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Abstract

Cardiovascular diseases (CVDs) are currently the leading cause of mortality worldwide. Since some
CVDs can occur without symptoms and still be harmful, early detection and monitoring of patients at
risk outside the hospital environment is crucial to avoid even higher mortality rates. For this reason,
a recent paradigm of continuous monitoring systems is based on integrating physiological monitoring
with the patient’s daily life, using wearable and invisible technologies. One of the most relevant CVDs
is Atrial Fibrillation (AF), associated with an increased risk of stroke. Due to its increasing prevalence
and costs to healthcare systems, several approaches to detect it have been developed in recent years.
Using single-lead electrocardiographic (ECG) recordings from PhysioNet Computing in Cardiology
Challenge 2017 (CinC2017), an artificial neural network-based algorithm was developed to distinguish
AF from Normal Sinus Rhythm (NSR). The proposed model involves coupling a compressed version
of ECG segments generated by an unsupervised Autoencoder (AE) and a Machine Learning (ML)
classifier. A Sparse Autoencoder (SpAE) and a Multilayer Perceptron (MLP) obtained an F1-score of
82.2%. By adding a feature concerning local changes of RR intervals around an R peak, the F1-score
improved to 88.2%. Although simple, this approach proves that AEs can outperform algorithms using
the same features, and that these can be improved to achieve even higher performance rates.
Keywords: Atrial Fibrillation Detection, Single-lead ECG, Autoencoders, Machine Learning

1. Introduction

According to the World Health Organization
(WHO), cardiovascular diseases (CVDs) are the
leading cause of mortality worldwide, with 17.9 mil-
lion deaths estimated in 2019, representing 32% of
the world’s total deaths [1]. CVDs include several
health conditions involving blood vessels and heart
function, such as heart failure, coronary heart dis-
ease, stroke, myocardial infarction, and arrhythmia.

To avoid higher mortality rates, home and remote
monitoring of cardiac functions have gained more
relevance over the years [2], becoming increasingly
pervasive through the integration of cardiovascu-
lar assessment sensors in smartwatches and other
wearable devices. Especially in wearables, a more
granular monitoring can be achieved by recording
the heart’s activity, using techniques such as Pho-
toplethysmography (PPG) or Electrocardiography
(ECG). Due to the nature of this particular con-
text, ECG recordings often use single-lead config-
urations, which means that only one view of the
heart’s electrical activity is recorded.

One of the most relevant cardiovascular diseases
is Atrial Fibrillation (AF). Because of its high

prevalence and costs to the healthcare systems [3],
the detection of AF was chosen to be the main focus
of this work. Also, in recent years, there has been
an increased interest in developing algorithms for
its detection [4], making it possible to compare dif-
ferent approaches and evaluate their performance.

Over the years, researchers built many ap-
proaches to detect AF, including algorithms based
on Decision Trees (DTs), regression analysis, k-
Nearest Neighbors (k-NNs), Support Vector ma-
chines (SVMs), and Artificial Neural Networks
(ANNs) [4]. From the period 2016 to 2020, SVMs
and ANNs represent almost 50% of all developed al-
gorithms, which, in general, present high accuracy
rates. Many ANN-based algorithms are built with
deep architectures, such as Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks
(RNNs), which are known for their ability to cap-
ture complex patterns in the data. However, very
few approaches use simple architectures such as the
Autoencoders (AEs), which have been proven to
be very useful to extract meaningful features from
data.

Therefore, this work aims to develop an AF de-
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tection algorithm based on AEs using data from
single-lead ECG records suited for wearable and in-
visible applications [5].

