
Towards traffic change detection in the network data plane

Gonçalo Filipe Oliveira Matos

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Fernando Manuel Valente Ramos
Prof. Salvatore Signorello

Examination Committee

Chairperson: Prof. Pedro Miguel dos Santos Alves Madeira Adão
Supervisor: Prof. Fernando Manuel Valente Ramos

Member of the Committee: Prof. Nuno Fuentecilla Maia Ferreira Neves

November 2021

Acknowledgments

I would first like to thank my advisor Professor Fernando Ramos for the opportunity to work on this

project, for pushing me to improve and to contribute to the scientific community, and for all the support

throughout my dissertation.

A great special thank you to my co-advisor Professor Salvatore Signorello for all the exceptional

support, advice, motivation, and feedback he gave me, which allowed me to improve and learn in every

step of this project.

A word of gratitude to my parents for their patience and for supporting me through my academic life

and to my older brother for always setting the best example and for being someone I can look up to.

A warm thank you to my girlfriend, Ana Rita Ferreira, for all the support and for being the smartest,

funniest, prettiest, and most awesome person in the world. Thank you for baking cakes and waffles, and

for the very important help with writing every single one of my emails and even this acknowledgements

section. Thank you for always being here for me and for never letting me give up.

This work was partially supported by national funds through FCT via UIDB/50021/2020 and PTDC/CCI-

INF/30340/2017 (uPVN) project.

i

ii

Resumo

A identificação de alterações de tráfego é fundamental para a execução de várias tarefas em redes,

desde análise de congestão à deteção de intrusões. Os detetores de alterações mais modernos uti-

lizam mecanismos baseados em estruturas de dados chamadas sketches que, ao utilizarem descrições

compactas do tráfego, atingem melhores compromissos entre memória e precisão. Estas técnicas são

utilizadas para detectar heavy-hitters (fluxos de tráfego que representam as maiores fontes de con-

gestão em redes) mas, apesar de poderem ser adaptados para detetar alterações neste tipo de tráfego,

falham na generalidade. Como se focam na monitorização dos fluxos ”pesados”, ignoram os fluxos

pequenos que podem também ser a causa de alteração na rede (e.g., micro-rajadas ou ataques de

pequeno volume).

Neste trabalho apresentamos o K-MELEON, um sistema in-network de deteção de alterações de

tráfego em redes informáticas que identifica todas as alterações relevantes de tráfego, em vez de ape-

nas as alterações provocadas por heavy-hitters. A contribuição principal deste trabalho é uma variante

do k-ary sketch (uma solução genérica de deteção de alterações) que é executada no plano de da-

dos de switches programáveis. O maior desafio baseia-se no facto de o k-ary ser offline, baseado na

análise de dados em bulk. O K-MELEON utiliza técnicas de streaming que se enquadram no modelo

computacional restrito dos switches e se adaptam às suas limitações. A avaliação do K-MELEON mostra

que este obtém o mesmo grau de exatidão online que o k-ary offline, e que deteta alterações em redes

para qualquer tipo de fluxo: grande ou pequeno.

Palavras-chave: deteção de alterações, sketch, plano de dados, redes definidas por soft-

ware

iii

iv

Abstract

Identifying traffic changes accurately sits at the core of many network tasks, from congestion analy-

sis to intrusion detection. Modern systems leverage sketch-based data structures that achieve favorable

memory-accuracy tradeoffs by maintaining compact summaries of traffic data. Mainly used to detect

heavy-hitters (usually the major source of network congestion), some can be adapted to detect traf-

fic changes, but they fail on generality. As their core data structures track elephant flows, they miss

identifying mice traffic that may be the main cause of change (e.g., microbursts or low-volume attacks).

In this work, we present K-MELEON, an in-network online change detection system that identifies

heavy-changes – instead of changes amongst heavy-hitters only, a subtle but crucial difference. Our

main contribution is a variant of the k-ary sketch (a well-known heavy-change detector) that runs on the

data plane of a switch. The main challenge was the batch-based design of the original. To address it,

K-MELEON features a new stream-based design that matches the pipeline computation model and fits its

tough constraints. The preliminary evaluation of this prototype shows that K-MELEON achieves the same

level of accuracy for online detection as the offline k-ary, detecting changes for any type of flow: be it an

elephant, or a mouse.

Keywords: change detection, sketch, data plane, software-defined networks

v

vi

Contents

Acknowledgments . i

Resumo . iii

Abstract . v

List of Tables . ix

List of Figures . xi

Acronyms . xiii

1 Introduction 1

1.1 Contributions . 2

1.2 Structure of the document . 3

2 Background 5

2.1 Programmable Networks . 5

2.1.1 Programmable Control Planes . 6

2.1.2 Programmable Data Planes . 7

2.1.3 The P4 Language . 9

2.2 Traffic Measurements . 10

2.2.1 Traditional Methods . 10

2.2.2 Sketch-based Methods . 11

2.3 Traffic Change Detection . 15

2.4 Summary . 17

3 Design 19

3.1 Problem definition . 19

3.2 The k-ary sketching algorithm . 20

3.3 Requirements for change detection . 21

3.4 Challenges with on-line change detection . 22

3.5 Stream-based change detection: K-MELEON . 22

3.5.1 Computing the Error and Forecast Sketches . 23

3.5.2 Fake Updates . 27

3.5.3 Reading sketches consistently . 28

3.5.4 Approximating Floating-Point Arithmetic . 29

vii

3.5.5 The Role of the Control Plane . 30

3.6 Summary . 31

4 Implementation 33

4.1 The k-ary in a high-level language . 33

4.1.1 The Main Program . 37

4.1.2 Exploring the configuration space . 39

4.2 K-MELEON . 39

4.2.1 Data Plane . 40

4.2.2 Control Plane . 44

4.3 Additional tools for testing and evaluation . 46

4.4 Summary . 47

5 Evaluation 49

5.1 Testing Environment . 49

5.2 K-ary . 50

5.2.1 Determining the sketch size . 50

5.2.2 Use case: Attack Detection . 51

5.2.3 Exploring the configuration space for attack detection 52

5.3 K-MELEON . 55

5.3.1 Preliminary note . 56

5.3.2 K-MELEON vs k-ary . 56

5.3.3 Detecting network attacks . 57

5.3.4 Detecting microbursts . 59

5.3.5 System performance and resource usage. 60

5.4 Summary . 61

6 Conclusions 63

6.1 Achievements . 63

6.2 Discussion and future work . 64

Bibliography 65

viii

List of Tables

2.1 Overview of the state-of-the-art approaches for traffic change detection. 17

4.1 Configuration parameters available through the main program main.py. 38

5.1 Best flow-key type for each trace in the network_attacks dataset, where 5T means the

five-tuple key and 2T means destination IP and protocol. 55

5.2 Memory consumption (in bytes). Baseline values were calculated with 100 flows per

epoch. 60

ix

x

List of Figures

2.1 Conventional networking. 6

2.2 Software-Defined Networking [26]. 6

2.3 The OpenFlow pipeline [28] . 7

2.4 An OpenFlow Flow-Rule Table [29]. 7

2.5 Match-action tables pipeline in PISA. 8

2.6 The P4 abstract forwarding model [20]. 8

2.7 Excerpt of a P4 program implementing the Count-Sketch [34]. 9

2.8 Design space in traffic aggregates detection [36]. 10

2.9 An illustration of HashPipe [15]. 13

3.1 Illustration of the UPDATE operation on a k-ary sketch. 20

3.2 High-level block diagram of k-ary. 22

3.3 High-level block diagram of K-MELEON. 22

3.4 K-ary algorithm after applying the transformation in equation 3.3. 24

3.5 High-level block diagram of the k-ary algorithm using the incremental update of the error

sketch described in equation (3.5). 25

3.6 High-level block diagram of the k-ary algorithm using the forecast update described in

equation (3.6). 25

3.7 High-level block diagram of the k-ary algorithm after fully integrating the changes in the

equations (3.5) and (3.6). 26

3.8 First High-level block diagram of the K-MELEON’s data plane algorithm. 27

3.9 Comparison between the K-MELEON algorithm with and without the fake update mechanism. 28

3.10 Illustration of the K-MELEON’s consistency mechanism. 29

3.11 Multiplying number 151 by 0.5 (on the left) and by 0.25 (on the right), using right bit-shifts. 30

3.12 Bit-shift multiplication of 151 using α = 0.75. 30

4.1 Overview of the main software components developed within this project on traffic change

detection. 34

4.2 Overview of the k-ary source code. 34

4.3 Overview of the K-MELEON implementation code. 39

4.4 High-level block diagram of K-MELEON. 40

xi

5.1 Empirical CDF values obtained for the relative difference between k-ary and per-flow anal-

ysis (ground truth) for different sketch widths (K), represented as the number of buckets

per hash. The number of hashes (H) is equal to 3. 51

5.2 Empirical CDF values obtained for the relative difference between k-ary and per-flow anal-

ysis (ground truth) for different sketch heights (H). The sketch width is K = 2048. 52

5.3 Empirical accuracy values obtained for each trace with the k-ary implementation in python. 53

5.4 Empirical accuracy values obtained for each forecasting model using different epoch sizes. 54

5.5 Empirical optimal threshold values obtained for each trace. 55

5.6 Empirical CDF values obtained for the relative difference between k-ary and K-MELEON

for different sketch heights (H). 57

5.7 Empirical CDF values obtained for the relative difference between k-ary and K-MELEON

for different alpha values (α). 58

5.8 Empirical CDF for network attacks. 59

5.9 Empirical CDF for microbursts. 59

xii

Acronyms

API Application Programming Interface.

ARIMA Auto-Regressive Integrated Moving Average.

ASIC Application-Specific Integrated Circuit.

BMv2 Behavior Model version 2.

CDF Cumulative Distributed Function.

COTS Commercial Off-the-shelf.

CPU Central Processing Unit.

CRC Cyclic Redundancy Check.

DDoS Distributed Denial of Service.

DoS Denial of Service.

DRAM Dynamic Random-Access Memory.

ET Elastic Trie.

EWMA Exponentially Weighted Moving Average.

HP Hewlett-Packard Development Company.

ID Identifier.

IPFIX Internet Protocol Flow Information Export.

IP Internet Protocol.

MAC Media Access Control.

MA Moving Average.

MMT Multiple Match Tables.

NSHW Non-Seasonal Holt-Winters.

OF OpenFlow.

xiii

P4c Programming Protocol-independent Packet Processors compiler.

P4 Programming Protocol-independent Packet Processors.

PoF Protocol-Oblivious Forwarding.

RAM Random-Access Memory.

RMT Reconfigurable Match Tables.

SDE Software Defined Environment.

SDN Software Defined Networking.

SMA S-Shaped Moving Average.

SNMP Simple Network Management Protocol.

SRAM Static Random-Access Memory.

Tbps Terabit per second.

TCP Transmission Control Protocol.

UDP User Datagram Protocol.

VLAN Virtual Local Area Network.

xiv

Chapter 1

Introduction

In a network, the only constant is change. While sometimes inconsequential, significant traffic

changes are commonly associated with events that require special attention from the operator: they

may be an indicator of a malicious attack to the network [1], of a bottleneck caused by a flash crowd [2],

or can be a sign of persistent congestion [3]. The ability to detect traffic changes fast and efficiently is

therefore a fundamental requirement of many network operation tasks.

Some traffic changes are known to occur, and can be coped with straightforwardly. Take anomaly

detection as an example. Signature-based detectors [4, 5] look for patterns that match signatures of

known anomalies, enabling detection and reaction to these changes. For the general case of unknown

anomalies and unexpected changes, however, operators resort to statistical-based approaches of var-

ious kinds [6]. These systems devise a model of normal behavior based on past traffic, and generate

alerts when significant changes that are inconsistent with the model occur. A core building block of these

systems is therefore a mechanism of change detection. The applicability of this technique is not re-

stricted to anomaly detection, however, but to an array of other applications, from network measurement

to traffic engineering.

