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Instituto Superior Técnico, Lisboa, Portugal

October 2021

Abstract

This thesis aims to design an Aerial Sensor Network composed of fixed-wing unmanned aircraft
in order to perform surveillance and detect early signs of a wildfire in a given territory. In this work,
an algorithm is adapted to uniformly cover a given area and distribute the vehicles in the network
depending on the fire hazard risk over the domain to be covered, prioritizing areas with a higher risk.
This algorithm is scalable to any number of aircraft and can use any kind of fire hazard risk map that
only contains bounded, positive values. Two different dynamical models associated with the movement
of fixed-wing UAVs are proposed and are implemented with simulations in Simulink, as well as a ROS
implementation to simulate an environment closer to a real world application. Lastly, a probabilistic
model is formulated in order to design a workflow to help with the sizing of the fleet and the flight
altitude to maximize the probability of detection of wildfires, both via the singular UAVs and the full
sensor network.
Keywords: Unmanned Aerial Vehicles, Cooperative Control, Autonomous Surveillance

1. Motivation

During 2017, the burnt area in Portugal saw a
428% increase relative to its mean values, as re-
ported in [7]. In particular, the wildfire of Pedrógão
Grande resulted in a burnt area of nearly 45.039
acres [7], causing nearly 500 million euros of esti-
mated damage to the Portuguese government [22].
In fact, Portugal holds the largest percentage of
burned area in Europe and is also the country in
Europe with the highest number of ignitions per
1000 inhabitants.

While the cause of the previously mentioned fire
was unrelated to human activity, the rural fire ac-
tivity in Portugal is very often caused by humans.
Between the years of 2011 and 2021, 48% of the
fires with known causes were caused by inappro-
priate use of controlled fire as reported by Insti-
tuto da Conservação da Natureza e das Florestas in
[8]. More specifically, 31% are caused by controlled
burns of forest debris and agriculture excess that
by negligence had gotten out of control. In addi-
tion to that, 23% of the fires are caused by criminal
activity.

In light of these statistics, it is of extreme im-
portance that an efficient method to cover an area
under high risk of ignition and subject to frequent
human activity is developed, so that the proper au-
thorities are made aware of the ignitions before they
become uncontrollable.

2. Literature Review

The ideal fire detection solution would be one that
maintains continuous coverage of an area and is able
to identify all sources of ignition. Geostationary
satellites provide the first requirement and are al-
ready used to monitor environmental phenomena.
However, due to the high orbit altitude, approx-
imately 36000 km, the resolution of the obtained
data is very low. One example of this is the VAS
sensor of the GOES satellite which produces sam-
ples of wildfires every three hours with a resolution
between 7 and 14 Km on the infrared wavelength
[9]. There is the possibility of reducing the satel-
lite’s orbit altitude to increase the spatial resolution
but there are less availability of such services.

A lower altitude example is the data in gathered
in [7], taken from the EOS-MODIS sensor with a
resolution of 250m, but is limited to only getting 4
overpasses in a 24 hour period. In addition, data
from such measurements can be corrupted by cloud
cover [13].

Ground-based detection systems are much
cheaper than satellite solutions and are not suscep-
tible to corruption from cloud cover. These provide
continuous coverage using visible and subvisible op-
tical sensor, but have very low mobility and are
limited to line-of-sight measurements, which can be
obstructed by terrain features [1].

This work focuses on Aerial Sensor Networks
(ASNs) consisting of fixed-wing Unmmaned Aerial
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Vehicles (UAVs) as a means to cover a given area.
The problem of patrolling using an ASN can be
roughly split into two separate fields of research:
area coverage and resource allocation. For a given
area to be covered, the area coverage fields deals
with ways to optimally covering the allocated re-
gion, while the field of resource allocation deals with
allocating the different vehicles of the ASN opti-
mally between different subsets of the area to be
covered.

For the purpose of this work, optimal allocation
of resources means that regions of higher risk are
to be monitored more often than areas with a lower
risk so that resources are not being wasted at any
given time in zones where an ignition is unlikely to
start.

Many different measures of risk can be found in
[24]. The different measures of risk are mostly based
on the economical damage that a wildfire at any
given location would cause, weighted by the proba-
bility of an ignition in said area.

Both the approaches in [6] and [26] have diffi-
culty assessing the risk caused by human presence,
something that is detrimental to any ASN using
risk maps generated using these approaches, since
the majority of the fires in Portugal is caused by hu-
mans (see [16], [19], [8]), as previously mentioned.