2. Background
2.1. Physiological Concepts
Numerous technological advancements over the last
decades have led to the development of techniques
that can monitor vital signs in the human body,
examples of which PPG and ECG.
ECG can be defined as the recording of the elec-

trical activity of the heart, which has a conduc-
tion system responsible for propagating the electri-
cal ”pacemaker” pulses generated at the sinus node,
throughout the atrial and ventricular myocardium.
This provokes timed-muscle contractions, enabling
the heart to pump blood through the cardiovascular
system. In a clinical environment, ECG recordings
are often made with several electrodes placed on
predefined locations of the body to obtain the 12-
lead ECG, allowing 12 different views of the heart’s
electrical activity. However, as already mentioned,
wearable and invisible approaches rely in much sim-
ple acquisition systems, based on single-lead ECG
that only requires as few as 2 or 3 electrodes. Al-
though the single-lead ECG does not convey as
much information as the 12-lead ECG, several ECG
anomalies can be detected, such as AF.
Atrial Fibrillation (AF) is a type of arrhythmia,

an uncoordinated activity of the heart chambers,
in which the heart presents an irregular and high-
rate electrical activity of the atria. When observing
the ECG, AF is characterized by having ”irregu-
larly irregular” heart rhythms, absence of P-waves,
nonexistence of an isoelectric baseline and variable
ventricular rate [6]. Also, P-wave activity can be
replaced by fibrillatory waves (f-waves).

2.2. Technical Concepts
ANNs are able to solve very complex problems of
non-linear, multivariate, and/or stochastic nature.
The basic unit of a ANN is an artificial neuron, that
receives a set of input values x̄ ∈ Rn and outputs a
real value ŷ ∈ R. By connecting artificial neurons
through weight values into a network, many archi-
tectures are possible. To be able to train, an algo-
rithm is used to update the neurons connections by
comparing the prediction with the desired output.
The goal of the training algorithm is to find the op-
timal set of parameters that minimize a predefined
cost function C, which measures how accurately the
model predicts the data.
An AE is type of ANN which is divided into two

elements: an encoder and a decoder. The encoder is
responsible for generating a feature vector z̄i (also
called code) from the input x̄i, generally by com-
pression, while the decoder is responsible for re-
constructing the model input from the feature vec-

Figure 1: Schematic representation of an Autoen-
coder model. It is composed of an encoder, respon-
sible for compressing the data into a latent repre-
sentation called code, and a decoder, which aims to
reconstruct the input from the code.

tor (Figure 1). The cost function is usually pro-
portional to the reconstruction error using, for in-
stance, the mean squared error (MSE) between the
input x̄i ∈ X and output x̂i:

C
(
X; θ̄e, θ̄d

)
=

1

M

M∑
i=1

∥x̄i − x̂i∥2 (1)

where θ̄e and θ̄d are the set of the encoder and de-
coder parameters, respectively, and M is the cardi-
nality of the dataset X.

By enforcing the input to be compressed into a
latent representation, and by using a cost function
that favors the output to be as close as possible to
the input, the feature vector within the code should
hold relevant information about the data’s struc-
ture, provided that the model converged and that
no overfitting occured. Besides the standard AE, a
number of other architectures are possible, includ-
ing Denoising Autoencoders (DAEs), Sparse Au-
toencoders (SpAEs) and Variational Autoencoders
(VAEs). All AE variations aim to promote mean-
ingful latent representations of the data, but using
different approaches. For example, DAEs aim to
reconstruct the original version of an input from
a noisy corrupted version, while SpAEs try to en-
hance the generalization ability by applying a L1
penalty to the code layer, meaning that the penalty
equals to the absolute value of the weights. In
VAEs, the latent code is assumed to be a random
variable of a distribution, and the goal is to obtain
the parameters of a probabilistic encoder, assumed
to be a Gaussian distribution, that minimize the
Kullback-Leibler divergence with the posterior dis-
tribution. Other types of AE are possible such as
deep, contractive and convolutional AEs. For fur-
ther details, the reader is referred to [7].