Ideally, a change detection mechanism would analyse all packets from every flow and maintain all

flow-related information. Such fine-grained approach does not scale well, incurs in very high overheads,

and is effectively not tractable without dedicated hardware [7]. The typical change detection mechanisms

therefore either rely on coarse-grained counters, like those provided by SNMP, or are sampling-based.

The former provide useful aggregate statistics to detect major problems, but give up information that is

often necessary to detect relevant changes, which are left sunk inside the aggregated traffic. Further,

typical SNMP collection granularities are on the order of several minutes. The latter, a common solution

deployed in practice today, consists in packet sampling (e.g., NetFlow). However, the processing and

bandwidth overheads of processing packets make it infeasible to sample at sufficiently high rates. Sam-

pling just 1 in several thousand packets is therefore common. Facebook, for instance, typically samples

packets with a probability of 1 in 30,000 [3].

An alternative to sampling that has been much explored recently, particularly spurred by the emer-

gence of programmable networking hardware, is the use of sketches [8, 9]. Sketches are a probabilistic

1

summary technique proposed in the database community for analysing data streaming datasets. They

have very interesting properties for the networking context too: sketches are space-efficient and provide

probabilistic memory-accuracy guarantees. They thus enable efficient and scalable monitoring solutions

that in some cases can run entirely in the network data plane. Several sketch-based systems have been

recently proposed, running different network monitoring tasks at line rate in commodity switches [10–16].

These modern systems are, however, restricted to heavy-hitter variants, and none has considered the

general problem of change detection1.

This dissertation describes K-MELEON, a sketch-based change detection system. The starting point

is the k-ary sketch [18], a variant of the sketch data structure, which uses a constant, small amount

of memory, and has constant per-packet updates. On top of the sketch summaries runs a time series

forecast model (EWMA, ARIMA, etc.) that detects significant changes by looking for flows with large

forecast errors. The k-ary is an efficient and accurate solution for the general change detection problem,

but has some limitations that preclude its deployment. First, it is an offline solution based on the anal-

ysis of bulk traffic traces. Network operators, however, need detection solutions that enable real-time

decisions. Second, it is software-based, limiting its performance, response time, and scalability. For

instance, the k-ary [18] is able to detect changes only in the order of minutes. As a result, it would fail to

detect relevant events in today’s networks, including microbursts [3] and short duration attacks [19].

1.1 Contributions

K-MELEON addresses the above challenges with k-ary by running the sketch and forecasting modules

of its change detection mechanism entirely in the data plane of programmable switches [20, 21]. As a

result, it enables online change detection, with sub-second responses, at Terabit scales. The

challenge is to develop functionally equivalent algorithms to the batch-based k-ary ones, while fitting the

switch pipeline computation model and its harsh compute and memory constraints. The main novelty

of this solution is a streaming-based algorithm that carefully computes the change detection estimates

continuously, as packets traverse the switch.

In summary, the contributions of this dissertation are:

• The design of K-MELEON, an online change detection system that speeds and scales up detection

by leveraging programmable switches.

• The implementation of a prototype in P4 [22, 23], which we make available open-source (in [24]).

• An evaluation that demonstrates K-MELEON achieves the same level of accuracy as the offline k-

ary solution, and detects changes from any type of flow (not only heavy-hitter traffic as existing

work [16, 17]).

A short version of this work was accepted to appear at the CoNEXT’21 Student Workshop. An

extended version of that paper was also accepted to appear at the EuroP4’21 workshop.
1To be clear, a few works [16, 17] have considered heavy(-hitter) change detection, a subset of the problem, as will be clarified

later. In short, these systems detect traffic changes among heavy-hitters only, but in practice not all flows that experience significant
changes are “heavy”. This dissertation investigates the more general problem.

2

1.2 Structure of the document

The rest of this document is organized as follows:

• Chapter 2 - Background

This Chapter describes the background and related work. The first section introduces the works

which enabled the programmability of the control and data planes. Then, the most common meth-

ods for network traffic measurement are described in Section 2.2. Finally, Section 2.3 explores the

state of the art in the more specific problem of traffic change detection.

• Chapter 3 - Design

This Chapter details the design steps taken to build the stream-based change detection solution

we propose, K-MELEON. The first sections define the problem tackled by this thesis and describe

the starting point of the design phase: the k-ary sketch [18]. Section 3.3 sets the requirements

for change detection and Section 3.4 discusses the challenges faced by the k-ary algorithm with

on-line change detection. Finally, Section 3.5 describes the design of K-MELEON, by overcoming,

step by step, each of the challenges specified for on-line change detection.

• Chapter 4 - Implementation

This Chapter describes the implementation of K-MELEON. Section 4.1 reports our implementation

of the k-ary algorithm in python, by closely following the description in the original paper [18]. We

use this as baseline for our evaluation in Chapter 5. Section 4.2 describes the implementation of

K-MELEON in the data plane using P4, and the interactions required with the control plane. Lastly,

Section 4.3 presents the set of tools created to support the evaluation of both programs.

• Chapter 5 - Evaluation

This Chapter presents the evaluation of K-MELEON. Section 5.1 presents the testing environment,

including the datasets and the experimental setup used. Section 5.2 validates the k-ary implemen-

tation in python and explores the configuration parameters for the use case of attack detection.

Lastly, Section 5.3 measures the ability of K-MELEON to detect network attacks and microbursts in

the data plane.

• Chapter 6 - Conclusions

This Chapter summarizes the work developed and discusses future work.

3

4

Chapter 2

Background

This chapter describes previous work related to the subject of this dissertation. Section 2.1 intro-

duces the concept of Software Defined Networking (SDN), which breaks the tight coupling of the control

and forwarding planes in network devices. At first, this Section highlights the management problems

inherent to conventional networks which the SDN paradigm has contributed to resolve. Afterwards, it

presents the OpenFlow protocol and the P4 language that have enabled a standard programmability

of the control and data plane, respectively, in SDN. As the work in this thesis focuses on traffic mea-

surements, Section 2.2 presents an overview of traditional techniques in monitoring systems based on

packet sampling. Furthermore, it presents some of the most relevant solutions leveraging sketching al-

gorithms within legacy and SDN-enabled networks. Finally, Section 2.3 outlines the importance of traffic

change detection for several critical monitoring tasks, with a focus on the anomaly detection use case for

security. Then, it presents the main challenges and techniques for performing traffic change detection in

today’s programmable networks.

2.1 Programmable Networks

Conventional computer networks are typically complex and hard to manage, and include different

kinds of equipment like routers, switches, network address translators, server load balancers, firewalls,

and intrusion detection systems. This kind of equipment is typically fixed-function and has individual con-

figuration interfaces that vary across manufacturers and require manual configuration by knowledgeable

network administrators.

Historically, those networks have been vertically integrated; the (1) control plane - that determines

how to handle network traffic - and the (2) data plane - that forwards packets according to the rules

defined by the control plane, are bound together inside the networking devices. This has represented a

barrier for innovation, hindering the testing and deployment of new ideas into production networks.

Software Defined Networking (SDN) [25, 26] has recently become a widely adopted network paradigm

to resolve the above problem. SDN changes the way networks are designed and managed by separating

the control plane from the data plane and by consolidating the former, allowing for a logically central-

5

Figure 2.1: Conventional networking. Figure 2.2: Software-Defined Networking [26].

ized control plane program to control multiple data plane components. Figures 2.1 and 2.2 illustrate

the difference between conventional networking, where control functions are performed in each network

device, and SDN, where functions are now logically centralized into a controller entity, while the network

data plane elements act like simple forwarding devices.

2.1.1 Programmable Control Planes

Software Defined Networks provide a great advantage against conventional networks by introducing

the ability to program the control plane. In fact, by separating the control from the data plane, SDN in-

frastructures allow for the creation of a flexible and decentralized controller where network applications

can be executed. With SDN, network managers can remove the decision process from the network de-

vices, that become simple forwarding elements and build more scalable and flexible networks. Although

a centralized controller might induce the idea of a physically centralized system, SDN does not mandate

it. Indeed, SDN network designs often resort to physically distributed control planes to achieve sufficient

levels of performance, scalability and reliability.

The OpenFlow (OF) protocol, proposed in [27], first described how such an SDN system could be

designed for researchers to experiment with new protocols in production networks. The design of OF

was rooted on the observation that a common forwarding abstraction was available across several mod-

ern routers, despite their differences with vendors and models. In fact, these devices featured hardware

flow-tables to implement functions like firewall-ing, NAT-ing, and statistics collection, at line-rate. And,

by abstracting the flow-table mechanism present in many of the commercially-available switches and

routers, OF could serve as an open protocol to uniformly program all of these devices.

An OF-compliant switch features at least three components: (1) A Flow Table, (2) A Secure Channel

and (3) The OpenFlow protocol. The Flow Table associates an action to a certain flow, instructing the

switch how to process such flow. A flow could be a TCP connection, for example, or all packets from a

particular MAC/IP address, or all packets with the same VLAN tags, etc. The Secure Channel allows a

remote-control process to exchange commands and packets with the switch. The OF protocol provides

an open and standard way for a controller to communicate with a switch.

6

Figure 2.3: The OpenFlow pipeline [28]

Figure 2.4: An OpenFlow Flow-Rule Table [29].

Figures 2.3 and 2.4 illustrate the structure of the OF logical processing pipeline and of the flow

table, respectively. The OF processing pipeline consists of two stages: ingress processing (for incoming

packets) and egress processing (for outgoing packets). Each pipeline consists of a series of sequentially

numbered flow tables. When a packet reaches the ingress port, it is matched by selected protocol header

fields with the flow entries of the first flow table (table 0). Each entry contains a set of actions that it can

apply to matched packets and associated counters it can increment. A flow entry can steer the packet to

any flow table with a number larger than its own flow table number. The last flow table, besides executing

actions associated to its entries, can specify the output port for the forwarding of the current packet. Flow

tables can be populated with specific entries at run-time by an SDN controller through the OF protocol.

Since its proposition in 2008, OpenFlow has grown to support more protocols and expose more of the

underlying switches’ capabilities to the controller. Today, OF is the most used communication protocol

for software defined networks. It is widely used across different kind of networks, e.g., in universities

[30] and at big companies (Google [31], HP [32]), only to name a few. Its continuous development is

overseen by a very diverse and active community across industry and academia.

2.1.2 Programmable Data Planes

Although the OpenFlow (OF) specification keeps adding support for new protocols, the current pro-

gramming model shows two main limitations: (1) match+action processing on only a fixed set of fields

and (2) a limited repertoire of packet processing actions. Supported protocols and available actions,

which are defined in the OF specification, are mostly dictated by off-the-shelf fixed-function switches. A

new programmable switch model, the Reconfigurable Match Tables (RMT) switch architecture, was pro-

posed [20] with the aim to overcome those two limitations with fixed-function switches. RMT consists of

a line-rate pipelined switch architecture featuring a minimal set of generic packet processing primitives.

Each primitive specifies a packet processing operation executed in a piece of hardware which can be

reconfigured in the field.

The RMT model improves over the mainstream OF’s Multiple Match Tables (MMT) model where

multiple match tables in a pipeline match against a subset of only pre-defined protocol fields in a packet.

In more detail, RMT enhances the MMT data plane programming model in four ways: (1) new protocols

can be added or existing protocols can have their definitions altered, (2) multiple match tables with

7

Figure 2.5: Match-action tables pipeline in PISA.

arbitrary width and depth can be specified, subject only to an overall resource limit, (3) new actions can

be defined, and (4) arbitrarily modified packets can be placed in specified queue(s), for output of any

subset of ports, with a queuing discipline specified for each queue.

