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Resumo

O efeito FLASH tem despertado interesse devido à sua maior preservação de tecido saudável que
radioterapia convencional. Este efeito tem sido observado para irradiação de elevadas doses (>8 Gy)
a taxas ultraelevadas (>40 Gy/s). Combinado com as vantagens dosimétricas da terapia com protões
e sua adequação para tratar tumores profundos, FLASHPT tem o potencial de reduzir a toxicidade e
melhorar tratamentos. Contudo, os atuais software de planeamento de tratamento não estão aptos para
otimizar o efeito.

Neste projeto são desenvolvidas novas estratégias para otimização de FLASHPT, que reduzam efeitos
colaterais através de FLASH dentro das restrições clínicas. FLASHPT está atualmente limitada a feixes
acelerados por ciclotrões, usando pencilbeam scanning. Para maximizar as taxas de dose, a energia
máxima do ciclotrão é considerada, correspondendo a transmission beams, aplicados no tratamento
estereotáxico de lesões pulmonares. A taxa de dose é otimizada por otimização da intensidade, da
corrente e do padrão de scanning dos feixes, com base na taxa de dose ponderada à dose (DADR) e
taxa de dose PBS (PBSDR), usando linearização iterativa, relaxamento convexo iterativo e Algoritmos
Genéticos.

Aumentos significativos da taxa de dose são alcançado com as estratégias propostas, através de cor
rentes de feixe elevadas e padrões em flocodeneve, que, com base no conhecimento atual de FLASH,
podem ser de grande benefício clínico. Antes da aplicação clínica, a sensibilidade aos parâmetros da
máquina de tratamento deve ser avaliada. Os resultados podem ser melhorados, ponderando os ganhos
e danos nos tecidos, otimizando a direção do feixe e irradiando parcialmente com FLASH.

Palavraschave: FLASH, radioterapia com protões, pencilbeam scanning, otimização da taxa de dose,
otimização do padrão de scanning
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Abstract

The FLASH effect has gained increasing interest due to its higher healthytissue sparing than conven
tional radiotherapy. This has been observed for irradiation of high doses (>8 Gy) at ultrahigh dose rates
(>40 Gy/s). Combined with the dosimetric advantages of proton therapy and its adequacy to treat deep
seated tumours, FLASHPT has the potential to reduce toxicity and improve clinical outcome in some
patients. However, current treatment planning software does not account for dose rates, not optimizing
FLASH.

In this project, the aim was at developing novel strategies for optimization and delivery of FLASHPT
within clinical constraints on dose, that reduce side effects through FLASH. This is currently limited
to cyclotronaccelerated beams and using pencilbeam scanning. To achieve the overall highest dose
rates, protons with the maximum commissioned cyclotron energy (244 MeV) are used, corresponding
to shootthrough transmission beams (TB), applied to stereotactic treatment of lung lesions. Dose rate
is optimized via beam intensity, beam current and scanningpattern optimization, based on two metrics
 the DoseAveraged Dose Rate (DADR) and the PencilBeam Scanning Dose Rate (PBSDR)  using
iterative linearization, iterative convex relaxation and Genetic Algorithms.

A significant increase of dose rate is achieved with the proposed optimization strategies, through higher
beam currents and optimized snowflakeshaped scanning patterns. Based on current knowledge of
FLASH, this may be of significant clinical benefit. Before clinical application, sensitivity to treatment
machine parameters needs to be evaluated. Results can be further improved, weighting tissue sparing
and tradeoff, optimizing beam direction and partially irradiating with FLASH.

Keywords: FLASH, proton therapy, pencilbeam scanning, doserate optimization, scanningpattern
optimization
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1 Introduction

Over decades, the number of patients diagnosed with cancer has been increasing and is expected to
continue rising in the future [1], in part due to higher life expectancy and lower incidence and mortality
of cardiovascular diseases. This has motivated developments on both cancer prevention and treatment
procedures, to decrease mortality and to improve future complications. Thanks to that, data shows that
over the last 25 years cancer mortality has been decreasing but death rates are still high [2].

Cancer treatment is split in three main modalities, with different specificities, which are often used in
combination to ensure the best results. Surgery is recommended for local tumours, systematic therapies
(e.g. chemo and immunotherapies) for systemic diseases and radiotherapy for localregional control.
Radiotherapy has been consistently one of the most important treatment modalities, as around 50% of
all cancer patients are indicated for it, at least once during the course of their disease, irrespective of the
world region [3]. Treatments with radiotherapy may be associated with side effects though, arising from
unavoidable damage to healthy tissue, which research on the field has been trying to reduce.

Sparing of healthy tissue in radiotherapy treatments has been successfully improved through high
precision irradiation techniques, such as proton therapy, and through optimal targeting, such as live
treatment adaptation. However, a new way of enabling reduced healthytissue toxicity has been iden
tified by biological studies: the FLASH effect. This has been observed for cells when irradiated with
a high dose, for a very short time, at ultrahigh dose rate. Combined with the dosimetric advantages
of precision irradiation techniques, the potential for substantially improved clinical outcomes is great.
FLASHcompatible proton therapy (FLASHPT) has been the focus of several recent studies, which
mostly cover the feasibility and optimization of treatment plans with the current clinical technology.

1.1 Radiotherapy

Radiotherapy is effective due to a differential response to ionising radiation by the DNA of cells. Tumour
cells are often more radiosensitive than healthy cells and are less capable of repairing damage. This
translates in reduced growing capabilities and death for tumours, whereas healthy tissue is partially
spared. There are different ways of irradiating tissue but the focus here is on external beams, where
one or more conformal beams, most commonly of photons, are targeted at the tumour from outside of
the patient’s body. These beams are modulated in intensity to deliver a treatmentspecific prescribed
dose. External beam radiotherapy is commonly applied either as a primary treatment modality or as a
locoregional treatment, after surgery to kill remaining tumour cells left in the target area. Recent studies
also suggest the alongside use of immunotherapy, to amplify the radiation damage to the DNA of cancer
cells, while reducing side effects to healthy tissue.

The radiosensitivity differences between healthy and tumour cells is referred to as therapeutic bandwidth
and is modeled by the TCP (Tumour Control Probability) and the NTCP (Normal Tissue Complication
Probability). Treatment plans should increase this therapeutic bandwidth, by maximizing the TCP (tu
mour damage) while minimizing the NTCP (healthytissue damage). In addition, tumour cells are also
less capable of selfrepairing their DNA compared with healthy cells, which can be exploited through
fractionation of the treatment into several sessions. By giving more time for healthy tissue to recover,
the therapeutic bandwidth is increased, lessening possible future complications.

One of the main challenges in radiotherapy is to reduce the exposure of healthy tissue to radiation, which
is unavoidable because tumours infiltrate normal tissue. Additionally, there are always uncertainties in the
tumour location and shape, requiring safety margins that might contain healthy tissue. This unavoidable
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damage to the healthy cells can lead to immediate or long term effects and complications, such as dry
mouth, dysphagia, pneumonitis and fibrosis, with potentially severe impact on quality of life.

Research on radiotherapy aims at reducing side effects without sacrificing tumour cell kill. This can
be improved through highprecision irradiation techniques, such as proton therapy, and through optimal
targeting, using online imaging techniques combined with motion correction (such as online patient setup
through tracking) and with live treatment plan adaptation. However, increasing the conformity of dose
to the target has limits, motivating the search for alternative methods to reduce healthy tissue toxicity.
Recent biological studies point out to a fundamentally new different way to achieved this: the FLASH
effect.

In radiotherapy, patients are treated with personalized treatment plans with computeroptimized ma
chine settings to deliver a curative dose to the tumour, while sparing normal tissue. Treatment planning
software assures that, bridging the medical treatment requirements with the treatment delivery by the
machine. These optimal plans are generated based on information about the beam properties, such as
directions, positions, energies and intensities, alongside tissue characteristics, namely response to radi
ation. Inputs include CTscan delineations of important structures in the patient and a set of constraints,
objectives and goals for the dose restrictions and requirements in the patient.

1.2 Proton Therapy

Proton therapy is a radiotherapy modality that uses highenergy protons, ranging from 70 to 250 MeV,
to deliver dose. It allows for precise irradiation as protons have a peaked energy deposition curve,
with most of their energy being deposited at a well defined depth (Bragg peak), which depends on their
initial energy. This translates into substantially lower entry and exit doses and, consequently, in a better
sparing of healthy tissue compared to conventional photon irradiation. The dosimetric advantages of
proton therapy and the maturation of the technology has led to a growth in the number of proton therapy
centers throughout all world, with more under construction or at a planning stage [4].

Despite the recent expanded interest in proton therapy, clinical implementations have been used over
the past seventy years, with the first reported patient being treated back in the 1950s [5]. These first
treatments used scatterers to shape and aim the radiation field to the target volume, through a cascade
of interactions between the proton beam and the specific material of the modulation devices. Due to its
simplicity, passive scattering is still used today for the majority of patients treated with proton therapy.
However, it has been replaced at new facilities by a more versatile delivery system: the pencilbeam
scanning (PBS). PBS works by adjusting the location of the Bragg peak for a proton beam (pencil beam)
through energy degradation, incidenceangle adjustment and magnet steering, and modulating the in
tensity of each beam to accurately irradiate any tumour volume, irrespective of its shape and position.

The development of proton therapy was only possible due to the invention of cyclotrons in 1929, a type
of particle accelerator that produces continuous charged particle beams, such as of protons, of high
intensity at a fixed energy. This is achieved by accelerating charged particles using rapidly varying
electric fields and confining them to a spiral trajectory within a flat cylindrical vacuum chamber, through
a static magnetic field.

Proton treatments with more complex types of particle accelerators are also possible and carried out in
some facilities. In synchrotronbased systems, particles are accelerated around a fixed closedloop path
through an increasing magnetic field, enabling the extraction of any energy directly from the accelerator.
This is a major advantage since the use of degraders for energy selection in cyclotrons is associated
with scattering, which increases beam spreading and consequently decreases dose conformity to the
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target, specially for lower energies. However, synchrotrons produce beams in bunches, on at a time
and with tenths to a few seconds apart. Cyclotrons are by far the most common accelerators used for
clinical proton therapy due to their simplicity and compactness. Synchrotrons offer higher versatility for
other radiotherapy modalities though, as they can be used with different types of ions, most notoriously
carbon, and are able to produce micronsized ultrahigh dose rate Xrays.

Intensity Modulated Proton Therapy (IMPT) plans are the golden standard for proton therapy, corre
sponding to optimal dose distributions. These are personalized treatment plans, for which the beam
parameters are modulated to maximize damage to tumour and sparing of healthy tissue, improving clin
ical outcomes.

1.3 FLASH Radiotherapy

The radiosensitivity of cells has been suggested for decades to depend on the dose rate, both from
observations that treatments at low dose rates are relatively ineffective and that extremely high dose
rates are more deadly [6][7]. However, studies have only recently concluded that the effect of dose rate
on cell survival is differential. Healthy tissue irradiated with a high dose at a ultrahigh dose rate, for
a very short time (a flash of dose), has been observed to be less damaged compared to conventional
irradiation, without compromising tumour cell kill [8][9]. This differential toxicity is know as the FLASH
effect and has the potential to substantially improve treatment quality. To date, this effect has only been
demonstrated on culture cells and small mammals but recently the first clinical trial was conducted, with
the first human patient being treated with a FLASHcompatible radiotherapy plan [10].

The FLASH effect is still mostly not understood but two explanations are often suggested, supported by
preliminary evidences. It is suggested that fast irradiation induces hypoxic conditions (low concentration
of oxygen), which consequently reduce DNA damage [11][12]. It explains why tumour cells are not
affected by the FLASH effect as many tumours are already hypoxic due to their abnormal growth. By
generating hypoxic conditions in healthy tissue, the differential effect of radiotherapy can be increased.
It is also suggested that fast irradiation does less damage to circulating immune system cells in the blood
[13].

Current knowledge on how to trigger the FLASH effect is limited, with a large set of irradiation parameters
reported to potentially contribute to the effect. Consequently, it is still not possible to fully and accurately
exploit the reduced toxicity enabled by FLASH. Nevertheless, a set of 3 thresholds have been consis
tently reported to trigger the effect in several preclinical studies: doses higher than 10 Gy, irradiated
for times lower than 100 ms and at dose rates higher than 100 Gy/s. Although different experiments
have reported different minimum thresholds, the previous set of parameters is compatible with all obser
vations, therefore guaranteeing FLASH beyond doubt. More conservative approaches consider instead
thresholds of 8 Gy, 40 Gy/s and 200 ms.

1.4 FLASH Proton Therapy

Most studies on FLASH radiotherapy have been conducted using electrons for dose delivery [8][14],
because electronbeam setups are more widely available and FLASHcompatible dose rates can be
achieved with conventional linear accelerators, albeit with modifications, allowing instantaneous pulses
with dose rates up to 106 Gy/s. However, because electrons have a small range within the patient,
FLASH electron therapy is only suitable for superficial treatments. Even if electrons are given enough
energy to reach deeper in the patients, because they are very light particles, scattering is pronounced,
resulting into significantly broader and less welldefined beams.
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Recent experiments have demonstrated the FLASH effect for protons too [9][15]. This is an important
milestone for FLASH radiotherapy because protons allow for better healthy tissue sparing and higher
treatment versatility, enabling conformal irradiation of deepseated tumours. Furthermore, the required
high dose rates are readily available with presentday clinical proton system. Generalpurpose clinical
FLASHRT is thus currently only possible with protons [16].

Despite the enormous potential of FLASHPT, meeting the requirements to trigger the effect is currently
challenging. Presentday clinical cyclotrons deliver continuous proton beams at a cyclotron frequency of
103 Hz and are readily capable of instantaneous dose rate of about 8001000 Gy/s, which is compatible
with the FLASH effect. However, FLASHcompatible electron therapy is delivered in very short pulses of
ultrahigh dose rate, at a frequency of 102 Hz and simultaneously to the whole target. This is not possible
with current cyclotrons because scattering significantly reduces dose rates, which become incompatible
with FLASH, being limited to very small targets on biological experiments. Synchrotrons are not suitable
either because even though they allow for energy preselection, their pulsed time structure is in the order
of tenths to a few second, too slow for FLASH [17]. Therefore, FLASHPT is currently limited to cyclotron
accelerated pencilbeam scanning, meaning that the tumour volume is not irradiated completely all at
once, but instead locally through a succession of pencil beams. In addition, it is also critical to account
for the contributions of the treatment delivery machine, such as the dead time between pencil beams,
for switching energy layers, for steering the pencil beam and for the adjusting the beam current required
for each layer/beam. Nonetheless, the FLASH effect has also recently been observed for this treatment
delivery scheme [18].

To guarantee the highest possible dose rates, the fixed extraction energy of the cyclotron is used, which
for commerciallyavailable cyclotrons corresponds to 250 MeV. Energy degraders are not considered
due to the slow switching time between energy layers, currently incompatible with FLASH. These single
highenergy proton beams shoot through the patient and have their Bragg peak outside, being designated
by transmission beams (TB). TBs are relatively nonprecise compared to Bragg peak beams but they
mitigate range uncertainties and freeze anatomical motion. They are analogous to photon beams in the
sense that they transverse all the patient, but TBs have a flat dosedepth profile and a sharper lateral
dose falloff.

Figure 1.4.1: Dose deposition as a function of depth for beams of different particles: electrons, photons
and protons. The highlyenergetic protons shoot through and have a Bragg peak outside the patient,
only depositing dose with the tail.

The first studies on FLASHPT have focused on tumour types that are suggested to benefit greatly with
the effect. Small lung lesions have been getting the most attention, being considered a benchmark
for treatment comparison. With lungs being comprised of mostly air and motion from breathing being
inevitable during irradiation, conventional Bragg peak treatments are associated with significant range
and motion uncertainties. Transmission beams can overcome these issues, since there is no associated
range uncertainty and they are less sensitive to motion. Treatment quality with TBs is comparable to
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that of using photons, which would conventionally be prescribed for lung lesions [19]. Additionally, lung
lesions are commonly treated in sterotactic hypofractionation schedules, meaning fewer fractions, each
with high doses. This is important to trigger the FLASH effect since it enables higher compatibility with
the FLASH dose threshold, translating into a higher fraction of healthy tissue that may benefit from the
reduced toxicity.

1.4.1 FLASH Evaluation

Evaluating the FLASH effect for proton therapy using PBS is not trivial since dose is delivered locally in a
sequence of small fields, contrasting with the continuous whole volume irradiation used in experimental
in vivo FLASH studies. PBS translates into tissue revisits and overlap between beams, which ultimately
compromises the dose rate. This represents a new degree of freedom that conventional proton therapy
does not take into account but is essential to trigger the FLASH effect.

Figure 1.4.2: Tissue revisits between pencil beams.

Current knowledge on FLASH is unable to give insight on how tissue revisits contribute to the effect.
Consequently, new metrics were proposed based on different aspects of the dose delivery scheme for
PBS, allowing to consistently and universally compare different treatment plans in clinical trials. Two
of the most used FLASH doserate metrics are the DoseAveraged Dose Rate (DADR) and the Pencil
Beam Scanning Dose Rate (PBSDR). Presentday treatment planning software does not take this new
degree of freedom into account, requiring new optimization strategies to tune and find the best balance
between the FLASH and the clinical dose requirements.

1.4.2 DoseAveraged Dose Rate

Proposed by van de Water et al. [20], the DoseAveraged Dose Rate (DADR) accounts for the local
contribution of each pencil beam, weighting their instantaneous dose rate by their dose contribution for
every voxel. For a given voxel i, this corresponds to the following expression:

DADRi =
n

∑
j=1

(Dijwj)× drij

Di
(1.4.1)

with Dij the dose deposition matrix and drij the dose rate at voxel i by pencil beam j and wj the weight
of the pencil beam j.

This metric naturally incorporates the fact that small doses have little effect on the dose rate, by weighting
the dose rate of each pencil beam by its dose contribution. This makes it unnecessary to include any
arbitrary threshold, while still taking into account the fraction of dose that is given at FLASHcompatible
doses at every voxel.

By offering a more mathematical approach to the problem and by not depending on the dose delivery
time structure, direct optimization of the DADR is complex but still challenging. However, the simplicity
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of the DADR gives it an incomplete representation of the problem, as it tries to summarize the effect of
an intermittent delivery in one number. Furthermore, it does not account for the sequential delivery of
the pencil beams, instead considering they are irradiated all at once.

1.4.3 PencilBeam Scanning Dose Rate

Pencil beams are delivered one at a time, following a patterns, without continuously irradiating the same
voxels at the same dose rate. This translates into dead times that although expected to have some role
on FLASH, as they contribute to the total time to accumulate dose, their effects are not yet understood.

Folkers et al. [21] tried to account for this contribution on a new metric, the PencilBeam Scanning Dose
Rate (PBSDR). For each voxel i, this metric considers an effective irradiation time Ti that starts when
the accumulated dose exceeds an arbitrary dose dT, recommended in literature to be fixed at 1 cGy,
and stops when the accumulated dose comes within dT of the total dose Di. This way, the effective
accumulated dose is Di − 2dT and the PBSDR is just the ratio of this dose and the effective time. The
PBSDR metric is better illustrated in figure 1.4.3, for a particular example of a scanning pattern and the
corresponding dose time structure.

Figure 1.4.3: Scanningpattern contribution for the PBSDR on a region of interest (ROI). The slope of
the blue line is the PencilBeam Scanning Dose Rate drPBS at the ROI.

The effective time for a given voxel includes not only the irradiation times of contributing pencil beams,
but also the dead time between them, to which contribute both scanning and irradiation times of non
contributing beams, as illustrated for the ROI by the dotted lines on figure 1.4.3. For that pattern, it is
seen that the effective time at the ROI must take into account the irradiation time of the rightmost red and
orange pencil beams, even though they do not contribute with dose there. A pattern that would irradiate
the three leftmost beams first (the only contributing with dose there), would give a higher PBSDR at the
ROI, reducing both the irradiation time of noncontributing beams and the scanning time.

Although the local time structure of dose delivery is suggested to be important, it does not mean that the
PBSDR is necessarily better and that the other metrics are irrelevant. If the onset of the tissue’s state to
cause FLASH is fast but the relaxation to the normal state is slow, then the time window during which the
effect can be considered triggered is wide. The dead time between pencil beams is not relevant, meaning
the PBSDR is not a good approximation of the dose rate. However, biological studies have shown that
under the oxygen depletion hypothesis, both the onset of hypoxic conditions and reoxigination is fast.
Therefore, the effect is optimized if the highest dose is delivered in the shortest period of time, at the
highest dose rate and in short pulses, so that irradiation is over before reoxigenation. This supports
the need to take into account the sequential irradiation of the pencil beams, reinforcing that the PBSDR
metric is relevant to evaluate FLASH.
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The PBSDR can be interpreted as a more general metric, with the DADR corresponding to a particular
extreme case, where all the pencil beams are delivered at the same there, so there is no pattern to
account for. Consequently, if a voxel is compatible with FLASH based on the PBSDR, it will also be
compatible regarding the DADR, but the opposite is not valid. Nonetheless, the DADR distributions might
offer some insight on the optimal PBSDR distributions, since conversely, if a voxel is not compatible with
FLASH on the DADR, it will never be compatible on the PBSDR.

1.5 FLASH Proton Therapy Optimization

Current clinical treatment planning software is not able to generate proton therapy treatment plans that
are fully compatible with FLASH, as several studies have concluded. However, an appropriate choice
of planning strategies and beam delivery scenarios has been reported to improve dose rates, although
with tradeoff on the dose distribution in the patient [20][21][22][23]. These results are promising as they
show that FLASHcompatible plans are possible to some extent, but they illustrate the need for adequate
optimization strategies, not only capable of fully exploiting FLASH but also of keeping the plans clinically
safe for the patients.

Because no FLASH model exists yet, optimization of the effect can only be performed by satisfying
the FLASH thresholds in the most regions possible. Research has mostly been focused on doserate
distributions, evaluating both compatibility with FLASH and the tradeoff on the dose distributions, which
arises from the fact that dose and dose rate objectives compete with one another. On the one hand,
higher beam currents can greatly increase dose rates, but because of the minimum pencilbeam delivery
time is a fixed machine parameter, plans become limited to a proportionally higher minimum pencil
beam weight. This should translate into higher minimum doses in the patient, potentially rendering plans
clinically unsafe. On the other hand, even though a smaller number of pencil beams should reduce
overlap and tissue revisits, each one has to contribute more. Consequently, these plans have higher
doses in the patient, with less conformal distributions.