2.3. Classification Metrics
Classification metrics evaluate the performance of
a specific characteristic of a classifier, and they are
an essential tool to compare different classifiers with
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the same task. In this work we reduce the problem
to a binary classification, in which two classes sep-
arate the data: one called positive and the other
called negative. Some of the most common classifi-
cation metrics are:

Accuracy =
TP + TN

TP+ TN+ FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

Specificity =
TN

TN + FP
(5)

F1-Score = 2× Precision × Recall

Precision + Recall
(6)

where TP, TN, FP and FN represent the number of
true positive, true negative, false positive and false
negative instances, respectively.
Another method to evaluate a classifier is the Re-

ceiver Operating Characteristic (ROC) curve, and
the respective area under the curve (AUC). They
can be useful if the classifier has parameters that
affect classification or if its output consists of prob-
ability values. In such case, the threshold to sepa-
rate the classes will affect its performance metrics.
The ROC curve shows then the trade-off between
the sensitivity and specificity, by setting different
parameters or threshold values, and the AUC, be-
cause it does not depend on a specific point of the
curve, is capable of measuring the ability of the clas-
sifier to predict the classes accurately.

3. State of the Art
3.1. Atrial Fibrillation Detection Algorithms
Algorithms greatly rely on what information is fed
into them and, in the case of AF detection, different
ECG feature inputs can be used. Atrial features to
detect AF rely on ECG properties inherent to atrial
activity, such as the absence of P-waves and or ap-
pearance of f-waves. The F1-score for an algorithm
of such category developed by Christov et al. was
estimated at 83.8% [4].
Ventricular features are based on ventricular ac-

tivity by obtaining information regarding the QRS
complexes, which are generally more pronounced
than P-waves and f-waves. The R-peaks are the
main focus of such features because the presence
of irregularities in RR-intervals are a key sign to
diagnose AF. Examples of ventricular features are
standard deviation (SD), coefficient of variance,
root mean square of succesive differences (RMSSD),
Poincaré plots, sample entropy, Shannon entropy,

Table 1: Median F1-score by type of feature groups.
It includes atrial, ventricular and signal features, as
well as the combinations between them. Extracted
from [4].

Feature groups
Number of

algorithms

Median

F1-score

Atrial 1 83.8%

Ventricular 38 96.9%

Signal 34 95.2%

Atrial + Ventricular 10 85.6%

Atrial + Signal 1 88.9%

Ventricular + Signal 6 91.1%

Atrial + Ventricular

+ Signal
13 81.0%

Overall 103 94.0%

turning point ratio (TPR) and Lyapunov expo-
nents. The review made by Wesselius et al. [4]
reported a median F1-score of 96.9% from 38 algo-
rithms that only use ventricular features, and rep-
resented the highest score from the other types and
combinations of features (Table 1).

Another frequent type of features to be extracted
are signal properties, which include a series of mea-
sures such as basic statistics, signal power, kurto-
sis and derivatives. More complex signal features
involve performing power spectral analysis, phase
space analysis, computing wavelet transform and
measuring signal quality. The same review reports
a median F1-score of 95.2% from a total of 34 algo-
rithms.

3.2. Autoencoders for Atrial Fibrillation Detection

Very few approaches use ANN architectures such
as the AEs to detect AF. For instance, Yuan et al.
[8] developed an approach for AF detection from
ECG records using a stacked SpAE based on 84 se-
lected features extracted from the RR-intervals and
p-wave measurements of a 10-second-window. The
AE used to achieve data compression had 84 input
nodes and 2 hidden layers with 300 nodes each. AF
detection was made by stacking a softmax classi-
fier to the extracted features of the AE. Using ECG
records from the MIT-BIH databases1, the model
first achieved a detection accuracy of 75,6%, and,
after fine-tuning the model, a 98,3% accuracy was
reported. A similar approach was followed by [9],
where a stacked SpAE receives 19 features extracted
from the ECG records, including statistical mea-

1https://ecg.mit.edu/
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Figure 2: Examples of Normal Sinus Rhythm,
Atrial Fibrillation, other rhythms and noisy acqui-
sitions in the Computing in Cardiology Challenge
2017 dataset.

sures, parameters from the Hilbert-Huang trans-
form, and wavelet decomposition features. After
training, the AE is then coupled to a softmax clas-
sifier to detect AF. A 96% accuracy was achieved.

