to 

understand how important it is to have access to real-time data, and how viable it is to apply this model 

to other buildings where normally there is less available data. Table 10 shows the input parameters for 

both simulations. 

Table 10 - Input Parameters for simulations 1 and 2 

 Members of population Number of iterations per day 

Simulation 1 – Bounds from real 

HVAC profile 
4000 150 

Simulation 2 – Bounds from audit 3750 140 

 

To reduce the running time of the algorithm, the input parameters of the second simulation were 

reduced. This reduction in parameters does not affect the results significantly, since the error, usually, 

stabilizes before 140 iterations. 

The results of the two simulations are presented in Figure 22 and Figure 23. 
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Table 11 - Comparison of errors between simulation 1 and 2 

 RMSE MRE 

Simulation 1 24.55 9.77% 

Simulation 2 30.91 12.57% 

 

From Figure 22 and Figure 23, it is observable that, despite some occasional days where the errors are 

high, the model achieves satisfiable errors for most of the days. It is also noticeable that there is a 

Figure 23 - Total hourly loads comparison: Simulation 2 (orange) vs Real loads (yellow) 

Figure 22 - Total hourly loads comparison: Simulation 1 (purple) vs Real loads (yellow) 

hours 

hours 

kWh 

kWh 
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pattern of lower errors on weekends. That was expected since the loads are considerably lower on 

these days, therefore the errors also are lower. Also, during these regimes there is less activity and less 

consumption variability, so, the real consumption does not fluctuate a lot. Therefore, having a smaller 

range of values for the boundaries leads to an initially smaller margin of error, so the errors are lower. 

There seems to be more overestimation of the electricity consumption in more moderate months, that 

is, during spring and autumn. This could be due to HVAC, since there is no separation into more 

moderate and more rigorous months, the model might be overestimating the HVAC consumption in 

those months, when in reality, HVAC demands are lower. It could also derive from a reduced demand 

from lighting when compared with winter. During winter the days are shorter, so, the lighting demand 

increases. But this demand decreases in the transitional seasons and is lower during summer, where 

some overestimation can also be observed. 

Table 11 presents the random mean square error (RMSE) and the mean relative error (MRE) for both 

simulations. The errors are smaller in the first simulation, with the use of the HVAC profile. This was 

expected since the information obtained from the profile allowed not only for a closer interval of 

bounds, but also for more diverse regimes, unlike what was possible to derive from the equipment 

excel. 

 

Looking at Figure 24, there is a clear overestimation of the HVAC consumption in the second 

simulation. This is mostly due to the reduced data available that limited the number of regimes possible 

to create and led to higher bounds. However, this can also be explained by one of the applied 

Figure 24 - HVAC daily RMSE comparison: Simulation 1 (purple) vs Simulation 2 (orange) 

days 
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constraints. To ensure the proper allocation of each end-use, the algorithm checked if the end-use 

shares of that day were similar to the ones determined from the available data.  

The end-use shares were relatively close to those values, showing that despite better performance 

from simulation 1, both simulations predicted the end-use shares well. So, even if real profile data is 

not available, as long as the boundaries can be well estimated, the model gives good results. This can 

be seen in Table 12. 

Table 12 - End-use shares comparison – Civil building 

End-Use Shares Lighting Electronics HVAC Others 

Audit data 25% 18% 48% 9% 

Simulation 1 28.9% 24.2% 34.1% 12.9% 

Simulation 2 26.1% 23.5% 37.9% 12.4% 

 

However, while the HVAC share calculated in section 4.2 was 48%, the HVAC share obtained from the 

real HVAC profile was around 28%. This also explains why there was an overestimation, since the HVAC 

shares obtained from the two datasets were different. The constraint forced the model to prefer days 

where HVAC consumption was higher than what it should be, considering the HVAC profile. 

Although real load profiles for every end-use were not available, for the validation of lighting and 

electronics end-uses, available simulated profiles in Energy Plus were used, as mentioned in section 

4.1.2. Despite these profiles not being very accurate it is possible to extract information from the 

comparison of both profiles, modelled (GA) and simulated (Energy Plus).  