1.5.1 Indirect Optimization

The simpler approach to the problem is to indirectly optimize FLASH, by exploiting some of the dose
rate dependencies. As noted by Groen [24], because the number and separation of pencil beams are
strongly tied to the delivery time, they can play an important role on the dose rate. The higher the number
of pencil beams on the same target, the closer together they are and consequently there is more overlap
and tissue revisits. The dose rate is then expected to be lower, with this effect being stronger for larger
field sizes. A higher number of pencil beams also translates into a more complex scanning pattern,
which will take longer to deliver. This motivated an attempt to optimize the dose rate by reducing the
pencilbeam overlap. When optimizing and evaluating stereotactic lung proton therapy plans, despite the
overlap minimization routine reducing the number of pencil beams and increasing their separation, the
treatment plans did not generally benefit from it. A reduction on the delivery time and increase of dose
rate was observed for some beams, but because this was achieved by reducing their dose contribution,
other beams had to compensate for it. Therefore, these beams have higher delivery times and lower
dose rates at the regions they compensate. In addition, a decrease in the treatment plan quality was
also observed, due to a lower conformity of high dose areas to the target volume.

Van de Water et al. [20] took a different approach, evaluating different planning strategies for different
delivery scenarios, in search of the best settings for proton therapy treatment plans fully compatible with
FLASH. Focus was also set on reducing the total number of pencil beams, with the aim of reducing
irradiation times and consequently increasing FLASH compatibility. Based on the four head and neck
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tumour patients evaluated, it was concluded that mean dose rates compatible with FLASH throughout all
irradiated volume are only achievable when using transmission beams all around the patient (arc shoot
through beams), with higher doses per fraction (6 Gy as opposed to conventional 2 Gy), considering
hypothetical variation of beam current for every pencil beam, with no safety limits (up to 1012 protons/s
as opposed to conventional 109 protons/s) and minimizing pencilbeam overlap. However, these plans
came at the cost of substantially higher integral dose, which is still deemed unsafe based on the conven
tional clinical requirements. Additionally, some settings are still not achievable with current technology.

To overcome the current technological limitations, van Marlen et al. [23] later proposed splitting a plan
into different subplans, each associated with a different beam current. Pencil beams are selected for
each subplan based on their weight, allowing to deliver heavier beams at higher beam currents without
sacrificing the global minimum pencilbeam weight, which is delivered in a different subplan at a lower
beam intensity. On the ten evaluated head and neck tumour patients, plans generated with this strategy
were seen to have an overall higher dose rate and reduced pencilbeam delivery time. However, because
different subplans have different pencil beams in the same beam direction, the delivery of the global plan
requires more gantry rotations, consequently resulting into a higher global scanning time. Although not
evaluated, this increase of the total irradiation time might be enough to make plan splitting not compatible
with FLASH, requiring each subplan to be evaluated individually on the effect. Some of these subplans
might not be compatible with the FLASH dose threshold, depending on the contributing pencil beams.

On the scanning pattern, Tsang [25] focused on reducing the dead time between pencil beams, more
specifically on the irradiation time of noncontributing beams. Different scanning patterns were evalu
ated on analytical 2D models with square homogeneous fields and one stereotactic lung proton therapy
treatment plan. It was observed that minimization of the total path length lead to substantially better dose
rate distributions in comparison with predefined patterns, such as the Z, Snake and Circle, illustrated in
figure 1.5.1. Despite the results showing that the improvements greatly depend on the configured start
and end positions, they illustrate that there is room for optimization and that the scanning pattern can be
critical for FLASH.

Figure 1.5.1: Predefined scanning patterns, namely the Z, Snake and Circle patterns. Patterns start
with a green square and end with a red square.

Despite encouraging, showing that there is room for doserate optimization without substantial degra
dation of the treatment plan quality, these indirect approaches do not guaranteed maximization of the
FLASH coverage. In addition, it is impossible to quantify or control any dose tradeoff a priori with these
strategies, which only reinforces the need for direct optimization strategies.

1.5.2 Direct Optimization

Direct optimization of the FLASH effect is expected to give better results and to allow more control over
the tradeoffs between dose and dose rate. This is a challenging problem, due to the complex formulation
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of the doserate metrics, which are associated with nonlinear and nonconvex functions.

The first reported direct optimizer was proposed by Gao et al. [26], based on the DADR formulation
of the dose rate. It uses an Iterative Convex Relaxation method, splitting the complex problem into a
series of simpler subproblems. For three lung cancers patients, the algorithm generated transmission
beam plans with substantially improved FLASH coverage on dose rate at the target volume and at other
critical organs, with dose coverage at the tumour comparable to that of conventional IMPT plans. These
substantially improved dose rates were achieved through beam current maximization, performed taking
into account dose requirements but prioritizing dose rate goals in the healthy volume around the tumour.
This region can potentially benefit the most from FLASH, because dose on healthy tissue is the highest
there. With this approach, the generated plans are guaranteed to have dose rates compatible with
FLASH and to satisfy the dose objectives as far as possible. This priority on the dose rate explains the
observed slightly worse sparring of OARs compared to conventional IMPT plans.

A variation of this optimizer was later introduced by Lin et al. [27] to take into account both transmission
beams and conventional Bragg peak beams. By sampling Bragg peaks so that they are placed inside
the tumour, the target dose conformality and the dose to healthy tissue is seen to improve. Transmission
beams primarily cover the tumour boundary, necessary to achieve both FLASHcompatible dose rates
at the OARs close to the tumour target and plan robustness. With this approach, FLASH coverage is
comparable to that of only using transmission beams but the target dose conformality is substantially
improved and the dose at OARs is reduced. However, although not analysed in that study, potential
gains from the FLASH effect might be lost because FLASH compatible Bragg peak hardware is still
under development. Currently, only the dose delivered by transmission beams can be associated with
FLASH. Even though they are placed inside the tumour target, these Bragg peak beams have a non
negligible contribution to the healthy tissue at the vicinity of the tumour boundary. Therefore, it is possible
for the contribution of the transmission beams alone not to be enough to meet the FLASH dose threshold,
reducing FLASH compatibility.

1.6 Problem Definition

A treatment plan is only considered compatible with FLASH if all or most of the regions receiving doses
above the FLASH dose threshold are irradiated at a dose rate above the FLASH dose rate threshold,
for an irradiation time bellow the FLASH irradiation time threshold. Although different treatment planning
strategies and optimizers have been already evaluated on compatibility with the FLASH effect, direct
FLASH optimization has not yet been performed.

The state of the art simultaneous dose and doserate optimization methods are reportedly doserate
biased, first ensuring FLASHcompatible dose rates and later optimizing the dose. Consequently, dose
will always be sacrificed whenever and wherever necessary. From a clinical perspective, this lack of
control over the dose tradeoff makes it impossible to generally guarantee both the effective treatment of
the tumour and the safety of the patient. In addition, by only focusing on a FLASH doserate threshold,
the current approaches proposed in literature might be overestimating the resulting FLASH coverage.
They might unnecessarily sacrifice healthy tissue to improve the dose rate at regions that might not be
compatible with FLASH on dose.

Despite being pointed out in literature as an important contributing factor, the irradiation time is often
overlooked. FLASH evaluation has been focused on the DADR metric, which does not take into account
the treatment delivery time. The PBSDR metric is often skipped, even though previous studies have
shown that the doserate distributions greatly depend on the pencilbeam scanning pattern. In addition,
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no direct scanningpattern optimization strategies have been proposed for this metric yet, to the best of
found knowledge, neither on FLASH nor dose rate. This is due to the nonconvex and nonlinear nature
of the PBSDR metric and the inherent challenges of pattern optimization.

1.7 Research Goal

In this project, novel optimization strategies for clinical FLASH proton therapy are developed. The re
search goal is to reduce the side effects in clinical radiotherapy through the FLASH effect, developing
strategies for safe optimization and delivery of FLASHcompatible proton therapy plans, based on the
present knowledge of FLASH and taking into account the conventional clinical requirement on dose and
the presentday technological challenges.

Two direct FLASH optimization strategies are proposed, based on the two different doserate metrics
introduced: DADR and PBSDR, using lung tumours as the first foreseen clinical application. FLASH
compatibility is here defined by irradiation of doses above 8 Gy, delivered at dose rates above 40 Gy/s
and for irradiation times bellow 200 ms. Therefore, clinical optimization on FLASH aims to maximize the
volume that is irradiated within these conditions, while satisfying the clinical requirements on dose for
effective and safe treatments considered in conventional proton therapy.

First, the optimization strategies are evaluated on analytical 2D models. This enables to develop insight
into the intrinsic pathways that maximize FLASH coverage, such as the pencilbeam weight distribution,
the dose tradeoffs and pattern shapes, while understanding the technical challenges and shortcom
ings of the proposed strategies. After this validation, the optimization strategies are implemented in a
treatment planning software. Hereafter, transmissionbeam treatment plans with and without FLASH
optimization are generated and compared on dose, the corresponding doserate metric and FLASH cov
erage.

From the clinical point of view, the proposed optimization strategies are implemented in the the Eras
mus Medical Center inhouse developed treatment planning software  ErasmusiCycle [28]. The proton
therapy setup considered is that of the HollandPTC, which consists of a cyclotron particle accelerator,
followed by a beam transportation system leading the proton beam to the gantry on the treatment room,
where the patient is irradiated. A constant beam energy of 244 MeV is used throughout all this study,
the maximum commissioned in the inhouse beam model. Since the focus here is on proof of principle,
robustness planning is not applied, neither a thorough clinical validation of the treatment plans.

1.8 Thesis Outline

This document is split into 5 additional sections. Section 2 starts with providing the theoretical background
on dose optimization methods, both for analytical 2D models and the Erasmus MC inhouse developed
treatment planning software  ErasmusiCycle. Section 3 describes the methods implemented to gen
erate the results, alongside the data used and the evaluation approaches. Results are then reported in
section 4. A discussion of the results and methods used, explanations and implications can be found in
section 5. Finally, the conclusions are drawn in section 6, alongside an outlook.
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2 Background

Some background knowledge is provided on how ErasmusiCycle, the treatment planning software used,
works. This is relevant for this project because the proposed optimizations strategies are built around it.
Additionally, the dose optimization approach used for the analytical 2D models is also described.

2.1 2D dose optimization

The dose contribution of a unit weight of a given pencil beam at every region of the space is given by a
dosedeposition matrix D, which has the following form:

D =


D1,1 D1,2 . . . D1,n
D2,1 D2,2 . . . D2,n
...

...
. . .

...
Dm,1 Dm,2 . . . Dm,n

 (2.1.1)

where Di,j represents the dose deposited at voxel i by unit weight of the pencil beam j, n is the total
number of pencil beams and m is the total number of voxels. Considering the pencilbeam weights are
represented by w, it comes that the dose d in the patient is then:

D · w = d (2.1.2)

The pencilbeam weights need to be optimized so that the best dose distribution is obtained, one that
balances complete irradiation of the tumour with sparing of the surrounding healthy tissue. For this, the
quadratic different between the target dose dT and the deposited dose d is minimized, by varying the
pencilbeam weights w using a quadratic optimizer:

min
w

(D · w− dT)
2 (2.1.3)

The dose distribution obtained by the previous optimization problem is considered the best possible for
the corresponding 2D model, so it is used to set dose constraints when optimizing the dose rate.

2.2 ErasmusiCycle

ErasmusiCycle was developed inhouse at Erasmus MC and stands out from other treatment planning
software due to its prioritized multicriteria optimization [28]. This allows to better specify clinical prefer
ences to input on the optimization routine, thereby leading to treatment plans of exceptional quality while
maintaining high generalization over different patients.

The prioritized nature of ErasmusiCycle is wellsuited for clinical FLASH optimization because the dose
and doserate objectives compete with one another. This way, there is a better control of the tradeoff
between dose and dose rate, enabling a finer management over which objectives can be compromised
to achieve better dose rate distributions and which ones are critical. Therefore, the clinical requirements
on dose can be ensured, guaranteeing the safe and efficient treatment of the patient, with the added
bonus of FLASH.
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2.2.1 ErasmusiCycle Workflow

ErasmusiCycle takes as input CTscan delineations of important structures in the patient and a list of all
optimization parameters, objectives and constraints, alongside their clinical preference, desired goal and
corresponding target structure. This list is termed wishlist. The constraints have to be necessarily met
for a plan to be feasible [29], while the objectives are just goals that the optimizer strives to achieve, ac
cording to the desired preferences. These wishlists are not patient specific, as the clinical requirements
are general for patient groups with the same tumour site. By reusing the same wishlist, it is possible
to save time compared to conventional planning approaches, as those require a timeconsuming adap
tation for each patient. The output is an accurate optimized dose distribution to the patient and a set of
pencil beams, with their location and their optimized weight.

The workflow of ErasmusiCycle is therefore divided into three main phases: initialization, optimization
and finalization. At the initialization phase, all the input data is processed, whereas at the finalization
phase, the accurate dose distribution in the patient is calculated and outputted, alongside the optimized
pencil beams. The optimization phase, being the most complex and where the modifications for FLASH
optimization were made, deserves a more indepth explanation.

Optimization Phase

One of the initial challenges of any proton therapy treatment planning software is to select an appropriate
set of pencil beams. There are different strategies for pencilbeam selection but considering that trans
mission beams are to be used throughout all this project, a regular grid of such beams is preferred. This
corresponds a 3D grid of pencil beams, generated from a given lateral spacing and an energy spacing,
where all the beams that do not go through the tumour, according to the beam directions specified, are
removed. In this particular case, because quasi monoenergetic transmission beams of 244 MeV are
used, the resulting regular grid is only bidimensional.

From the eligible pencil beams, the dosedeposition matrix is calculated. This is similar to the matrix
described for the analytical 2D models, with the difference that the type of tissue each pencil beam goes
through is taken into account, by extracting information from the CT scans of the patient. In addition,
it is infeasible to use the accurate dosedeposition matrix for optimization, because it is too large and
consequently the running time would get impractical within the clinical workflow. Therefore, a lower
resolution version is used, comprised of just the necessary voxels for an adequate dose calculation.

The weights of the pencil beams are optimized in a prioritized multicriteria optimization routine, using
the 2phase ϵconstraint (2pec) method [30]. This method splits optimization into two stages, based
on the fact that when possible, it is more beneficial to first optimize an objective only up until a certain
threshold  the goal  and then move to the following priority objective, instead of directly optimizing the
higher priority objective to its fullest. This enables more flexibility in general, by leaving more room for
lower priority objectives to meet the associated goals.

At the first phase of the 2pec method, each objective fi(w) is optimized, respecting all hard constraints
g ≤ 0, in order of their priority i, only up until the goal bi is satisfied, when possible. Otherwise, the
closest value to the goal is taken. In the first iteration of this first phase, the objective having the highest
priority is optimized:

min
w

f1(w)

s.t. g(w) ≤ 0
(2.2.1)
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After each objective has been optimized, it is transformed into a hard constraint with a given bound ϵi,
depending on the result w∗ and according to the following rule:

ϵi =

{
bi , fi(w∗)× δ < bi

fi(w∗)× δ , fi(w∗)× δ ≥ bi
(2.2.2)

where δ is a relaxation constant, introduced to leave more room for the optimization of subsequent
objectives, usually set to 1.03 (representing a relaxation of 3%). The next optimization step goes through
objective f2, now keeping f1 constrained:

min
w

f2(w)

s.t. g(w) ≤ 0

f1(w) ≤ ϵ1

(2.2.3)

In the second phase of the method, the objectives that had their goals met are optimized to their fullest,
while keeping all other constrained. Therefore, for each fk constrained to bk, in order of priority:

min
w

fi(w)

s.t. g(w) ≤ 0

fk(w) ≤ ϵk , k ∈ {1, ..., N} \i

(2.2.4)

When this routine finishes, the pencilbeams weight have been fully optimized. However, the weights
obtained for some of the pencil beams might not be achievable at the machine, due to the minimum
pencilbeam weight constraint. All the pencil beams with weights bellow 1.05 times that minimum are
removed and a feasibility check is performed based on the previously obtained results:

min
w

o

s.t. g(w) ≤ 0

fk(w) ≤ ϵk , k ∈ {1, ..., N}

(2.2.5)

This procedure is repeated till either all the pencil beams have weights higher than the minimum or the
plans is infeasible, in which case it returns the previous best plan, despite having underweighted beams.
In most cases, however, the minimum pencilbeam weight is low enough for this routine to successfully
satisfy this constraint. By considering an extra 5% above the minimum weight, the pencilbeam removal
routine is sped up, although it might lead to infeasible plans more easily.

2.2.2 ErasmusiCycle PencilBeam Weights

The optimized pencilbeam weights represent the configuration that better satisfies the clinical require
ments. These weights w can have arbitrary units, depending on how the dosedeposition matrix D is
constructed and on its corresponding units, usually differing for different beam models. Since in conven
tional planning all objectives are based on dose, the units of the pencilbeam weights are irrelevant for
the optimizer and is only relevant for plan delivery, when interpreted by the proton treatment machine.
However, understanding the physical units of the pencilbeam weights becomes essential when working
with dose rates, as they depend on the beam current.

The proton beam current I is a measure of the amount of charge delivered by the proton beam per unit
of time, being reported for proton therapy system in nA, which is equivalent to C/s. Knowing the charge
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of the proton (e = 1.60217662× 1019 C), the beam current can be expressed in units of protons per
unit time, the most common unit being gigaprotons per second Gp/s. The relation between pencilbeam
weights and protons is then required, so that the beam current can be used to calculate irradiation times
and dose rates.

In this study, the HollandPTC beam data was used, for which the pencilbeam weights are normalized
so that for each proton energy, for a unit pencilbeam weight, the dose deposited in a waterequivalent
material at the Bragg peak Dmax is 1 Gy. Experiments at this beam setup reported a transmission
efficiency η of 43% for the beam transportation system, going from the cyclotron to the research bunker,
at energies of 250 MeV. Therefore, a cyclotron current of I = 10 nA corresponds to a beam current in the
bunker, where the patient is to be irradiated, of Ibunker = 4.3 nA which is equivalent to 26.9 Gp/s. At this
beam current, a doserate of dr5 = 20.8 Gy/s at 5 cm in a waterequivalent material was measured. For
the 244 MeV transmission beams used in this project, it is known from previously measured dosedepth
curves that the dose at 5 cm in that same waterequivalent material is 28.5% of Dmax, meaning that the
doserate at the Bragg peak drpeak, located outside the patient, is:

drpeak =
dr5
0.285

= 73.0 Gy/s (2.2.6)

Consequently, it comes that at Dmax we have the following relation:

drpeak

Ibunker
= 0.368 Gp/Gy (2.2.7)

Considering that for the HollandPTC beam data a pencilbeam weight has Dmax = 1 Gy at the Bragg
peak, it directly follows that a unit pencilbeam weight in ErasmusiCycle corresponds to 0.368 Gp for
these 244 MeV proton transmission beams.
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3 Methods

In this section, the optimization strategies for the two doserate metrics are introduced and described.
The section is split into two parts, the first covering the DoseAveraged Dose Rate (DADR) and the latter
the PencilBeam Scanning Dose Rate (PBSDR). Two additional subsections are included in the end,
one describing the data and settings for optimization and the other covering the metrics to evaluate and
compare the optimized solutions.

3.1 DoseAveraged Dose Rate (DADR)

Optimization of the DADR was implemented at the optimization phase of ErasmusiCycle, so that pencil
beam weights are directly adjusted to maximize DADR, while keeping compatibility with the prioritized
nature of this treatment planning software. DADR optimization was introduced as two new types of
objectives that can be specified at the wishlist, making it simple and easy for wishlists previously used
on conventional treatments to be adapted for the FLASH effect. These correspond to maximization of
the minimum DADR and maximization of the mean DADR, which can be prioritized to any structure and
volume in the patient, alongside conventional dose constraints and objectives.

The main challenge of directly optimizing the DADR comes from the fact that it corresponds to a ratio,
depending on the optimization variable w on both numerator and denominator. Considering Dij the
dosedisposition matrix and drij the instantaneous dose rate at voxel i by pencil beam j and wj the
weight of the pencil beam j, the DADR at voxel i is given by:

DADRi =
n

∑
j=1

Dijwj × drij

∑n
k=1 Dikwk

=
N(w)

D(w)
(3.1.1)

The problem can be simplified though, by noting that the instantaneous dose rate drij at voxel i by pencil
beam j does not depend on the pencilbeam weight wj. It only depends on the beam current Ij and the
dosedeposition matrix Dij. Defining the delivery time of each pencil beam as Tj = Ijwj, it follows:

drij =
dij

Ti
=

Dijwj

Ijwj
= IjDij (3.1.2)

From the previous observation, it comes that the DADR is just a ratio of two linear expression  a linear
ratio  which helps to simplify the problem further. Linear Fractional Programming is a deeply studied
topic, as these types of functions appear extensively on different fields, such as stock cutting, resource
allocation, ship scheduling and cargoloading problems [31]. Therefore, there is extensive literature on
specific methods and approaches to optimize these functions.

In addition, when optimizing these DADR objectives, the hard constraints that must be satisfied are all
linear: all the dose constraints and objectives that can be specified in the wishlists are linear (minimum,
maximum and mean doses), while the DADR constraints can be transformed into linear constraints. This
means that when optimizing each objective, the search space will always be polyhedral. To better comply
with the clinical requirements, the DADR objectives are only applied on healthy tissue and after the dose
objectives, meaning that the search space is bounded. Additionally, the numerator and denominator
on the DADR expression are both always positive in the search space, meaning that the DADR is a
continuous positive function. These properties make it possible to use simpler and more straightforward
algorithms.
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3.1.1 Simple Linear Fractional Programming

Maximization of the minimum DADR and maximization of the mean DADR is based on the same general
idea proposed by Isbell and Marlow [32] in 1956 for a bounded polyhedral search space: to transform
the linear fractional program into a series of linear programs.