The scientific advances brought by the RMT design and other related works [33] led to the defini-

tion of several new abstractions for data-plane programming, such as the Protocol Independent Switch

Architecture, which is now used by the most recent programmable switches. The PISA architecture

generalizes the Reconfigurable match tables model to implement an ingress and egress pipeline con-

sisting of a series of match-action tables arranged in stages that execute synchronously as illustrated in

Figure 2.5. More specifically, whenever a packet enters the pipeline, it is processed by each stage and

delivered to the next, until it exits the pipeline. This architecture is also protocol-independent because

it does not model any specific packet parsing until its parser block is programmed. This novel switch

target allows non-standard protocols and packet processing behaviors to be configured into the switch

through a program at compile time.

Figure 2.6: The P4 abstract forwarding model [20].

8

/* -*- P4_16 -*- */
#include <core.p4>
#include <v1model.p4>

#define SKETCH_BUCKET_LENGTH 28
#define SKETCH_CELL_BIT_WIDTH 64
#define SKETCH_REGISTER(num)
register<bit<SKETCH_CELL_BIT_WIDTH>>
(SKETCH_BUCKET_LENGTH) sketch##num

#define SKETCH_COUNT(num,algorithm) . . .

const bit<16> TYPE_IPV4 = 0x800;

typedef bit<9> egressSpec_t;
typedef bit<48> macAddr_t;
typedef bit<32> ip4Addr_t;

header ethernet_t {
 macAddr_t dstAddr;
 macAddr_t srcAddr;
 bit<16> etherType;
}

header ipv4_t { . . . }

struct metadata { . . . }

struct headers {
 ethernet_t ethernet;
 ipv4_t ipv4;
}

parser MyParser(packet_in packet,
 out headers hdr,
 inout metadata meta,
 inout standard_metadata_t standard_metadata) {
 state start {
 transition parse_ethernet;
 }

 state parse_ethernet {
 packet.extract(hdr.ethernet);
 transition select(hdr.ethernet.etherType) {
 TYPE_IPV4: parse_ipv4;
 default: accept;
 }
 }
 state parse_ipv4 { . . . }
}

control MyVerifyChecksum(inout headers hdr, inout
metadata meta) {
 apply { . . . }
}

control MyIngress(inout headers hdr,
 inout metadata meta,
 inout standard_metadata_t standard_metadata)
{
 action sketch_count(){
 SKETCH_COUNT(0, crc32_custom);
 SKETCH_COUNT(1, crc32_custom);
 SKETCH_COUNT(2, crc32_custom);
 }

 table forwarding {
 key = {
 standard_metadata.ingress_port: exact; }
 actions = { . . . }
 default_action = drop;
 } apply {
 if (hdr.ipv4.isValid() && hdr.tcp.isValid()){
 sketch_count(); }
 forwarding.apply();
 }}

control MyEgress(inout headers hdr,
 inout metadata meta,
 inout standard_metadata_t standard_metadata)
{
 apply { . . . }
}

control MyComputeChecksum(inout headers hdr, inout
metadata meta) {
 apply { . . . }}

control MyDeparser(packet_out packet, in headers hdr) {
 apply { . . . }}

/***** S W I T C H *****/

V1Switch(
 MyParser(), MyVerifyChecksum(),
 MyIngress(), MyEgress(), MyComputeChecksum(),
 MyDeparser()
) main;

Figure 2.7: Excerpt of a P4 program implementing the Count-Sketch [34].

2.1.3 The P4 Language

Programming Protocol-independent Packet Processors (P4) [22] is a domain-specific language used

for programming data-plane algorithms across different targets. The P4’s abstract forwarding model is

illustrated in Figure 2.6. It assumes switches forwarding packets through a programmable packets parser

followed by multiple programmable match+action stages arranged in series, parallel, or both. The P4

language and programming model for packet processing envision programmers to create target- and

protocol-independent programs which target-specific compilers can then map onto a variety of different

forwarding devices. This mode of operation evolves from the OF classical programming model that

assumed a fixed parser and worked with a limited set of standard protocols and processing functions on

match+action stages arranged in series.

Figure 2.7 shows a P4 implementation of a simple count-sketch [34] algorithm. This example helps

illustrate through a program the main components of the P4 forwarding model which enable a pro-

grammer to specify custom data plane behaviors. The header definition, which through header types,

describes a format for each header within a packet. The parser block describing allowed sequences

of headers within a packet through a state machine, helping identify and extract those sequences in

incoming packets. Ingress and egress processing pipelines define how packets are processed through

tables and actions, involving operations with packet metadata, header fields and possibly values stored

in stateful memory (e.g., registers). Finally, a deparser block declares how packet headers are serialized

after egress processing. The full list of constructs available with P4 can be found in the official language

specification [35].

Since the initial straw-man proposal, P4 has considerably evolved and it is today the most promi-

nent high-level abstraction for describing data-plane behaviors across hardware and software network

9

Figure 2.8: Design space in traffic aggregates detection [36].

devices, like network cards, switches and routers.

2.2 Traffic Measurements

The advances in programmable networks have enabled the experimentation and deployment of im-

proved techniques for collecting and analyzing network traffic measurements. In fact, many network

applications, e.g., for accounting, resources provisioning, and security, increasingly rely on accurate

network traffic measurements. These applications typically used a flow-based approach to measure

network traffic but, as link speeds, and consequently the number of flows, have increased in today’s

networks, it becomes impossible to store information for every flow. As a result, traditional flow-based

network measurement approaches have become typically slow, inaccurate, and/or resource-intensive.

As an alternative, methods based on finely-tuned traffic approximations, which leverage insights from

the theory of data stream analysis, have been explored recently. This Section covers the most common

techniques available for network measurement, which span from legacy methods to newer SDN-enabled

ones. As a guide to the rest of this section, Figure 2.8 presents an overview of the design space for a

specific measurement task meant to help with the detection of traffic aggregates in networks.

2.2.1 Traditional Methods

Conventional routers offer flow-based measurements such as NetFlow [37], sFlow [38], IPFIX [39],

or NetStream [40], providing flow-level information about network traffic. In order to store a constantly

increasing number of flows, flow measurement devices have to resort to cheaper memories, namely

10

DRAM. However, with the increasing line speeds, those devices cannot monitor all flows. So, overall,

these systems show some limitations which may be critical for certain monitoring applications. For

example, in order to detect heavy flows, NetFlow collects flow counts for sampled packets in the data

plane and then these records are exported to a NetFlow collector that processes the data and performs

traffic analysis. While a high sampling rate results in too many counters not fitting in memory, having a

lower sampling rate incurs in missed flows and in a loss of accuracy.

An improved NetFlow-based approach, FlowRadar [41], stores counters for all flows with low mem-

ory overhead and exports these counters in short time intervals. To do so, FlowRadar devises per-switch

encoding of flows and their respective counters into small fixed-size memory space, called encoded

flowsets, with constant flow insertion time. To make room for new flows, FlowRadar periodically re-

moves old and idle flows. A remote collector then performs network-wide decoding of the flows, and

temporal and flow space analysis, thus keeping both switch processing time and memory use at a mini-

mum. FlowRadar achieves better measurement performance than purely sample-based approaches like

NetFlow and sFlow with regard to two main aspects: (1) Flow coverage: counting all the flows without

sampling; and (2) Temporal coverage: exporting these counters for each short time slot.

However, FlowRadar is based on manual configuration of closed-off network equipment, and requires

setting a maximum number of flows to track, incurring in higher decoding times whenever the number

of flows increases. Moreover, the encoding process introduces collision rates, which increase with the

number of flows.

More recently, the emergence of programmable switches has generally enabled the design of im-

proved SDN-based network monitoring frameworks and languages that extend traditional methods, such

as MAFIA [42], Marple [43], and Sonata [44]. These tools aim to provide network operators with a unified

query interface that compiles high-level monitoring queries into equivalent low-level code, e.g., P4 [22],

that executes in programmable switches.

2.2.2 Sketch-based Methods

Traditional approaches to network measurement usually fell into two extremes: (1) versatile moni-

toring solutions based on packet sampling, with low fidelity, or (2) high fidelity but dedicated hardware

appliances (middle-boxes) for very specific monitoring tasks.

An alternative to the use of flow-based packet sampling are sketching algorithms. A Sketch is

a probabilistic summary of a data stream that can reduce the memory requirement of measurement

tasks while preserving the required accuracy, thus allowing for the design of memory-efficient monitoring

systems. The sketch data structure is generally a multi-dimensional array, like in CountMin [45] and

Count Sketch [34], or an array of bits, like in Bitmap [46], where items of a data stream are stored by

means of several independent hash functions. Sketches have a small and fixed memory size, making

them suitable for implementation in a cache or low-latency memory (SRAM) usually available in switches

and routers. Generally, any sketch-based algorithm supports two operations: (1) to update the sketch,

using the key and value of each item in the data stream and (2) to query the sketch, to get statistics

11

about the items in the data stream.

One of the first practical systems using sketches in networking was OpenSketch [9]. OpenSketch

proposes a new API for traffic measurement using sketches. Inspired by OpenFlow, which separates the

control plane from the data plane to allow for more efficient control of switches, OpenSketch implements

a new software defined measurement architecture that separates the measurement data plane from the

control plane. This separation allows for the design of a measurement framework that is both generic

and efficient.

The OpenSketch data plane provides a three stage pipeline, which is able to support several mea-

surement tasks in high-speed links with limited memory. The three stages of the OpenSketch pipeline

are the following: (1) the hashing stage, which reduces the measurement data, (2) the classification

stage, which selects flows, and (3) the counting stage, which accumulates traffic statistics. The OpenS-

ketch data plane supports various measurement tasks by efficiently using the switch’s capabilities and

allocating the switch’s memory to: (1) select the flows to monitor and (2) store/export the collected

measurement data.

The OpenSketch control plane provides a measurement library with a sketch manager, which auto-

matically configures the data plane pipeline to use different sketches, and a resource allocator, which

allocates the switch’s memory to each task to maximize accuracy. Thus, the control plane allows the

programmer to choose the flows to monitor, the traffic metrics to collect, and the storage of the col-

lected flow data. Jointly with OpenFlow, OpenSketch can provide a complete measurement and control

platform for the deployment and management of many sketch-based measurement tasks.

While OpenSketch developed an FPGA-based solution, recent works started exploring production-

level programmable switches, namely for the detection of heavy hitters, that is, flows carrying large traffic

volumes. Hashpipe [15] manages to track the k heaviest flows with high accuracy within the features

and constraints of programmable switches. More precisely, Hashpipe leverages the advantages of P4-

programmable switches to retrieve heavy hitters by requiring an amount of memory proportional only to

the number of heavy flows.

Hashpipe is a sketch-based solution that hashes and counts all packets in a pipeline of hash tables.

By adapting the Space-Saving algorithm [47], Hashpipe retains counters for heavy flows while discarding

the lighter flows over time. Figure 2.9 illustrates the Hashpipe pipeline through an example.

Although Hashpipe manages to achieve high performance in heavy hitter detection, an ideal solution

for traffic measurement should be generic in terms of the monitoring task while still providing good

accuracy when compared to systems designed ad-hoc for specific monitoring tasks.

UnivMon [14] is a sketch-based monitoring framework which offers: (1) generality, by delaying the

binding of the traffic measurements to specific applications and (2) high fidelity, with regard to the met-

rics. UnivMon builds upon three fundamental requirements for a generic monitoring framework: (i)

Fidelity for a broad spectrum of applications: assuring high accuracy for any set of metrics to be esti-

mated; (ii) One-Big-Switch abstraction for monitoring: merging all traffic estimations to appear as if all

traffic is being monitored by one big switch; (iii) Feasible Implementation road map: implementing in

programmable switch hardware.

12

Figure 2.9: An illustration of HashPipe [15]. When (a) a packet enters stage 1, if its key is present, its
counter is incremented. Otherwise, it replaces the key with the lowest counter. Then, (b) the replaced
key will be hashed to a slot in stage 2. If its counter is smaller than the key in that slot, the key is
removed, otherwise, it will replace the key. This process will repeat (c,d) until a key is removed or the
final stage is reached.