 

 

 

 

 

 

 

 

Figure 25 - Comparison between normalized HVAC profile simulated in Energy Plus (blue) and from simulation 
2 (orange) 

hours 
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Figure 27 - Comparison between normalized electronics profile simulated in Energy Plus (blue) and from 
simulation 2 (orange) 

hours 

Even though there is some load variation throughout the year, it is noticeable the lack of attention to 

the regimes of reduced activity in Figure 25. During the night, on weekends and on some vacation 

regimes like in August, the HVAC consumption is assumed to be zero. This is a simplified assumption, 

not only because there is always some residual consumption, but also because there is some activity, 

even if reduced, during those regimes. There are people in the building in those regimes, so some 

HVAC equipment will be turned on. Despite the simplicity regarding those regimes, the assumptions 

used for simulating the weekly loads provide variability and some seasonality can be observed, so, 

these assumptions overcome the lack of more complex regime separation. However, this is not the 

case for other end-uses. 

 

 

 

 

 

 

 

 

 

Figure 26 - Comparison between normalized lighting profile simulated in Energy Plus (blue) and from 
simulation 2 (orange) 

hours 
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As it can be seen in Figure 26 and Figure 27 , Energy Plus simulates lighting and electronics consumption 

in a very simplified way. For lighting, apart from the weeks of reduced activity in August, the 

consumption repeats itself in a cyclic way. The consumption during the week is always constant during 

the day, and the same applies for the night-time and weekends. It is assumed that when there is 

activity, all the lights in the building are turned on, or at least, that the same lights are always turned 

on. Like for HVAC, there is no room for consumption variation during the night, it is always the same. 

But unlike HVAC, there is no variation during the day either. There is no separation of regimes, there 

simply are periods of activity and inactivity, as well as the regime of august and one week at the end 

of the year. There is no seasonality either. It is assumed that the lighting consumption is the same for 

the winter, when the days are shorter and the natural lighting is weaker, as it is during the summer or 

spring. These are all big simplifications that decrease the significance of the results. 

The same can be said for electronics, although there seems to be a separation between cooling and 

heating seasons. However, the consumption still does not variate a lot, there are only a few possible 

values for consumption, either during the day or the night. 

The simulation in Energy Plus Software is based on the input of various types of data such as building 

characteristics, temperature, occupation or equipment data, and its performance improves with the 

extent of data used. This way it allows for dynamic and precise simulations when complex and 

thorough data analysis is performed. On the other hand, it is also possible to use simplifications and 

reduce the inputs in the model, in order to reduce the need of access to more complex data, at the 

cost of less precise results. For example, Energy Plus uses a binary variable to represent occupancy 

schedules. These simplifications resulted in the cyclic and unrealistic results from Energy Plus. 

In this study where access to more complex data is limited, the genetic algorithm allowed for a much 

better understanding of the end-use consumption. The simulated load profiles show much more 

variability, seasonal patterns, and different regimes with different activity levels. This is a result not 

only of the diverse regimes created with different bounds and the constraints applied, but also the 

model itself, since it used real loads instead of just simulating loads based on simplified assumptions. 

This allows to conclude that the genetic algorithm developed has an edge over Energy Plus when there 

is a lack of complex, detailed data, leading to simplifications and less insightful data analysis limiting 

the advantages of using Energy Plus. 
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5.2 Model implementation on other buildings 

Once validated, the model was implemented in a different building, the South Tower, to test the model 

performance in accurately forecasting end-uses demand. The algorithm ran with 3750 members of 

population and 140 iterations, for each day.  

As it can be seen in Figure 28, there are a few days where the mean relative error is very high, however 

most of these occurrences are in the regime of reduced activity in August and in the last week of the 

year.  

 

It can also be observed that the error drops cyclically on weekends, since, as previously noticed, the 

demand is lower leading to lower absolute errors.  

In August, the real loads were significantly higher than expected, therefore the errors were high in this 

regime since the estimated boundaries did not allow for very high loads. In the final week of the year 

the loads were very low, and a lot of them were smaller than the sum of the minimum boundary for 

each end-use. So, once again the errors were high during this week.  

Figure 29 shows the MRE for the South Tower building modelling after removing the regime of reduced 

activity in August (R3) and the last week of the year. Removing these two regimes from the analysis, 

the results improve. Despite this, there are still a few high values of MRE, and they usually occur in 

weekends with unexpected very low demand, leading to higher relative errors on these days, just as 

in the last week of the year. And, since the loads are small, the relative error increases significantly. 

Table 13 shows the improvement of the errors when those regimes were not taken into consideration. 