To better illustrate how this iterative linearization works, a step by step example is first given on a simple
linear fractional program, having objective function f (x), with x ∈ X where X is a bounded polyhedron
in Rn:

f (x) =
ax + b
cx + d

=
N(x)
D(x)

(3.1.3)

If the objective function f (x) is to be maximized, its optimum solution is f (x∗) = q∗ and the the denom
inator has constant positive sign in X, it is true for an x ∈ X:

N(x)
D(x)

≤ q∗ ⇔ N(x)− q∗D(x) ≤ 0 (3.1.4)

The previous inequality is only 0 for x∗, meaning that if the optimum q∗ is known, optimization of the
linear ratio f (x) is equivalent to:

F (q∗) = max
x∈X

F(x, q∗) = N(x∗)− q∗D(x∗) = (ax∗ + b)− q∗(cx∗ + d) = 0 (3.1.5)

The problem is that the value q∗ is not known but it can be iteratively approximated and validated, as the
solution to the problem is found when the maximum of the linear function F(x, q) is 0. Based on these
observations, the routine summarized in algorithm 3.1.1 solves the maximization of the linear ratio f (x),
with arg max the argument of the maxima and parameter δ the earlystopping criteria. The convergence
of this routine to the optimum is proven in the Appendix section.

Algorithm 3.1.1: Optimization of the linear ratio function f (x)
Result: f (x∗) = q∗

Input: x0 ∈ X
k← 1
do

qk ← f (xk−1) = N(xk−1)/D(xk−1)

xk ← arg max F(x, qk)⇔ arg max{N(x)− qkD(x) | x ∈ X} using any linear optimizer
k← k + 1

while F(xk, qk) ≥ δ

x∗ ← xk
q∗ ← qk

Despite the challenges on maximizing a linear ratio, it is easy and straightforward to set it as a constraint.
Considering the objective function f (x) and the minimum constraint value q−, it follows:

f (x) =
N(x)
D(x)

≥ q− ⇔ N(x)− q−D(X) ≥ 0 , (3.1.6)

which is simply a linear constraint. For implementation in ErasmusiCycle, this is particularly useful not
only because it is easy to set linear fractional constraints, but also because after each DADR objectives
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is optimized, it is transformed into a linear constraint, which will keep the search space as a bounded
polyhedron.

3.1.2 Maximization of the minimum DADR

Maximization of the minimum DADR belongs to a subset of problems inside the fractional programming
field, as it corresponds to amaxmin objective function. This optimization problem is solved with a routine
similar to that for the simple linear ratio [33], as it may be view as a generalization. The only difference is
that instead of a single linear ratio, there are several of them, one for each voxel of the structure targeted
by the objective. Therefore, the optimization problem is now expressed as:

max
x∈X

[
min

1≤i≤M
fi(x)

]
= max

x∈X

[
min

1≤i≤M

aix + bi
cix + di

]
= max

x∈X

[
min

1≤i≤M

Ni(x)
Di(x)

]
= q∗ (3.1.7)

For this new objective function, the linearized functions will have a similar form as before, with the rest
of the optimization routine staying identical, as reported by algorithm 3.1.2. In the Appendix section it is
proven that this routine converges to the optimum of the maxmin linear fractional problem. Parameter δ

sets an early stopping criteria and arg max is the argument of the maxima.

Algorithm 3.1.2: Optimization of a maxmin linear fractional program with M functions fi(x)
Result: f (x∗) = q∗

Input: x0 ∈ X
k← 1
do

qk ← min1≤i≤M fi(xk−1) = min1≤i≤M [Ni(xk−1)/Di(xk−1)]

xk ← arg max F(x, qk)⇔ arg max{min1≤i≤M [Ni(x)− qkDi(x)] | xk ∈ X} using any
linear optimizer

k← k + 1
while F(xk, qk) ≥ δ

x∗ ← xk
q∗ ← qk

Transforming amaxmin linear fractional objective into a constraint is also straightforward. It just requires
applying the same transformation used for the simple linear fractional programming problem but to ev
ery ratio. Considering the objective function min1≤i≤M fi(x) and the minimum constraint value q−, it
follows:

min
1≤i≤M

fi(x) ≥ q− ⇒ fi(x) =
Ni(x)
Di(x)

≥ q− ⇔ Ni(x)− q−Di(x) ≥ 0 for all i = 1, . . . , M

(3.1.8)

3.1.3 Maximization of the mean DADR

Maximization of the mean DADR is a substantially more difficult problem because the objective function
corresponds to a sum of linear ratios. There have been extensive studies on optimization of these dunc
tions, with several methods proposed in literature [34][35][36][37], however, these are all quite limited to
just a few ratios and even unfeasible within ErasmusiCycle. Thankfully, it is possible to reformulate this
objective in a different way, by noting that the goal of maximizing the mean DADR is simply that of maxi
mizing the DADR everywhere. Optimization of this single objective can be interpreted as a multiobjective
problem, with each subobjective having the same weight and corresponding to the DADR at every voxel
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of the target structure. This greatly simplifies the problem as it is possible to solve multiobjective linear
fractional programming (MOLFP) problems with the same straightforward approach used for the simple
linear fractional programming problem [38].

The maximization of the mean of a set of linear ratios fi(x), with x ∈ X and X a bounded polyhedron,
can then be reformulated as a multiobjective problem the following way, with solution q∗ ∈ RM:

max
x∈X

M

∑
i=1

fi(x) = max
x∈X

M

∑
i=1

aix + bi
cix + di

= max
x∈X

M

∑
i=1

Ni(x)
Di(x)

⇒ max
x∈X

[ f1(x), . . . , fM(x)] = q∗

(3.1.9)

Each of these subobjective functions fi(x) is to be linearized similarly to the approach for the maxmin
linear fractional programs. The key differences is that the new objective function is a weighted sum of
the linearized objectives, with a qi

k per subobjective per iteration. Furthermore, each subobjective is
constrained to be at least equal to the value of the previous iteration, resulting into a different search
space Xk at each iteration. This translates into the routine summarized by algorithm 3.1.3, which is
proven to converge to the optimal solution of the multiobjective linear fractional program in the Appendix
section. Parameter δ corresponds to the early stopping criteria and arg max to the arguments of the
maxima.

Algorithm 3.1.3: Maximization of a multiobjective linear fractional program with M functions fi(x)
Result: f (x∗) = q∗

Input: x0 ∈ X, w ∈ RM with ∑M
i=1 wi = 1

w∗ ← 1/ min1≤i≤M wi
k← 1
do

qk ← [ f1(xk−1), . . . , fM(xk−1)] = [N1(xk−1)/D1(xk−1), . . . , NM(xk−1)/DM(xk−1)]

Xk ← X ∩ {x ∈ RN | Ni(x)− qi
kDi(x) ≥ 0, i = 1, . . . , M}

xk ← arg max F(x, qk)⇔ arg max{∑M
i=1 wi[Ni(x)− qi

kDi(x)] | x ∈ Xk} using any linear
optimizer

k← k + 1
while F(xk, qk)w∗ ≥ δ

x∗ ← xk
q∗ ← qk

Although the routine described in algorithm 3.1.3 is the one proposed in literature, the actual implemen
tation is slightly different to prevent possible divergence errors by the linear optimizer when solving the
linearized problems. Possible issues might arise from constraining each subobjective to be at least equal
to the value of the previous iteration when a lot of subobjectives are to be considered. To overcome this,
the constraints are relaxed by a small enough constant γ, which is updated every iteration k to be even
smaller, so that the routine still converges to an optimal solution:

γk+1 = (1− 0.01× 5−k) (3.1.10)

It should be noted that maximization of the mean DADR is not totally equivalent to the multiobjective
problem, since the latter does not take into account the overall effects of increasing a given objective
through decreasing another one. Therefore, this multiobjective interpretation does not maximize the
mean DADR. However, the mean DADR will still increase from the initial solution because the DADR at
every voxel of the target structure is guaranteed to increase. As it is interpreted here, the maximization
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of the mean DADR is still very important and should be performed after maximization of the minimum
DADR at the same target structure. This is because the maxmin objectives only target the minimum
value, leaving the remaining voxels with a suboptimal dose rates.

Transforming the maximization of the mean DADR from an objective to a constraint is neither simple nor
straightforward, because it corresponds to a sum of linear ratios. Even though the mean DADR is not
maximized, it is increased and so it would be more logical to constrain the objective as a mean. This
can be simplified by considering that optimization of the mean DADR is only performed after the dose
and the maxmin DADR objectives on the same target structure. Therefore, the dose there should not
change further, meaning the denominator at the DADR for every voxel, which corresponds to the dose
at that voxel, can be approximated by the dose for the starting solution w0. For a minimum mean DADR
constraint value q−, it follows:

1
M

M

∑
i=1

DADRi(w) =
1
M

M

∑
i=1

 n

∑
j=1

Dijwj × drij

∑n
k=1 Dikwk

 =
1
M

M

∑
i=1

Ni(w)

Di(w)
≈

M

∑
i=1

Ni(w)

Di(w0)
≥ Mq−

(3.1.11)

Through this approximation, the mean DADR constraint is transformed from a sum of linear ratios into a
sum of linear functions, which itself is also linear, greatly simplifying optimization of other objectives.

3.1.4 BeamCurrent Optimization

The previous optimization routines focus onmaximizing theDADRby readjusting the pencilbeamweights
but dose rates can also be increased by increasing the beam current. However, the beam current can
not be blindly increased due to treatment delivery machine specific limitations, that translate into dose
tradeoffs. This tradeoff arises from a fixed minimum pencilbeam delivery time tmin, independent of
the beam current. The higher the beam current I, the higher the minimum possible pencilbeam weight
wmin and consequently the higher the minimum dose delivered to the patient dmin:

wmin = I × tmin ⇒ dmin = D · wmin (3.1.12)

This shows that the beam current should be also optimized alongside the dose and the DADR constraints,
so that optimal DADR distributions could be obtained within the clinical dose requirements for a safe and
effective treatment. Considering the previous relation, it comes that maximizing the beam current is
equivalent to maximizing the minimum pencilbeam weight. This is challenging because it requires both
increase of the weights and selection of the most suitable pencil beams. In other words, the pencilbeam
weights have to either be maximized or set to 0, which makes the problem substantially more difficult.

In conventional proton therapy treatment planning the minimum pencilbeam weight also needs to be
constrained due to other intrinsic machine limitations, such as the noise level on the monitor chamber
and the stability of the beam current. These limitations translate into a fixed minimum beam weight,
bellow which the delivery of pencil beams cannot be assured without uncertainties [39]. In literature, this
is known as the minimum Monitor Unit (MU) constraint and it has been the focus of several studies.

The approach used here is the same proposed by Gao et al. on both conventional proton treatment
plans [40] and on simultaneous dose and doserate optimization [26]: iterative convex relaxation. The
idea is to optimize and constrain the minimum pencilbeam weights by alternating between optimizing
the objectives and selecting the most appropriate beams from the set initially sampled. Minimum beam
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weight optimization should only be performed for the DADR objectives because the beam current is not
relevant for the dose objectives. This routine follows the procedure reported by algorithm 3.1.4.

Algorithm 3.1.4: Optimization with a minimum pencilbeam weight wmin constraint
Result: f (w∗)
Input: Objective min f (w), search space W, restart factor δ, initial pencilbeam weights w0 and

minimum pencilbeam weight wmin
w′ ← w0
while w′ < wmin do

w← w′ with all the pencil beams with weights bellow wmin removed
w← w× δ

w′ ← arg min{ f (w) | w ∈W}
if Fails then

w← w0 with all the pencil beams with weights bellow wmin removed
w← w× δ

w′ ← arg min{ f (w) | w ∈W ∧ w ≥ wmin} using any optimizer
if Fails then w′ ← w0
Stop

end
end
w∗ ← w0
for every pencil beam j in w0 do

if pencil beam j removed from w′ then w∗j ← 0

else w∗j ← w′j
end

Optimization with a minimum pencilbeam weight constraint is split into two stages: pencilbeam removal
and weight maximization. First, the whole initial set of sampled beams is taken into account, optimized
and removed iteratively. Pencilbeam removal is more likely not to be able to satisfy the minimum beam
weight constraint wmin, so weight maximization follows. This step should not fail because the routine is
applied to every objective function, meaning that the constraint is always ensured. Therefore, it should
be always possible to optimize the objective with a hard constraint on the pencilbeam weights, defined
by the minimum weight of the initial solution w0. However, weight maximization is expected to leave
less room for optimization of the objective. In case both optimization steps fail, the initial solution w0 is
returned, which does satisfy theminimum pencilbeamweight but it is not optimal for the current objective.

This routine is applied to both constrain and optimize the minimum beam weight because if some pencil
beams are removed, their contribution has to be compensated by the other beams. The weight of the
pencil beams should then increase beyond their previous value, which was already higher or equal to the
minimum beam weight. However, when optimizing the minimum weight, there is no objective function
and so the optimizer just performs a feasibility check ( f (x) = 0). The routine is performed several times,
with the minimum weight being updated after each successful step, for a given number of iterations, until
it fails, converges or it is high enough to increase the beam current to a value that satisfies the DADR
objective. To further help the optimizer find a solution with higher minimum weight, after removing the
unsuitable pencil beams, the weights are multiplied by a restart factor δ higher than 1, in this case set to
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1.05. Optimization of a DADR objective is summarized by algorithm 3.1.5.

Algorithm 3.1.5: Optimization of a DADR objective with a minimum pencilbeam weight wmin con
straint
Result: f (w), w, wmin and I
Input: DADR objective and goal max f (w) ≥ q, number of iterations N, initial beam current I0,

minimum pencilbeam delivery time tmin, initial pencilbeam weights w0 and minimum
pencilbeam weights w0

min
w′min ← w0

min
w′ ← w0
for N iterations do

w′ ← run minimum pencilbeam weight w′min constraint routine with objective 0 and initial
solution w′

if Fails ∨ min w′ = w′min then
Stop

end

w′min ← min w′

Ireq ← minimum beam current I required to satisfy DADR goal q with w′

wreq ← Ireq × tmin

if w′min ≥ wreq then
I ← Ireq
wmin ← wreq
Stop

end
end
w← arg max{ f (w) | w ∈W ∧ w ≥ wmin} using iterative linearization
if goal f (w) ≥ q was reached then

I ← minimum beam current I required to satisfy DADR goal q with w
wmin ← I × tmin

else
I ← I0
wmin ← w0

min
end

After successfully optimizing the minimum weight and consequently the beam current, the DADR ob
jectives are optimized separately with a hard constraint on the minimum pencilbeam weight. This is
because the optimization strategies used for the DADR objectives are iterative, meaning that combining
them with the iterative algorithm 3.1.4 to constrain the minimum weight would be too time consuming,
perhaps even unfeasible in clinic.

Even if the beam current is already high enough to satisfy DADR goals, optimization is still performed
because it may allow to afterwards relax the beam current and consequently the minimum pencilbeam
weight, leaving more room for other objectives. If the dose rate goal is not met, the minimum weight and
the beam current are reverted back to the their initial values before optimization. This is because the
dose rate goal should be associated with a FLASH threshold, meaning that if the goal is not met for that
structure, the conditions to trigger FLASH cannot be satisfied completely and so any tradeoff on dose
is considered unnecessary.
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After all objectives have been optimized, the minimum weight is maximized, through the same beam
current optimization routine used for the DADR objectives, with the difference that it only stops when the
minimum weight cannot be increased any further. This makes the plan compatible with higher beam cur
rents, as high as possible without sacrificing any of the objectives. The optimizer then returns a window
of beam currents compatible with that treatment plan and that guarantee optimal FLASH coverage.

3.1.5 FLASH Thresholds

FLASH is here defined by doses above 8 Gy, delivered at doserates above 40 Gy/s and for irradiation
times bellow 200 ms. This means that purely optimizing the dose rate does not necessarily translate into
an optimization of the FLASH effect. For that, it is important to consider the other thresholds too, which
must be specified in the wishlist.

Considering that the clinical requirements on dose are prioritized and that FLASH is still mostly not
understood, it is currently not acceptable to directly optimize the dose to make it compatible with the
FLASH effect. The dose objectives should therefore be prioritized over the dose rate objectives, at least
when evaluating the same structure. The dose threshold should be only used a posteriori, to select
the regions compatible with FLASH on dose and where optimization of the dose rate can be beneficial.
By limiting the doserate optimization to just a set of selected voxels, the search space should get less
constrained afterwards, better enabling the goals of other objectives to be met. This is implemented in
the DADR optimization routines by selecting and optimizing only at the voxels with a dose higher than
the FLASH dose threshold.

Although the dose rate is directly optimized, its threshold to trigger FLASH is also important because it
represents a sufficient goal for the optimizer: higher dose rates will not increase the FLASH gains, at
least given the current knowledge on the effect. This leaves more room to the optimization of the other
dose and dose rate objectives, consequently translating into overall better and more compatible FLASH
treatment plans. ErasmusiCycle is already compatible with goals for the objectives, meaning that no
additional implementations is required.

The dose rate threshold should also be taken into account when transforming the optimized DADR objec
tive into a constraint. Because FLASH compatibility is to be ensured after optimization at each structure,
dose rate constraints should only be set on the regions that have both a dose and a dose rate higher
than the thresholds. The other objectives on different structures are then expected to be left with more
room to get further improved, increasing the potential for better dose distributions and higher FLASH
compatibility at other structures.

In summary, the FLASH dose and the doserate thresholds are essential to transform doserate opti
mization into FLASH optimization. By performing optimization and analysis on just these two thresholds,
the irradiation time is not required to be taken into account because it gets automatically defined.

3.2 PencilBeam Scanning Dose Rate (PBSDR)

Optimization of the PBSDR is carried only at the scanningpattern level, over IMPT doseonlyoptimized
treatment plans, meaning that the pencilbeam weights are not modified. Although weight readjustment
may maximize further the FLASH coverage, different patterns have been observed to significantly modify
the PBSDR distribution, without any tradeoffs on the dose distribution to the patient. Scanningpattern
optimization (SPO) is a combinatorial optimization problem, which grows on difficulty the larger the target
is, as a consequence of a higher number of pencil beams: the number of possible patterns increases
factorially.
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One of the main challenges of SPO comes from the nonlinear and nonconvex nature of the PBSDR
metric. Furthermore, this metric depends on a dose threshold to determine when the effective irradiation
time starts and when it stops. This makes the problem is more complex, extremely difficult for deter
minism optimizers. However, the study performed by Tsang [25] offers some hints, as it concludes the
PBSDR is a local metric, as patterns with minimum path length were observed to have higher doserates.
Therefore, short sequences of nearby pencil beams should always translate into higher PBSDR on the
locallyirradiated voxels.

The previous observations suggest that SPO is similar to the Traveling Salesman Problem (TSP). The
solution for both is a pattern and the objective is a global metric of that pattern, comprised of local features:
for the classic TSP this corresponds to the distance between pairs of cities, which adds up to the total
path length, whereas for the SPO it corresponds to the local dose rate by contributing pencil beams,
making up the FLASH coverage. Therefore, strategies for solving the TSP offer a starting point for SPO.

Genetic Algorithms [41] (GA) are often discussed in literature to solve TSPs [42]. This subclass of Evo
lutionary Algorithms is inspired by Biology and works similarly to natural selection, using biologically
inspired operators such as mutation, crossover and selection, to generate highquality solutions to opti
mization problems [43]. For TSPs, given an initial sample of possible routes, they mix, match and modify
smaller paths connecting just a few cities and preserve the best, in search of the overall optimal routes.
Local features get preserved, which is important considering that the PBSDR is a voxelwise dose rate:
small sets of nearby pencil beams should give higher dose rates on the locallyirradiated voxels.

3.2.1 Genetic Algorithms

First introduced by Fraser [41] in 1957, Genetic Algorithms have become a hot research topic, with
various applications in very diverse fields, such as biology, chemistry, computer aided design, crypto
analysis, microelectronics, production planning, robotics, etc. In these algorithms, the search space of
a problem is represented as a collection of individuals, each represented by a string of characters, often
referred to as chromosomes. The goal of the Genetic Algorithm is to find the individuals with the best
genetic characteristics, which are compared on a fitness function. Because GAs are used in problems
with very large search spaces, only a portion is analyzed at a time, making up what is referred to as
population.

GAs work routinely in a three step procedure, similarly to how populations evolve in Nature: crossover,
mutation and selection. First, the initial population is generated and the fitness of each individual is
determined. Next, in every iteration of the algorithm, parents are selected from the population in pairs
and produce children through crossover, which are then added to the population. These newly generated
individuals correspond to a mix of the two parents and include genetic material from the two. On top
of that, there is a probability, usually very small, for mutation of those new individuals, changing their
hereditary qualities. Finally, the population is reduced to its initial size by a selection process. Each
iteration of the algorithm is referred to as a generation and the whole routine represents the evolution. The
algorithms stops according to a criteria that normally take into account the uniformity of the population,
the convergence rate and the solution quality [42].

The convergence of GAs to solutions better than those of the initial population is assured by a balance
between the crossover and the mutation operators. Crossover is responsible for sharing and preserv
ing genetic material, enabling an increase of the average quality of the population. The best sets of
chromosomes, referred to as the best genes, should be more represented by being part of more individ
uals, which is only possible through crossover. Mutation is needed to explore new states, helping the
algorithm to avoid local optima by modifying the current genes. An adequate choice of crossover and
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mutation operators and probabilities is important to have convergence to an optimum in a reasonable
number of generations. In conclusion, crossover is important for convergence but it can lead to local
optima, whereas mutation is important to avoid local optima but it can prevent convergence altogether.

3.2.2 Island Model Genetic Algorithm

Genetic Algorithms are stochastic optimization methods, meaning that they are only able to find suf
ficiently good solutions to the optimization problem, not guaranteeing that in independent runs, those
solutions will be always the same and equally near the global optimum. This is a major concern on
clinical applications since it is obviously not acceptable that the quality of the treatment depends on the
random nature of the optimizer. However, this is not a concern here, because there is no tradeoff on
the quality of the treatment plan by optimizing the scanning pattern. Nonetheless, it is still considered
important to improve the structure of the GA for higher consistency, guaranteeing higher FLASH gains
than for the predefined patterns.

Distributed Genetic Algorithms (DGA) are a class of GAs that take into account information from different
independent runs of simple GA models by running them in parallel at the same time and periodically
exchanging information between them. These algorithms often lead to faster convergence and more
consistent solutions for different runs, alongside superior numerical performance, when compared with
the simple GA formulation [44].