The UnivMon data plane leverages recent advances on universal streaming [48, 49] to build universal

sketches that require no prior knowledge of the metrics to be estimated. The UnivMon control plane

collects sketch information from the network components, runs simple estimation algorithms for every

application of interest, and provides APIs and libraries for running estimation queries. The control plane

also generates sketching manifests that specify the set of universal sketch instances each router needs

to maintain, while taking the network topology, routing policies and knowledge of the hardware resource

constraints into account.

Another common problem in network monitoring is that when a network is subject to transient effects

such as congestion or attacks, the unusual traffic variations experienced may affect the performance of

the monitoring system. Although systems like, e.g., HashPipe [15] and UnivMon [14], have improved

network monitoring across several dimensions like accuracy, speed, memory usage, and generality,

those systems still do not take dynamic traffic variations into consideration.

Elastic Sketch [50] proposes a sketching algorithm to compute generic sketches which are able

to adapt to the network characteristics. Elastic Sketch achieves elasticity through three main mecha-

nisms: (1) compressing the sketch into a sufficient size to fit the available bandwidth, (2) changing the

processing method according to the current packet rate: when the packet rate becomes too high, only

information regarding heavy flows is recorded, discarding mice flows; and (3) dynamically increasing the

memory size of the heavy part as the number of elephant flows changes.

The basic workflow of Elastic Sketch builds upon the separation of elephant flows from mice flows.

It keeps a series of buckets for the elephant flows, each recording the information of a flow: flow ID,

positive votes, negative votes and a flag. Positive votes records the number of packets belonging to

13

this flow, negative votes records the opposite, and the flag indicates whether the light part might contain

positive votes for this flow. When a packet with flow ID f1 arrives, if f1 is the same as the flow in the

packet it increments the positive votes. Otherwise, it increments the negative votes and checks if the

ratio between positive and negative votes exceeds a predefined threshold. If it does, the flow is removed

from the bucket and the new one is inserted.

Elastic Sketch manages to be generic both in terms of measurement tasks and platforms. The

former is achieved by keeping all necessary information for each packet, but discarding the IDs of mice

flows. The latter is achieved by building multiple versions of the sketch for both software and hardware

platforms. Along with the ability to adapt to the available bandwidth, changes in packet rate, and flow

size distribution, Elastic Sketch can be directly used for flow size estimation, heavy hitter detection,

heavy change detection and for estimation of flow size distribution, entropy and cardinality. Although it

can be used for change detection, it (i) requires to keep multiple copies of the entire sketch structure,

(ii) those entire sketch data structures must be offloaded at the end of each time interval, (iii) more

importantly, only the heavy part of the sketch preserve the flow key and can be checked for changes,

leaving undetected changes with respect to flows tracked in the light part of the sketch. In other words,

it detects only heavy-hitter changes.

Overall, sketch-based methods prove to be theoretically sound. Sketches provide accurate per-flow

summaries, which provide approximate measurement results with limited resources. However, such ap-

proaches are difficult to use in practice, because large data sources compete for the same resources

and incur in measurement errors due to resource conflicts. While resources can be provisioned accord-

ing to the needs of an application, the resource configurations and accuracy parameters are closely

related.

SketchLearn [12] is a sketch-based measurement technique which characterizes the statistical prop-

erties of such conflicts in sketches through parameter-free inference performed in the control plane,

instead of pursuing a perfect configuration. It sets four main requirements for this technique: (1) small

memory usage, (2) fast per-packet processing, (3) real-time response, and (4) generality. SketchLearn

builds a multi-level sketch technique, which stores multiple small sketches. Each of the small sketches

tracks a specific bit from the flow-key definition. The multi-level sketch also provides one key property:

If there is no large flow in it, its counter values should follow a gaussian distribution. Thus, SketchLearn

iteratively infers and extracts large flows from the multi-level sketch until the remaining small flows fit this

property. Such separation of large from smaller flows enables sketch collision resolution for many traffic

statistics and more refined measurements for different networking tasks. Ultimately, SketchLearn consti-

tutes the first sketch-based measurement technique that builds on the statistical properties of sketches

instead of relying only on sketch configurations.

All the aforementioned techniques improve traffic measurements on programmable networks across

some dimensions. However, they do not fulfil at the same time all the requirements set as important

by this work for traffic change detection, which have been summarzed in Table 2.1. More specifically,

HashPipe only targets the detection of heavy hitters, UnivMon is generic but does not detect changes

in the data plane, Elastic Sketch ignores mice flows, and SketchLearn is not amenable to an efficient

14

implementation on a high-speed data plane because of the considerably high amount of sketch updates

required (up to l where l is the length in bits of the flow key, e.g., 104 bits for the five tuple).

2.3 Traffic Change Detection

Understanding and detecting traffic changes in networks is of paramount importance to operate

networks efficiently, reliably, and securely across several dimensions. A prime example is anomaly

detection. Traffic anomalies such as failures and attacks are very common in networks. A common

approach to detect anomalies consists in looking for patterns that match the signatures of previously

known anomalies, used, e.g., in tools like Bro [51] and Snort [52]. However, an attacker could induce

variations in an attack, allowing it to proceed unmatched by known signatures. Looking for traffic changes

is therefore one possible approach to detect these anomaly-based attacks.

Change detection studies have focused primarily in the context of time series forecasting and outlier

analysis. Standard techniques for change detection include smoothing, such as exponential smoothing

or sliding window averaging, the Box-Jenkins ARIMA modeling, and wavelet-based techniques. While

these techniques have been successfully applied to network fault detection [53–55] and intrusion de-

tection [56, 57], these change detection techniques typically only handle a rather small number of time

series. These might work with smaller, highly aggregated network traffic data, but directly applying these

techniques on a per-flow basis does not scale to the needs of the massive data streams given today’s

traffic volume and link speeds.

The study in [58] seminally proposed the use of sketches for the detection of significant changes in

massive data streams with a large number of network time series. It proposes a variant of the sketch

data structure called k-ary sketch that uses a constant, small amount of memory, and incurs in constant

cost on per-record update and reconstruction of the forecast error for a given key. In k-ary, a forecasting

module uses the summarized information about the input stream from the sketches in the past intervals

to build a forecast sketch and to compute the error between the observed and the forecast sketches.

Afterwards, a change detection module chooses an alarm threshold based on the estimates from the

k-ary sketches and checks if the computed error is above that threshold.

The k-ary leverages sketches to detect any kind of heavy change, unlike other solutions [16, 17]

which only allow the detection of changes amongst heavy flows, called heavy hitters. To distinguish

between the two approaches, we say that the former detects heavy changes and the latter detects

heavy-hitter changers.

While the k-ary detects heavy changes over massive data streams, it still struggles to find the real

culprit and is subject to sketch reconstruction errors. To address this issue, a new version of the k-

ary sketch [59] proposed the use of reversible sketches, which are designed to track specific flows in

the sketch data-structures. That work tackles the irreversibility problem of the k-ary by using reverse

modular hashing techniques that infer the keys of culprit flows from sketches without storing any explicit

key information.

More recently, the MV Sketch [17] has been proposed for performing fast heavy flow detection online,

15

using reversible sketches. MV-Sketch [60] uses an array of buckets, similarly to the Count-Min Sketch,

to store information about the flows. Yet, MV-Sketch enhances the bucket structure with an additional

value, per bucket, to also track the candidate heavy flow by applying a majority vote algorithm (MJRTY)

[61]. MV-Sketches can be used to detect heavy-hitter changers by leveraging the linearity property of

sketches - sketches can be considered vectors of buckets, to which linear algebra operations (like sum,

subtraction, scalar multiplication, etc.) can be applied. For example, by subtracting the values of buckets

at the same positions of two sketches computed over different time intervals and recovering the heavy

flows from the buckets whose differences exceed a threshold T .

The advent of SDN and programmable networks has also enabled the development of new tech-

niques and systems for traffic change detection. The possibility to build more accurate techniques for

real-time detection at high-speed has further been enabled by the possibility to configure the network

data plane [22, 62] to assist with the measurement task. However, data plane assisted measurements

typically incur in frequent updates to the control plane for further inspection.

In order to minimize the amount of information transmitted from the data plane to the controller for

analysis, the recent work in [36] devises a new data structure, called Elastic Trie (ET). ET enables

performing the detection of high volume traffic clusters almost entirely inside the data plane, by sending

notifications from the switch to the controller only if a traffic change requires further analysis.

The Elastic Trie (ET) structure can be implemented using match-action units commonly available on

the pipeline of modern programmable switches. It is based on a tree structure with the aim to leverage

the natural hierarchical organization of IP addresses; since by using standard longest-prefix techniques,

it can find more easily the memory block where a specified prefix is stored. Each node in the prefix

tree (trie) consists of three parts: (1) the counter for the left child, (2) the counter for the right child and

(3) a timestamp. Each counter represents the amount of traffic for each sub-prefix associated to the

node while their sum represents the amount of traffic sent by the prefix itself. The timestamp keeps the

time of creation of the node or the time of the last reset. To assist in change detection, ET defines two

timers: active timeout and inactive timeout, which are checked against the timestamps in each node.

If, for a node, both the active and inactive timeouts have not expired, but one of the counters exceeds

a threshold T, the node is expanded and reported as a heavy hitter. When the inactive timeout has

not expired, the active timeout has expired and the sum of counters does not exceed the threshold T,

the node is collapsed. Then, by tracking the number of nodes collapsed and expanded, ET can detect

sudden changes in short-term traffic behavior and promptly report them to the controller.

The ET structure offers three new properties important to the network monitoring task: (1) A push-

based approach, where the data plane only sends information to the controller when specific events

occur; (2) a coarse-grained approach to the prefix responsible for network events, which gives the con-

troller a finer or coarser prefix information depending on predefined settings; and (3) the ability to com-

pute all the operations in the data plane, which minimizes the amount of information that needs to be

exchanged with the control plane.

To summarize, all the works presented in this Section devise techniques for the collection and anal-

ysis of traffic measurements which can potentially be leveraged for traffic change detection on pro-

16

Approach Tbps performance Reversible
Heavy-Hitter

Change
Detection

Generic
Change

Detection
HashPipe [15] X - - -
UnivMon [14] X - - -

Elastic Sketch [50] X - X -
SketchLearn [12] - X - -
K-ary Sketch [58] - - X X

Reversible K-ary Sketch [59] - X X X
MV Sketch [60] - X X -
Elastic Trie [36] X - X -

K-MELEON X X X X

Table 2.1: Overview of the state-of-the-art approaches for traffic change detection.

grammable networks. However, none of those can individually achieve all of the properties we target

for change detection, namely: (1) to run at line-rate, (2) to be reversible, (3) to perform generic change

detection including of mice and elephant traffic. Table 2.1 presents a comparison of existing techniques

and the goal of our system.

2.4 Summary

In this chapter, we have started by describing the trend towards programmable networks, from the

separation between the control and data planes to the programmability of the data plane of switches.

We presented the contributions from OpenFlow, which enabled the separation of the planes, the im-

provements provided by the RMT model, and introduced P4, a domain-specific language used for pro-

gramming the data-plane. Afterwards, we investigated commonly used traffic measurement techniques,

detailing the key improvements brought by state-of-the-art sketch-based methods over sampling-based

ones. We finalized by presenting recent advances in traffic change detection, and by introducing the

main properties targeted by the change detection module proposed in this thesis.

The next chapter dives into the design of the proposed solution, K-MELEON, which leverages the

k-ary sketch algorithm to perform change detection almost entirely in the data plane of state-of-the-art

programmable switches.