3.3. ECG Datasets for Atrial Fibrillation Detection

The increased interest in AF detection in recent
years led to the development of publicly available
databases to train and test new models.

The AF database from the Computing in Cardiol-
ogy Challenge 2017 (CinC2017)2 is considered to be
one of the main sources of new publications related
with AF detection algorithms [4]. The CinC2017
database has 12186 short single-lead records, vary-
ing from 9 to 60 seconds. Record labels include
Normal Sinus Rhythm (NSR), AF, other rhythms,
and noisy acquisitions (Figure 2). The records were
obtained with a Left Arm – Right Arm lead configu-
ration, equivalent to a Lead I, using AliveCor’s3 sin-
gle channel ECG devices, including the AliveCor®

KardiaMobile. The acquisitions were stored using
a 300 Hz sampling frequency with 16-bit resolution
over a ±5 mV dynamic range and a 0.5 – 40 Hertz
(Hz) bandwidth interval [10].

2https://physionet.org/content/challenge-2017/
3https://www.kardia.com/

4. Proposed Approach
4.1. Rationale

As already discussed, AEs are an unsupervised
learning model in which it is possible to retrieve a
meaningful and compact representation of a signal.
The interest in studying AEs to detect AF arose be-
cause few approaches are using them; thus, its use
is not well documented. Also, the great diversity of
possible AE architectures allows exploring and cre-
ating innovative solutions to a real-world challenge,
for which there is no current gold standard approach
for mainstream use. Also, besides anomaly detec-
tion, AEs can be used for classification by feeding
classifiers with their compact representations, i.e.
using AEs for feature extraction and dimensional-
ity reduction.

Moreover, in today’s implementations of heart
monitoring technologies and algorithms, respon-
siveness is highly valued. Systems with high
computational speeds using simple algorithmic ap-
proaches, such as the AEs, are preferred. Also,
when designing classification algorithms, there is a
great investment in choosing the features that al-
low the best classification performance. However,
AEs do not require feature engineering, and they
are flexible in terms of complexity, thus requiring
fewer computation resources for possible real-time
implementation.

In heart monitoring systems, preprocessing steps
often include beat extraction using segmentation
techniques; thus ECG waveform fiducials and sev-
eral metrics can be used to classify beats. How-
ever, most AF detection systems rely on informa-
tion extracted from ECG records containing several
beats, namely because they focus on ventricular ac-
tivity (e.g., RR-intervals), which would extend the
dataflow pipeline and increase resource usage. By
using ECG segments, instead of long records, to
detect AF, the respective implementation becomes
lighter and it converts the problem into a beat clas-
sification one. Since the AE receives the ECG wave-
form as its input, it can be called a morphological
AE.

4.2. Data Preprocessing

To train the AEs with ECG segments, the records
from the CinC2017 database were first preprocessed
using the Python toolbox BioSPPy4. The data were
filtered using a 90th-order high-pass Finite Impulse
Response (FIR) filter with a cutoff frequency of 0.5
Hz, and the R-peak detector by Hamilton available
in the toolbox was used.

Because some of the records were inverted in am-
plitude, an approach to correct them was set in
place: the median of the R-peak amplitudes was
chosen as the main criterion. The inverted records

4https://github.com/PIA-Group/BioSPPy
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were identified by having a lower median R-peak
amplitude than their correspondent inverted ver-
sions, that is, the correct ones. In fact, the peaks
of the inverted signals are S-waves, with lower am-
plitude than the R-peaks. An example of such cor-
rection is shown in Figure 3. After correcting the
inverted ECG records, the signals were then clipped
from -200 to 600 milliseconds around the R-peaks,
as defined by the toolbox and used by a real-time
implementation in [11]. To avoid the AE being af-
fected by the appearence of second R-peaks, zero
padding was applied 50 milliseconds before the sec-
ond R-peak to cover the Q-wave, as represented in
Figure 4(a). This approach to segment the signals
was preferred because the number of input nodes in
an AE must be fixed from the beginning.