With the risk function for a given area, there
needs to be a method to guide the agents in the
ASN to places with higher risk values more of-
ten. The survey [10] describes a number of differ-
ent strategies for both single and multi-robot area
coverage. This problem is related to the so-called
“lawnmower problem” which consists on the deter-
mination of a path that covers a given area and
the “watchman’s route problem” which determines
the best route to scan the given area. These prob-
lems become increasingly difficult as constraints are
added to system, such as the presence obstacles,
field of view (FOV) restrictions and dynamical con-
straints. While UAVs are usually not constrained
by the presence of obstacles (if their altitude is high
enough), they may be subject to dynamical con-
straints and the onboard sensors may be subject
to FOV restrictions. Some of these problems are
addressed in [27] and, notably, the authors in [17]
follow an approach where point-mass vehicles are
routed to areas of higher priority more often.

As stated before, these coverage algorithms can
be used in cooperative control with different con-
straints and objectives. The work in [4] solves the
vehicle routing problem optimally with respect to
a cost function that minimizes the time it takes to
cover a given area, while taking into account the
limitations of the vehicles. In [20] and [25] a team
of quad-copters is coordinated so as to perform con-
tinuous surveillance of a given area while avoiding

collisions.

3. Objectives

The objective of this work is to develop a real time
trajectory generation algorithm that is capable of
allocating resources from a ASN of fixed-wing UAVs
dynamically based on the fire hazard risk map on
a certain domain, with the goal of maximizing the
probability of detecting an ignition. The algorithm
can adapt to changes in the risk map so human
activity can be taken into consideration. The eval-
uation of the human risk is not inside the scope of
the project, but given the real time data feeds that
ASNs are capable of providing, the same algorithm
could serve as the basis of such future work.

In order to achieve this goal, the approach used
in [17] was chosen as a base. The control law de-
veloped in the article does exactly what is neces-
sary: it takes a risk map with very little constraints
and guides a network of point-mass agents towards
domain zones with high priority in real time. An
advantage of this approach is that the risk map can
be changed at any time during the mission and the
network is able to adapt instantly and keep work-
ing as intended. The dynamical systems used in [17]
can not be used directly in a real mission, however,
because they do not take into account vehicle dy-
namics. In this work, the control law is adapted
in order to take into consideration the dynamics of
Fixed-Wing UAVs.

4. Theoretical Background

Given this work’s objective of designing an algo-
rithm for uniform coverage provided by an Aerial
Sensing Network, it is important to first define what
uniform coverage means and how to decide when the
coverage is uniform.

In [17], the trajectory is deemed uniform if the
dynamical system as a whole possesses ergodicity.
Ergodicity is a property of dynamic and stochastic
systems that relates the spatial averages of func-
tions to its time averages over a trajectory. That
means in a space with a known measure, such as
a probability density distribution, the time average
of the trajectory will converge to the space measure
[21]. In other words, the time spent by an agent
of a ergodic dynamical system on a certain space
subset is the same as the measure of said subset.

As a result, if the trajectory of the network makes
the system ergodic, such a trajectory is deemed uni-
form and results in an uniform coverage. The pri-
mary concern is then how far a system is from be-
ing ergodic and how to control the trajectory so the
system is ergodic.

5. The metric for uniform coverage

Given a set ofN agents for an ASN, let the following
distribution Ct be defined:
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Ct(x) =
1

Nt

∫ t

0

N∑
j=1

δ(x− xj(τ))dτ, (1)

for each x ∈ Rn, where xj : [0, t] → Rn rep-
resents the trajectory of the j-th agent for each
j ∈ {1, 2, . . . , N} and δ(.) is the Dirac delta dis-
tribution.
The inner product of the distribution Ct with a

bounded generic function f can be written as fol-
lows [17]:

⟨Ct, f⟩ =
1

Nt

∫ t

0

N∑
j=1

f(xj(τ))dτ. (2)

The distribution Ct can be thought of as a prob-
ability density distribution because ⟨Ct, 1⟩ = 1.
This means Ct can be seen as the probability den-
sity distribution function for the position of the
agents in the ASN after a time period of t seconds.
Let µ be the measure of a rectangular space with

the domain U ⊂ Rn, with µ = 0 outside of U . For
µ to be a measure, it needs to be bounded and non-
negative in its domain U . A necessary and suffi-
cient condition to ergodicity is that the time average
along a trajectory converges to the average spatial
measure [21], so for the system to be ergodic, the
convergence of Ct to µ is required. The condition
for ergodicity is then:

lim
t→∞

⟨Ct, f⟩ = ⟨µ, f⟩

for all bounded functions f : U → R. This is also
the definition for weak convergence of the two func-
tions [17].