There are different types of DGAs depending on how the simpler GAs are structured and on how the
information is shared between them. In this implementation, an Island Model Genetic Algorithms (IMGA)
was used. The idea behind the IMGA is to have several simple GA models focusing at different regions
of the search space, by having them evolving independently from one another, like islands, each with
its own unique population. From time to time, based on a migration policy, some individuals of each
island migrate to a different one. This introduces new genetic material, similarly to mutation, with the key
difference that the new genes should be specific of a different region in the search space. This should
give more insight at the global scale of the problem and consequently, the population of all islands, as a
whole, should more consistently converge to a global optimum.

Despite the different possible configurations, Genetic Algorithms have a common general structure,
which is summarized in algorithm 3.2.1 for the specific Island Model version.

Algorithm 3.2.1: General structure of an Island Model Genetic Algorithm
Initialize population at random for every island
while not Stop do

for each island do
Produce children from the parents through crossover
Mutate the individuals
Extend the population adding the children and mutants to it
Evaluate the quality of the individuals based on the fitness function
Reduce the extended population through selection

end
if conditions apply then migrate individuals from one island to another

end
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3.2.3 ScanningPattern Optimization

The choice of operators and parameters should allow to exploit the properties and characteristic of the
PBSDR metric. The extensive studies already performed for the similar Traveling Salesman Problem
[42] are a good starting point.

Fitness Function The goal of SPO is to maximize FLASH coverage, bymaximizing the percentage of
regions that having a dose above 8 Gy outside the tumour, also have a PBSDR above 40 Gy/s. Internally,
this is also carried out by maximizing the PBSDR at the dose compatible regions, but only up until the
FLASH dose rate threshold.

Setting the FLASH coverage as the fitness function might not be ideal, as its abstract meaning does
not directly relate to any property of the patterns. Therefore, it might be useful to hint at the pattern
shape, to speed up optimization and to help focusing on better directions in the search space. Based on
the observations by Tsang [25] that patterns with a minimized total path length have higher dose rates,
adding that contribution to the fitness function might be useful. Analyzing the total path length of several
patterns and considering that the FLASH coverage is always between 0% and 100%, it was concluded
that subtracting 10% of the average distance between pencil beams (the ratio of the total path length by
the number of pencil beams) to the FLASH coverage should improve convergence and solution quality.

Adding information on the total path length of the pattern should also lead to better overall solutions, that
minimize the scanning time between different pencil beams. Even though this is not taken into account
in the PBSDR definition, it should have a nonnegligible effect on the dose rate and consequently on
FLASH.

Problem Representation The problem should be computationally implemented in such a way that
the properties of the solution are naturally represented by the chromosomes and genes in the GA. In this
case, the PBSDR is a very local metric that should give preference to sets of nearby beams, which should
always translate into high dose rates on the locally irradiated voxels. Therefore, the scanning pattern
can be intuitively represented by the ordered sequence of the pencil beam’s index: if pencil beam i is
the jth element of the list, pencil beam i is the jth beam to be irradiated.

This natural representation is denominated by path representation and is the one mostly used on GA
applications to TSPs, both because of its intuitive nature as well as the good results obtained with it [42].
In figure 3.2.1 a simple example of two different path representations are given, corresponding to two
different patterns for a 3× 2 regular grid:

Figure 3.2.1: Example of two different scanning patterns and their corresponding path representation
for a 3× 2 regular grid.
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Population Size The population is a critical part of the GA because it works as a natural memory,
storing information regarding both the results of previous generations and the best genes. Therefore,
it is important to have a large enough population so that more information can be preserved and con
sequently, better and more reliable solutions can be obtained [45]. However, the larger the population,
the more individuals and, therefore, more memory is required. This also translates into more function
evaluations, resulting into longer optimizations. Additionally, the convergence is also slower for larger
population because it requires more generations to spread the best genes over the whole population.
Therefore, a balanced population size is required.

For IMGAs, choosing the appropriate population size also needs to take into account the number of
islands, because the population is to be equally spread over them. It is desirable to have a smaller
population at each island to achieve local convergence on different regions of the search space [46]. It
is also important to take into account the pattern size because the higher the number of pencil beams,
the more complex the problem is, requiring larger populations.

In addition, the initial population must be initialized. Hints based on predefined scanning patterns can
be provided, however, these might restraint the optimizer from exploring the whole search space, lead
ing to suboptimal solutions. The simplest initialization is to consider random individuals, which despite
translating into a slower convergence rate, guarantees a steadily and improving evolution. The slow con
vergence for the early generations can be overcome by sampling a higher number of random individuals,
leading to an overall better but still distinct random population.

The initial population was randomly initialized, by sampling random permutations of the pencil beams
making up 10 times the population size.

Crossover Operator A suitable crossover operator is, in general, one that mixes the genetic material
of both parents in such a way that the resulting children inherit the best genes. This is a major problem for
the path representation, as simply swapping sets of pencil beams between the parents results in unfea
sible solutions, with several beams showing up more than once in the sequence. Therefore, crossover
operators require a mechanism to repair the new solutions while keeping them as close to the original
parents as possible, in order not to introduce mutations.

Different crossover operators have been suggested for the path representation and applied to the TSP
problem [42]. One of the most commonly used is the PartiallyMapped Crossover (PMX) [47]. This
crossover operator passes to the children information on the ordering of the parents, bymapping a portion
of one parent’s sequence into a portion of the other parent’s sequence, with the remaining information
being exchanged. A practical example of the operator generating one child is represented in figure 3.2.2.

Figure 3.2.2: PartiallyMapped Crossover (PMX) operator.

The PMX operator first selects uniformly at random two cut points along the sequences. As in figure
3.2.2, suppose that the first cut point is selected between the second and third sequence element, and
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the second one at the last sequence element. The set between the cut points is called the mapping
section. Considering the generation of just one child, the parent giving the information on the mapping
section is the donor while the other parent is the receptor. The mapping process is then carried element
by element: the ith element on the donor’s mapping section is placed at the same position in the receptor.
The element that was previously in that position in the receptor moves to the initial position of the element
that replaced it. In this example, the first element in the donor’s mapping section is 2 at position 5 in the
pattern. This is then placed at position 5 in the receptor, while beam 3, which was previously in that
position, is moved to the previous position of beam 2 in the receptor, namely to position 2. The routine
is repeated but inverting the role of donor and receptor, generating two distinct children.

The PMX operator allows to exploit the fact that the genes passed during crossover correspond to small
sequences of beams. However, given the strong dependence of the PBSDR on the pattern, the repair
mechanism of this operator might be too disturbing and significantly reduce the quality of the solutions.
Moreover, while the mapping sequence of the donor is easily identified in one of the children, depending
on the size of the pattern and the size of the mapping sequence, it is not always straightforward to identify
the contribution of the receptor in that same children. This can be seen by comparing the initial parents
and the final child in figure 3.2.2.

In order to allow more information of the receptor parent to be passed to the child, a new crossover oper
ator based on the PMX is proposed: PartiallyMapped Ordered Crossover (PMOX). This new operator is
also motivated by the idea that it should be the small sequence of beams that matter and not its location in
the pattern. Therefore, in the PMX routine, instead of placing the first element of the mapping sequence
in the receptor at the same position it appears on the donor, it is only used to identify the mapping start
in the receptor. The other elements in the mapping sequence are then placed after the mapping start,
following the same procedure as in the PMX routine. A practical example of the operator generating one
child is represented in figure 3.2.3.

Figure 3.2.3: PartiallyMapped Ordered Crossover (PMOX) operator.

In this implementation, crossover was allowed for all individuals but it was associated with a probability.
However, if the two parents are equal, the children are automatically excluded from the population, in
order to avoid early dominance and suboptimal convergence. To further preserve information of the
receptor parent and to focus on more local genes, the size of the mapping sequence was limited to a
third of the total length of the pattern.

Mutation Operator A suitable mutation operator should be able to both fine tune the selected individ
ual, so that the quality of the solution gets improved, and introduce substantial changes in the solution, so
that the algorithm jumps out of local optima. A set of four mutation operators were used: swap, insertion,
simple inversion and shift. Each mutation operator was associated with the same mutation probability
but considered independently.
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The swap mutation operator [48] randomly selects two pencil beams in the sequence and exchanges
them. Considering the second and the fifth pencil beams are randomly selected, the effect of this operator
is illustrated in figure 3.2.4. This operator is chosen because it allows for a finetune of the patterns,
making only very small changes, although the quality might get substantially affected.

Figure 3.2.4: Swap mutation operator.

The insertion mutation operator [49] randomly chooses a pencil beam in the sequence, removes it and
inserts it again but in a randomly selected position. This is represented in figure 3.2.5. Although translat
ing into substantial changes in the absolute position of the pencil beams, this operator allows for a fine
tune on the relative position, which should be useful.

Figure 3.2.5: Insert mutation operator.

The simple inversionmutation operator [50] selects randomly two cut points in the sequence and reverses
the subsequence between them. Considering that the cut points are randomly chosen between the first
and second elements and between the forth and fifth elements, the result is illustrated in figure 3.2.6.
The simple inversion mutation operator is chosen to possibly finetune the genes, which in this problem
correspond to subsequences of pencil beams.

Figure 3.2.6: Simple inversion mutation operator.

The shift mutation operator [51] shifts the whole sequence to the right or to the left by a random number,
making all the elements to be relocated to a new absolute position but preserving their relative order,
as represented in figure 3.2.7. This operator is considered useful because it allows to experiment with
different start and end beams, without substantially changing the PBSDR distribution, as the relative
positions are preserved.

Figure 3.2.7: Shift mutation operator.

Selection Mechanism After new solutions have been generated, the population is reduced to its
initial size by selecting the most suitable individuals. Because the selected individuals will be used to
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generate new children in the next generation, the best should be selected so that the GA is driven to
improve the population fitness over succeeding generations. The degree to which the better individuals
are favoured is the selection pressure. It is critical to choose a balanced pressure because if it is too
high, it is more probable for the GA to prematurely converge to a suboptimal solution, as diversity is killed
off. If it is too low though, the convergence rate will be slow and the GA will take substantially longer to
find the optimal solution, perhaps never finding it in a feasible time.

Tournament Selection [52] is a very common selection mechanism which applies selection pressure by
holding a tournament among several individuals, as many as the tournament size. The tournaments are
held up by randomly picking solutions from the population, which can be either replaced afterwards or
removed entirely from the pool. The winner of the tournament is the individual with the highest fitness of
those competitors and it is added to the next generation’s population. This new population should have
a higher average fitness than previous generations, as it will be only made up of tournament winners.
Increased selection pressure can be provided by increasing the tournament size and replacing the com
petitors in the tournament pool. The winner of a larger tournament will, on average, have a higher fitness
than the winner of a smaller tournament.

In this application, tournament selection was performed without replacement, which makes the tourna
ment size fixed and given by the initial population size. The tournament pool is comprised of the best
individuals from the previous generation, the new children and new mutants. Diversity is considered
essential for SPO because the fitness function is a misleading indicator of how close a pattern is to the
optimal sequence, regarding the relative order of the elements. Given an optimal scanning pattern, if
the positions of two beams are swapped, the fitness function changes substantially but the patterns still
remain similar. This justifies the focus on diversity within the population.

Migration Policy Migration is a unique concept to IMGAs. In this implementation, the islands are
arranged in a ring and migration happens around the ring in an incremental way, simultaneously for all
islands [46]. In the first migration, a fixed percentage of the population is randomly chosen and moved
from their current island to their immediate neighbor to the left. In the second migration, new migrants
are randomly picked and moved to the island which is two moves to the left in the ring. In general,
the migration destination is incremented by 1 and moves around the ring, as illustrated in figure 3.2.8.
Migrations occur every fixed number of generations until each island has sent one set of individuals to
every other island (not including itself), at which point it is repeated from the beginning.

Figure 3.2.8: Migration routes for a ringlike organization of 4 islands.

The number of generations between migration must be high, so that each island is given room to locally
convergence. It cannot be too high though, or the newly added genetic material will either be irrelevant
or dominate over all the population. A balance should be found so that the islands do not focus on
completely different regions of the search space but instead get steered by each other towards a global

29



better search direction. As for the portion of migrating individuals, it should be high enough to introduce
a considerable amount of new genes but not too high to kill the local diversity at the migration address.

The number of islands is also an important parameter as the more island, the better the search space is
explored. However, if there are too many islands, depending on the migration policy, it might get more
difficult to have a global convergence among all the islands. This is because they might converge to
local optima before the information is shared between all of them.

Migration is here performed at the end of the generation, after selection. This was chosen so that the
migrants are guaranteed to perform crossover with the natives at least once, enabling the introduction
of new genetic material in the local population.

3.2.4 Finetune routine

The numerical parameters of the GA that can and should be finetuned to obtain the best solutions in
the least amount of generations, with the highest consistently possible between independent runs and
within the available resources. More specifically, there are six parameters that can be configured: popu
lation size, crossover probability, mutation probability, number of islands, migration period and migration
size. The routine followed is reported in figure 3.2.9, with the configuration used being just one of many
possibilities, aimed at obtaining the best solutions possible. This is not critical, as the goal of SPO is to
improve the FLASH gains and it never introduces tradeoffs on the dose.

Figure 3.2.9: IMGA finetune routine, with the parameters and explanation on the bottom, alongside the
range, default and optimized values on top.

Finetuning should start without the island configuration (equivalent to one island only), in order to re
move all IMGA related parameters, such as the number of islands and the migration policy. This way,
the population size, the crossover probability and the mutation probability are the only parameters to
assign. Different configurations should then be evaluated by running the algorithm on the same setup
for an arbitrary small number of generations and comparing the fitness function, enabling quick testing
of different parameters, one at a time. Overall, population size and crossover probability should be high,
while mutation probability should be low. Tuning started with the population size since there is no range
of values associated with it, fixing the crossover probability on 0.8 and mutation probability on 0.1. Since
the parameters depend on each other during evolution, choosing a different tuning order might lead to
different optimal configurations. Some parameters might compensate others, further highlighting that
there isn’t just one correct setup.

The problem gets substantially more complex and difficult for larger patterns, which should be taken into
account in the population size. Considering that studies of GA applications on TSP fix the population size
on values one order of magnitude higher than the number of cities, sizes equal to multiples of 10 times
the number of pencil beams were tested. After trial and error on several test runs, it was concluded that
a global population size of 50 times the number of pencil beams represented a good balance between
convergence speed, solution quality and consistency.
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The crossover probability was tuned next, varying it in steps of 0.05 around 0.8. It was ultimately con
cluded that 0.8 was a suitable value. Mutation probability followed, using the same tuning scheme but
around 0.1. Several test runs showed that a mutation probability of 0.2 lead to the best results in the
shortest number of generations.

The island configuration was then introduced, adding three extra parameters to be tuned, namely the
number of island, the migration period and the migration size. Focus was then shifted to the consistency
of the optimizer on different independent runs, requiring several runs for a small number of generations
to test the parameters. Since the global population size is fixed, the number of islands determines the
local population size of each island. The number of islands was first tuned, setting migration to happen
every 25 generations with 10% of the local population.

Considering that the goal of the island model is for each island to focus on different regions of the search
space, the number of islands should be set based on the population size per island and the number of
pencil beams. The number of islands was then varied between 5, 10 and 20, corresponding to population
sizes per island of 10, 5 and 2.5 times the number of pencil beams. These trials concluded that 20 islands
lead to more reliable and better results between independent runs.

Migration policy followed, first the period and then the size. Several tests were performed, varying the
number of generations between migration in steps of 5 around 25. It was concluded that 15 generations
ensured local convergence without allowing the islands to drift too far apart. Migration sizes of 5%, 10%
and 15% were tested, from which it was verified that 5% allowed the introduction of enough genetic
material without dominating over the destination island.

For full evaluation, the stopping criteria was defined as 25 generations without improvement on any of
the islands, allowing for each of them to fully converge to its optimum. No early stopping is performed,
in order to achieve the best solutions possible with this optimizer, at the expense of the running time.

3.3 Optimization Setup

3.3.1 Analytical 2D models

On the 2D approach, the analytical models are composed of a circular tumour with a annulus margin
around it, in a square field, irradiated using pencil beams sampled from a regular square grid, selecting
the ones falling inside the tumour. These pencil beams are modelled using standard Gaussian distri
butions with normalized amplitudes, so that the pencilbeam weight directly corresponds to the dose
deposited at the peak.

The models are irradiated with variable number of pencil beams, fixing the beam width σ at 3 unit lengths
while varying the beam separation ∆µ, through ratios ∆µ/σ = {0.7, 0.8, 0.9, 1.0, 1.4, 2.0}. The tumour
radius is fixed at 2.5σ, with a annulus margin of 2.5σ defined around it, and the field size is set to
20σ × 20σ. To simulate a sterotactic treatment of lung lesions, the target dose at the tumour and its
margin is set to 18 dose units and 0 outside.

DADR For DADR optimization, constraints are set based on the doseonlyoptimized solutions.
These are comprised of minimum constraints on themean andminimum doses at the tumour andmargin,
with maximum constraints on the mean and maximum doses at the margin and surrounding area. To
allow tradeoffs when optimizing the dose rate, these constraints are relaxed through a relaxation factor
δ, equal to 3%. The beam current is given by the minimum pencilbeam weight, based on a pencilbeam
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delivery time of 15 time units. This is chosen so that the doseonlyoptimized plans require doserate
optimization to be compatible with FLASH.

PBSDR For pattern optimization, the pencilbeam weights from the doseonlyoptimized solutions
are used and the optimizer is run 10 times for each ratio, in order to build up statistics on the overall
performance. The beam current is fixed at 400 beam weight units per time unit, selected so that the
predefined patterns translate in low dose rates but there is still room for optimization.

3.3.2 Clinical Scenario

Optimization on clinical data is performed on anonymized planningCT scans and delineations of 12
patients with one single lung lesion, that were clinically treated with photons on a Cyberknife in 3 fractions
of 18 Gy, prescribed to isodose levels ranging from 72%80%, with a PTV not exceeding 10 cc (median
6.4 cc, range 4.410.1 cc). GTV delineations are available and a 5 mm CTVPTV margin is applied.
For scanningpattern optimization, 3 additional patients are considered, characterized by larger PTVs,
specifically 23.6 cc, 52.9 cc and 83.9 cc.

To make the analysis consistent and general, the same wishlist is used to generate the treatment plans
for all the patients, which is based on previous studies on FLASH for the same clinical setup. This is
only valid because the tumours considered are all lung lesions, so the same set of clinical requirements
and constraints applies to all the patient population. The same regular grid was used to sample pencil
beams for all treatment plans, with 5 mm of lateral spacing and energy of 244 MeV.

Due to the FLASH dose threshold, it is possible for plans to never be compatible with the effect if the
target dose is too small. Therefore, to guarantee the highest FLASH compatibility, hypofractionation is
considered, with a prescription dose of 18 Gy per fraction, on a total of 3 fractions, similarly to the con
ventional treatments delivered to these patients. Dose is delivered with 3 equiangular coplanar beams,
one at each fraction: 40°, 160°and 280°. Conventionally, several beam directions would be delivered
within the same fraction but current clinical technology does not allow to rotate the gantry within FLASH
compatible times.

The constraints and objectives specified in the wishlist depend on the structure, as reproduced in the
appendix, in table 7.1.1. For the GTV and PTV, the dose is constrained to be higher than 98% of the
target dose. Upper limits are not constrained there but set as objectives, to be optimized. At the regions
on the vicinity of the PTV, objectives are set to minimize the minimum and the mean dose in a gradient
of decreasing doses at shells around the PTV, to ensure better conformality. At the other healthy regions
in the patient, the dose goals are set to 0. None of the constraints nor objectives is optimized robustly,
as the focus of this project is on proof of principle.

DADR For the DADR optimization at the treatment planning level, the minimum pencilbeam delivery
time is fixed to 5 ms. This is chosen so that the relation between the beam current and the minimum
pencilbeam weight is more restrictive, consequently making optimization more complex and requiring a
more careful balance between dose and dose rate. For this value, IMPT plans are only compatible with
smaller beam currents. The DADR objectives are optimized after the dose objectives on a perstructure
basis, except at the GTV. A final DADR objective is included, corresponding to optimization of the dose
rate everywhere in the patient.

PBSDR Scanningpattern optimization is performed on IMPT treatment plans, with a fixed beam
current. If this value is too low, no plan will be FLASH compatible and scanningpattern optimization
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is ineffective. If the beam current is too high, every pattern is compatible with FLASH, making pattern
optimization unnecessary. Therefore, a suitable beam current should be used, one that is clinically
feasible, for which the predefined patterns show a low FLASH coverage, while leaving enough room for
optimization. A beam current of 40 nA represents the right balance for this setup.

3.4 Evaluation

Despite the differences between the two doserate metrics, FLASH optimization aims to reduce the toxi
city at the healthy tissue in both scenarios, meaning that evaluation and comparison of the results should
be similar, using the same set of approaches.

3.4.1 Plan comparison

The results of the proposed optimization strategies were compared on the FLASH coverage. This is
the percentage of voxels outside the GTV that have FLASH compatible dose rates among the voxels
irradiated with a FLASH compatible dose. The mean dose at the ipsilateral lung except the GTV is
also used for comparison. This is a good proxy for damage to the healthy lung, since lung has a parallel
organization scheme: it maintains function even if a fraction is scarificed. It also depends linearly on dose,
which is useful to evaluate the overall gains by FLASH. The optimized results are compared against the
golden standard for the mean ipsilateral lung dose, given by the conventional IMPT plans.

The healthy tissue sparing from FLASH is modeled by a FLASH enhancement ratio (FER), by consid
ering the effect as binary based on the dose and doserate thresholds. This is a ratio by which dose at
healthy tissue irradiated at FLASHcompatible conditions is divided, to model a reduced toxicity relative
to IMPTdelivered dose. For lung tissue, studies have observed an FER of at least 1.81, so it is the
value considered here. An effective FER is also calculated, which represents the global FLASH gain at
the ipsilateral lung except the GTV, if the whole volume was compatible with FLASH regardless of dose
and dose rate. It is defined as the ratio between the conventional nonFLASH and the FLASHenhanced
doses, so it can easily be calculated with the mean dose.