Figure 3: Example of an inverted ECG record that
was identified by having a lower median of the corre-
spondent peak amplitudes (top) than the inverted
version (bottom), which is the correct one. The
peaks of the inverted signal are S-waves, and the
peaks of the correct signal are the real R-peaks.

4.3. Autoencoder Models
Since the architecture of an AE is based on ANNs,
AE design is very versatile. The simplest AE struc-
ture contains a single hidden layer, where one needs
to define the compression factor to be achieved,
since the input and output layers have the same
nodes as the data samples. Although there are no
strict rules when choosing the number of nodes in
the hidden layer, frequent compression factors are
25%, 50%, and 75% [12]. Adding more hidden lay-
ers is also a common choice for AEs.
Aside from choosing an AE structure, inherent

parameters of ANN training are still of utmost im-
portance, since they can affect the overall ability of
the AE to properly reconstruct the inputs through
the choice of the networks’ weights and biases (e.g.,
optimizer, learning rate, loss function, activation
function). Furthermore, the choice of the batch
size (number of samples fed into the network in one
training iteration) and the number of epochs (num-
ber of times that the whole dataset passes through
the network) are also relevant parameters to achieve
the best performance.
To study the best approach to reconstruct ECG

(a)

(b)

Figure 4: (a) Example of 2nd R-peak removal on
a segment using zero-padding. (b) Use of DMEAN
to detect outliers in a set of ECG segments from a
record.

segments, different symmetric AE structures were
tested, varying the compression factor and number
of hidden layers. Under adequate learning param-
eters, different AEs were evaluated based on their
capacity to reconstruct the inputs with a high com-
pression factor. The MSE loss was monitored in
each AE training using validation data of subjects
not seen by the AE.

The proposed AE models are briefly described in
Table 2, indicating the AE type, structure and loss
function. Aside from input and output dense lay-
ers with N segment nodes, the Standard Autoen-
coder (SAE) consists of a single hidden layer with
N hidden nodes, having a linear activation function
for the output layer and a MSE loss function (i.e.,
the reconstruction error). The DAE adds a Gaus-
sian noise layer to the input, defined by its standard
deviation, and the SpAE model has a L1 regular-
ization in the hidden layer that allows the model to
become sparse. The Robust Autoencoder (RAE)
model is similar to a DAE in its ability to resist
noise, but uses a loss function to do it. The corren-
tropy loss function proposed by Liu et al. [13] was
used. The Contractive Autoencoder (CAE) is also
a model that aims to extract useful features by its
loss function. In CAEs, a penalty term is added to
the MSE, which is defined as the Frobenius norm
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of the Jacobian matrix of the hidden mapping of
the AE [14]. The VAE model has an intermediate
layer with N intermediate nodes before the bottle-
neck layer. The bottleneck consists of two steps,
one involving two layers to encode the mean and
the covariance matrix of the data as Gaussian dis-
tributions, and another involving a layer that allows
backpropagation of the algorithm.

4.4. Classification Algorithms

After training the AE models, the encoders contain
the mapping that leads to the latent representations
of the signals. This reduced representation can be
fed to standard classification algorithms responsi-
ble for finding metrics or patterns in the data that
separate the classes in a supervised manner. Based
on the state-of-the-art, 5 different classifiers were
tested, described in more detail in Table 3.

The first consists of a single node, a perceptron.
The perceptron model takes the ensemble of the fea-
tures captured by the encoder and the classification
labels (NSR or AF), and it adjusts its weights in the
training step to fit the binary data. The output of
the model is a real value between 0 and 1, being
0 defined as NSR and 1 as AF. For this reason,
the chosen activation function for the output node
was the sigmoid function, and the loss function to
train the model was the binary cross-entropy. The
second model is an multilayer perceptron (MLP).
This model has a basic ANN structure with hid-
den stacked layers and an output node or nodes to
perform classification. The advantage of the MLP
model is that it can map the features into a non-
linear space. The hidden layers used the rectified
linear unit (ReLU) activation function and the out-
put node the sigmoid function.