17

18

Chapter 3

Design

The goal of this thesis is to develop an online change detection mechanism that runs in the data

plane of the most recent P4-capable switches. Towards that goal, we have leveraged the state-of-the-

art change detection algorithm: the k-ary sketch [18]. The k-ary is an offline algorithm that follows a

batch-based processing approach. As such, it does not fit the pipelined packet-processing model of

modern switching ASICs [63]. We propose K-MELEON, a stream-based version of the k-ary algorithm. In

a nutshell, the design of K-MELEON revisits the logic of k-ary and adapts it to run within the constraints

of P4-programmable data planes.

This chapter is organized as follows. First, we provide the reader with the problem definition in

Section 3.1, illustrate the main data structures and operations of the k-ary algorithm in Section 3.2,

and define the requirements set for this data-plane module in Section 3.3. Afterwards, we provide

the necessary background to understand the challenges with performing traffic change detection in the

network data plane, in Section 3.4. Finally, we describe the K-MELEON data-plane module for traffic

change detection, in Section 3.5.

3.1 Problem definition

We use the general Turnstile Model [64] to describe data streams. Specifically, let I = α1, α2, . . . be

an input stream that arrives sequentially, item by item. Each item αi = (ai, ui) consists of a key ai ∈ [n],

where [n] = 0, 1, . . . , n− 1, and of an update ui ∈ R. In the networking context, the key can be defined

using one or more fields in packet headers (e.g., the 5-tuple). Associated with each key a ∈ [n] is a

time varying signal A[a]. The arrival of each new data item (ai, ui) causes the underlying signal A[ai]

to be updated: A[ai]+ = ui. The general goal of change detection is to identify all those signals with

significant changes in their behavior over a certain time.

In this model of change detection we break up the packet stream into temporally adjacent chunks.

We are interested in keys whose signals differ dramatically in size between two consecutive chunks. In

particular, for a given φ, we define a key as a heavy change key if the difference in its signal exceeds

φ percent of the total change over all keys. That is, for two input sets 1 and 2, if the signal for a key x

19

is A1[x] over the first input and A2[x] over the second, then the difference signal for x is defined to be

D[x] = |A1[x]−A2[x]|. The total difference amongst all keys is D =
∑

x∈[n]D[x]. A key x is then defined

to be a heavy change key if and only if D[x] ≥ φ ·D.

3.2 The k-ary sketching algorithm

The k-ary algorithm [18] is a generic change detection technique, which uses sketches to store

per-flow information about an input stream into a compact memory-efficient structure, forecasts future

values for the input stream, and performs change detection by comparing the observed data against the

predicted values. This technique follows the turnstile model described in Section 3.1. More precisely,

it considers input items consisting of a key (source and destination IPs, 5-tuple, etc.) and a (possibly

negative) update (unitary increments, packet size, byte count, etc.). By comparing information in con-

secutive fixed-length intervals of time, called epochs, it identifies all those keys of the input stream with

significant changes in their behavior. The k-ary algorithm can be illustrated by describing its three main

modules and respective data structures: the sketch module, the forecasting module, and the change

detection module.

Sketch Module - The Sketch Module is responsible for storing and updating the observed sketch,

So(t), a variant of the traditional sketch counting data structure, called k-ary sketch, that summarizes

per-flow information about the traffic in each epoch. Similarly to the count sketch [34], the k-ary sketch

consists of an H ×K table of registers. Each row of the k-ary sketch is associated with an independent

4-universal hash function hi. The k-ary sketch supports four different operations: UPDATE to update the

sketch, ESTIMATE to estimate the value for a given key, ESTIMATEF2 to estimate the second moment

F2, and COMBINE to compute the linear combination of multiple sketches. These operations supported

by the data structure are used across the different modules of the sketching algorithm. The UPDATE

operation is used by the Sketch Module to update the sketch, as illustrated in Figure 3.1 for an input k

with value v. In this example, where H = 3, the key element k is hashed three times with the different

hash functions to update cells with the value v in the respective rows.

0 +v 0

+v 0 0

0 0 +v

h1(k)

h2(k)

k,v

h0(k)

K

H

Figure 3.1: Illustration of the UPDATE operation on a k-ary sketch.

Forecasting Module - The Forecasting Module uses the observed sketches from previous epochs

20

to create a forecast sketch Sf (t) and, by comparing it to the observed values, builds the error sketch

Se(t) for the current epoch. The forecasting module leverages the COMBINE operation on the sketch

data structures to build different forecasting models which can be implemented on top of k-ary sketches.

Hence, these models essentially leverage the linear property of the sketches, which allows linear com-

binations of multiple sketch data structures by combining all of their elements. For example, smoothing

models, like the Exponentially Weighted Moving Average (EWMA) or the s-shaped moving Average

(SMA), attribute decreasing weights to past sketch values in order to generate predictions that are

weighted sums of past observations. Those models, originally proposed in [18], include four simple

smoothing models, and two ARIMA models. The smoothing models are the moving average (MA), the

s-shaped moving average (SMA), the exponentially weighted moving average (EWMA), and the non-

seasonal holt-winters (NSHW).

Change Detection Module - The Change Detection Module leverages the error sketch Se(t) to de-

tect significant changes across two consecutive epochs. First, this module computes an alarm threshold

TA based on the estimated second moment of the Error Sketch F2 and on an application-specific con-

figurable parameter T . Afterwards, it estimates the error Ek associated with each key observed in the

current epoch and compares that with the computed TA. Whenever the estimate for a key is greater than

the TA threshold, the corresponding flow is considered to have changed significantly since the previous

epoch.

3.3 Requirements for change detection

Based on the analysis of the k-ary, we set the following requirements for the K-MELEON module for

online traffic change detection:

• R1: Achieve the same level of change detection accuracy as the k-ary sketch, including the detec-

tion of mice flows;

• R2: Achieve equivalent resource usage to the k-ary sketch;

• R3: Perform online analysis of traffic to enable near real-time responsiveness;

• R4: Offer fast responses (ideally, at sub-second time scales);

• R5: Achieve high throughput (Tbps).

K-MELEON aims to fulfill all of the above requirements by following a stream-based processing ap-

proach to the detection of traffic changes. In a nutshell, K-MELEON computes and stores the sketch

and forecast values of k-ary, continuously with the packet stream, inside the data plane of a modern

commodity switch [21].

21

SKETCH
MODULE Observed

Sketch

So(t)
UPDATE

Forecast
Sketch

Sf(t)

FORECAST
MODULE

Error Sketch

Se(t)
FORECASTING

(e.g., EWMA)

STORE

Flow
keys

CHANGE DETECTION
MODULE

COMPUTE THRESHOLD
(TA)

ESTIMATE ERROR

4

5

2

1

YES

Ek > TA

k is a Change

ZERO-ING

8
6

Observed
Sketch
So(t-1)

Forecast
Sketch
Sf(t-1)

7

3

Figure 3.2: High-level block diagram of k-ary.

I
Forecast
Sketch
Sf(t)

Sf(t+1)

Error Sketch

Se(t)

STORE
FLOW KEYS

II
S'o(t)

II
S'o(t)

Control
Flags

Sc(t)
II

FORECASTING
(e.g., EWMA)

Epoch Triggered

CONTROL
PLANE

DATA
PLANE

Network Stream

COMPUTE THRESHOLD
TA

ESTIMATE ERROR
EK

Ek > TA

K is a
change

yes

Sf(t+1) = alpha*So(t)+(1-alpha)*Sf(t)

Se(t) = So(t) - Sf(t)

Figure 3.3: High-level block diagram of K-MELEON.

3.4 Challenges with on-line change detection

Running the logic of the k-ary sketching algorithm in the data plane of P4-capable target raises

several issues, since many of its operations are not natively supported by the P4 programming model

(the reader can check Section 2.1.2 for a recap about this model). First, the entire sketch data structure

So(t) must be traversed at once for the processing steps performed at the end of each epoch, while P4

enforces a limited, packet-by-packet and not event-driven [65] concurrent memory access, since that is

common across high-throughput packet processing architectures [20]. Second, complex arithmetic is

required by the forecasting model and for the computation of the estimates of frequency moments by

the detection module, while P4 only allows for simple packet processing instructions [66].

For the sake of illustration, we have dissected the k-ary sketch algorithm and marked with numbers

its main processing steps in Figure 3.2. The processing steps (2 − 8), performed at the end of each

epoch, involve operations not supported in P4. In detail, unsupported operations are required for the

computation of the forecast sketch Sf (t) (step 2), the computation of the error sketch Se(t) (step 3), the

computation of the alarm threshold TA (step 4), the estimate of the observed keys Ek (step 5), the copy

of the observed and forecast sketches to be used as past values in the next epoch (steps 6 and 7), and

the reset of the observed sketch So(t) (step 8). Updating the observed sketch So(t) and storing the flow

keys (step 1), steps which are performed per packet, can be expressed in P4.

3.5 Stream-based change detection: K-MELEON

A high-level illustration of K-MELEON is shown in Figure 3.3 alongside the original k-ary algorithm.

In summary, K-MELEON adapts the k-ary’s sketch and part of the forecasting modules to run entirely

inside the data plane as a P4 program, while, at present, still offloading the operations of the k-ary’s

change detection module to software in the control plane. Throughout the design of K-MELEON we

have tested two of the different forecasting models originally proposed in the k-ary (see Section 3.2) for

which we obtained very similar results, namely EWMA and NSHW. This design choice was driven by the

computation and the storage requirements of these two models which, after a careful study, seemed to

22

be the best fit for the targeted programming model. After an initial phase of testing, our design focused

on the EWMA forecasting model. In fact, while EWMA performed very similarly to NSHW in all of our

tests, a result that confirmed the conclusions from the original k-ary paper [18], it only requires to store

two sketches from a previous epoch, rather than four (for smoothing and trend) as required by NSHW.

Therefore, the design here presented focuses on the EWMA to illustrate the mechanics of K-MELEON.

3.5.1 Computing the Error and Forecast Sketches

The k-ary algorithm detects changes at every epoch, that is, every t time units. To this end, the

algorithm collects summary information in the observed sketch over the current epoch and computes

the error between the forecast and the observed values at the end of it. K-ary performs this operation

all at once in a batch-based fashion, at the end of each epoch (see Figure 3.2). More specifically, at the

end of each epoch, the k-ary must perform a linear subtraction of two sketches: the observed and the

forecast. Furthermore, before computing this sketch, the k-ary must first compute the forecast sketch,

which also requires performing the linear combination of the previous observed sketch and the previous

forecast sketch. Performing the aforementioned operations in a batch-based fashion at the end of each

epoch turns to be infeasible within the constraints of P4 programmable switches. Therefore, in what

follows, we detail how we have converted these operations into equivalent ones, with some degree of

approximation, that can be implemented in a stream-based fashion, per packet, within the constraints of

the target P4-capable platform.

We start by presenting the equations required to compute the forecast (using EWMA), Sf (t), and the

error, Se(t), sketches:

Se(t) = So(t)− Sf (t) (3.1)

Sf (t) =

α · So(t− 1) + (1− α) · Sf (t− 1), t > 2

So(1), t = 2

(3.2)

As it can be seen from equation (3.1), Sf (t) is required to compute Se(t). Also, while computing Se(t)

only requires values from the current epoch t, computing Sf (t) (see equation (3.2)) requires values from

t − 1, which means that Sf (t), Sf (t − 1), So(t), and So(t − 1) must be stored somewhere in the data

plane at every epoch t, according to our requirements.

For t > 2, however, it should be noticed that Sf (t) can be computed already at the beginning of

epoch t, because it only uses sketch values from the epoch t − 1. This means that, although Sf (t) is

required to compute Se(t), these sketches can be computed at different times ti. Namely, Sf (t+ 1) can

be computed at the end of each epoch t according to the following:

Sf (t+ 1) =

α · So(t) + (1− α) · Sf (t), t > 1

So(1), t = 1

(3.3)

23

SKETCH
MODULE Observed

Sketch

So(t)
UPDATE

Forecast
Sketch

Sf(t)

FORECAST
MODULE

Error Sketch

Se(t)

FORECASTING
(e.g., EWMA)

STORE

Flow
keys

CHANGE DETECTION
MODULE

COMPUTE THRESHOLD
(TA)

ESTIMATE ERROR

3

4

1

YES

Ek > TA

k is a Change

ZERO-ING
7

Forecast
Sketch
Sf(t+1)

2
5

6

Figure 3.4: K-ary algorithm after applying the transformation in equation 3.3.