Figure 28 - Daily MRE for south tower building modelling, throughout one year 

days 
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Table 13 - Comparison of errors of simulation 3 

 RMSE MRE 

Before correction 34.79 22.36% 

After correction 32.96 17.85% 

 

The errors improve significantly with this correction. Since the data used to determine the bounds for 

Civil was not available for the South Tower, this led to some gross estimations of the bounds. That and 

the relatively large consumption during the vacations in August in the South Tower comparing to Civil 

lead to the increase in errors. This shows that with better estimates for the bounds, the results improve 

considerably. So, despite higher errors in the South Tower simulation, there is potential to improve the 

model even further, as long as more concrete and precise data is available. 

Table 14 shows the comparison between the end-use shares obtained from the real data and the 

shares estimated by the simulation. Despite some of the high errors mentioned before, the model 

once again reached good results, since the shares are similar for each end-use. 

Table 14 - End-use shares comparison – South Tower building 

End-Use Shares Lighting Electronics HVAC Others 

Audit data 17% 9% 67% 7% 

Simulation 3 23.3% 15.4% 53.7% 7.6% 

 

 

 

Figure 29 - Daily MRE for south tower building modelling after correction 

days 



 

48 
 

5.3 Discussion 

5.3.1 Comparison of indicators between buildings 

 

From the analysis referred in chapter 4 it was observed that the rooms/spaces that are the largest 

consumers are technical rooms, by a large margin, followed by investigation labs and offices. After 

those, classrooms, study spaces and corridors also account for a significant share of the total 

consumption in a building. 

 

 

Analysing Figure 30, it can be seen that the consumption per unit of gross floor area in the South tower 

is higher than in the building of Civil for all end-uses. This could be explained by different reasons. The 

south tower is a tall building with glass facades. This results in higher solar gains, and it could lead to 

increased cooling demand in the summer and even in spring and autumn. These differences could also 

be a result of different occupancy schedules between the two buildings or could result from less energy 

efficient equipment in the South tower. While for electronics and others end-uses energy intensities 

are similar, for lighting there is also a larger difference, that, once again, might be explained with the 

architecture of the South tower, that has all the common spaces inside, leaving offices and classrooms 

for the exterior facades, while the Civil Building has large common spaces with natural lighting.  

However, without further information regarding architecture, occupancy, equipment efficiency or the 

existence of any retrofitting measures taken in either building, one might try to take conclusions 
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looking at the types of spaces in each building, and how much they represent (in area and electricity 

demand) for each building. 

To better understand the relation between area allocation for each type of space and the Building 

Energy Intensity (BEI), the ratios between the South Tower BEIs and the Civil BEIs were calculated, to 

see how much of an increase each end-use has from one building to the other. The ratios for the area 

allocation were also calculated to better compare their variations. Tables 15 and 16 present these 

ratios. 

Table 15 - Ratio of South Tower BEI over Civil BEI 

End-use 
Total 

consumption Lighting Electronics HVAC Others 

𝑆𝑜𝑢𝑡ℎ 𝑇𝑜𝑤𝑒𝑟 𝐵𝐸𝐼 𝐶𝑖𝑣𝑖𝑙 𝐵𝐸𝐼⁄  2.02 1.80 1.33 2.86 1.24 

 

Table 16 - Ratio of area allocation between South Tower and Civil 

 

 

 

 

 

 

 

Looking at the technical rooms, there is a larger allocation of area to these spaces in the South tower 

relative to the building of Civil. Although the increase does not seem very significant, going from 4.66% 

to 7.12%, this represents a rise of around 50%. Considering that these rooms account for a large 

portion (40-60%) of the total consumption in the building this increase in area allocation should lead 

to a significant increase in total energy consumption, especially in HVAC since the consumption in these 

spaces is mostly HVAC. Furthermore, since these spaces include HVAC equipment like pumps or the 

central equipment of some systems, this means that a larger allocation to these spaces should mean 

there are more HVAC equipment in the building overall. This can easily be seen by looking at Table 15, 

since the HVAC increase is the highest. 

Comparing research labs, there is a significantly larger allocation of area to these labs in the South 

tower relative to Civil building. These spaces consume a large quantity of electricity in lighting, around 

40 to 70% of their total consumption is on lighting. These could explain why the South Tower has a 

Type of Space 
South Tower Area Allocation/Civil 

Area Allocation 

Classrooms 0.68 

Study Space 1.76 

Technical Room 1.53 

Offices 0.66 

Research Labs 2.20 

Hallways 0.99 
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higher BEI of lighting than the building of Civil, especially because many of the labs in the South tower 

are underground, so the lighting consumption there is constantly high. 