Other widely used classification models include
SVMs, k-NNs and DTs, that were also tested. The
SVM model used the radial basis function as its ker-
nel, the k-NN model was defined with the number
of neighbors k equal to 5, and the DT classifier used
the Classification and Regression Trees (CART) al-
gorithmic implementation.

Figure 5 presents the proposed approach for the
AF detection algorithm, using a trained AE and a
classifier.

4.5. Training and Evaluating the Models

To check the best combination of AE and classi-
fier to distinguish NSR from AF beats, a series of
experiments were conducted. To understand how
the number of hidden layers and the compression
level in the AE models affect the quality of the
reconstructed signal, the SAE model was trained
with different configurations. Maintaining the same
training parameters and the same training and vali-
dation data, the compression levels 25%, 50%, 75%,
90%, and 95% were tested, and, for each, the num-

Table 2: Layer structure of the proposed Autoen-
coders and their loss functions.

AE Layer Loss Function

SAE Dense(input)
Dense(latent)
Dense(output, linear)

MSE

DAE Dense(input)
GaussianNoise(SD=0.05)
Dense(latent)
Dense(output, linear)

MSE

RAE Dense(input)
Dense(latent)
Dense(output, linear)

Correntropy

CAE Dense(input)
Dense(latent)
Dense(output, linear)

Contractive

SpAE Dense(input)
Dense(latent, L1 reg.)
Dense(output, linear)

MSE

VAE Dense(input)
Dense(intermediate)
2×Dense(latent)
Lambda(sampling)
Dense(intermediate)
Dense(output, linear)

MSE + DKL

SD = Noise standard deviation

MSE = Mean squared error

DKL = Kullback-Leibler divergence

Table 3: Structure and parameters of the proposed
classifiers.

Classifer Structure/Parameters

Perceptron Dense(1, sigmoid)

MLP Dense(latent, ReLU)
Dense(latent, ReLU)
Dense(latent, ReLU)
Dense(1, sigmoid)

SVM RBF kernel

k-NN k = 5 neighbors

DT CART implementation

ber of hidden layers varied between 1, 3, and 5.
Because these AE parameters change the models’
complexity, an early stopping approach was used
instead of fixing the number of epochs, consisting
of fixing the minimum loss difference delta between
consecutive epochs to consider an improvement.

Finally, the different models are tested by ex-
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tracting the features from the AEs and feeding
them into the classifiers. To preserve the models
from being biased towards previously seen data,
a subject-based data split was performed. Using
cross-validation, the data were first split into train-
ing and testing sets. The k-Fold Cross-Validation
consists of splitting the data into k parts (called
splits), where k−1 splits are used to train the model,
and the remaining one to test it. Each split tries to
maintain the same proportion of the various labels.
The different combinations of the splits to train and
to test are used, and k performance results are ob-
tained. From the training set, 50% of subjects were
picked to train the AEs and the other 50% to train
the classifiers, as depicted in Figure 6. To evaluate
the models, a 2×5 cross-validation was made, which
means that a 5-Fold Cross-Validation is performed
twice, with different fold compositions [15]. Data
balance was guaranteed.

Figure 5: Diagram showing the proposed Atrial
Fibrillation detector, by stacking a trained encoder
with a classifier.

Figure 6: Diagram showing the data split approach
to train the Autoencoders and the classifiers. The
split avoids using the same data to train the Au-
toencoder and to train the classifier.

4.6. Alternative Approaches
The approach presented so far is uniquely dedicated
to distinguish ECG waveforms in NSR from ECG
waveforms in AF. However, an algorithm suited for
real-life applications must be able to deal with the
variability and complexity of ECG records. Since
the impact of other rhythms and waveforms in the
proposed AF detection algorithm is unknown, these
were also fed into an AE. Because the problem is no
longer of binary classification, the MLP had to be
modified. Instead of having a single output node,
the model was built with three output nodes and
the cost function had to be changed from binary
cross-entropy to categorical cross-entropy, which is
suited for multiclass classification problems.