On FLASH optimization with the DADR metric, since new treatment plans are generated, it is important
to evaluate how do they compare with the conventional IMPT plans regarding dose. Therefore, the non
FLASH mean dose at the ipsilateral lung except the GTV sets the benchmark. The FLASHenhanced
dose is calculated for both the FLASHoptimized plans and the corresponding conventional IMPT plans,
for which the dose rate is calculated based on the minimum pencilbeam weight and the minimum pencil
beam delivery time.

For scanningpattern optimization, the FLASHenhanced doses are compared for different predefined
patterns: the Z, Snake and Circle. The best and worstperforming patterns found by the optimizer on
the various independent runs are both evaluated. The current clinical standard for proton therapy using
pencilbeam scanning is the Snake pattern, performed energy layer by energy layer.

On the analytical 2D models, the comparison with the doseonlyoptimized solutions is different. For the
DADRoptimized weights, since dose optimization is performed based on homogeneity to a target dose,
the tradeoffs are evaluated and compared on that objective function (quadratic difference). As for the
FLASH gains, a similar objective function is used but taking the target as the prescribed dose at the GTV,
zero outside the PTV and the FLASHenhanced prescription dose at the PTV margin.

1This value is obtained from a study on thoracic irradiation of mice[8], for which irradiation with 30 Gy at FLASH
conditions was seen to be less fibrogentic than 17 Gy conventional (FER = 30/17≈1.8).
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3.4.2 FLASH Sensitivity

In order to evaluate how sensitive the FLASHoptimized solutions are, different dose and dose rate
thresholds are considered. To evaluate how the thresholds reflect on the reduced toxicity achieved
with FLASH, new FLASH enhanced dose distributions are calculated for the solutions optimized for
FLASH with 8 Gy and 40 Gy/s, using dose values of {6, 8, 10, 12} Gy, alongside dose rate values of
{30, 40, 50, 60} Gy/s. Both improvements on the mean dose at the ipsilateral lung and the effective
FER are calculated, relative to conventional IMPT treatment plans.
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4 Results

In this section, the results of the proposed optimization strategies are presented. First, the results for
FLASH optimization at the treatment planning level with the DADR metric are presented, followed by
scanningpattern optimization for FLASH coverage maximization according to the PBSDR metric. The
optimizers are first validated for analytical 2D models before being applied to clinical patient data.

4.1 DoseAveraged Dose Rate (DADR)

The fullyoptimized  dose followed by DADR  solutions are evaluated on the dose tradeoffs and gains
over doseonlyoptimized solutions, the optimum weight distribution and the sensitivity of the optimized
solutions to different FLASH thresholds.

For the early stopping criteria on optimization of both DADR objectives, defined by parameter δ, the
reported values for the objective function and for the corresponding linearized function values were an
alyzed at each step of the iterative linearization routines. It was concluded that for the mininum DADR,
δ = 0.01 guarantees a difference on the order of 102 Gy/s relative to the possible results of running
the algorithm for longer. For the mean DADR, δ = 100 ensures a difference on the order of 101 Gy/s
relative to the results of letting the routine run for more steps.

4.1.1 Analytical 2D Models

The FLASH coverage for the fullyoptimized solutions on the analytical 2D models with different ratios
∆µ/σ of beam separation and beam width is reported in figure 4.1.1. FLASH coverage is increased for
all ratios but full coverage is only achieved for the highest ratios. The lowest ratio shows an improvement
of only 2.53%.

Figure 4.1.1: FLASH coverage for fullyoptimized solution on analytical 2D models with different ratios
∆µ/σ. The beam current is given by the minimum weight of each solution, considering a minimum
delivery time of 15 time units.

For each ratio ∆µ/σ, the quality of the fullyoptimized solutions is compared against the respective
doseonlyoptimized solutions. The results are reported in figure 4.1.2, with and without FLASH en
hancement. Solution quality is evaluated using the dose homogeneity objective function, corresponding
to the quadratic difference between the dose and a target. For the conventional dose, the target is set
as the prescribed dose when inside the PTV, and zero when outside. FLASH gains are instead eval
uated considering the prescribed dose at the GTV, zero outside the PTV and the FLASH enhanced
prescription dose at the PTV margin. The solution quality degrades for all ratios when compared with
the doseonlyoptimized solutions, more considerably for the lower ratios.
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Figure 4.1.2: Relative solution quality for fullyoptimized solutions on analytical 2D models with different
ratios ∆µ/σ, compared against the respective nonFLASH dose distribution of benchmark doseonly
optimized solution.

The ratio itself is also a measure of the quality of the plans since the solutions get better for lower
ratios. To globally compare quality of different plans, since the setup is the same, the solution quality of
each fullyoptimized scenario is evaluated against the best solution, corresponding to the smallest ratio
∆µ/σ = 0.7. This is represented in figure 4.1.3. As expected, there is a degradation of the doseonly
optimized solutions as the ratio is increased.

Figure 4.1.3: Global solution quality for fullyoptimized solutions on analytical 2D models with different
ratios ∆µ/σ, compared against the best nonFLASH dose distribution, which corresponds to the solution
for the smallest ratio 0.7.

Relating the global solution quality of figure 4.1.3 with the FLASH coverage in figure 4.1.1, it is observed
that the ratio 1.0, although not fully FLASH compatible, has the same FLASH but better nonFLASH
quality than its fullyoptimized solution. This same solution has a better nonFLASH quality than the only
FLASH compatible solution for ratio 0.9, which is the one obtained from full optimization. Similarly, for
the smallest ratio 0.7, FLASH coverage is slightly increased through optimization but the corresponding
FLASH quality is worse than the nonFLASH quality of the corresponding doseonlyoptimized solution.

To understand how DADR optimization steers the spatial distributions of pencilbeam weights, optimiza
tion of the minimum and mean DADR is performed on a square field of size 15σ × 15σ, for the set of
ratios ∆µ/σ = {0.7, 1.0, 2.0}. Only one constraint is applied, namely on the maximum dose, set to
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18 dose units. In figure 4.1.4, the normalized spatial weight distribution is reproduced for these opti
mized solutions. These pencilbeam weight distributions are seen to be welldefined, symmetric and
geometricallyorganized, varying concentrically for different ratios.

Figure 4.1.4: Spatial distribution of the normalized pencilbeam weights for DADRonlyoptimized so
lutions on analytical 2D square fields with different ratios ∆µ/σ. The normalized weight of each pencil
beam is given by its color.

The dose distribution corresponding to the DADRonlyoptimized solutions on the square fields is illus
trated in figure 4.1.5. The dose distribution have shapes similar to the corresponding spatial pencilbeam
weight distribution. The very concentric and smooth varying distribution for the lowest ratio gets broader
and broader so that for the intermediate ratio it is very uniform. It broadens further for higher ratios until
overlap between pencil beams is totally avoidable, resulting into very local peaks of high dose.

Figure 4.1.5: Dose distribution of DADRonlyoptimized solutions for analytical 2D square fields with
different ratios ∆µ/σ.

The corresponding dose rate distributions are reproduced in figure 4.1.6. Distributions gets less and less
uniform the higher the ratio, broadening the range of values observed. For the lowest ratio, dose rate is
uniformly constant everywhere with an intermediate value, whereas for the highest ratio the distribution
is very peaked.
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Figure 4.1.6: Doserate distribution of DADRonlyoptimized solutions for analytical 2D square fields
with different ratios ∆µ/σ. The beam current is fixed at 60 pencilbeam weight units per time unit.

4.1.2 Clinical Scenario

For the clinical dataset of 12 patients with small lung lesions, fullyoptimized  dose followed by DADR 
treatment plans are generated. In figures 4.1.7, the FLASH coverage is reported, comparing the results
for the minimumrequired and maximumcompatible beam currents reported by the optimizer, against
conventional IMPT plans, corresponding to doseonly optimization. All the optimized treatment plans
have full FLASH coverage, with some IMPT plans already compatible with the FLASH effect, not requiring
further optimization.

Figure 4.1.7: FLASH coverage for fullyoptimized treatment plans against IMPT doseonlyoptimized
plans. Points on the horizontal correspond to the same patient, on the same direction. The beam current
considered for conventional IMPT plans was calculated with a 5 ms minimum pencilbeam delivery time
and the respective minimum weight.

However, focusing on the minimum required beam current reported by the optimized, zoomed in for
figure 4.1.8, 100% coverage is never actually achieved. This is minor though, with very little impact on
the results, as the median FLASH coverage is still 99.79%, with an interquartile range of 0.35%.
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Figure 4.1.8: FLASH coverage for fullyoptimized treatment plans, using the minimumrequired and the
maximumcompatible beam currents reported by the optimizer. Points on the horizontal correspond to
the same patient, on the same direction.

Despite the substantial improvement of FLASH coverage in the fullyoptimized plans, it is important to
understand at what cost this is achieved. In figure 4.1.9, the mean dose at the ipsilateral lung is compared
against the conventional IMPT treatment plans. The tradeoff on dose is very small, while the FLASH
enhanced dose is always substantially better than the nonFLASH IMPT dose. On direction B3, the
mean dose to the ipsilateral lung for some of the fullyoptimized treatment plans is reportedly lower than
for the corresponding IMPT plans.

Figure 4.1.9: Mean dose difference at the ipsilateral lung for fullyoptimized treatment plans relative to
conventional IMPT plans. FLASH enhanced dose considers a reduction of dose by 1.8 at the FLASH
compatible regions. Points on the horizontal correspond to the same patient, on the same direction.

The optimized treatment plans have a median deterioration on the mean dose at the ipsilateral of 0.37%,
0.11% and 0.18% for each of the three directions, with an interquartile range of 0.28%point, 0.56%
point and 0.64%point, respectively. Regarding improvements, results showmedians of 38.27%, 38.08%
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and 38.30% for directions B1, B2 and B3, respectively, alongside an interquartile range of 0.79%point,
0.91%point and 1.10%point.

With the proposed optimization strategies for full optimization, the minimumrequired beam current to
achieve optimal FLASH compatibility is calculated, according to the wishlist configuration. In addition,
the treatment plan are also made compatible with higher beam currents by maximizing the minimum
weight at the last step. This translates into windows of beam currents compatible with each optimized
treatment plan and that guarantee optimal FLASH coverage. The different ranges for the fullyoptimized
treatment plans are reported in figure 4.1.10.

Figure 4.1.10: Beamcurrent windows for fullyoptimized treatment plans, consisting of the minimum
required beam current and themaximum compatible beam current for the highest FLASH coverage within
the specifications of the wishlist.

The majority of the plans is compatible with a wide window of beam currents. For directions B1, B2 and
B3, the minimum required beam current has a median of 19.41 nA, 21.20 nA and 30.77 nA, alongside
an interquartile range of 2.33 nA, 2.44 nA and 15.02 nA respectively. For the beam current window of
[33,56] nA, 80% of the plans are fully compatible.

Understanding how the dose rate changes within the patient can give insight about what directions should
be chosen for higher FLASH compatibility. In figure 4.1.11, the DADR distribution is reproduced along
the beam direction for different slices corresponding to different depths in the patient. The deeper into
the patient, the lower the overall dose rate.

Figure 4.1.11: DADR distribution within a patient with a small lung lesion, along the beam direction for
direction B1, at different slices corresponding to different depths in the patient. The title indicates the
depth relative to the first slice, in mm.
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To compare the contribution and importance of the two steps in DADR optimization, namely beamcurrent
optimization and weight readjustment, new treatment plans are generated for the same patient data but
performing current optimization. This is defined as doseonly optimization followed by a last step of
beamcurrent maximization. In figure 4.1.12, the dose at the mean ipsilateral lung is reported against
the conventional IMPT plans, whereas the effective FER is reported in figure 4.1.13.

Figure 4.1.12: Mean dose difference at the ipsilateral lung for fullyoptimized and currentoptimized
treatment plans relative to conventional IMPT plans, considering both nonFLASH and FLASHenhanced
dose. Points on the horizontal correspond to the same patient, on the same direction.

The mean dose improvements at the ipsilateral lung for the currentoptimized plans is increased by a me
dian of 0.02%point, 0.14%point and 0.08%point over the fullyoptimized treatment plans, with an in
terquartile range of 0.26%point, 0.74%point and 0.41%point for directions B1, B2 and B3, respectively.
Regarding dose degradation, it is reduced by a median of 0.06%point, 0.07%point and 0.22%point
for the same directions, with an interquartile range of 0.46%point, 0.75%point and 0.81%point.

Figure 4.1.13: Effective FLASH Enhancement Ratio at the ipsilateral lung for fullyoptimized and current
optimized treatment plans against conventional IMPT plans. The effective FER corresponds to the ratio
between the conventional and the FLASHenhanced (mean) dose. Points on the horizontal correspond
to the same patient, on the same direction.
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To evaluate how sensitive the treatment plans are to different FLASH thresholds, FLASHenhanced dose
distributions are calculated for each plan using various thresholds and the maximumcompatible beam
current. The contribution of each direction on the treatment of the patient is summed up to to report full
treatment quality. The results are evaluated on the mean dose to the ipsilateral lung in figure 4.1.14 and
on the effective FLASH Enhancement Ratio in figure 4.1.15.

Figure 4.1.14: Sensitivity of the improvements on the mean dose at the ipsilateral lung for fullyoptimized
treatment plans on different FLASH thresholds with the maximumcompatible beam current, relative to
conventional IMPT treatment plans.

The results are very consistent, showing the same performance for different doserate thresholds and
an expected degradation for higher dose thresholds. The median improvements are reported in table
4.1.1, considering the overall treatment of the patient, summing up the doses of each direction.

Dose\Dose rate 30 Gy/s 40 Gy/s 50 Gy/s 60 Gy/s

6 Gy 40.16% 40.16% 40.16% 40.16%
8 Gy 38.29% 38.29% 38.29% 38.29%
10 Gy 36.18% 36.18% 36.18% 36.18%
12 Gy 33.69% 33.69% 33.69% 33.69%

Table 4.1.1: Median improvements on the mean dose at the ipsilateral lung for fullyoptimized treatment
plans on different FLASH thresholds with themaximumcompatible beam current, relative to conventional
IMPT treatment plans.
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Figure 4.1.15: Sensitivity of the effective FLASH Enhancement Ratio at the ipsilateral lung for fully
optimized treatment plans on different FLASH thresholds, calculated with themaximumcompatible beam
current. The effective FER corresponds to the ratio between the conventional and the FLASHenhanced
(mean) dose.

The same sensitivity analysis was performed but instead considering theminimumrequired beam current
for each plan. The results are reported on the FLASH improvements in figure 4.1.16 and on the effective
FLASH Enhancement Ratio in figure 4.1.17.

Figure 4.1.16: Sensitivity of the improvements on the mean dose at the ipsilateral lung for fullyoptimized
treatment plans on different FLASH thresholds with the minimumrequired beam current, relative to con
ventional IMPT treatment plans.

The results are still consistent, similar to those for the maximum possible beam current, although the
higher doserate thresholds now translate into some degradation. The median improvements are re
ported in table 4.1.2, considering the overall treatment of the patient, summing up the doses of each
direction.
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Dose\Dose rate 30 Gy/s 40 Gy/s 50 Gy/s 60 Gy/s

6 Gy 40.14% 39.96% 39.28% 35.99%
8 Gy 38.29% 38.26% 37.99% 35.39%
10 Gy 36.18% 36.18% 36.14% 34.20%
12 Gy 33.69% 33.69% 33.67% 32.27%

Table 4.1.2: Median improvements on the mean dose at the ipsilateral lung for fullyoptimized treatment
plans on different FLASH thresholds with the minimumrequired beam current, relative to conventional
IMPT treatment plans.

Figure 4.1.17: Sensitivity of the effective FLASH Enhancement Ratio at the ipsilateral lung for fully
optimized treatment plans on different FLASH thresholds with the minimumrequired beam current. The
effective FER corresponds to the ratio between the conventional and the FLASHenhanced (mean) dose.

4.2 PencilBeam Scanning Dose Rate (PBSDR)

Scanningpattern optimization for FLASH coverage maximization according to the PBSDRmetric is eval
uated on the performance and convergence of the optimizer, comparing different configurations and dif
ferent predefined patterns. The sensitivity of the FLASH gains for the optimized scanningpatterns to
different FLASH thresholds is also evaluated.

4.2.1 Analytical 2D Models

The quality of the different scanning patterns obtained for 10 independent runs of different versions of the
scanningpattern optimizer is reported in figure 4.2.1, for the ratio ∆µ/σ = 1. All the versions evaluated
have consistent results, with the IslandModel Genetic Algorithm finding the best patterns, within a shorter
window of possible solutions.
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Figure 4.2.1: Relative FLASH coverage for the suboptimal patterns generated with 10 independent runs
of different versions of the scanningpattern optimizer on analytical 2D models with ratio ∆µ/σ = 1. The
results are normalized to the maximum found for the total 30 runs.

For ratio ∆µ/σ = 1, the solutions for the three tested versions of the scanningpattern optimizer have a
median FLASH coverage relative to the best found pattern of 95.71%, 97.86% and 98.53% for the simple
GA, IMGA with 5 islands and with 20 islands, respectively, with a full range, i.e. the distance between
the overall minimum and maximum values, of 5.09%point, 4.29%point and 3.48%point.

The performance of different versions of the scanningpattern optimizer is reported in figure 4.2.2 as
a function of the running time for the ratio ∆µ/σ = 1. Bootstrapping is performed with data from 10
runs, drawing data samples of size up to 10 and calculating the maximum FLASH coverage for each
sample. For every number of runs, bootstrapping is performed 1000 times and the median relative
FLASH coverage is calculated. If enough runs are performed, the optimizer will be more likely to find a
better solution, at the expense of longer computational times.

Figure 4.2.2: Relative FLASH coverage for different versions of the scanningpattern optimizer on ana
lytical 2D models with ratio ∆µ/σ = 1 as a function of the running time. This corresponds to as many
runs as the order of the point in the x axis and determines the sample size for bootstrapping. The re
ported FLASH coverage is the median of the maximum coverage for 1000 samples obtained through
bootstrapping, normalized to the maximum value found on all runs for all versions.

The Island Model Genetic Algorithm with 20 islands always performs better but in the time to run it just
once, the simple GA can be run for almost three times. The IMGA with 5 islands has better relative
FLASH coverage in less runs than the simple GA, but because each one takes substantially longer, at
some point it becomes more advantageous to run more versions of the simpler faster GA model.
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In order to understand how the complexity of the algorithm can increase the running time and how the
algorithm performs for configurations different from the one used to finetune it, the relative FLASH cover
age is evaluated as a function of the running time for different ratios. These results are reported in figure
4.2.3, using the final version of the scanningpattern optimizer: IMGA with 20 islands. The complexity
of the problem increases with the number of pencil beams, translating into substantially longer running
times.

Figure 4.2.3: Relative FLASH coverage on analytical 2D models for different numbers of pencil beams,
given by the different ratios ∆µ/σ, as a function of the running time. The running time corresponds to as
many runs as the order of the point in the x axis, which determines the sample size for bootstrapping. The
reported FLASH coverage is the median of the maximum coverage for 1000 samples obtained through
bootstrapping, normalized to the maximum FLASH coverage. The higher the number of pencil beams,
the lower the ratio.

In figure 4.2.4, the FLASH coverage is reported for the best and worstperforming optimized scanning
patterns, against predefined patterns. FLASH coverage is always higher for the optimized scanning
patterns, independently of the ratio ∆µ/σ, with higher improvements for the lower ratios. The predefined
patterns significantly underperform for a large number of pencil beams.

Figure 4.2.4: FLASH coverage for optimized and predefined scanning patterns on analytical 2D models
with different ratios ∆µ/σ. TheMax andMin correspond to the patterns with maximum and the minimum
FLASH coverage reported by 10 independent runs of the optimizer.

The FLASH coverage for the bestperforming scanning patterns found by the optimizer is similar and
consistent for the different ratios, with a median of 76.83% and a full range of 5.86%point. For ra
tios ∆µ/σ = {0.7, 1.0, 2.0}, there’s an improvement over the best predefined patterns of 544.10%,
316.57% and 48.46% respectively.
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In order to better understand how the optimizer improves FLASH coverage, the best optimized scanning
patterns are reproduced in figure 4.2.5, found for 10 independent runs. The overall shape of patterns
is consistently similar: closed circular loops, following a radial inwardsoutwards movement around the
GTV, resembling snowflakes. In addition, they all have one end of the pattern in the center, within the
GTV, while closing the circular loop in the same initial radial direction.

Figure 4.2.5: Bestperforming optimized patterns for analytical 2D models with different ratios ∆µ/σ,
out of 10 independent runs. Patterns start with a green square and end with a red square. The GTV is
identified by the light circle.

In figure 4.2.6, the PBSDR distributions of the patterns in figure 4.2.5 for ∆µ/σ = {0.7, 1.0, 2.0} are
reproduced. These doserate distributions have similar shapes for the different ratios, all resembling the
letter C, with sacrifices at the interior core region, corresponding to the GTV, and along the direction of
the start and end branches.

Figure 4.2.6: PBSDR distributions of the bestperforming optimized patterns for analytical 2D models
with different ratios ∆µ/σ, out of 10 independent runs. The GTV is identified by the light circle, with the
corresponding pattern reproduced on top, starting with a green square and ending with a red one.

To analyze the impact of objective’s targeted region scanningpattern optimization is performed includ
ing the GTV. The bestperforming scanning patterns found by the optimizer and their dose rate distri
butions are reproduced in figures 4.2.7 and 4.2.7, found for 10 independent runs for ratios ∆µ/σ =

{0.7, 1.0, 2.0}.
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Figure 4.2.7: Bestperforming optimized patterns for analytical 2D models with different ratios ∆µ/σ,
optimized including the GTV, out of 10 independent runs. Patterns start with a green square and end
with red square. The GTV is identified by the light circle.

Similar snowflakeshaped patterns are obtained, consequently translating into identical Cshaped PB
SDR distributions. Some differences are seen at the GTV region, with the newly optimized patterns
reporting higher dose rates, specially at the margin regions near the GTV boarder.

Figure 4.2.8: PBSDR distributions of the bestperforming optimized patterns for analytical 2D models
with different ratios ∆µ/σ optimized including the GTV, out of 10 independent runs. The GTV is identified
by the light circle, with the corresponding pattern reproduced on top, starting with a green square and
ending with a red one.