5.1. Application to a 2D square domain
Given those generalised definitions, let us focus on
the case of a 2D square domain, U = [0, L]× [0, L]
for L a positive real number. This is convenient
because the domain the ASN needs to cover is a 2D
domain.
Let fk be a Fourier basis functions for the 2D

dimensional domain U so that,

fk(x) = cos(k1x)cos(k2y) (3)

for each x = (x, y) ∈ R2, with

k1 =
K1π

L
and k2 =

K2π

L

for each K1,K2 = 0, 1, 2, ...,K, where K is a posi-
tive integer, known as the maximum wave number.
The subscript k denotes one instance the wave vec-
tor k = (k1, k2), for a total of (1+K)2 wave vectors,
given that every combination of k1 and k2 needs to
be considered. The function (3) was used because
it satisfies the von Neumann boundary conditions

of having a null gradient in the boundaries of do-
main U .

Using the Fourier basis functions fk defined
in (3), the Fourier coefficients for Ct and µ are given
by

ck(t) =
⟨Ct, fk⟩
⟨fk, fk⟩

=
1

Nt

∑N
j=1

∫ t
0
f(xj(τ))dτ

⟨fk, fk⟩
(4)

µk =
⟨µ, fk⟩
⟨fk, fk⟩

, (5)

respectively.
To quantify how far the current trajectory is from

making the system ergodic, the distance between
the two functions Ct and µ is measured using the
following metric (cf. [17]):

ϕ(t) =W t
0 − µ =

∑
k

Λksk(t)
2
, (6)

where sk(t) = ck(t)− µk and

Λk =
1

(1 + k2)
3
2

. (7)

In [18] it is shown that ϕ(t) decays to zero if and
only if Ct weakly converges to µ. This metric cap-
tures the deviation between the time averages and
the space averages, and thus how far the system
is from being ergodic. It will then be used as the
metric for uniform coverage.

6. Fixed-wing airplane models
6.1. Dubin’s Vehicle
In this work, it is considered that trajectories of
the agents are always in the xOy plane and at a
fixed flight altitude, where xOy is part of the NED
(North-East-Down) local Inertial frame. As a re-
sult, the first system to be considered is that of a
Dubin’s Vehicle. This system is a described by sim-
ple model, which considers that a vehicle moves in a
combination of circular arcs and straight lines, with
the only control input being the angular velocity of
the vehicle’s heading angle.

The Dubin’s Vehicle motion is interesting because
this kind of motion can be associated with the sim-
ple coordinated turn model, which directly relates
the heading turn ratio with a fixed-wing’s roll angle
[5]. The equations of motion for the j-th vehicle are
the following:

ẋj = VgM(ψj)

ψ̇j = uj .
(8)

where Vg is a constant scalar value for the vehicle’s
ground speed, xj the vehicle’s position, ψj is its
heading angle, and M(ψj) the projection vector,
given by:

M(ψj) =

[
cos(ψj)
sin(ψj)

]
. (9)
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6.2. Adapted Dubin’s Vehicle
For the purpose of having a model with a 2D con-
trol input, a model previously studied in [12] was
considered.
In this model, instead of tracking the center of

mass of the vehicle, a point slightly ahead is con-
sidered. The same NED reference frame is used
for the inertial frame and a rotating body frame
centered on the vehicle’s center of mass is consid-
ered for the vehicle body, with the linear speed al-
ways aligned with the body frame’s xx axis so that
BVb = [(vb +∆v) 0]⊤, where vb ∈ R is a constant
value and ∆v is an input for the model that belongs
to [−δv, δv] for some positive δv. The position of
the tracked point in the body frame is a parameter
of the system, dj = [d1 d2]

⊤.
As a result, the tracked dot’s position, regarding

the j-th agent in the network, xj in the inertial
frame is calculated using the following expression:

xj = xcg +R(ψj)dj (10)

and its derivative,

ẋj = R(ψj)
BVb + Ṙ(ψj)dj (11)

where R(ψj) is the rotation matrix:

R(ψj) =

[
cos(ψj) − sin(ψj)
sin(ψj) cos(ψj)