Considering the higher allocation of area for labs, it is expected that the BEI of the Others end-use is 

higher in the South tower, which is the case. However, this increase is not significant, which means 

that not only the lab specific equipment is only a portion of the end-use, but also that this equipment 

is not a major consumer in labs. 

Unlike the labs, the allocation of building area for offices is higher in the building of Civil than in the 

South tower. The major contributing end-use to the total consumption in offices is the electronics (40-

60%), mostly due to the computers for every teacher/researcher. This should lead to a higher BEI of 

this end-use in the Civil building, however that is not the case, since the BEI is slightly higher for the 

South tower. 

This could be a result of the bigger allocation for study spaces in detriment of classrooms in the South 

tower. Classrooms have low to zero electronics consumption, while study spaces have a much larger 

consumption of this end-use, due to students charging their laptops or phones in these spaces for 

hours. This could be the reason the BEI is more balanced than what should be expected. 

From the results, it can be concluded that analysing the area allocation of a building can provide 

information on how much energy that building consumes and how it is distributed, as long as there is 

an understanding of the type of activities that occur in each space and how energetically demanding 

they are.  

For these two buildings the technical rooms consume the most out of any space in the buildings, 

however this is not the case for every building in campus. In some buildings, a sizeable portion of 

electricity demand comes from data centres, which do not exist in the two studied buildings. So, to 

extrapolate to other buildings, attention to these details is especially important, and the more different 

the building is in comparison to the ones discussed in the paper, the more understanding of these 

patterns of consumption are required. 

 

5.3.2 Comparison of indicators with other studies 

 

Comparing the results from this work with different indicators for various educational buildings around 

the world [16,31], it can be seen that the BEIs obtained are closer to the values obtained for other 

school buildings in southern Europe compared to other regions, as seen in Table 17. These values are 
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lower for the southern European countries. These countries have warmer climates, therefore, milder 

winters. This way there is less demand for heating in these countries, which can explain the lower 

energy indicators [37]. Since the countries in Southern Europe have similar climates, the energy 

demands, specifically HVAC, are closer than for other regions in the world, so this can explain this 

difference in values for BEIs. This can especially be seen for Finland, a Scandinavian country, that 

reaches a maximum BEI of 450 kWh/m2. This is also observed in Taiwan, which is the country with 

climate closer to southern Europe climate, and has a BEI for universities in the range obtained in this 

work. 

Table 17 - BEIs for educational buildings in different countries 

Southern Europe BEI (kWh/m2) Other regions BEI (kWh/m2) 

Cyprus (High Schools) [16] 62.75–116.22 Slovenia [16] 192 

Greece [16] 92 Taiwan (University) [16] 79 

Portugal (This work) 64.9-131.7 

Espoo, Finland (University) 
[16] 

89-450 

Manhattan [31] 142 

 

Comparing the energy indicators obtained in this work with ones obtained by R. Jing et al [38] some 

conclusions can be made (Table 18). 

Table 18 - BEIs comparison between IST buildings and Hong Kong office buildings 

End-use 
IST Buildings BEI 

(kWh/m2) 
End-use 

Hong Kong offices BEI 

(kWh/m2) 

Lighting 16.97-30.53 Lighting 33.04 

Electronics 15.26-20.24 Electronics 28.32 

HVAC 24.62-70.53 HVAC 160.48 

Others 8.02-9.66 Others 14.16 

 

As can be seen, HVAC consumption increases significantly in the Hong Kong offices. This is due to the 

differences in climates. Hong Kong has a subtropical climate, so in the summer, temperatures are very 

high, and unlike in universities, the activity levels don’t reduce in the summer, for vacations. So the 

HVAC demand is much higher. The other end-uses consumptions are similar to the ones obtained in 

this work, which indicates that HVAC is the most variable end-use due to climate differences. The 

higher electronics consumption could be due to more electronic equipment, specifically computers, in 

offices in comparison to university buildings. Elevators are more common and used more frequently 

in offices, which explains the higher Others BEI. 
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6 Conclusions 

Modelling energy demand in buildings is crucial to reach the goals of reducing the energy consumption 

and CO2 emissions. However, in many situations, information such on influencing parameters, as 

occupancy schedules or building characteristics are not available. Finding ways to develop models with 

more easily accessible information is therefore of crucial importance.  