As it can be noted, the new equation (3.3) requires to store only the current observed and forecast

sketches So(t) and Sf (t) to compute the forecast sketch for the next epoch t+1. Therefore, the additional

Sf (t− 1) and So(t− 1) required by the original formula (3.2) do not need to be stored anymore after this

transformation.

Figure 3.4 illustrates the transformations brought by equation (3.3), with respect to the original al-

gorithm in Figure 3.2 and rearranged according to the processing steps (2 − 8). More specifically, the

error sketch is now computed in step 2, followed by the computation of the alarm threshold TA (step 3),

the estimate of the observed keys Ek (step 4), the computation of the forecast sketch for the following

epoch Sf (t+ 1) (step 5), the copy of the forecast sketch to be used in the following epoch (step 6), and

the reset of the observed sketch So(t) (step 7). However, even with the transformation in equation (3.3),

Sf (t+ 1) and Se(t) still need to be computed in a batch-based fashion.

To overcome the batch-based operation for the error sketch and the forecast sketch, it is sufficient to

consider at first the error sketch equation (3.1) at time t, for which So(t) and Sf (t) are required. As shown

previously, Sf (t) can be computed at the end of the previous epoch t−1, so only So(t) must be computed

at time t. By its own nature, the observed sketch So(t) is already computed in a streaming-based fashion,

in fact it is incrementally updated with each packet traversing the switch. Thus, let S
′

o(t, pi) be the update

in epoch t for a packet pi, i ∈ [1 : p(t)], where p(t) is a function that returns the total number of packets

in a given epoch t. The computation of the observed sketch can be expressed like:

24

Observed
Sketch

So(t)

Forecast
Sketch

Sf(t)

Error Sketch

Se(t)

FORECASTING
(e.g., EWMA)

STORE

Flow
keys

1
ZERO-ING

7

Forecast
Sketch
Sf(t+1)

2
5

6

UPDATE

Figure 3.5: High-level block diagram of the k-ary
algorithm using the incremental update of the error
sketch described in equation (3.5).

UPDATE

Observed
Sketch

So(t)

UPDATE

Forecast
Sketch

Sf(t)

Error Sketch

Se(t)

FORECASTING
(e.g., EWMA)

STORE

Flow
keys

1 ZERO-ING
7

Forecast
Sketch
Sf(t+1)

2
5

6

Figure 3.6: High-level block diagram of the k-ary
algorithm using the forecast update described in
equation (3.6).

So(t) =

p(t)∑
i=0

S
′

o(t, pi) (3.4)

Now, by replacing the So(t) term in the error sketch equation (3.1) with the equivalent expression from

equation (3.4), a new formula to compute the error sketch can be obtained in (3.5). It is evident from

(3.5) that the error sketch for a given epoch can be indeed computed incrementally with each packet,

just like the observed sketch, rather than being computed all at once at the end of that epoch.

Se(t) =

p∑
i=0

S
′

o(t, pi)− Sf (t) (3.5)

Figure 3.5, illustrates the resulting algorithm, leveraging the above stream-based computation of the

error sketch.

With regard to the forecast sketch for the next epoch t + 1, Sf (t + 1) is computed via a linear com-

bination of the same two sketches: the observed and the forecast sketch (see equation 3.2). Hence,

by following this reasoning for the forecast sketch - replacing the So(t) term in the error sketch equa-

tion (3.1) with the equivalent quantity from equation (3.4), a new forecast sketch equation that can be

incrementally updated with each packet from the input stream is obtained.

Sf (t+ 1) =

α ·
∑p

i=0 S
′

o(t, pi) + (1− α) · Sf (t), t > 1∑p
i=0 S

′

o(t, pi), t = 1

(3.6)

An illustration of this new mechanism for the computation of the forecast sketch Sf (t+1) is presented

in Figure 3.6. By leveraging equations (3.5) and (3.6) to compute respectively the error sketch Se(t) and

the forecast sketch Sf (t + 1), the computation of those sketches can be finally performed in a stream-

based fashion.

As it can be observed in Figure 3.7, all observed values S
′

o(t, pi) are now updated directly into the

forecast and error sketches, so it is no more necessary to store So(t) in a separate structure. After the

25

Forecast
Sketch

Sf(t)

Error Sketch

Se(t)

FORECASTING
(e.g., EWMA)

STORE

Flow
keys

1

Forecast
Sketch
Sf(t+1)

2
5

6

SKETCH
MODULE

FORECAST
MODULE

UPDATE

Figure 3.7: High-level block diagram of the k-ary algorithm after fully integrating the changes in the
equations (3.5) and (3.6).

above modifications, K-MELEON must store three sketches at each epoch t: Se(t), Sf (t), and Sf (t+ 1).

The new equations (3.5) and (3.6) consist of two different terms, one related to the observed values

in [t − 1, t] and one related to the forecast sketch at time t. The former term is computed incrementally

with each packet, while the latter is computed at time t − 1. This implies that a mechanism to prevent

the second term of the equations from being considered multiple times, at each update S
′

o(t, pi) in

[t − 1, t], must be enforced incrementally to compute (3.5) and (3.6) correctly. K-MELEON achieves that

by introducing a control-flag sketch Sc(t) containing 1-bit flags to be checked at each update of Se(t) and

Sf (t + 1), meant to indicate whether or not the values of Sf (t) have been already copied to Se(t) and

Sf (t + 1) in the current epoch. More specifically, K-MELEON flips the corresponding control-flag sketch

cell whenever the respective Sf (t) value is copied with a certain packet pi so that any subsequent check

of that flag in the current epoch for any packet pj with j > i will indicate that the respective forecast value

has already been copied. Figure 3.8 illustrates how the newly introduced control-flag sketch operates

together with the other sketch data structures to perform the right updates.

This figure shows that the forecast Sf (t + 1) and error Se(t) sketches are still updated with the

observed values for each packet but the forecast sketch Sf (t) is only copied if the corresponding control

flag in Sc(t) enables it.

By observing Figure 3.8, it is also worth noting that the distinction between sketch module and

forecast module, originally present with k-ary, is not present in K-MELEON. In fact, the corresponding

values of So(t) are directly stored into the forecast sketch Sf (t+ 1) and the error sketch Se(t). Besides,

Sf (t + 1) and Sf (t) have been so far logically represented as two separate data structures. However,

since values from Sf (t) are only read once to update Sf (t + 1), the two sketches can be stored in the

same structure that incrementally changes from Sf (t) to Sf (t + 1) in the current epoch according to

equation (3.6).

In summary, during each epoch t, K-MELEON needs to store three sketches: Se(t), Sf (t) (which

incrementally becomes Sf (t+ 1)), and Sc(t).

26

*if yes

*if yes

Forecast
Sketch

Sf(t)

Error Sketch

Se(t)

FORECASTING
(e.g., EWMA)

STORE

Flow
keys

*copy?

1

Forecast
Sketch
Sf(t+1)

Control
Flags

Sc(t)

6

Figure 3.8: First High-level block diagram of the K-MELEON’s data plane algorithm.

3.5.2 Fake Updates

The check on the control-flag sketch Sc(t) ensures that values of the forecast sketch Sf (t) are copied

to other sketches only once per epoch. However, in the design presented so far, there is no mechanism

that guarantees that all the values from Sf (t) are copied into Sf (t+ 1) for a certain epoch. In fact, if no

packet hashes to specific buckets of the forecast sketch Sf (t) during a certain epoch, the corresponding

buckets will not be considered in the computation of the forecast sketch sf (t+1). This problem is better

illustrated in the upper part of Figure 3.9. In the lower part, the figure also shows how K-MELEON aims

at overcoming this problem by performing additional (”fake”) updates of the forecast sketch per packet.

This figure shows an epoch with only three packets, for illustration. In this example, the color blue is

used to indicate changes introduced by the update function; the color red is used to indicate changes

introduced by the fake updates we propose here, and the color grey is used to indicate collisions during

the update operation. Without the fake update mechanism, any 0s in the control sketch Sc(t) at the

end of the epoch indicate values of the forecast sketch Sf (t) which have not been considered in the

computation of Sf (t + 1) for the current epoch. To address this, in K-MELEON we update one column

of the sketch with each update, storing only one counter that indicates which column of the sketch to

update next.

K-MELEON thus performs h additional copies of Sf (t) into Sf (t + 1) at each packet update. As the

number of updates is typically small (h represents the number of hashes used), these updates can

be performed in a programmable switch at line rate, by performing one update per stage, in h stages.

Similarly to a normal update operation, the control flag in Sc(t) is first checked to decide whether or not

to perform this copy into Sf (t + 1). If the buckets referenced by the counter have already been copied,

no extra operation is performed for the current packet.

The fake update mechanism requires a number of packets per epoch of at least the width of the

sketch to work as intended. If the number of packets in a certain epoch is lower than the width of the

sketch data structure, then the number of additional copies will not be sufficient to consider the entire

forecast sketch Sf (t) for the computation of Sf (t + 1). However, in practice the number of packets per

epoch is much higher than the width of the sketch.

27

0 0 0

Sc(t)

0 0 0
0 0 0

0 0 1

Sc(t)

1 0 0
0 1 0

0 0 1

Sc(t)

1 1 0
0 1 1

0 1 1

Sc(t)

1 1 0
0 1 1k1 k2

k3

0 0 0

Sc(t)

0 0 0
0 0 0

1 0 1

Sc(t)

1 0 0
1 1 0

1 1 1

Sc(t)

1 1 0
1 1 1

1 1 1

Sc(t)

1 1 1
1 1 1k1 k2 k3

0 1 2

With Fake Update

Without Fake Update

Figure 3.9: Comparison between the K-MELEON algorithm with and without the fake update mechanism.

3.5.3 Reading sketches consistently

The modifications of the k-ary algorithm introduced in Section 3.5.1 allow K-MELEON to run the sketch

and forecast modules in a stream-based fashion in the data plane of a P4-capable target. However, as

they are, they may also possibly introduce some consistency issues when it is necessary to interact with

the control plane to perform change detection.

In detail, K-MELEON stores two sketch structures, Sf (t) and Se(t), which are incrementally updated

with each packet. Read operations from the control plane are much slower when compared to the packet

processing happening in the data plane. Yet, a consistent snapshot of the error sketch is required by

the control plane to perform change detection at the end of each epoch. By consistent we mean that

the values stored in the error sketch fetched by the control plane should all belong to the same epoch.

However, with the read operation happening at a slower speed, the error sketch fetched may contain

values updated in the current epoch. Therefore, the data plane design of K-MELEON must feature an

intrinsic mechanism to allow the control plane to perform atomic read operations of the error sketch data

structure. This operation could easily be done in a batch-based fashion in k-ary, but in a streaming-based

solution one cannot stop processing traffic to entirely fetch the error sketch from the control plane.

K-MELEON addresses this consistency issue by storing two instances of the error sketch data struc-

ture in the data plane: in each epoch one instance is meant to be updated while the other, which contains

the error sketch from the previous epoch, is read only. K-MELEON uses a 1-bit mutable epoch flag that

indicates the instance to be updated and the one to be read at each epoch. Figure 3.10 illustrates this

mechanism through an example. In epoch t = 2 in the figure, the epoch flag is zero, and only the sketch

on the left Se(2) is updated, while Se(1) is currently read. In the following epoch (t = 3), the epoch flag

changes and, as a consequence, the sketch on the left Se(2) is offloaded and the sketch on the right

starts to be updated with new values, becoming Se(3).