]
Assuming a model constraint for the maxi-

mum heading rate of vehicle, such that ψ̇j ∈
[−umax, umax] and a maximum speed differential of
∆v ∈ [−δv, δv], and with uj = [u1 u2]

⊤ the uni-
tary control input vector, the system (11) can be
re-written as follows:

ẋj = A(ψj)vb +M2(ψj)uj (12)

with M2 and A matrices that are functions of the
heading angle ψj and the different parameters of
the system such that,

M2(ψj) =
[
δv cos(ψj) −umax(d1 sin(ψj) − d2 cos(ψj))
δv sin(ψj) umax(d1 cos(ψj) − d2 sin(ψj))

]

A(ψj) =

[
cos(ψj)
sin(ψj)

]
for each ψj ∈ R.
In this model, the determinant of matrix M2(ψj)

is given by det(M2(ψj)) = δv · d1 · umax and it is
different than zero for every heading value as long
as long as δv, umax nor d1 are not zero themselves,
making it so there are never problems with matrix
inversion.
Another noteworthy fact is that both inputs are

directly available in the first derivative of the UAV
positions directly, which is very important in the
next section.

7. Feedback Control Law

Calculating the optimal control law is done by solv-
ing the optimal control problem over a finite time
horizon [t, t+∆t] when ∆t tends to zero. This ap-
proach was employed in [17] and is explained in [14].
In order to do this, it is more convenient to express
the quantities from Section 5 without the time fac-
tor and the number of agents in the denominator,
by multiplying the quantities by Nt as follows:

Ck(t) =

∑N
j=1

∫ t
0
f(xj(τ))dτ

⟨fk, fk⟩
= Ntck(t)

Uk(t) = Ntµk

Sk(t) = Ck(t)− Uk(t) = Ntsk(t)

Φ(t) =
∑
k

ΛkSk(t)
2
= N2t2ϕ(t).

To solve the optimal control problem, an appro-
priate cost function must be picked and the Hamil-
tonian equation formulated. For this purpose, the
chosen cost function to minimise is the derivative of
the metric for uniform coverage Φ(t+∆t), namely
Φ̇(t + ∆t), which means that the goal is to make
the next position of the agent so that the metric for
uniform coverage decays as much as possible, lead-
ing to the lowest possible value of the metric for
uniform coverage. This derivative is as follows,

Φ̇(t+∆t) =
∑
k

ΛkSk(t)
dSk(t)

dt
. (13)

with

dSk(t)

dt
=

∑N
j=1 fk(xj(t))

⟨fk, fk⟩
−Nµk, (14)

where ∇fk(.) is the gradient vector of the Fourier
basis function.

For all the models, the chosen cost function to
minimize is:

J(t,∆t) = Φ̇(t+∆t) (15)

In this specific case, without a Lagrangian func-
tion in the cost, the necessary conditions for opti-
mality of the control problem in the interval [t0, tf ]
are explained in [14] and are as follows:

ẋ∗(t) =
∂H
∂λ

(x∗(t),u∗(t), λ∗(t), t) (16)

λ̇∗(t) = −∂H
∂x

(x∗(t),u∗(t), λ∗(t), t) (17)

H(x∗(t),u∗(t), λ∗(t), t) ≤ H(x∗(t),u(t), λ∗(t), t),
(18)
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where x(t) and u(t) are generic system states and
control inputs, λ(t) are the costates for the min-
imization and H(x(t), u(t), λ(t), t) is the Hamilto-
nian function. This, of course, for every t ∈ [t0, tf ]
and every admissible control input. The ∗ super-
script means optimality, such as the optimal input
u∗.

7.1. Dubin’s vehicle control law
Let us then consider the extended system for the
Dubin’s Vehicle, adding the equations for the aux-
iliary states Sk(t) and Ok(t) = Ṡk(t):

ẋj = VaM(ψj)

ψ̇j = uj

Ṡk(t) = Ok(t)

Ȯk(t) =

N∑
j=1

∇fk(xj(t))
⟨fk, fk⟩

· ẋj(t)

(19)

Now, let the costates be jλ1(τ) ∈ R2 and
jλ2(τ),

k λ3(τ),
k λ4(τ) ∈ R for all N agents and for

all k wave number vectors.
The Hamiltonian is defined for each τ ∈ [t, t+∆t]

and written as follows:

H(xj , ψj , Sk, Ok, uj ,
jλ1,

jλ2,
kλ3,

kλ4, τ) =

= Va

N∑
j=1

jλ1 ·M(ψj) +

N∑
j=1

jλ2uj +
∑
k

kλ3Ok

+Va
∑
k

kλ4

∑N
j=1 ∇fk(xj)
⟨fk, fk⟩

·M(ψj)

(20)

where the time dependencies on the states were
omitted for brevity.
The control input uj in this model is bounded, its

upper and lower values being umax and −umax, re-
spectively. As such, the optimization of the optimal
control problem is done by minimizing the Hamil-
tonian, seen in (18). The control law is then given
by:

u∗j (τ) = argmin
||uj(τ)||≤umax

H(.) (21)

for each τ ∈ [t, t+∆t]. The solution to that equation
is trivial, as only the second term of the Hamilto-
nian contains the control input. As such, the opti-
mal control law can be written as follows:

u∗j (τ) = −
jλ2(τ)

||jλ2(τ)||
umax. (22)

for each τ ∈ [t, t+∆t].
Defining the auxiliary variable βj(t) as

βj(t) = Va
∑
k

ΛkSk(t)

∑N
j=1 ∇fk(xj(t))

⟨fk, fk⟩
· ∂M
∂ψj

,

(23)

the final control law for the Dubin’s Vehicle is the
following expression,

u∗j (t) = −umaxsign(βj(t)) (24)

7.2. Adapted Dubin’s vehicle control law
Let us then consider the extended system for the
Adapted Dubin’s Vehicle, adding equations for the
auxiliary states Sk(y) and Ok(t) = Ṡk(t):

ẋj(t) = A(ψj)vb +M2(ψj)uj

Ṡk(t) = Ok(t)

Ȯk(t) =

N∑
j=1

∇fk(xj(t))
⟨fk, fk⟩

· ẋj(t)
(25)

With analogous costates jλ1(τ) ∈ Rn and
kλ2(τ),

k λ3(τ) ∈ R for all N agents and K wave
vector harmonics, the Hamiltonian equation can be
written as follows,

H(xj , Sk, Ok, uj ,
j λ1,

k λ3,
k λ4, τ) =

N∑
j=1

jλ1 · [Avb] +
N∑
j=1

jλ1 · [M2(ψj)uj ] +
∑
k

kλ2Ok

+
∑
k

kλ3

∑N
j=1 ∇fk(xj)
⟨fk, fk⟩

· [M2(ψj)uj +Avb]

(26)

for each τ ∈ [t, t+∆t], where the time dependencies
were again omitted for brevity.

The control input is defined in this model as a
vector with maximum norm equal to one, with the
amplitudes of velocity and heading turn rate dic-
tated by parameters and as such not included in
the input. As a result, the boundaries for the input
are uj(t) ≤ 1. The optimal control input is then

u∗
j (τ) = argmin

||uj(τ)||≤1

H(.) (27)

For a cleaner expression, let’s define the auxiliary
variable βj(t) so that

βj(t) = MT
2 (ψj(t))

∑
k

ΛkSk(t)

∑N
j=1 ∇fk(xj(t))

⟨fk, fk⟩
.

Given the bounded nature of the input, the optimal
control law can be written as

u∗
j (t) = − βj(t)

||βj(t)||
(28)

8. Target probability density distribution
8.1. Fire Hazard Risk
The concept of uniform coverage based control laws
obtained in Section 7 is the convergence of the time
average along a trajectory into the desired spatial
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measure. The spatial measure is then one of the
inputs of the algorithm.

As previously mentioned in Section 5, the only
restriction applied to this measure is that it needs
to be bounded, without infinite values in the space
domain that needs to be surveilled.

For the purpose of this work, it is convenient to
think of this measure as something that relates to
fire hazard risk. A measure that would make sense
is the Fire Hazard Risk Index, a value calculated
daily by IPMA. According to the methodology doc-
ument publicly available [11], this value is a num-
ber from one to five, encompassing the different risk
levels from reduced to maximum, calculated using
various data such as weather prediction and the
amount of fuel on the ground.

8.2. Designing the target probability density
distribution

Considering that further in the work there will be a
probability analysis, it is convenient that the mea-
sure for the Fire Hazard Risk is expressed as a prob-
ability density distribution with a volume of one in
the entire domain.