The FLASH coverage of the patterns optimized excluding and including the GTV is compared in figure
4.2.9, only considering voxels outside the GTV for evaluation. FLASH coverage is generally better for
the scanning patterns optimized taking into account the GTV. The median FLASH coverage increases by
0.21%point, 1.22%point and 0.20%point over the previous results, the maximum values increase by
0.83%point, 0.70%point and 0.20%point and minimum values increase by 1.10%point, 2.49%point
and 0.20%point, for ratios ∆µ/σ = {0.7,1.0,2.0}, respectively.
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Figure 4.2.9: FLASH coverage for patterns optimized with and without the GTV for different ratios ∆µ/σ
for 10 independent runs on analytical 2D models.

4.2.2 Clinical Scenario

For one patient, with a PTV of 8.2 cc, different versions of the scanningpattern optimizer are tested in
order to validate the configuration proposed. Independent runs are performed for each version and for
each treatment plan, corresponding to a different direction. The results are compared on the FLASH
coverage, for which bootstrapping is performed with data from 20 runs, drawing bootstrapped data sam
ples of size up to 20 and calculating the maximum FLASH coverage for each sample. For every number
of runs, bootstrapping is performed 2000 times and the median is computed. The results are reported in
figure 4.2.10 and 4.2.11.

Figure 4.2.10: Relative FLASH coverage for suboptimal patterns generated with 20 independent runs
of different versions of the scanningpattern optimizer on clinical data. The reported FLASH coverage is
normalized to the maximum found for each direction.

The three proposed versions of the scanningpattern optimizer consistently find patterns near the op
timum, with the best performance being obtained with the Island Model Genetic Algorithm using 20
islands. The GA, IMGA with 5 islands and with 20 islands achieve a median relative FLASH coverage
of 99.45%, 99.45% and 99.63% respectively, when grouping the directions together, with a full range of
12.88%point, 2.33%point and 2.33%point. Regarding computational time, the IMGA with 20 islands
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is the best for direction B2, whereas direction B3 is seen to be fully optimized for just one run, with any
of the versions. Direction B1 shows the most consistent performance for IMGA with 5 islands in short
running times, but this version never finds the results achieved by the 20 islands or even the simple GA.

Figure 4.2.11: Relative FLASH coverage for 20 independent runs of different versions of the scanning
pattern optimizer, on the same patient data with a PTV of 8.2 cc. The running time corresponds to as
many runs as the order of the point in the x axis, which determines the sample size for bootstrapping. The
reported FLASH coverage is the median of the maximum coverage for 2000 samples obtained through
bootstrapping, normalized to the maximum FLASH coverage.

The performance of the final configuration of the optimizer  IMGA with 20 islands  is also evaluated on
convergence, by plotting themedian relative coverage out of all the independent runs for every generation
of the Genetic Algorithm. Because larger tumours require the irradiation of more pencil beams, the
patterns get larger and the problem gets more complex. To evaluate the general performance of the
optimizer, a patient with a PTV of 83.9 cc is also considered. In figure 4.2.12, the convergence of the
algorithm is reproduced.

Figure 4.2.12: Convergence of the scanning pattern optimizer for a patient with a PTV of 8.2 cc and
another with 83.9 cc, on three beam directions. The number of generations and themetric are normalized
to the values reported by the best run.
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For the smaller PTV, the convergence of the algorithm is relatively steep in the beginning and almost
linear up until very near the optimal solution, with 80% of the performance obtained in 23% of the total
number of generations, for the direction with the worst median results. For the larger PTV, despite a
slower convergence, the algorithm is still relatively quick and solutions improve almost linearly, taking up
to 48% of the generations to reach 80% of the best performance. The running time increases on average
from 6 minutes to 4 hours for a single run, from the small lung lesion to the larger one.

To evaluate the overall consistency of the optimizer, the results from 20 independent runs for each treat
ment plan are compared, on a patient and direction basis. In order to better visualize the window of
possible values, the results are normalized to the best metric found for the respective treatment plan.
This is reported in figure 4.2.13.

Figure 4.2.13: Optimized scanning patterns for clinical data of 12 patients with small lung lesions, for
three different directions. The optimizer is independently run 20 times for each treatment plan and the
result are normalized to the maximum FLASH coverage found.

Evaluating the results on a direction basis, the optimizer achieves a median relative FLASH coverage of
99.83%, 100% and 100%, with an interquartile range of 1.16%point, 1.01%point and 0.24%point for
directions B1, B2 and B3, respectively. Average running times of 8 minutes are obtained, corresponding
to a median number of pencil beams of 34.

The improvements achieved by scanningpattern optimization are evaluated by comparing the FLASH
gains for the best and worstperforming optimized patterns against predefined ones. These results are
compared on the improvements over the mean dose to the ipsilateral lung for conventional IMPT plans
and on the effective FLASH Enhancement Ratio, reproduced in figures 4.2.14 and 4.2.15.
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Figure 4.2.14: Improvement on the mean dose at the ipsilateral lung over IMPT plans for different scan
ning patterns, including predefined ones such as the Z, Snake and Circle from left to right, and the Max
and Min, corresponding to the patterns with maximum and the minimum FLASH coverage found for 20
runs of the optimizer.

The optimized patterns are considerably better than any of the predefined, with higher FLASH gains. Rel
ative median improvements of 9.34%point, 10.79%point and 5.45%point over those for the best pre
defined patterns are obtained for the optimized patterns, on directions B1, B2 and B3, respectively, with
interquartile ranges of 4.76%point, 4.84%point and 6.24%point. The median difference between the
FLASH improvements of the best and worstperforming optimized patterns is 0.44%point, 0.33%point
and 0.33%point, with interquartile ranges of 0.83%point, 0.91%point and 0.96%point, respectively for
each direction.

Figure 4.2.15: Effective FLASH Enhancement Ratio at the ipsilateral lung for different scanning patterns,
including predefined ones and the Max and Min, corresponding to the patterns with maximum and the
minimum FLASH coverage for for 20 runs of the optimizer. The effective FER corresponds to the ratio
between the conventional and the FLASHenhanced (mean) dose.

52



To understand how the best FLASH coverage is achieved, the bestperforming patterns out of 20 in
dependent runs for four different patients are reproduced in figure 4.2.16, for direction B1. These opti
mized patterns show the same snowflake shape: closed circular loop, following a radial inwardsoutwards
movement around a central region.

Figure 4.2.16: Bestperforming optimized patterns for different patients with small lung lesions, visual
ized along the beam direction B1. Patterns start with a green square and end with a red square.

To evaluate the scalability of the optimizer, scanning patterns were optimized for 3 additional patients,
characterized by a larger PTVs of 23.6 cc, 52.9 cc and 83.9 cc. The window of values obtained for
10 independent runs of the optimizer for each patient and direction are reported in figure 4.2.17, also
including the results for the patient with PTV of 8.2 cc.

Figure 4.2.17: Optimized scanning patterns for four patients with different lung tumour volume, for three
different directions. The optimizer is independently run 10 times and the result are normalized to the
hightest metric found.

Despite the increase in complexity, the optimizer finds scanning patterns that are better than the prede
fined ones for all volumes, with consistently higher FLASH coverage within narrow windows of possible
values. For volume sizes of 8.2 cc, 23.6 cc, 52.9 cc and 83.9 cc, median relative FLASH coverage
of 99.64%, 99.69%, 98.75% and 97.98% are reported, respectively, with interquantile ranges of 1.22%
point, 0.62%point, 1.80%point and 2.88%point. The average running time for a single run is 6 minutes,
24 minutes, 3 hours and 4 hours, with 36, 64, 107 and 159 median numbers of pencil beams, respec
tively.
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In figure 4.2.18 is reported the FLASH improvements over the mean dose to the ipsilateral lung for
conventional IMPT plans, while in figure 4.2.19 is reported the effective FLASH Enhancement Ratio
on the same structure. In all scenarios, the optimized patterns are considerably better than the best
predefined, enabling more FLASH healthytissue sparing.

Figure 4.2.18: Improvement on the mean dose at the ipsilateral lung over IMPT plans for various lung
tumour volumes using predefined patterns such as the Z, Snake, Circle from left to right, and the Max
and Min, corresponding to the patterns with the maximum and minimum FLASH coverage found for 10
runs of the optimizer.

Comparing the FLASHenhanced mean dose at the ipsilateral lung for the optimized scanning patterns
against the best predefined patterns, the gains get higher as the tumour volume increases. The im
provements on the mean dose at the ipsilateral lung for the optimized patterns have a median increase
of 8.38%point, 22.25%point, 17.21%point and 16.98%point, over the best predefined patterns, for
volumes 8.2 cc, 23.6 cc, 52.9 cc and 83.9 cc, respectively. The median difference between the FLASH
improvement of the best and worstperforming optimized patterns is 5.55%point, 3.61%point, 7.19%
point and 1.68%point, respectively for each tumour volume.
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Figure 4.2.19: Effective FLASH Enhancement Ratio at the ipsilateral lung for various lung tumour vol
umes using predefined patterns and the Max and Min, corresponding to the patterns with maximum and
the minimum FLASH coverage reported by 10 runs of the optimizer. The effective FER corresponds to
the ratio between the conventional and the FLASHenhanced (mean) dose.

The bestperforming optimized pattern for each of the patients with different tumor volumes is reproduced
in figure 4.2.20, for directionB1, with the corresponding the PBSDR distributions reported in figure 4.2.21,
along the beam direction, in an arbitrary slice and overlapped with the scanning pattern.

Figure 4.2.20: Bestperforming optimized patterns for various lung tumour volumes, visualized along
the beam direction for direction B1. Patterns start with a green square and end with a red square.

The optimized patterns show the same snowflake shape, with movement around a closed circular loop,
following a radial inwardsoutwards around a central region. As the tumour volume increases, the op
timized patterns have their start and end points more and more to the center. For the largest patterns,
the closed loop more resembles a swirl, wrapping around itself. The corresponding PBSDR distributions
have a C shape for the smaller patterns and a swirl for the larger ones.
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Figure 4.2.21: PBSDR distributions of the bestperforming optimized patterns for various lung tumour
volumes, along the beam direction for direction B1, overlapped with the corresponding scanning pattern.
Patterns start with a green square and end with a red square.

For one of the directions of the treatment plans, namely B3, the optimized patterns show a wide range of
values, suggesting a lower compatibility with the FLASH effect. To understand the source of this incon
sistent performance, new treatment plans are generated inverting the direction, which should translate
into equally good treatment plans from a dose perspective. The scanning patterns for the original and the
reversed directions are reproduced in figure 4.2.22, for two patients where reversing increases FLASH
coverage.

Figure 4.2.22: Bestperforming optimized patterns for the original and the reversed direction B3, on two
patients with improved FLASH coverage on reversal. Patterns start with a green square and end with a
red square.

The results for the new optimized scanning patterns are compared to the original beam direction on the
improvements of the mean dose to the ipsilateral lung over conventional IMPT plans in figure 4.2.23, and
on the effective FER in figure 4.2.24.
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Figure 4.2.23: Improvement on the mean dose at the ipsilateral lung for the original and reversed direc
tion B3, including the best predefined and bestperforming optimized patterns, found for 20 runs of the
optimizer.

Whenever beneficial, reversing the beam direction leads to a median increase of the FLASH mean dose
improvements at the ipsilateral lung of 13.81%point, over the optimized results for the original direction,
with an interquartile range of 13.16%point.

Figure 4.2.24: Effective FLASH Enhancement Ratio at the ipsilateral lung for the original and reversed
direction B3, including the best predefined and bestperforming patterns, reported by 20 runs of the op
timizer. The effective FER corresponds to the ratio between the conventional and the FLASHenhanced
(mean) dose.

The sensitivity of the optimized solutions to different FLASH thresholds is evaluated on the mean dose
improvements over the conventional IMPT plans and on the effective FLASH Enhancement Ratio, in
figures 4.1.14 and 4.1.15, respectively. This is calculated from FLASHenhanced dose distributions for
each plan on each beamdirection, summed up together to translate the full treatment, considering various
thresholds and the bestperforming optimized scanning pattern.
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Figure 4.2.25: Sensitivity of the improvement on the mean dose at the ipsilateral lung for the best
performing optimized scanning patterns found for 20 independent runs, on different FLASH thresholds.

The results are relatively consistent on the dose threshold but degrade considerably on the doserate
threshold. The median improvements over the mean dose for conventional IMPT plans are reported in
table 4.2.1, considering the overall treatment of the patient, summing up the doses of each direction.

Dose\Dose rate 30 Gy/s 40 Gy/s 50 Gy/s 60 Gy/s
6 Gy 26.40% 22.47% 13.26% 4.72%
8 Gy 25.14% 22.07% 13.12% 4.70%
10 Gy 23.56% 21.05% 12.76% 4.60%
12 Gy 21.78% 19.50% 12.01% 4.28%

Table 4.2.1: Median improvements on the mean dose at the ipsilateral lung for the bestperforming
optimized scanning patterns on different FLASH thresholds, relative to conventional IMPT treatment
plans.
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Figure 4.2.26: Sensitivity of the effective FLASH Enhancement Ratio for the bestperforming optimized
scanning patterns found for 20 independent runs, on different FLASH thresholds. The effective FER
corresponds to the ratio between the conventional and the FLASHenhanced (mean) dose.
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5 Discussion

This section is split into two subsection, one for the DADR based treatment plan optimization and the
other for the PBSDR based scanningpattern optimization, each divided into 2 subsections encompass
ing the analytical 2D models and the clinical application.

5.1 DoseAveraged Dose Rate Optimization

In this subsection, the results from the optimized solutions for 2D models and the optimized clinical
treatment plans are discussed on the preferred pathway for DADR maximization, its implications on the
pencilbeam weights and tradeoff on dose. On clinical data, the contributions of beamcurrent optimiza
tion and weight readjustment for the DADR objectives are analysed.

5.1.1 Analytical 2D Models

Solutions with higher dose rate are successfully generated with the proposed optimization strategies,
based on the DADR metric, for different ratios of beam separation and beam width ∆µ/σ, in different
setups.

5.1.1.1 Tumour field
The optimization strategies successfully increase the dose rate of the dose only optimized solutions in
a way that maximizes FLASH coverage, as illustrated by figure 4.1.1. There’s a tradeoff between the
dose and dose rate objectives, with priority given to the former, which explains the low FLASH coverage
for the lowest ratio. That solution is characterized by a higher number of pencil beams, each contributing
less than for higher ratios. Therefore, the minimum weight is lower and the maximumcompatible beam
current is low too. In addition, the higher number of pencil beams enables better dose distributions,
which are harder to satisfy when optimizing the dose rate, sacrificing the FLASH coverage. Weight
readjustment is also shown not to be able to substantially modify the dose rate distribution, so beam
current optimization is essential.

FLASH coverage, is not, however, increased without any tradeoff, as figure 4.1.2 shows. For smaller
ratios, the beam current has to be substantially increased since FLASH compatibility is low. Therefore,
the minimum weight has to increase considerably, which can translate into a significant degradation of
the dose distributions. However, these solutions are also more constrained due to the higher quality
enabled by their higher degree of freedom, so full FLASH coverage is not always achieved. Plans get
less degraded relative to the initial doseonlyoptimized solution as the ratio increases, because the
required jump in beam current shortens, due to a higher initial minimum weight.

Figure 4.1.3 illustrates that although the relative degradation is smaller for the high ratios, the solution
quality is substantially worse. However, if FLASH is considered, the dose sparing might still be advanta
geous. This requires further validation though, as the sparing observed for higher ratios can also be due
to less conformity and less dose to the target structures, perhaps too low to effectively treat the tumour.
This shows a need for a controlled tradeoff on selecting the pencil beams, so that the required dose
conformity is achievable, while leaving enough room for doserate optimization.

When relating the global solution quality in figure 4.1.3 with the FLASH coverage in figure 4.1.1, the
inevitable tradeoffs from DADR optimization are observed. Although FLASH coverage is increased
to its fullest whenever possible, it might not be justifiable when coverage is already very high. This
demonstrates that FLASH coverage alone is not an accurate indicator of the gains enabled by this effect.
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It becomes essential to balance the gains of FLASH with the sacrifices to achieve it in terms of dose,
by taking into account both nonFLASH and FLASHenhanced dose distributions and opting for partial
FLASH coverage whenever beneficial. The proposed optimization strategies must be modified, as they
currently only aim for FLASH coverage maximization.

Furthermore, it is observed that the tradeoff introduced by the DADR optimization can be higher than the
tradeoff introduced by increasing the ratio ∆µ/σ. Because increasing the ratio means less pencil beams
and so a higher contribution by each, the minimum weight and consequently the maximumcompatible
beam current should be higher, making the plan more FLASH compatible. Therefore, the ratio can also
be an important parameter for optimal FLASH compatibility, which can be taken into account in a fully
integrated optimization by selecting an appropriate grid from where to sample the pencil beams. This
assures beam current is a free parameter, that can be tuned for each treatment plan.

The two previous points on the implementation of the optimization strategies might not be a problem at
the clinical treatment planning level. Since for these 2Dmodels the dose constraints are set based on the
respective doseonlyoptimized solution, the lower ratios have little room to optimize the dose rate due
to better dose distributions. If the constraints were the same between all ratios, the pencilbeam removal
performed by the beamcurrent maximization step of the DADR optimization routine would ensure all
unnecessary pencil beams were removed, possibly leading to higher FLASH coverage. The ratio would
just have to be low enough to be compatible with the constraints and to offer a high degree of freedom.
This is what happens in the treatment planning software, since the clinical objectives and goals are
defined a priori, setting a baseline that every plan has to meet.

In the clinical scenario, the acceptable tradeoff is specified by specifying how important preserving the
dose is and where it should be prioritized. Although this is also applied for the analytical 2D models, the
constraints are not directly tied with the objective function. Dose was optimized by maximizing the homo
geneity of the field, but the constraints are set on the mean, maximum and minimum dose at the different
structures, chosen to make optimization simpler. If the objective function was instead constrained after
being optimized, it would be equivalent to set a minimum acceptable solution quality. Furthermore, in a
treatment planning software, partial FLASH coverage can be exploited to some extent, for optimal dose
distributions. If structures are optimized one at a time, first in dose and then dose rate, it might be easier
to achieve full FLASH coverage at some structure, while prioritizing dose at others.

5.1.1.2 Square field
In order to develop deeper insight on how pencilbeam weights are distributed and assigned to optimize
FLASH, dose rates objectives are optimized everywhere for a square field but without beamcurrent op
timization. The spatial pencilbeam weight distributions of figure 4.1.4 are explained by the fact that in
the middle, the pencil beams have the highest overlap possible. At the corners it is minimal, since the
number of neighbor pencil beams is substantially lower. To achieve a higher dose rate at a certain posi
tion, the closest pencil beams have to dominate over all the tails of the contributing Gaussian distributed
beams.

To maximize DADR, the relative weight of local pencil beams must be higher over neighbor ones, in
creasingly higher for more beam overlap. For the lowest ratio, the beams are the closest together so
overlap is maximal, explaining the very concentric distribution of weights. As the ratio increases, the
pencil beams get further apart and overlap becomes less and less an issue. This explains why weights
become more and more uniform, as seen for ratio ∆µ/σ = 1.0. However, at some point, pencil beams
are so far apart that intermediate regions get irradiated at very low dose rates. This is counterbalanced
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by instead increasing the weights, higher at the boarders than at the center, as it minimizes possible
overlap, which the results for ratio ∆µ/σ = 2.0 support.

The dose rate distributions demonstrate that the optimization strategies are capable of exploiting pencil
beam density. Since increasing the dose rate substantially at one region would decrease it at nearby
regions, the strategies find a middle ground through balancing the distribution everywhere whenever
the pencilbeam separation allows. Furthermore, the dose and dose rate distributions for the lowest and
intermediate ratios suggest that the doserate objectives do not necessarily compete with the dose ones.
For the lowest ratio, the uniform dose rate is achieved with a very conformal dose distribution, high at the
center and decreasing all around. Similarly, the intermediate ratio allows for near uniform dose and dose
rate distributions. Therefore, it might be possible to have full FLASH coverage optimization with little to
no sacrifice on dose in some setups, by exploiting beam separation through pencilbeam removal.

5.1.2 Clinical Scenario

Application of the DADR optimization methods to clinical patient data is more complex. However, the
results in figure 4.1.7 show that the proposed strategies generate plans with improved FLASH coverage.
Therefore, dose rate optimization is successfully converted in true direct FLASH optimization, achieved
through the selection of the FLASHcompatible voxels to optimize and constrain within each objective’s
target structure.

This clinical implementation of the DADR objectives should calculate the minimumrequired beam cur
rent for full FLASH coverage. When focusing on the reported coverage for these current values, 100%
coverage is never actually achieved though, which is specially visible in figure 4.1.8. This is surprising
considering that the treatment plans are configured to sacrifice the dose to achieve full FLASH coverage
and noting that the same plans are compatible with higher beam currents. This is suggested to be an
artifact of how the optimization strategies were implemented.

ErasmusiCycle uses a dosedeposition matrix with a lower resolution when optimizing the different ob
jectives, which encompasses less voxels than the final outputted accurate dose distribution in the patient.
This is performed to speed up optimization, since the full accurate dosedeposition matrix would be too
large. As a consequence, it is possible that some voxels get excluded from optimization simply because
they are not well represented by the lowresolution matrix, falsely reporting a dose lower than the FLASH
threshold for selection. In addition, it is also possible that the DADR calculations yield higher values with
the simplified dosedeposition matrix, leading to a false early stop. This can be solved by increasing the
resolution of the dosedeposition matrix used in optimization, at the expense of a higher running time.

The fact that full FLASH coverage is never obtained for the minimumrequired beam current can also
be explained by the voxel selection routine. For each objective, the voxels compatible with FLASH on
dose are selected in the beginning of the routine and never updated afterwards. If the dose distribution
changes, which it inevitably does, the selected voxels are no longer guaranteed to include all the FLASH
compatible regions throughout the optimization routine. This is purposely implemented though, since
the optimization strategies do not guarantee convergence otherwise. A workaround is to relax the dose
threshold, giving a margin for those compatibility changes, although potentially introducing more trade
offs.

5.1.2.1 Comparison with IMPT treatment plans
Figure 4.1.7 shows that some IMPT plans are already compatible with the FLASH effect, illustrating that
there is room for FLASH optimization. For stereotactic lung tumours, this is due to the high prescription
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dose of 18 Gy (hyperfractionation) and by full delivery of a single direction per fraction, using shoot
through pencil beams. Higher minimum weights are possible, translating into higher beam currents, in
some cases sufficiently high to allow near full FLASH coverage. However, the conventional treatment
planning approaches cannot guarantee any FLASH compatibility, requiring instead specific optimization
strategies.