28

Error Sketch
Se(2)

Epoch
Flag

0

Error Sketch
Se(1)

Error Sketch
Se(2)

Epoch
Flag

1

Error Sketch
Se(3)

t = 2 t = 3

UpdateUpdate

ReadRead

Control Plane

Figure 3.10: Illustration of the K-MELEON’s consistency mechanism.

3.5.4 Approximating Floating-Point Arithmetic

The k-ary sketch proposed six forecasting models to build Sf (t) inside the forecasting module. These

forecasting models use operations (namely floating-point multiplications) and/or require storing addi-

tional data structures (e.g., to carry on smoothed past values), which are extremely challenging to im-

plement inside the data plane of P4-programmable targets. For these reasons, and based on analysis

performed throughout this work, in K-MELEON we implement only the Exponentially Weighted Moving Av-

erage (EWMA). In fact, EWMA presents a good trade-off between computational and storage resources

required and prediction results achieved, when compared to other models originally proposed with k-ary.

Applying EWMA, the computation of the forecast sketch in the current epoch is obtained as Sf (t +

1) = α · So(t) + (1 − α) · Sf (t), where Sf (t) is the forecast sketch computed in the previous epoch and

So(t) is the observed sketch in the current epoch. This formula requires floating-point arithmetic due to

the multiplicative factor α {α ∈ IR | 0 ≤ α ≤ 1}. Since floating-point arithmetic is not supported in P4

[35], K-MELEON resorts to converting the floating-point multiplications of So(t) and Sf (t) to multiplication

via bit-shifts. Because α takes values between 0 and 1, this operation uses only right bit-shits. However,

the multiplication via right bit-shifts is limited, as it can only represent multiplications by negative powers

of two, 2−x, where x is the number of bit-shifts. Thus, α can only take values which can be represented

as negative powers of two. An example of the transformations required by this method for the operation

α · So(t) is shown in equation (3.7), with the right bit-shift operation represented with the symbol�.

α = 2−x , α · So(t) = 2−x · So(t) ≈ So(t)� x (3.7)

In Figure 3.11, we illustrate how the multiplication by α = 0.5 and α = 0.25 can be computed

using right bit-shifts as described in equation (3.7). As should be clear, only a very limited number of

useful alpha values can be computed with right bit-shifts. For example, there is no way to compute the

multiplication using α > 0.5 with this technique alone. K-MELEON allows, however, selecting any α which

can be decomposed into a sum of negative powers of two. Figure 3.12 shows how different α values,

29

1 0 0 1 0 1 1 1

0 1 0 0 1 0 1 1 1

151

75

ALPHA = 0.5 (2-1)

1 0 0 1 0 1 1 1

0 0 1 0 0 1 0 1

151

37

ALPHA = 0.25 (2-2)

11

Figure 3.11: Multiplying number 151 by 0.5 (on the left) and by 0.25 (on the right), using right bit-shifts.

1 0 0 1 0 1 1 1

0 1 0 0 1 0 1 1 1

151

75

ALPHA = 0.75 = 0.5 + 0.25 (2-1 + 2-2)

1 0 0 1 0 1 1 1

0 0 1 0 0 1 0 1

151

37 11+

0 1 1 1 0 0 0 0112

=

Figure 3.12: Bit-shift multiplication of 151 using α = 0.75.

higher than 0.5, can be computed this way. In this example, we perform the multiplication via bit-shifts

for α = 0.75. Since α = 0.75 cannot be computed directly with right bit-shifts, we decompose it into

a combination of values which can be expressed as negative powers of two. In this case, α = 0.75 is

decomposed into 0.25 + 0.5. We compute these values separately with right bit-shifts, and sum their

results afterwards.

As it is well known, binary multiplication by right bit-shifts is not entirely accurate, since the remainder

is lost. Because of this error, and since the observed values must be multiplied by alpha (see equation

3.6), the unitary update of the observed values (S
′

o(t)) becomes zero when using bit-shifts (for any α).

We solve this problem by performing updates of 2x, where x is the highest number of bit-shifts required

to perform this operation. For example, when using α = 0.75 we perform at most 2 bit-shifts, so the each

update (S
′

o(t)) would be of 4 (22) instead of unitary.

3.5.5 The Role of the Control Plane

At the end of each epoch, K-MELEON needs to estimate the error Ek associated with each flow-key

and to compute the alarm threshold TA. These operations (steps 3 and 4 of the original k-ary algorithm,

in Figure 3.2) are not trivial to be performed into the data plane of P4-programmable switch. Given the

strict time budget available for the thesis, we leave this as future work.

The current version of K-MELEON thus offloads the error sketch Se(t) and the flow-keys stored during

each epoch to a controller application responsible for performing change detection.

After offloading, the controller performs change detection by performing the following steps. First, it

computes the alarm threshold TA (see equations (3.8), (3.9), and (3.10)). Then it estimates the error

30

associated with each of the flow-keys (see equations (3.11) and (3.12)). Finally, if the estimated error for

a key is higher than the alarm threshold, that key is considered a change.

The controller does not implement any logic for epoch verification, so it cannot predict when an epoch

changes. Consequently, K-MELEON requires checking the data plane epoch flag to verify if an epoch has

changed by comparing it with the most recent epoch flag in the controller. If a different value is read, it

means the epoch has changed and the error sketch and the flow-keys can be offloaded. The periodicity

for reading the epoch flag from the data plane can be confirmed by the operator.

TA = T · [F est
2]1/2 (3.8)

F est
2 = mediani∈[H]F

hi
2 (3.9)

Fhi
2 =

K

K − 1
·
∑

(S[i][j])2 − 1

K − 1
· (sketchSum(S))2 (3.10)

Eest
k (t) = mediani∈[H]v

hi
a (3.11)

vhi
a =

S[i][hi(a)]− sketchSum(S))2

1− 1/K
(3.12)

3.6 Summary

In this chapter, we presented the design of K-MELEON, an on-line solution for traffic change detection

within the constraints of P4-programmable targets. First, we introduced the problem definition for on-line

traffic change detection, presented in detail the state-of-the-art k-ary off-line solution, and highlighted the

practical challenges of porting such solution into modern programmable switching hardware for on-line

detection of traffic changes. Subsequently, we presented the design of K-MELEON. The reformulation

proposed was driven by restrictions on the target programmable platform to allow K-MELEON to convert

the batch-based k-ary into a new stream-based solution.

The next chapter dives into the implementation details of K-MELEON, presenting the main data plane

program as well as other important auxiliary software developed in this work.

31

32

Chapter 4

Implementation

This chapter describes the steps undertaken to build and validate a P4 implementation of K-MELEON.

Figure 4.1 presents an overview of the main software components developed as part of this work. A

trace analyser performs some basic measurements (packet rate, number of flow keys, etc.) on a given

traffic trace, which can be optionally used to determine the several configuration parameters required

by a change detection module. The change detection modules, k-ary and K-MELEON, take user-defined

configuration parameters as input, and output the changes detected to a *.out file. Finally, a compare-

tool can be used to compare the outputs from the k-ary and the K-MELEON for the same configuration

parameters, computing certain statistics about detection and helping evaluate the proposed algorithm.

Because P4 is a domain-specific language specifically designed for network data forwarding, a direct

conversion from a general purpose language such as C or python cannot, most often, be trivially ob-

tained. As such, this kind of translation is approximate and introduces errors. The above components

have been developed with the main goal of testing the correctness of the P4 implementation of the

change detection module, comparing the results achieved by such a module with the ones achieved

with the original k-ary algorithm. Since no open-source version of the k-ary algorithm was available, a

Python version of k-ary was developed by following the original description of the algorithm in [18], and

made available as open-source software by this work.

The rest of this chapter is organized as follows. Section 4.1 describes the implementation of the

k-ary sketch in python, and explains each of the various constraints and decisions made during this

process. Section 4.2 presents the overall structure of the K-MELEON program, detailing the integration

of operations and approximations from the design to the implementation in P4. To conclude, Section 4.3

describes all the additional software components developed to validate, test, and evaluate each of the

change detection modules.

4.1 The k-ary in a high-level language

An implementation of k-ary has been developed as the first step of this work, by closely following

the description of the k-ary algorithm provided in [18]. This implementation is written in Python 3.9.6

33

.out

.out

k-ary
(python)

k-meleon
(p4)

compare-
tool

statisticstrace
analyser

trace
analysis 1

Change Detection Modules

Figure 4.1: Overview of the main software components developed within this project on traffic change
detection.

and consists of approximately 900 LoC. Its source-code files are illustrated in Figure 4.2. It requires

the following python libraries to be compiled and executed: scapy (for packet processing), mmh3 (for

murmur3 hashing), and statistics (for statistical analysis).

output

k-ary (python)

pcap-
parser test main crcforecast-

module
kary-

sketchchange

Figure 4.2: Overview of the k-ary source code.

The Sketch Module (kary-sketch.py) contains the sketch data structure, meant to store the sketch

data and support the set of related operations. The k-ary sketch is implemented through a list[H][K]

(matrix) of values, where H represents the number of hash functions (the height of the sketch) and K

represents the number of buckets per row (the width of the sketch). The main operations supported by

this sketch are the update of selected buckets of the sketch data structure (UPDATE), the estimate of the

error for a certain key (ESTIMATE), and the estimate of the sketch second moment (ESTIMATEF2). The

code for these operations is reported in Listing 4.1. This implementation of the k-ary sketch currently

supports two different hash functions: murmur3 and crc32. The choice of the hash function to apply

is driven by a configuration parameter of the detection module. The UPDATE function receives as

parameters a flow key k, an update value v, and an identifier of the hash function as a string. For each

row of the sketch, it hashes k with the given hash function and obtains the index of the bucket to be

updated with the value v.

The k-ary sketch is supposed to identify the keys responsible for certain changes at detection time.

34

This property of a sketch is known as reversibility. To be reversible, the k-ary sketch must somehow

store the flow keys seen in every epoch. Therefore, the UPDATE function also stores all the keys seen

in one epoch into a dedicated data structure (lines 9 and 10).

1 def UPDATE(self ,key ,value ,hash_func):

2 for i in range(0,self.depth):

3 bucket = None

4 if hash_func == "crc32":

5 bucket = binascii.crc32(str.encode(’,’.join(key)),self.seeds[i])%self.width

6 elif hash_func == "murmur3":

7 bucket = mmh3.hash64(’,’.join(key),self.seeds[i])[0]% self.width

8 self.sketch[i][bucket] = self.sketch[i][bucket] + value

9 if key not in self.keys:

10 self.keys.append(key)

11

12 def sum(self ,row):

13 return sum(self.sketch[row])

14

15 def ESTIMATEF2(self):

16 result = []

17 for i in range(0,self.depth):

18 aux = 0

19 for j in range(0,self.width):

20 aux = aux + (self.sketch[i][j]**2)

21 result.append (((self.width/(self.width -1))*aux) - ((1/(self.width -1))*(self.

sum(i)**2)))

22 return median(result)

23

24 def ESTIMATE(self ,key ,hash_func):

25 result = []

26 for i in range(0,self.depth):

27 bucket = None

28 if hash_func == "crc32":

29 bucket = binascii.crc32(str.encode(’,’.join(key)),self.seeds[i])%self.width

30 elif hash_func == "murmur3":

31 bucket = mmh3.hash64(’,’.join(key),self.seeds[i])[0]% self.width

32 result.append((self.sketch[i][bucket] - (self.sum(i)/self.width)) / (1 - (1/ self

.width)))

33 return median(result)

Listing 4.1: k-ary sketch operations in python.

The ESTIMATEF2 and ESTIMATE functions both require summing all of the values in the sketch, so

the code features a common function sum() for that purpose, returning the sum of all values for a given

row of the sketch. Next, the respective equations are translated into functions which traverse the whole

sketch, row by row.

The Forecasting Module (forecast-module.py) leverages the observed values in the current epoch

and the forecast values from the past to build a forecast and an error sketch at the end of each epoch.