Let U = [0, L]× [0, L] ⊂ R2 be the square target
domain for surveillance and µ : R2 → R the target
probability density distribution. Using an auxiliary
function, risk : R2 → R which assigns a relative risk
number to every point in the domain, we can have
the target probability density distribution defined
as

µ(x, y) =
risk(x, y)∫∫

U
risk(X,Y )dXdY

(29)

for every (x, y) ∈ U . The function is zero for every
(x, y) outside of the domain U .

For simulation purposes, the domain picked is a
2000m × 2000m domain with a cell resolution of
100m×100m, but in order to avoid symmetry issues
caused by the Fourier basis function (3), the domain
is extended with values equal to zero. The graphical
representation is shown in Figure 8.2.

(a) Fire Hazard probability (b) Fourier Transform of the
Fire Hazard probability

Figure 1: Fire Hazard probability function and its
Fourier approximation with K = 15.

9. Simulink Simulations

For the Simulink simulations, we considered an
ASN composed of 3 UAVs with a maximum head-
ing rate of umax = 0.5rad/s and a constant vehicle
speed of V a = 30m/s.. The simulation was run for
a period of T = 3600s, i.e., one hour. The equa-
tions were solved using the ode4 solver with a step
time of 0.1s.

10. Dubin’s Vehicle Model Simulation

The metric for uniformity obtained in the simula-
tion is showcased in Figure 4, and it shows the ex-
pected decay. The metric is not monotonous, which
wouldn’t be possible, but the control law guarantees
that should there be an increase, it is the smallest
possible. Overall, the trend is that the metric is
converging to zero.

(a) Heatmap of the desired
probability density distribu-
tion

(b) Heatmap of the obtained
probability density distribu-
tion

Figure 2: Visualization of the desired probability
density distribution’s and the obtained probability
density distribution’s Heatmap.

An easier visualization of the results is shown
in Figure 10, showing the heatmap comparison be-
tween the desired distribution and the obtain prob-
ability density distribution. The heatmaps are very
similar, a result that suggests that the adaptation
was successful, as ultimately, the agents were dis-
tributed correctly.

There is an issue with the control input of this
model, stemming from (21). The control input for
this model is an erratic discrete signal that bounces
between the minimum and maximum values.

11. Adapted Dubin’s Vehicle Model

For the Adapted Dubin’s Vehicle model, the pa-
rameters chosen were d2 = 0m, d1 = 0.5m and
δv = 5m/s .

The metric for uniformity is plotted in Figure 4,
in blue, and shows a decrease in average value over
time, suggesting it would successfully converge to
zero for an infinite mission.

The heatmap probability density distribution ob-
tained in this simulation is shown in Figure 11, and
has a shape that is very similar to the reference dis-
tribution. This model has no issues with the control
input, given that the optimal control law (28) is not
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(a) Heatmap of the desired
probability density distribu-
tion

(b) Heatmap of the obtained
probability density distribu-
tion.

Figure 3: Visualization of the desired probability
density distribution’s and the obtained probability
density distribution’s Heatmap on the Adapted Du-
bin’s Vehicle Model.

discrete, with the control input being any value in
the unitary sphere.

12. Model performance comparison

Since both the previous models had the same initial
condition, same domain, and same risk function, it
is possible to overlap the metric for uniform cover-
age graphs.

Figure 4: Comparison between the metric for uni-
form coverages of the Dubin’s Vehicle and the
Adapted Dubin’s Vehicle.

In Figure 4, the two metrics are overlapped and
look very similar. The Dubin’s Vehicle model has
a slightly lower average value, but the results could
have easily been passed as eachother’s, as they have
no noticeable differences. This suggests that the
Adapted Dubin’s Vehicle model would be a more
sensible choice for implementation in real life as
there is no issue with the control input being dis-
crete and erratic.

13. ROS Implementation

A ROS implementation of the Dubin’s Vehicle was
done using a generic fixed-wing UAV with VTOL
capabilities in Gazebo. The UAV was controlled
using the PX4 stack in offboard mode, sending way-
points that were generated with the state equations
for the model.

To calculate the optimal control law, the control

station receives GPS data from the aircraft. The
position values and the ground speed values are
needed. The ground speed is used to calculate the
heading as follow:

ψ = atan2(Vy, Vx)

where Vx and Vy are the linear speed components
in the inertial frame.

Due to hardware limitations, only one aircraft
was considered for this simulation. Furthermore,
due to technical constraints in the PX4 controller
stack, only the Dubin’s Vehicle Model was able to
be implemented without deeply delving into the
PX4 source code, which is outside of the scope of
this work.