The fact that IMPT treatment plans have little to no FLASH coverage for direction B3, while showing some
coverage for the other two directions, is an example of how the FLASH effect can be optimized indirectly,
through appropriate choice of settings for each setup. Although direction B3 is not ideal, choosing a di
rection a priori compatible with higher dose rates is not obvious and requires a manual patientspecific
configuration. Nonetheless, the optimization strategies are able to compensate for the smaller com
patibility, as full FLASH coverage is always achieved, demonstrating versatility to nonoptimal setups.
Therefore, no manual patientspecific tuning is required to guarantee optimal FLASH compatibility with
the proposed strategies.

The mean dose at the ipsilateral lung in figure 4.1.9 validates that there is considerable room for improve
ment on the dose rate of IMPT treatment plans with minimum dose tradeoff, for stereotactic treatment
of lung tumours using transmission beams. In some cases, better nonFLASH dose may be achieved,
which is explained by the pencilbeam reduction performed for every DADR objective in the full opti
mization routine. This is a more aggressive but also a more consistent routine, performed several times
throughout the optimization. The conventional pencilbeam reduction routine for IMPT treatment plan
ning is only performed at the end and does not push the solutions to their limit, seen by the fact that only
a few plans have weights compatible with beam currents that enable FLASH.

The FLASHenhancedmean dose at the ipsilateral lung for most IMPT treatment plans is significantly low,
as expected from their low FLASH coverage. However, in some cases where the IMPT treatment plan
is already fully FLASH compatible, sparing for full optimization is slightly lower, since the FLASH gains
might need to compensate for the dose tradeoff. Optimization is performed perstructure, first focusing
on dose and then on dose rate, therefore it is possible for dose rate optimization in one structure to limit
the dose optimization in the others that follow. This balance of FLASH gains and sacrifices on dose is
not taken into account by the proposed optimization strategies and the wishlist used. Instead they focus
only on maximization of the FLASH coverage.

The healthy lung fraction is critically important on clinical treatments, specially for patients with multiple
lesions. However, this is only one of several structures where dose and dose rate is optimized. Sacrifices
and gains should be spread throughout the whole patient, so it is possible for one region to compensate
another. Nonetheless, the wishlist used prioritizes first the ipsilateral lung before other healthy struc
tures, guaranteeing optimal FLASH coverage with the least dose sacrifice there. If dose is considered
more important and no tradeoff is desired, optimization should focus first on dose everywhere and only
later on dose rate for FLASH coverage.

5.1.2.2 Beam Current Analysis
The implemented optimization routine calculates the minimumrequired and the maximumcompatible
beam currents for full FLASH coverage. Figure 4.1.10 shows that the optimization strategies are ver
satile, by making plans on different setups all compatible with a wide range of beam currents. This is
due to the fact that the implemented strategies start with a conservative approach, iteratively increas
ing the beam current in small steps, before evaluating full compatibility with considerably higher values.
The higher median beam current and wider interquartile range for direction B3 follows from the already
discussed small FLASH compatibility for this direction.
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Regarding the maximum beam current, compatibility greatly depends on the objective values achieved
by the treatment planning software, and it is not necessarily related to the dose sacrifices. In general,
because this beam current is tied to the minimum weight, it is expected that plans requiring more pencil
beam modulation will only be compatible with smaller maximum currents. This is because the best
dose distributions depend on more pencil beams, each delivering relatively less dose. In the set of
patients analyzed, this is observed for patients where the transmission beams shoot through organs at
risk (OARs).

The existence of a window of beam currents compatible with most plans reveals that when optimized,
beam current can shift from a patientspecific parameter to a generic treatment parameter. In addition,
this shows that FLASH coverage is not sensitive to beamcurrent fluctuations. Fixing the beam current
within the window of possible values in the treatment planning software guarantees that fully FLASH
compatible plans are generated, with the least tradeoff possible. Such result may be critical for clinical
applications, because it might not be feasible to change the beam current on a patient basis within the
clinical workflow. It might also be difficult to guarantee a constant beam current without fluctuations, at
least with current clinical technology.

5.1.2.3 Direction Analysis
For the suboptimal beam direction B3, the shootthrough pencil beams have a longer path in the patients,
with a longer distance from the beam entrance to the tumour. This can play a major role because as the
beams go through the patient, scattering increases and so does pencilbeam overlap, translating into
lower dose rates. This is seen when analyzing the data along the beam direction in figure 4.1.11. For
some patients, the density of the structures in the beam path are also critical, because they can also
substantially increase scattering, specifically when going through the spinal chord and the thoracic wall.

Despite direction B3 requiring overall higher minimum beam currents for full FLASH compatibility, the
maximumcompatible currents are still relatively high for most patients. This suggest that the low FLASH
compatibility for this direction is not a limitation imposed by the dose objectives and constraints, but in
stead a consequence of the spatial setup. Therefore, the problem is just on clever pencilbeam selection
and reduction, which the implemented optimization strategies are able to achieve through the more thor
ough beamcurrent optimization routine. Furthermore, the relatively wide window of beam currents for all
treatment plans shows that there is enough room for the optimizer to overcome the difficulties introduced
by nonoptimal beam directions, with minimal dose sacrifice.

An appropriate choice of the beam direction is important for optimal FLASH coverage, but not relevant
when performing full dose and dose rate optimization, at least for small lung lesions. Nonetheless, the
possibility of the required beam current to be so high in other setups that the corresponding minimum
pencilbeam weight translates into substantial tradeoffs cannot be discarded. Beam direction becomes
important to guarantee the best FLASH coverage with the least possible global tradeoff, supporting the
need for beam direction optimization.

5.1.2.4 Component analysis
Although weight readjustment is an important part of DADR optimization, because dose rate varies lin
early with the beam current, it is expected for beamcurrent optimization to be more important for FLASH
optimization. Therefore, the more complex nature of the weight readjustment might lead to dose degra
dation more easily. This is further justified by the wide window of beam currents compatible with the
plans and the already FLASHcompatible IMPT plans, which demonstrate that there is enough room to
optimize FLASH by only increasing the beam current.
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The results for doseonlyoptimized treatment plans with maximized beam current, reported in figures
4.1.12 and 4.1.13, show no improvements over the previous fullyoptimized plans, with similar dose
degradation. This was not expected since the beam current is maximized only after all dose objectives,
constrained not to sacrifice any of the objective values obtained. This suggests that the sacrifice on
dose by these newly generated plans is allowed by the optimizer, as a consequence of the relaxation
step required for the 2pec algorithm to make room for all objectives.

Event though this same relaxation is performed when generating the conventional IMPT treatment plans,
improvements on one dose objective might not substantially degrade the others. The plans never get
limited by all constraints and so the reported objective values are better than the relaxed values, at
least in this setup with the suggested wishlist. However, when performing beamcurrent maximization,
some tradeoff is inevitably obtained because that thorough routine pushes the constraints to the limit.
Since the same tradeoff is observed for both current and fullyoptimized plans, it is proven that the latter
guarantees optimal FLASH coverage with minimal dose tradeoff. This also suggests that doserate
optimization at one structure has little to no impact on dose for the surrounding structures, as already
discussed for the analytical 2D models.

In some cases, the fullyoptimized plans show higher healthytissue sparing in the ipsilateral lung than the
currentoptimized ones, which could follow from the beamcurrent optimization and weight readjustment
at each structure, after dose is optimized. This enables a more careful pencilbeam reduction throughout
all optimization. Furthermore, the fact that pencil beams removed for one objective are still considered
for optimization of the following objectives translates into a higher degree of freedom to better optimize
all objectives. This could also explain the fact that some of currentoptimized plans are not fully FLASH
compatible but the fullyoptimized ones are, despite similarly small dose tradeoffs.

5.1.2.5 FLASH Sensitivity Evaluation
The treatment plans optimized for 8 Gy and 40Gy/s are evaluated for different FLASH dose and doserate
thresholds, first on the maximumcompatible beam current, in figure 4.1.14 and 4.1.17. These thresholds
are critical for the FLASH optimization performed here, so the results were expected to strongly depend
on the thresholds specified. However, the maximum beam current for each plan is high enough to guar
antee very high dose rates everywhere in the patient, and so the uncertainties on the FLASH doserate
thresholds are not relevant, at least until 60 Gy/s, the maximum considered here. The decreasing im
provements for higher dose thresholds were expected, since for higher thresholds, only smaller fractions
of the same volume can benefit from the potential reduced toxicity enabled by FLASH.

For the minimumrequired beam current, reported in figures 4.1.16 and 4.1.17, the minimal differences
seen for the 30 Gy/s and 50Gy/s thresholds could follow from the fact that the ipsilateral lung is just one
of the many optimized structures. In addition, the regions compatible with the FLASH dose threshold are
very near the tumour and halfway through the beam path, so the dose rate of each pencil beam should
naturally be relatively higher, as scattering is still not pronounced there. Therefore, the beam current
required for full FLASH coverage at the ipsilateral lung should be smaller than near the exit point of the
transmission beams. Because the optimizer aims for full coverage everywhere, the reported minimum
required current should translate into a dose rate higher than the 40 Gy/s at the region of the ipsilateral
lung compatible with the FLASH dose threshold.

Comparing the sensitivity of the results for the two extreme beam currents, it comes that by being com
patible with a wide window of beam currents, treatment plans can be made more or less sensitive to
FLASH uncertainties a posteriori, depending on the delivery settings, without requiring new plans to
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be generated. Solutions can be made further consistent though, by specifying lower dose and higher
doserate thresholds for the FLASH effect.

5.2 PencilBeam Scanning Dose Rate Optimization

In this subsection, the results for scanningpattern optimization on both the analytical 2D models and on
patient data are discussed, focusing on analysing the convergence and consistency for various settings
of the optimizer, comparing the results with predefined patterns on distinct setups, such as various tumour
volumes and beam directions.

5.2.1 Analytical 2D Models

The proposed scanningpattern optimizer successfully optimizes the scanning pattern, increasing con
siderably the FLASH coverage over the predefined patterns, such as the Z, Snake and Circle, for all
ratios of beam separation and beam width ∆µ/σ.

5.2.1.1 Version Comparison
Despite the stochastic nature of the scanningpattern optimizer, the results are consistent for 10 inde
pendent runs on ratio ∆µ/σ = 1, as seen in figure 4.2.1. This is the outcome of the proposed finetuning
routine, which allows to find a set of parameters that thoroughly configures the optimizer, always guar
anteeing high quality. The better solutions and narrower window of possible values for the Island Model
shows that by independently running smaller populations and sharing information among them, more
regions of the solution space are explored.

If the optimizer is run several times and the best solution out of those runs is selected, a better perfor
mance may be obtained, at the expense of computation time, as illustrated in figure 4.2.2. Although
the increased consistency of the IMGA versions guarantees a better performance for a lower number of
runs, the tradeoff on running times can make it less useful than running the simpler and faster GA more
times. Therefore, choosing and finetuning a version of the optimizer should balance the consistency of
the solutions with the available resources, such as time and computer power.

The performance and the running time greatly depend on the size of the pattern, with optimization for
larger patterns taking substantially longer to converge and requiring more runs to guarantee that the
best possible solution is found. This is illustrated in figure 4.2.3. Nevertheless, the performance of the
algorithm is still consistent, very near the optimum, despite it being tuned only for ratio ∆µ/σ = 1,
supporting the versatility of the IMGA and the general effectiveness of the proposed finetune routine.

5.2.1.2 Pattern Comparison
Figure 4.2.4 shows that the gains of scanningpattern optimization are substantially higher for patterns
with more overlap. As the pencilbeam separation increases, the pattern becomes less relevant since
less pencil beams contribute for the same nearby voxels. The similar FLASH coverage obtained for
the different ratios ∆µ/σ suggests that this ratio is not a relevant parameter for optimization, despite
the different complexities. Therefore, a smaller beam separation can be used with little tradeoff on
FLASH coverage, but guaranteeing a substantially better dose distribution due to the higher degree of
freedom for dose optimization. A balance is needed though, as optimization takes significantly longer for
larger patterns, as previously seen in figure 4.2.3. Furthermore, if the ratio is too low, the solution might
be incompatible with the beam current initially considered, due to the machineconstrained minimum
pencilbeam delivery time.
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The optimal FLASH coverage is obtained with snowflakeshaped patterns, as reproduced in figure 4.2.5.
This follow from a clever sacrifice of dose rate at some regions to improve it at others. Priority is given
to maximization of the dose rate wherever it is easier to achieve, which corresponds to regions with less
pencilbeam overlap. Therefore, the center of the pattern should be sacrificed, since there is more over
lap due to more neighbor pencil beams, each with a higher dose contribution. In contrast, the outwards
regions have less dose and can be fully irradiated quickly. The branches of the snowflakes enable the
sacrifice of the interior regions and maximization at the exterior.

The Cshaped PBSDR distributions of figure 4.2.6 are a result of the previous rationale to maximize
FLASH coverage. The lower dose rates in the interior come with no sacrifice on FLASH coverage, since
that tissue is not considered FLASH compatible. The opening of the circular loop corresponds to the start
and end branches of the pattern, which are inevitably sacrificed to close the loop and so to complete the
dose delivery. These patterns and distributions shows the versatility of the optimizer, demonstrating
that it is capable of understanding through the evolutionary process that FLASH coverage can only be
maximized if some regions are sacrificed on dose rate.

5.2.1.3 Target Comparison
Differences at the objective’s target are observed to result in very similar patterns, with the same snowflake
shapes, as reproduced in figure 4.2.7. Despite including in optimization the interior region, correspond
ing to the GTV, the optimized dose rate distributions of figure 4.2.8 show the same sacrifice in the center.
Therefore, the snowflake shape is demonstrated not to be a consequence of the geometry of the prob
lem, but instead to represent the best balance of dose rate everywhere. These results also show that
the optimizer is compliant with different geometrical setups, different from the one used to configure it.
This further supports that finetuning the algorithm for simpler 2D models may ensure equally finetuned
performance in more complex 3D clinical data.

The slightly better results for optimization including the GTV were not expected, because the objective
function corresponds exactly to the FLASH coverage when excluding the GTV from optimization, so it
gets directly optimized. Including the GTV should steer the focus of the optimizer away from the annulus
around the GTV, which is the region where dose rate needs to be optimized to maximize the FLASH
coverage. However, excluding the GTVmakes the optimizer blind to the central region and consequently,
the effect of pencil beams directly delivered in the GTV is less direct. This could make it more difficult
for the optimizer to arrange the central pencil beams in a betterperforming configuration. This effect is
smaller for a reduced number of pencil beams, since the number of pencil beams directly delivered in
the GTV is smaller and so the optimizer is less blind. For ratio 2.0, including the GTV is observed to lead
to slightly worse results.

Although including the GTV can improve the performance of the algorithm, this approach is not recom
mended because it is impossible to guarantee that the FLASH coverage will always improve. This is not
an issue when optimizing scanning patterns for clinical data though, since transmission beams are used.
Even if the GTV or the whole PTV are excluded, there isn’t a substantial lack of information like in the
2D case. When looking through the beam direction, there is still healthy tissue compatible with FLASH
on dose right in front and behind those structures, meaning that they will also get indirectly optimized. In
the 2D case, the optimizer is blind to a central core and focus on the annulus around it, whereas in 3D
the optimizer is instead just blind to a sphere inside a relatively larger cylinder.
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5.2.2 Clinical Scenario

Scanningpattern optimization on clinical patient data with Genetic Algorithms is successful in FLASH
coverage maximization, independent of the tumour size and shape, the number of pencil beams and
the beam direction. There is no dose tradeoff when optimizing the patterns, which further solidifies the
relevance of this optimizer.

5.2.2.1 Version Comparison

The consistent results for the three proposed versions of the scanningpattern optimizer in figure 4.2.10
show that the parameters that finetune optimization on the analytical 2D models guarantee equally good
results when applied to the more complex 3D clinical scenario. This shows that per treatment plan fine
tuning, even if feasible, is not necessary for consistently highquality results. Although the IMGA with
20 islands is observed to always find the bestperforming patterns in the evaluated set of 20 runs, the
different versions are not necessarily mutually exclusive.

When comparing the running time, figure 4.2.11 shows that consistently guaranteeing the best solution
possible is difficult, requiring a steep tradeoff on running time. The most suitable version depends on
the available resources and should be chosen balancing the solution quality with the computational time.
In a clinical setting, because running time is bound to be a limited resource, it might be only possible to
run the optimizer once. The Island Model using 20 islands is observed to give the best overall results
in that scenario. In the end, this is just a matter of acquiring more and better computers because the
problem is parallelizable, as each run is independent and doesn’t need to be performed sequentially.

5.2.2.2 Convergence Analysis

In general, figure 4.2.12 shows that the convergence rate of the IMGA is relatively steep in the beginning
and almost linear up until very near the optimal solution, at which point it slows down considerably and
only improves slightly. This suggests that each island converges at different speeds, so waiting for all of
them to converge is time consuming and leads to little improvement. Optimization can then be sped up
with little tradeoff on the solution quality, by implementing better stopping criteria that takes into account
the convergence rate.

Comparing the patients with PTVs of 8.2 cc and 83.9 cc, from the smaller to the larger volume, the
number of pencil beams in the worst scenario increases from 31 to 159 pencil beams, a factor of roughly
5. However, convergence only takes a factor of 2 longer, even though the search space increases
factorially with the number of pencil beams. The computation time increases substantially though, which
might make early stopping critical for clinical pattern optimization of large tumour volumes. Since time
is a limited resource in the clinical workflow, these differences in running time suggest that the tumour
size can be a fundamental limitation for clinical applications. Nevertheless, the results demonstrate the
versatility of the optimizer to different problems and setups, completely different from the ones used to
finetune it, and the effectiveness of the proposed finetuning routine.

5.2.2.3 Suboptimal Evaluation

The narrow windows of relative FLASH coverage for the different scanning patterns found by the opti
mizer, as reported in figure 4.2.13, demonstrate again the consistency of the optimizer and of the fine
tuning routine. The differences between the results for various patients on each directions support the
idea that there should be a treatmentplanspecific setup, consisting of every parameter of the optimizer,
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that guarantees the best performance in the least amount of time. However, that it is not necessary since
the optimized scanningpatterns translate in a FLASH coverage already very near the optimum.

The high median values and narrow interquartile ranges obtained for each direction show that running
the optimizer just once is a viable option. Therefore, the running time can be reduced substantially, with
very little tradeoff on the solution quality, which is still guaranteed to be consistently very near optimum.
This too can be helpful and even essential for integration of scanningpattern optimization in the clinical
workflow.

5.2.2.4 Pattern Comparison

The results of figures 4.2.14 and 4.2.15 show that there is always a substantial gain by optimizing the
scanning pattern for the beam current value considered here, namely 40 nA. The differences on sparing
the ipsilateral lung between the best and the worstperforming patterns on the set of 20 runs for each
treatment plant are virtually negligible. This shows that the small differences between the minimum and
maximum obtained FLASH coverage translate into even smaller differences on the FLASHenhanced
dose, further supporting the previouslyproposed approaches that sacrifice FLASH coverage to speed
up optimization at the clinical workflow.

Snowflakeshaped patterns are reproduced in figure 4.2.16, further validating this shape as the best
balance between sacrificing andmaximizing dose rate. Optimization for 3D clinical data is more complex,
since scattering increases along the beam direction and the deeper into the patient, translating into
more pencilbeam overlap. Snowflakeshaped patterns are still optimal though, as they are consistently
obtained on the simpler 2D models for different levels of beam overlap, given by different ratios of beam
width and beam separation. The PBSDR distributions are very similar along the beam direction, with
slices normal to this direction having the same previouslydiscussed C shape.

Despite the improvements on the mean dose, suboptimal results might be obtained from the fact that
the optimizer only takes into account a simpler dosedeposition matrix with less resolution, the same
used by the treatment planning software. Although this matrix should offer a sufficient representation of
all pencilbeam dose contributions, it is not accurate. For the evaluation of the FLASHenhanced dose,
the full accurate dosedeposition matrix is instead used. This could explain the fact that for direction B3,
there are optimized patterns with slightly less potential healthytissue sparing than for Z patterns.

It should also be noted that optimization is performed taking into account all tissue outside the PTV and
compatible with FLASH on dose. Conceptually, it would be more logical to instead optimize FLASH
excluding GTV, as the GTVPTV margin is healthy tissue and is irradiated to a high dose. However,
the data available from treatment plan optimization does not naturally allow this, as the dosedeposition
matrices used by ErasmusiCycle for each structure have different sizes, not consistent with the actual
size of the structures. In this case, the matrix for the GTVPTV margin is comprised of as many voxels
as the matrix for the whole patient outside the PTV. Therefore, merging the two structures would make
FLASH coverage biased to the GTVPTV margin, steering optimization to focus there.

Optimizing directly on the accurate dosedeposition matrix is an obvious solution but infeasible, since
this matrix is substantially larger, making optimization impossible in a reasonable time. Compressing
this large accurate matrix in a consistent way for all structures is another possibility. However, this would
require a lengthy data preparation routine, since each pencil beam is associated with an accurate dose
deposition matrix, which would take as much as time as the actual optimization. It would also introduce
another parameter, namely the compressing ratio, requiring finetuning to achieve a balance between
accuracy and running time.

69



The results show that this is not necessary though, at least for small lung lesions, as the current approach
still translates into substantially improved FLASH gains. This follows from the fact that healthy tissue
exists right in front and right in back of the PTV, meaning that the dose rate will indirectly be optimized at
the GTVPTV margin too. In addition, the size of this margin in comparison with the remaining volume
compatible with FLASH on dose is relatively small, accounting for less than 5%. Therefore, although
accounting for the GTVPTV margin is expected to improve the results, the overhead necessary does
not compensate for small lung lesions.

For large tumours and low beam currents though, optimization of FLASH coverage may not maximize
healthytissue sparing. Large tumours account for a larger fraction of the total volume compatible with
FLASH on dose, meaning the importance of the PTVGTV margin for optimization increases. Further
more, because dose rate decreases in depth, it may never be sufficiently high to become FLASH com
patible at the regions deep in the patient, but it may be high enough to enable FLASH near the beam
entrance, if optimized. Therefore, it becomes necessary to choose where to increase the dose rate,
through prioritized FLASH optimization on different volumes. The discussion about whether or not to
include the PTVGTV margin is a first example of this: it may be critical for large tumours, elongated
along the beam direction.