For this purpose, a modified genetic algorithm was developed, where the error between the hourly 

simulated and real loads was used, as well as the number of constraints not met, to add more 

information regarding the patterns of consumption for each end-use in the model. The model forecasts 

the electricity demand of a building and disaggregates it into 4 different end-uses: Lighting, HVAC, 

electronics and others. By using outdoor temperature data and equipment data to estimate the 

boundaries, the model achieves satisfiable results.  

By using IST campus’ buildings as case study, the model was validated for the Civil building, for which 

there was detailed data to train the model, using two approaches: one using hourly HVAC loads to tune 

the model, and other using only equipment characteristics and usage data. After validated and 

finetuned, the model was applied to the South Tower building, to observe the accuracy of the model 

on other buildings. 

The simulation with the data obtained from the HVAC profile resulted in the lower model error, 9.77%, 

while, without using the HVAC profile, the model predicted the energy demand with an accuracy of 

12.57%. The model performed better with the additional information, that allowed for a better and 

more detailed estimation of boundaries. The results also show that the simulated end-use shares are 

similar to the real ones, so again, the model disaggregates the total electricity demand into the 

different end-uses at a satisfiable performance. When comparing the end-uses profiles against other 

dynamic simulation done previously in Energy Plus Software, the model showed more variability 

throughout the day, week and seasons, demonstrating that it disaggregates the electricity 

consumption into the different end-uses in a more realistic manner that represents the patterns of 

consumption and how it changes throughout time. Therefore, this indicates that the model provides 

more insightful results than energy consumption forecasting programs such as Energy Plus, when there 

is limited access to real complex data. 

For the South Tower, the model did not perform as well with a relative error of 22.36%. However, the 

bounds were obtained by a rough estimate with some simplifying assumptions, specifically that the 

patterns of consumption were the same between buildings throughout the different periods. By 

ignoring the periods where those estimates were further apart from reality, either by having less data 
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for those periods, or because the patterns of consumption differed more, the error decreases to 

17.85%. This shows the potential for better performances of the model for different buildings, when 

having access to data that allows better boundaries estimates. With this in mind, the model developed 

can be useful in situations where more complex data is not available, since it only requires total hourly 

consumption profiles and outdoor temperature data, as long as good boundaries and constraints can 

be estimated. 

With the results from the simulations, end-use consumption electricity demand indexes for each 

building were determined. These indicators allowed for an analysis of the influence of the different 

types of spaces in each building, and how much total building area is allocated to them, on each end-

use consumption. From the analysis, it was observed that there was a relation between the differences 

in area allocation and the end-use consumptions. The space that most contributed to this variation 

was the technical rooms. This shows that the area allocations for each type of space, can help 

understand the total and end-uses consumptions for that building. 

As mentioned in section 5.3.2 energy indicators can point to the type of activities in a building. There 

were clear differences regarding end-use BEI for this work and for residences due to the difference in 

activities between the two types of building. Comparing to educational buildings the range of values 

for the total BEI in this work (64.9-131.7 kWh/m2) were close to values obtained in other studies in 

countries with similar climate like Cyprus (62.75–116.22 kWh/m2) and Greece (92 kWh/m2). 

 

6.1 Limitations and future work 

For this work most data used is usually accessible to universities, to develop a model that can be 

replicated for different studies without the need to have more complex data. However, this limits the 

performance of the model since simpler data does not provide enough information to forecast energy 

demand with very low errors. Furthermore, it was only possible to validate the model for one building, 

as data regarding end-use profiles was not available for other buildings. And, while this data was 

available for Civil, it was not real data measured by smart meters or by an audit, it was obtained 

through a rough simulation from Energy Plus Software. 

This way, future work should be done to improve the model developed in this study. The model should 

be validated with real data, if available, for the building of Civil. If not possible, it should be tested for 

another building where more data regarding end-use profiles is accessible. The relation between 

lighting consumption and solar radiation could also be analysed to potentially add more information 

to the model. Also, to better understand the viability of using the area allocations to analyse the 
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consumption of each building, simulations for other buildings with more different space types should 

be done, specifically buildings with data centres, since they are significant consumers, with a 

somewhat constant consumption during the day and night. This way, a database of end-uses BEIs for 

university buildings with diverse activities can be created, which can serve as reference for other 

studies regarding energy consumption in higher education buildings. 

Simulations for non-university buildings could also be done to see if the model developed can also 

perform well for different buildings with other types of activities. 
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