The aircraft speed was set to 25m/s instead of
the previous simulation’s 30m/s due to vehicle lim-
itations. The maximum heading turn rate was set
to umax = 0.5rad/s. The simulation time was ex-
tended to around 6000 seconds from the previous
3600 seconds because of the decrease in speed and
number of aircrafts. The communications between
the vehicle and the control station took place with
a frequency of 10Hz.

14. Results of the ROS simulation

(a) Heatmap of the desired
probability distribution

(b) Heatmap of the obtained
probability distribution.

Figure 5: Visualization of the desired probability
distribution’s and the obtained probability distri-
bution’s Heatmap on ROS/Gazebo simulation.

The heatmap for the vehicle’s position probabil-
ity distribution is showcased in Figure 14, and it
shows that there are clear differences between the
obtained result and the desired output. This is most
likely due to the difficulty the PX4 controller has in
following the desired waypoints due to the discrete
and erratic nature of the control input. However,
due to the fact that only one aircraft was considered
and the conditions were not ideal (i.e. inefficient
control method for the model used, and the use of
the Dubin’s Vehicle model), the result shows the
overall shape of the distribution was still achieved,
and that higher risk areas were covered for longer
than lower risk areas.

15. Ignition Definition
In order to estimate of the probability of detection
of an ignition during a surveillance mission, it is
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important to define what is to be considered an ig-
nition.
For the purpose of this work, an ignition is to be

the precursor to an uncontrollable fire, a small flame
that might be contained easily and in a timely man-
ner. With the most common fire causes mentioned
in Section 1, this can be associated with a Crawl-
ing or Surface fire. A Crawling or Surface fire is a
fire caused by the burning of ground level vegeta-
tion and other fuels such as grass, trash debris, and
pieces of wood from surrounding trees. These fires
burn with a surface temperature of around 400ºC
to 500ºC [3].

In [2], it is concluded that the type of IR sensor
more suited to detect fire is a MWIR due to the
radiation at fire temperatures peaking at a wave-
length between 3µm and 3µm, which is inside the
MWIR sensing range.

16. Probability of Detection
Let a UAV position (xv, yv) be a point in the cover-
age domain U . With the last moment of the simula-
tion taken into consideration, the probability of one
UAV in the network being in (xv, yv) is Pv(xv, yv),
defined as

Pv(xv, yv) = Ct=3600. (30)

The probability density distribution of an igni-
tion is the target distribution function of the algo-
rithm, µ. As such, let (xi, yi) be a point in the
coverage domain U . The probability of an ignition
happening in (xi, yi) is Pi(xi, yi), defined as

Pi(xi, yi) = µ(xi, yi). (31)

16.1. Sensor Model
The model used for this part was proposed in [15]
and takes advantage of the fact that electromag-
netic radiation propagates spherically in a vacuum
and in a free medium such as air. The result of this
is that the power dissipation is proportional to the
inverse of the distance travelled squared. As such,
the noisy measurement obtained by the IR sensor
can be modelled by the following equation,

Pr(xv, yv, xi, yi) =
P0i

4πR(xv, yv, xi, yi)2
+ ni (32)

where he power P0i is defined by the Stefan-
Boltzmann law, which is a valid way to model a
fire [23], he parameter ni is a random variable fol-
lowing a Gaussian distribution and R(xv, yv, xi, yi)
is the distance between the ignition point and the
sensor position, which is the vehicle position, given
by

R(xv, yv, xi, yi) = ||(xv, yv, h)− (xi, yi, 0)|| (33)

where h is the flight altitude of the vehicle, a con-
stant parameter over the surveillance mission.

The proposed model for the probability of detec-
tion is based on whether the power received by the
sensor is higher than a certain threshold. Conse-
quently, let Psens(xv, yv, xi, yi) be the probability
of the sensor detection,

Psens(xv, yv, xi, yi) = {Pr(xv, yv, xi, yi) > c}. (34)

The important variables to determine for this
model are then the standard deviation of the white
noise added to the received power and the threshold
at which a detection is deemed to have failed.

To obtain the value of c, a distance from the ig-
nition at which the sensor has a 50% chance of de-
tection needed to be chosen. The distance chosen
for the analysis is 5000m. The standard deviation
was picked so that there is a decrease of 90% of the
probability between 4500m and 5500m.