Because the features extracted from the proposed
AE models only rely on the waveform morphol-
ogy, another alternative approach to enhance it
is to provide some information regarding the RR-
intervals of the ECG records, at least locally. In
ECG records, RR-intervals in AF are more irreg-
ular than in NSR. This means that, generally, in
relation to a single R-peak, the difference between
the RR-intervals around the peak, RRi − RRi−1,
is greater in AF than in NSR. The proposed met-
ric, hereinafter called Local Change of Successive
Differences (LCSD), is defined for each R-peak Ri

as:

LCSD (Ri) =
|RRi −RRi−1|
1
N

∑N
j=1 RRj

, 1 < i < N (7)

where N is the number of RR-intervals. This metric
can be particularly relevant in the current context,
where the individual waveforms are classified, al-
lowing the classifiers to take into account not only
the morphological features generated by the AE but
also the local changes of the RR-intervals.

5. Results
5.1. Preliminary Tests
The first preliminary experiment consisted in eval-
uating the impact of the compression level and the
number of hidden layers in the ability of the SAE
to reconstruct the ECG segments. All hidden layers
used a linear activation function, the delta param-
eter to perform early stopping was set to 1e-6, and
the Adam optimizer was used with a 0.001 learning
rate. The train and validation data used 77% and
33% of the entire dataset, respectively.

By fixing the number of hidden layers, one can
observe that, in general, there is no relevant infor-
mation loss up to a 75% compression level, that
corresponds to 45 nodes of the innermost AE layer.
The validation MSE loss starts to steeply rise there-
after, reaching MSE errors close to 1e-3 and higher.
Interestingly, as already stated in [16, 17], the in-
crease in the number of hidden layers appears to
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Figure 7: Validation losses varying the number of
hidden layers (depth) and the compression level at
the bottleneck layer.

worsen the reconstruction capacity of the AEs,
since, for each compression level, the MSE increases
with the number of layers.
With further training epochs, the 90% compres-

sion level was proven to be sufficient. As such, for
the next experiments consisted of defining several
AEs with a 90% compression level (18 bottleneck
nodes) and a single hidden layer. Training of the
AEs was made with 600 epochs and 2000 sample
batch size, using the Adam optimizer with a 0.001
learning rate.

5.2. Autoencoder-Classifier Combinations
By looking at the first 18 features of Figure 8 gener-
ated by the SpAE model, there seems to be no linear
relationship to differentiate NSR and AF waveforms
from them, since the distributions’ medians and in-
terquartile ranges are very similar. This was the
case for all AE models, even if a non-linear activa-
tion function of the hidden nodes was chosen.
Table 4 presents the best combinations of the AE-

classifier models with the respective performance
metrics. Some remarks can be made: the DAE and
SpAE models, that act directly on the AE’s nodes,
achieved the best waveform reconstructions and the
best classification performances. This suggests that
better reconstructions also promote feature mean-
ingfulness; the MLP and SVM classifiers led to the
best classification performances across all AE mod-
els, and the CART and perceptron models led to
the worse performances (Table 4). The best model
from all AE-classifier combinations was the SpAE-
MLP model, that achieved an F1-score of 82,2%
and a AUC equal to 0.902 Table 4).

5.3. Alternative Approaches
To test the impact of adding other ECG rhythms
to the proposed classifier model, the respective class
records were preprocessed with the same procedure
as the NSR and AF classes. Because of their higher

accuracy rates, only the SVM and MLP were tested.
The MLP model, with three output nodes, used the
softmax activation function.

From Table 4 it is noticeable that the classifica-
tion performance suffers when adding a third class.
An F1-score of 58.1% was achieved, in contrast with
the 82.2% where only AF and NSR were the classi-
fier targets. Because of the model has poor per-
formance, the other test consisted of joining the
NSR and other rhythm classes, assigning them the
same label. When training in this condition, an im-
provement of the F1-score was seen, increasing from
58.1% to 64.3%. However, since it does not match
the SpAE-SVM model that only classifies NSR and
AF, this suggests that some waveforms from other
rhythms may be morphologically similar to AF.