5.2.2.5 Scalability Evaluation

The consistent results for the various tumour volumes in figure 4.2.17 can be explained by the setup
used to finetune the optimizer, consisting of a relatively large number of pencil beams, namely 88. Even
though that setup corresponds to a simple 2D model, the higher number of pencil beams makes the
problem more complex. Therefore, finetuning should have made the optimizer more compliant with
more complex problems, with some tradeoff on smaller instances.

Figures 4.2.18 and 4.2.19 show that mean dose improvements with the optimized patterns are substan
tially higher than those for the predefined patterns. The improvements get higher the larger the tumour
sizes, since the predefined patterns sweep the volume between opposite extremes and do not focus
on full local irradiation of nearby voxels. These larger tumours might require some patching of patterns
to locally increase the dose rate and so FLASH coverage. This is observed for the optimized scanning
patterns in figure 4.2.20, with the swirling of the snowflake shape.

The swirl patching of the optimized patters for the larger tumour volumes is a logical consequence of the
higher number of pencil beams. If the normal snowflake shape was applied, branches would have to
be considerably longer, so long that the time to reach opposite ends of one branch would no longer be
FLASH compatible, translating into very low dose rates, similarly to the predefined patterns. Instead, it is
more advantageous to adopt patches of branches, connected in a swirling formation, despite some un
avoidable sacrifice of dose rate in the regions between extremes of different branches. This is observed
in the PBSDR distributions of figure 4.2.21. This swirl patching is expected to continue for even larger
patterns.

The previous predictions on the PBSDR distribution are confirmed in figure 4.2.21, which illustrates the
dose rate distributions along the beam direction, overlapped with the best scanning patterns for the same
set of four different tumour volumes. The distributions are very similar to those obtained for the analytical
2D models, which was already expected considering the similar scanning patterns. The only difference
are for the larger patterns, where the swirl patching translates into a sacrifice of dose rate at the regions
between extremes of different branches. The results follow this same shape along the beam direction,
although the dose rate values are observed to decrease the deeper into the patient, a consequence of
the increased scattering.
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5.2.2.6 Direction Analysis

For some patients, the optimized patterns for direction B3 have a low FLASH coverage but the results
are still consistent. Therefore, this should not be an issue of the optimizer but of the beam direction itself.
Figure 4.2.22 shows that these underperforming patterns have empty regions in their interior, where there
should be some pencil beams. This explains the reduced FLASH coverage because the inner voxels of
those empty regions, specially the ones at the center, will always be sacrificed on the dose rate. Those
voxels require the irradiation of most of the pencil beams around them, with each contributing only with a
small dose, at a small instantaneous dose rate. This would not be a problem for a higher beam currents,
since the instantaneous dose rate of every pencil beam would be higher. However, predicting a priori a
suitable beam current is challenging and changing it for every treatment plan might not be feasible with
current clinical technology, within the clinical workflow.

The holed patterns explain the underwhelming results and show that despite everything, the optimizer
still actively tries to push the FLASH coverage as high as possible. It suggests that pencilbeam reduction
might hurt FLASH compatibility. It might be possible to obtain identical patterns but with the holes filled
with the missing pencil beams and by splitting the contribution of the other nearby beams among them,
which should then have higher FLASH compatibility. For the underperforming treatment plans, it is seen
that direction B3 is, compared with the other directions, associated with larger paths from the entrance
location to the tumour and even through all the patient.

When reversing the direction B3, it is observed that whenever FLASH coverage increases in figures
4.2.23 and 4.2.24, the distance from the beam entrance to the tumour is reduced. Figure 4.2.22 shows
that the newly optimized patterns do not have empty regions in their inside. Holed patterns should be
preferred for larger distances because of lateral scattering. For deep tumours, there should be already
noticeable lateral scattering of the pencil beams. Therefore, to keep the high dose conformal and very
localized there, less but heavier pencil beams are required with empty spaces around them. This guar
antees that the dose is still high at the middle but the inevitable dose contribution from scattering at the
healthy region is much lower. When the tumour is located near the beam entrance, scattering is still not
pronounced, so it is easier to keep the dose conformal and localized by using more and lighter pencil
beams.

5.2.2.7 FLASH Sensitivity Evaluation

Figures 4.2.25 and 4.2.26 show that for the beam current used, the dose rate threshold is very important
and greatly determines the possible healthy tissue sparing in the ipsilateral lung. This demonstrates that
the optimizer focuses only on getting the dose rate above the specified threshold, which leaves more
room for optimization at other regions, but not on increasing the dose rate as much as possible, which
would make results less sensitive.

From a dose perspective, the results are still consistent, which should follow from the symmetric dose rate
distributions obtained with the optimized patterns. Increasing the dose threshold correspond to shrinks
the compatible volume, so the distribution is still very similar, translating in minimal differences in FLASH
improvements for small lung lesions. In this setup, this should correspond to shrinking the radius of the
cylinder that goes through the tumour and is normal to the beam direction. When too close to the GTV,
FLASH gains are very small because dose rate is sacrificed there by the snowflakeshaped patterns.

Considering that the beam current is tied to the doserate threshold, there is some room tomake solutions
less sensitive to this threshold a posteriori by adjusting the current accordingly. This ultimately depends
on the switching time between pencil beams, which is not here taken into account. For relatively low
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currents, the pencilbeam delivery time is much higher than the switching time and there’s approximately
a linear relation between dose rate and beam current. Therefore, the optimized patterns are the best
performing for all configurations that preserve that proportion: the optimized patterns for a current of 40
nA and dose rate threshold of 40 Gy/s would also be the best performing for 60 nA and 60 Gy/s.

As the beam current is increased though, the pencilbeam delivery time decreases and consequently the
switching time becomes more important. However, higher currents make FLASH coverage less pattern
dependent, so the switching time is not expected to substantially change the results. In this application
to small lung lesions, considering that the median minimum delivery time for a beam current of 40 nA
is 1.8 ms and the switching time is usually around 0.2 ms, not taking into account this parameter is not
expected to significantly change the bestperforming patterns.
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6 Conclusion

A significant increase of dose rate may be achieved with the proposed optimization strategies for stereo
tactic proton therapy of lung lesions using transmission beams, through higher beam currents and op
timized snowflakeshaped scanning patterns. The optimized treatment plans have a quality in terms of
dose very similar or even identical to conventional IMPT treatment plans. Nonetheless, dose, dose rate
and tradeoffs between them are constrained by a set of a priori parameters, namely the beam current,
the minimum delivery time, the beam direction and the FLASH model.

With current and nearfuture proton therapy, combined with the proposed optimization approaches, a
significant enhancement in dose rates is feasible. Based on current knowledge of FLASH, this may be of
significant clinical benefit for stereotactic treatment of selected patients with lung lesions. Even though
solutions are observed not to critically depend on the setup, the optimization strategies need first to be
thoroughly tested before clinical application. To ensure the best balance between dose and dose rate, it
is essential to determine the parameters of the treatment delivery machine and the thresholds at which
FLASH occurs, specially on the dose rate. The effect of beam current fluctuations, the scanning and
the switching time between pencil beams should be also evaluated. Beamdirection optimization is also
important, manually performed by minimizing distances and avoiding dense structures.

FLASH optimization could go one step further, weighting the potential tissue sparing and the tradeoff to
achieve it, to guarantee optimal FLASHenhanced dose distributions. Snowflakelike patterns could be
used as a starting point for scanningpattern optimization, to substantially reduce the running time of the
optimizer. Furthermore, integrated optimization of the treatment plan and the scanning pattern on both
metrics could yield better and more consistent results. Hybrid approaches could also improve results
further and open the door to application in other tumour sites, considering multibeam setups for which
only a fraction of radiation dose is delivered under strict FLASH conditions, for example using a mix of
Bragg peaks and shootthrough transmission beams.
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7 Appendix

7.1 Proof of DADR optimization routines

7.1.1 Simple Linear Fractional Programming

In order to understand how the routine 3.1.1 converges to a solution, it is important to split analysis
in a few steps [53]. First, it should be proved that qk+1 > qk for all k with F (qk) ≥ δ. For that,
it should be noted that F (qk) > 0, which is implied by the following observation, with x+ ∈ X and
q+ = N(x+)/D(x+):

F (q+) = max{N(x)− q+D(x) | x ∈ X} ≥ N(x+)− q+D(x+) = 0 (7.1.1)

By definition, it then follows:

N(xk) = qk+1D(xk), hence F (qk) = N(xk)− qkD(xk)

= qk+1D(xk)− qkD(xk) > 0 (7.1.2)

Since D(xk) > 0, it then automatically follows that qk+1 > qk.

The second step is to verify that the routine converges to the optimal solution limk→∞ qk = q∗. If this
is not true, it must come that limk→∞ qk = q+ < q∗ and by how the algorithm was constructed, that
there is a sequence x+k with q+k , such that limk→∞ F (q+k ) = F (q+) = 0. Now, it should be noted that
F (q) is strictly monotonic decreasing, which can be proven by considering q′ < q′′ and x′′ to maximise
F (q′′):

F (q′′) = max{N(x)− q′′D(x) | x ∈ X} = N(x′′)− q′′D(x′′)

< N(x′′)− q′D(x′′)

≤ max{N(x)− q′D(x) | x ∈ X} = F(q′) (7.1.3)

Since F (q) is strictly monotonic decreasing and q+ < q∗, it comes that:

0 = F (q+) > F (q∗) = 0 (7.1.4)

Which is a contradiction. Hence, it follows that limk→∞ F (qk) = F (q∗) and because F (q) is continu
ous in X, as it is simply the maximization of a linear function, it is concluded that the iterative linearization
converges to the optimal solution. However, it is not guaranteed that the algorithm will converge in a fi
nite number of steps, neither that in case it does, the algorithm is fast enough to converge in a feasible
amount of time. Because of this, the parameter δ is introduced, which works as a tolerance, enabling
the routine to be stopped earlier according to how precise the minimum solution is desired to be.

7.1.2 Maximization of the minimum DADR

The proof of convergence of algorithm 3.1.2 is similar to what was shown for the simpler version. First, it
should be proved that qk+1 > qk for all k with F (qk) ≥ δ. Similarly, it should be noted that F (qk) > 0,
which is implied by the following observation, with x+ ∈ X and q+ = min1≤i≤M [Ni(x+)/Di(x+)]:

F (q+) = max{ min
1≤i≤M

[Ni(x)− q+Di(x)] | x ∈ X} ≥ min
1≤i≤M

[Ni(x+)− q+Di(x+)] = 0 (7.1.5)
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Denoting J(x) = {j | Nj(x)/Dj(x) = min1≤i≤M Ni(x)/Di(x)} and considering that j ∈ J(xk), it
follows:

qk+1 = min
1≤i≤M

Ni(xk)

Di(xk)
=

Nj(xk)

Dj(xk)
hence F (qk) = min

1≤i≤M
[Ni(xk)− qkDi(xk)]

≤ Nj(xk)− qkDj(xk)

= Dj(xk)(qk+1 − qk) (7.1.6)

Rewriting the previous inequality and considering that F (qk) > 0 and Di(x) > 0, it follows:

qk+1 − qk ≥
F (qk)

Dj(xk)
> 0 (7.1.7)

Hence, it is concluded that qk+1 > qk.

Finally, it is just necessary to show that the routine converges to the optimal solution. First, the previous
inequality should be rewritten, by introducing D(x) = max1≤i≤M Di(x) and considering q∗ the solution
to the problem:

qk+1 − qk ≥
F (qk)

D(xk)
⇔ q∗ − qk+1 ≤ q∗ − qk −

F (qk)

D(xk)
(7.1.8)

Because the ratios are all linear and the search space X is a bounded polyhedron space, it is guaranteed
to exist a solution x+ for every F (q+) if q+ ≤ q∗. It is then possible to write for all i:

F (q+) ≤ Ni(x+)− q+Di(x+) = −µDi(x+) + Ni(x+)− (q+ − µ)Di(x+) (7.1.9)

Assuming µ < q+ and introducing D(x) = min1≤i≤M Di(x), it follows:

F (q+) + (q+ − µ)D(x+) ≤ F (q+) + (q+ − µ)Di(x+) ≤ Ni(x+)− µDi(x+) for all i = 1, . . . , M

≤ min
1≤i≤M

[Ni(x+)− µDi(x+)] ≤ F (µ)

(7.1.10)

Considering that qk < q∗, F (q∗) = 0 and according to the previous relation, it is possible to write:

F (qk) ≥ F (q∗) + (q∗ − qk)D(x∗) = (q∗ − qk)D(x∗) (7.1.11)

And consequently plugging the previous relation in inequality 7.1.8:

q∗ − qk+1 ≤ (q∗ − qk)

(
1− D(x∗)

D(xk)

)
(7.1.12)

Since Di(x) are all linear positive and the search space X is a bounded polyhedron space, it is guaran
teed that supk D(xk) < ∞. In addition, because qk ≤ q∗, it follows that 0 < D(x∗)/D(xk) ≤ 1 and
consequently that qk converges to q∗. Similar to the simpler case, a parameter δ is introduced to allow
early stopping of the algorithm when the solution is considered already good enough.
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7.1.3 Maximization of the mean DADR

Similarly to the previous routines, it is necessary to prove that algorithm 3.1.3 also converges and to
show that the weighted sum of the linearized objectives is a solution to the initial multiobjective problem.
It is then necessary to show first that x∗ ∈ X is an efficient solution to the multiobjective problem, if and
only if F (q∗) = 0, with q∗ = [ f1(x∗), . . . , fM(x∗)]. A solution x′ ∈ X is efficient if there is no other
x ∈ X such that fi(x) ≥ fi(x′) + δi for all i = 1, . . . , M and f j(x) > f j(x′) + δj for at least one j
or, in other words, x′ is a solution that could only be improved on some objectives by sacrificing others.
First, considering x+ ∈ X+ a feasible solution of F (q+):

f (x+) =
[

Ni(x+)
Di(x+)

, . . . ,
NM(x+)
DM(x+)

]
≥ q+ ⇒ Ni(x+)− q+i Di(x+) ≥ 0 for i = 1, . . . , M

⇔ wi(Ni(x+)− q+i Di(x+)) ≥ 0

⇒
M

∑
i=1

wi(Ni(x+)− q+i Di(x+)) = F (q+) ≥ 0

(7.1.13)

However, if x∗ is an efficient solution and the optimal valueF (q∗) is assumed nonzero, it comes from the
previous relation that ∃x+ ∈ X such that f (x+) ≥ q∗ = f (x∗) and ∑M

i=1 wi[Ni(x+)− q∗i Di(x+)] >
0. Consequently, there must exist at least one j such that

wj(Nj(x+)− q∗j Dj(x+)) > 0 ⇔ Nj(x+)− q∗j Dj(x+) > 0 ⇔ f j(x+) > q∗j = f j(x∗)
(7.1.14)

So it is concluded that ∃j such that f j(x+) > f j(x∗) but at the same time that fi(x+) ≥ q∗i = fi(x∗)
for all i = 1, . . . , M, which is in contradiction with the efficiency of the solution x∗. Therefore, if the
solution is efficient, then F (q∗) = 0.

Conversely, considering that F (q∗) = 0 but that x∗ ∈ X is not an efficient solution, by definition there
must exists a feasible solution x+ ∈ X to the multiobjective problem such that fi(x+) ≥ fi(x∗) for all
i = 1, . . . , M and f j(x+) > f j(x∗) = q∗j for some j, meaning that x+ is also a feasible solution of
F (q∗). Consequently, since each term of F (q∗) is nonnegative, it comes for the same j:

F (q∗) =
M

∑
i=1

wi[Ni(x+)− q∗i Di(x+)] ≥ wj(Nj(x+)− q∗j Dj(x+)) > 0 (7.1.15)

A contradiction is found, meaning that if F (q∗) = 0 then x∗ ∈ X has to be an efficient solution. This
concludes the proof of the if and only if relation in both directions for the solution of the multiobjective
problem.

Next, it should be noted that the search space at each iteration is a subset of the previous search space
Xk+1 ⊂ Xk. For that, consider xk the solution for F (qk) at iteration k:

xk ∈ Xk ⇒ fi(xk) ≥ qi
k = fi(xk−1) for i = 1, . . . , M

⇒ {x ∈ X : fi(x) ≥ qi
k+1 = fi(xk) ≥ qi

k = fi(xk−1)} ⊂ {x ∈ X : fi(x) ≥ qi
k = fi(xk−1)}

⇒ Xk+1 ⊂ Xk (7.1.16)

It can be also shown that each sequence {qi
k = fi(xk−1)} is nondecreasing and convergent. This is

because ∀k, xk+1 ∈ Xk+1 ⇒ fi(xk+1) ≥ fi(xk) for i = 1, . . . , M. This then implies that {qi
k =
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fi(xk−1)} are nondecreasing series. Since f (x) is a bounded set, a consequence of the bounded
search space X and the continuous objective functions, it comes that each {qi

k} is a bounded sequence
and consequently convergent too.

Finally, it is just left showing that the routine does converge to the solution, which can be proved by
showing that the sequence of {F (qk)} converges to zero, since that only happens if and only if xk is an
efficient solution to the problem, with qk+1 = f (xk):

Ni(xk) = qi
k+1Di(xk), hence lim

k→∞
F (qk) = lim

k→∞

M

∑
i=1

wi(Ni(xk)− qi
kDi(xk))

= lim
k→∞

M

∑
i=1

wi(q
i
k+1Di(xk)− qi

kDi(xk))

= lim
k→∞

M

∑
i=1

wi(q
i
k+1 − qi

k)Di(xk) (7.1.17)

It should be first noted that each {Di(xk)} is a bounded positive sequence, since Di(x) is bounded
positive on X. This plus the fact that each sequence {qi

k} is nondecreasing convergent, as it was shown
previously, allows to conclude that limk→∞ F (qk) = 0, so that the routine converges to a solution
x∗ ∈ X of the multiobjective linear fractional program. Nonetheless, a parameter δ is also introduced to
stop the algorith earlier, when a good enough solution has already been found.
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Structure Priority Min/Max Type Goal Sufficient Parameters

GTV Constraint Maximize (minimum) linear A
GTV 2 Minimize (maximum) linear A*1.24
PTV Constraint Maximize (minimum) linear A*0.98

PTV wihout GTV Constraint Maximize (minimum) linear A*0.98
PTV wihout GTV 1 Minimize (maximum) linear A*1.28

Shell around PTV 3mm 3 Minimize (maximum) linear A*0.62
Shell around PTV 3mm 4 Minimize (maximum) mean A*0.62
Shell around PTV 3mm 5 Maximize (minimum) DADR B B C | D | δ1
Shell around PTV 3mm 6 Maximize (minimum) mean DADR B B C | D | δ2
Shell around PTV 6mm 7 Minimize (maximum) linear A*0.31
Shell around PTV 6mm 8 Minimize (maximum) mean A*0.31
Shell around PTV 6mm 9 Maximize (minimum) DADR B B C | D | δ1
Shell around PTV 6mm 10 Maximize (minimum) mean DADR B B C | D | δ2
Shell around PTV 9mm 11 Minimize (maximum) linear 0
Shell around PTV 9mm 12 Minimize (maximum) mean 0
Shell around PTV 9mm 13 Maximize (minimum) DADR B B C | D | δ1
Shell around PTV 9mm 14 Maximize (minimum) mean DADR B B C | D | δ2
Shell around PTV 20mm 15 Minimize (maximum) linear 0
Shell around PTV 20mm 16 Minimize (maximum) linear 0
Shell around PTV 20mm 17 Maximize (minimum) DADR B B C | D | δ1
Shell around PTV 20mm 18 Maximize (minimum) mean DADR B B C | D | δ2

Outside PTV 19 Minimize (maximum) mean 0
Outside PTV 20 Minimize (maximum) linear 0

Lung ipsilateral without PTV 21 Minimize (maximum) linear 0
Lung ipsilateral without PTV 22 Minimize (maximum) mean 0
Lung ipsilateral without PTV 23 Maximize (minimum) DADR B B C | D | δ1
Lung ipsilateral without PTV 24 Maximize (minimum) mean DADR B B C | D | δ2

Long other side 25 Minimize (maximum) linear 0
Long other side 26 Minimize (maximum) mean 0
Long other side 27 Maximize (minimum) DADR B B C | D | δ1
Long other side 28 Maximize (minimum) mean DADR B B C | D | δ2
Spinal chord 29 Minimize (maximum) linear 0
Spinal chord 30 Minimize (maximum) mean 0
Spinal chord 31 Maximize (minimum) DADR B B C | D | δ1
Spinal chord 32 Maximize (minimum) mean DADR B B C | D | δ2
Esophagus 33 Minimize (maximum) linear 0
Esophagus 34 Minimize (maximum) mean 0
Esophagus 35 Maximize (minimum) DADR B B C | D | δ1
Esophagus 36 Maximize (minimum) mean DADR B B C | D | δ2
Trachea 37 Minimize (maximum) linear 0
Trachea 38 Minimize (maximum) mean 0
Trachea 39 Maximize (minimum) DADR B B C | D | δ1
Trachea 40 Maximize (minimum) mean DADR B B C | D | δ2

Bronchus ipsilateral 41 Minimize (maximum) linear 0
Bronchus ipsilateral 42 Minimize (maximum) mean 0
Bronchus ipsilateral 43 Maximize (minimum) DADR B B C | D | δ1
Bronchus ipsilateral 44 Maximize (minimum) mean DADR B B C | D | δ2

Outside PTV 45 Maximize (minimum) DADR B B C | D | δ1
Outside PTV 46 Maximize (minimum) mean DADR B B C | D | δ2

MU 47 Minimize (maximum) linear 0

Table 7.1.1: Treatment Planning wishlist used for all the ErasmusiCycle optimizations performed in this
study: A corresponds to the prescribed dose 18 Gy, B is the doserate goal, set to the FLASH dose rate
threshold 40 Gy/s, C and D are the FLASH dose and the doserate thresholds, so set to 8 Gy and 40
Gy/s respectively, δ1 and δ2 are tolerances on the DADR optimization routines for the maximization of
the minimum and mean, set to 0.1 and 100 respectively.
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