Not only are the sensors limited by distance, they
are also limited by their field of view. To take in
consideration the FOV of the sensor, it will be as-
sumed that the sensor is always pointing straight
down from the aircraft and has a conic field of view.
The radius of the cone on the ground can then be
written as follows,

r = h arctan(
γ

2
),

where h is the flight altitude and γ is the angle of
the cone of view. This angle can range between
different values even in the same sensor, but as it
increases the resolution of the obtained image also
decreases due to more area being covered with the
same amount of pixels. The value used throughout
this section is γ = 24º.

Ultimately, the sensor model to be used it Ps,
defined as follows,

Ps(xi, yi, xv, yv) =

{
Psens(xi, yi, xv, yv) if R ≤ r

0 otherwise
.

(35)

16.2. Probability function
With a well defined sensor model, vehicle position
probability density distribution and ignition proba-
bility density distribution, the overall probability of
one UAV in the network detecting an ignition can
be the integral of the product of those three,

Pd =

∫∫
U

∫∫
U

Ps(xv, yv, xi, yi)Pi(xi, yi)Pv(xv, yv).

(36)
The detection of an ignition is an independent

event for each aircraft in the network, so the joint
probability of detection is given as
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Pjoint = 1−
N∏
i=1

(1− Pd). (37)

17. Parametric Study
In order to maximize the joint probability of de-
tection, the flight altitude was varied between h =
500m and h = 5500m. The probabilities obtained
are showcased in Figure 6.

Figure 6: Probability of detecting an ignition in
function of the altitude.

The figure clearly shows that there is an optimal
altitude, with a sharp decrease afterwards and a
steady climb up until that point. The steady climb
up to the optimal altitude is the result of the FOV
restrictions, when the distance between the sensor
and ignition is still low enough that there is no drop
in performance in that front. As the altitude in-
creases, more area is covered at the same time and
with good performance, leading to the increase as
altitude goes up. However, after the h = 4500m
mark, the performance drops sharply, which is the
result of the threshold value chosen for the sensor
model, which dictates a performance drop after a
distance of 5000m from the ignition. At this point,
increasing the altitude only means the performance
of the sensor drops even further, which is not offset
by the increased area covered.
A better sensor would mean this threshold could

be increased, or that the FOV angle could be in-
creased without any significant drop in resolution,
which would shift the curves up and increase the
probability of detection. Additionally, adding more
agents would significantly increase the joint proba-
bility of detection, as shown in (37).

18. Conclusion
Overall, the objectives outlined in Section 3 were all
properly accomplished throughout this work. The
theoretical basis for the algorithm was established
in Section 4, with all the functions defined for un-
derstanding how to say if the trajectories of the

system can be considered uniform. In light of the
movement restrictions of a fixed-wing UAV, two dif-
ferent movement models were introduced in that are
easily associated with the coordinated turn move-
ment of an aircraft. By the end of Section , the
optimal feedback control laws for both models were
obtained.

In Section 8, the Fire Hazard Risk function was
defined in order to run Matlab/Simulink simula-
tions for both models. The results of the simulation
for the Dubin’s Vechicle Model in Section 10 show
that the metric for uniform coverage converges to
nearly zero, and the heatmaps of the probability
distribution function of the UAV position closely
resemble the desired heatmap.

The results of the simulation for the Adapted Du-
bin’s Vehicle Model in Section 11 show that the per-
formance is equivalent to the performance in of the
Dubin’s Vehicle Model but without the issue of the
discrete control input.

The real time component of the trajectory gen-
eration proved to be possible to implement within
the limitations of a real life environment by running
an unoptimised ROS simulation using the Gazebo
physics simulator and a PX4 vehicle model for sim-
ulation in Section 13.

In Section 15, the concept of ignition was defined
in order for a probabilistic model for the ignition de-
tection probability to be proposed. A sensor model
for a Infra-Red sensor was proposed and is the basis
for the probabilistic model. The parametric study
shows there is a clear optimal altitude which varies
depending on the sensor used.

18.1. Future Work

Interesting future work that could be done is the in-
tegration of the sensor model into the optimal con-
trol law, as it is clearly a bottleneck for the proba-
bility of detection, as well as scaling the algorithm
for 3D trajectories and adding the flight altitude to
the optimal control law.

There might also be the case that using the Fire
Hazard Risk function as the target measure does
not maximize the probability of detection, so the
optimization problem could be further studied by,
for example, applying genetic algorithms to (36).
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