As already described, a strategy to feed the clas-
sifiers with information regarding the RR-intervals
was defined using the LCSD proposed metric. All
classifiers were tested using both the features gen-
erated by the SpAE model, and the LCSD of the
R-peak associated with the waveform. From Fig-
ure 8 (feature number 18), it is noticeable that there
is a significant difference between the LCSD values
of AF and NSR classes. This metric led to an F1-
score of 88.2%, an improvement of 6% (Table 4).
Besides the SVM, the LCSD feature also increased
the performance of the remaining classifiers.

6. Conclusions

The work developed in this thesis allowed the de-
velopment of an approach for AF detection based
on ECG heartbeat waveforms. Taking into account
the context of wearable and invisible ECG moni-
toring systems, a single-lead ECG database for AF
detection was selected. The proposed method con-
sisted of using an AE to first achieve a compressed
version of the ECG segments, and then the corre-
sponding generated features are used to feed a clas-
sifier. Since there are many AE and classifier types,
some of them were tested and compared.

From all experiments, the SpAE model in combi-
nation with a MLP achieved the best performance
in distinguishing NSR and AF segments, with an
F1-score of 82.2% and an AUC of 0.902. More-
over, by using a new metric focused on the local
RR-interval differences around an R-peak (LCSD),
the SpAE-MLP model achieved a 88.2% F1-score
(+8.0%) and an AUC of 0.950.

In comparison with state-of-the-art algorithms,
the aforementioned F1-score is above the median
of current AF detection algorithms based on atrial
and ventricular features (85.6%) but stays well be-
low the overall F1-score median of all considered
algorithms (94.0%). This comparison, however, is
not the most appropriate because the methodology
in this work was not developed to classify ECG
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Table 4: Summary of the best AE-classifier combinations, and the respective performance metrics. The
models with the best F1-score are in bold.

AE-Classifier Accuracy Precision Recall F1-score AUC

SAE-MLP 0.816±0.015 0.824±0.018 0.803±0.018 0.813±0.015 0.893±0.014

DAE-MLP 0.822±0.015 0.827±0.017 0.814±0.029 0.82±0.017 0.9±0.014

RAE-MLP 0.817±0.015 0.824±0.015 0.806±0.02 0.815±0.815 0.896±0.012

CAE-MLP 0.771±0.017 0.769±0.018 0.776±0.022 0.772±0.018 -

SpAE-MLP 0.824±0.012 0.832±0.014 0.813±0.019 0.822±0.013 0.902±0.011

VAE-SVM 0.805±0.008 0.822±0.008 0.772±0.017 0.8±0.01 -

SpAE-MLP

NSR/AF/O
0.586±0.014 0.581±0.014 0.586±0.014 0.581±0.013 -

SpAE-MLP

(NSR+O)/AF
0.776±0.010 0.685±0.017 0.605±0.026 0.643±0.019 0.829±0.015

SpAE-MLP

Code + LCSD
0.880±0.009 0.877±0.029 0.888±0.027 0.882±0.006 0.950±0.007

Figure 8: Feature value distributions of the hidden features generated by the SpAE model for NSR
and AF test instances. The feature number 18 corresponds to the LCSD distributions, which present
significant mean and value range differences.

records, but instead it was developed to classify
ECG waveform segments. Thus, the potential to
diagnose AF using this approach could be further
explored. Also, the algorithm was not tested with
other databases.

7. Future Work

Despite satisfactory results in distinguishing AF
from NSR waveforms, some limitations of this work
can lead to further developments. A model which
uses beat-by-beat classification to evaluate ECG
records would still be needed to compare with other
approaches. For example, an AE with a time win-

dow containing several beats could be used, or
other ANN structures appropriate for time-series
classification, such as Long Short-Term Memorys
(LSTMs). Moreover, because of the great diver-
sity of AE models and general ANN structures
and training parameters, the proposed approaches
may not represent the full potential of AEs to de-
tect AF. Supervised or semi-supervised approaches
could possibly enhance the performance rates (e.g.,
a supervised VAE model).
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