In this implementation, those forecast models which presented characteristics more suitable to a data

35

plane implementation with the P4 language have been selected. Hence, for example, smoothing models

like EWMA or NSHW have been preferred over the ARIMA models (the reader can refer to Section 3.2

on Chapter 3 for a complete list of the models presented in [18]). Listing 4.2 reports the forecast models

implemented in python.

1 def EWMA(previous_forecast_sketch ,previous_observed_sketch ,alpha):

2 depth = len(previous_observed_sketch.sketch)

3 width = len(previous_observed_sketch.sketch [0])

4 new_forecast_sketch = KAry_Sketch(depth ,width)

5 if previous_forecast_sketch != None:

6 for i in range(0,depth):

7 for j in range(0,width):

8 new_forecast_sketch.sketch[i][j] = (alpha*previous_observed_sketch.sketch

[i][j]) + ((1-alpha)*previous_forecast_sketch.sketch[i][j])

9 return new_forecast_sketch

10 else:

11 return copy.deepcopy(previous_observed_sketch)

12

13 def NSHW(previous_forecast_sketch ,previous_observed_sketch ,observed_sketch ,previous_trend

,previous_smoothing ,alpha ,beta):

14 depth = len(previous_observed_sketch.sketch)

15 width = len(previous_observed_sketch.sketch [0])

16 smoothing_sketch = KAry_Sketch(depth ,width)

17 trend_sketch = KAry_Sketch(depth ,width)

18

19 #smoothing

20 if previous_forecast_sketch != None:

21 for i in range(0,depth):

22 for j in range(0,width):

23 smoothing_sketch.sketch[i][j] = (alpha*previous_observed_sketch.sketch[i

][j]) + ((1-alpha)*previous_forecast_sketch.sketch[i][j])

24 else:

25 smoothing_sketch = copy.deepcopy(previous_observed_sketch)

26

27 #trend

28 if previous_forecast_sketch != None:

29 for i in range(0,depth):

30 for j in range(0,width):

31 trend_sketch.sketch[i][j] = (beta*(smoothing_sketch.sketch[i][j] -

previous_smoothing.sketch[i][j])) + ((1-beta)*previous_trend.sketch[i][j])

32 else:

33 for i in range(0,depth):

34 for j in range(0,width):

35 trend_sketch.sketch[i][j] = observed_sketch.sketch[i][j] -

previous_observed_sketch.sketch[i][j]

36

37 #Forecasting sketch

38 forecasting_sketch = KAry_Sketch(depth ,width)

39 for i in range(0,depth):

36

40 for j in range(0,width):

41 forecasting_sketch.sketch[i][j] = trend_sketch.sketch[i][j] +

smoothing_sketch.sketch[i][j]

42 return forecasting_sketch , smoothing_sketch , trend_sketch

Listing 4.2: Forecasting models support in the python implementation of k-ary.

As a caveat, the original description of the k-ary sketch also included a COMBINE operation to per-

form linear transformations on the sketch data structure. Since every forecast model performs those

combinations in a slightly different way, this implementation, however, does not include a unique COM-

BINE function and rather includes the linear transformations required by each specific module’s function

definition.

The Change Detection Module - (change.py) source code is shown in Listing 4.3. After building

the error sketch (lines 2− 8), the Change Detection module is responsible for computing the application

threshold (line 9) (see section 3.2 on Chapter 3) and the error associated with each key in the list from

the sketch Module (lines 14−20), as described in the previous chapter. After detecting a change it sends

an alarm (line 20) and adds its associated metadata to the corresponding log (line 19).

1 def change(forecast_sketch ,observed_sketch ,T):

2 depth = len(observed_sketch.sketch)

3 width = len(observed_sketch.sketch [0])

4

5 new_error_sketch = KAry_Sketch(depth ,width)

6 for i in range(0,depth):

7 for j in range(0,width):

8 new_error_sketch.sketch[i][j] = observed_sketch.sketch[i][j] -

forecast_sketch.sketch[i][j]

9 TA = T * sqrt(new_error_sketch.ESTIMATEF2 ())

10 return new_error_sketch , TA/10

11 (...)

12 error_sketch , threshold = change(forecast_sketch ,sketch_list [-1],T)

13 (...)

14 for key in keys:

15 if not any(v is None for v in key):

16 estimate = error_sketch.ESTIMATE(key ,hash_func)/10

17 if estimate > threshold:

18 complex_res.append(key + (str(estimate),))

19 res.append(key)

20 print("Change detected for:", key , "with estimate:", estimate)

Listing 4.3: Change detection module functionality in the python implementation of k-ary.

4.1.1 The Main Program

The main program used for running the k-ary algorithm in python consists of two main parts. The

first part, in main.py, is responsible for parsing and storing the configuration parameters from the input

and for creating the output file with the results from the execution. A list of all user-defined configuration

37

Parameter Values
alpha and beta [0.0:1.0]

sketch depth [1:15[
epoch size (s) [0:300[

forecasting model {ewma,nshw}
hashing function {murmur3,crc32}

flow-key {srcIP, srcPort, dstIP, dstPort, proto}
path for the input trace string

number of past sketches saved [1:5]
threshold [0.0:1.0]

Table 4.1: Configuration parameters available through the main program main.py.

parameters available through main.py is shown in Table 4.1. These configuration parameters allow the

user to customize the size of the sketch data structure, to select a specific forecasting model and specify

the associated parameters, and to define other configuration options such as the size of the epoch, the

hash function to use, or the fields of the flow-key.

The output file produced by main.py is meant to store information about changes detected in the

processed traffic trace. This file stores information per epoch. The format prints three distinct lines per

epoch. More specifically, the first line contains a sequential identifier, the application threshold, and

the number of packets processed. The second line presents a (possibly empty) list of flow-keys with

significant changes and the corresponding error estimates. The third line shows the number of distinct

flow-keys observed. An example of such output file format is presented in listing 4.4.

1 Epoch: 1 Threshold: 43.31 Num Packets: 2021

2 [(’149.171.36.239 ’,’192.168.1.248 ’,’54.85 ’) ,(’52.8.186.218 ’,’192.168.1.241 ’ ,54.85)]

3 Num Keys: 33

4 Epoch: 2 Threshold: 55.84 Num Packets: 3180

5 [(’192.168.1.106 ’,’35.224.42.73 ’ ,65.52)]

6 Num Keys: 31

Listing 4.4: Example of an output file showing information about changes detected in two consecutive

epochs.

The second part, in (change.py), implements the main logic of the k-ary sketching algorithm. This

part parses incoming packets, implements the epoch control, and leverages the different sketch modules

to perform change detection at every epoch. Epoch control is performed through packets timestamp.

When a packet timestamp exceeds the current epoch interval, the change detection module is trig-

gered. First, the Forecasting Module is called to compute the forecast and error sketches. Secondly,

the computed error sketch is sent to the Change Detection Module, which checks for relevant changes

in the current epoch. After the change detection operations are completed, all the detected changes

and associated metadata are sent to the main.py program for logging purposes. Finally, the sketch data

structures are prepared for a new epoch to start.

38

4.1.2 Exploring the configuration space

One of the first steps in the evaluation of this solution required identifying the best configurations for

different kinds of changes or traffic characteristics. This configuration-parameter search is implemented

inside test.py. This program takes one traffic trace and the expected detection results as input, and

outputs, out of a certain number of tested configurations, the parameters which provide the best results

in terms of accuracy, precision, and recall. To achieve this, the program basically executes multiple

instances of the k-ary using different configurations, and compares the obtained results. Performing

such an extensive search of the configuration space for the k-ary algorithm is not a trivial problem. It

consumes time (1), requires defining a ”reasonable” interval of values to test (2), and, in the case of

continuous parameters, cannot fully explore all possible values (3).

The multiprocessing [67] python package has been used to minimize the time consumed (1) with

this task. This package allows splitting the processes, which can be run in parallel, thus saving time.

Tests with 2, 4, 6 and 12 processes confirmed the expected gain against the execution on a single

process on a 6-core COTS machine, with hyper-threading enabled.

Issues (2) and (3) have been addressed by reducing the set of possible values for certain configura-

tion parameters leveraging specific knowledge of the problem domain. For example, flow-keys can be

of the format [dstIP], or [srcIP,dstIP], or the five-tuple [srcIP,srcPort,dstIP,dstPort,protocol]. Continuous

values which take values between 0 and 1, on the other hand, are split into decimal steps of 0.1, and the

best configurations were then further refined with increments of 0.01.

send

k-meleon (p4)

controller crc kary-
sketch

controller

k-meleon

p4_src

includes

bit-shifts constants controls headers macros parser registers reversibility types

Figure 4.3: Overview of the K-MELEON implementation code.

4.2 K-MELEON

The implementation of K-MELEON can be described referring to the separation between control and

data plane logic of this algorithm, which is illustrated in Figure 4.4. The data-plane processes build the

sketch’s data structures at line rate. The implementation of K-MELEON developed by this work targeted,

and has been tested on, the P4 software reference switch a.k.a. bmv2 [68]. The control plane logic is

39

responsible for retrieving the keys and the error sketch from the data plane, and for performing change

detection. The overview of the source code for this implementation is illustrated in Figure 4.3.

I
Forecast
Sketch
Sf(t)

Sf(t+1)

Error Sketch

Se(t)

STORE
FLOW KEYS

II
S'o(t)

II
S'o(t)

Control
Flags

Sc(t)
II

FORECASTING
(e.g., EWMA)

Epoch Triggered

CONTROL
PLANE

DATA
PLANE

Network Stream

COMPUTE THRESHOLD
TA

ESTIMATE ERROR
EK

Ek > TA

K is a
change

yes

Sf(t+1) = alpha*So(t)+(1-alpha)*Sf(t)

Se(t) = So(t) - Sf(t)

Figure 4.4: High-level block diagram of K-MELEON.

4.2.1 Data Plane

The K-MELEON P4 program for the bmv2 switch target architecture consists of less than 500 LoC.

The data structures required by the K-MELEON algorithm are implemented through registers stateful

memory available on the target architecture. A snippet of code with the register definition in p4 can be

seen in Listing 4.5.

1 register <int <32>>(SKETCH_WIDTH) reg_forecast_sketch_row0; // forecast sketch Sf(t)

2 register <int <32>>(SKETCH_WIDTH) reg_forecast_sketch_row1;

3 register <int <32>>(SKETCH_WIDTH) reg_forecast_sketch_row2;

4

5 // [- - Se(t) (Read) - - | - - Se(t) (Write) - -]

6 register <int <32>>(SKETCH_WIDTH *2) reg_error_sketch_row0; // error sketch Se(t)

7 register <int <32>>(SKETCH_WIDTH *2) reg_error_sketch_row1;

8 register <int <32>>(SKETCH_WIDTH *2) reg_error_sketch_row2;

9

10 register <bit <1>>(SKETCH_WIDTH) reg_controlFlag_sketch_row0; // control -flag Sc(t)

11 register <bit <1>>(SKETCH_WIDTH) reg_controlFlag_sketch_row1;

12 register <bit <1>>(SKETCH_WIDTH) reg_controlFlag_sketch_row2;

Listing 4.5: K-MELEON’s sketch data structures definition in P4.

Feed-forward pipelined switch architectures, such the one of Tofino-based switches [21], have spe-

cific constraints with respect to the number of actions we can perform per stage, of the match-action

table, as well as constraints which impede us from reading or writing from the same register in more

than one stage. At the same time, each sketch needs to be updated multiple times for each packet,

depending on the number of sketch rows we need to update. Thus, performing the update operation

40

while using only one register to represent a sketch, would require to access the same register in H

consecutive stages (where H is the number of rows in one sketch), operation which would be infeasi-

ble. Hence, by using a different register to represent each of the sketch rows, the K-MELEON algorithm

does not require to access multiple times the same registers when updating the different sketches’ rows.

Furthermore, to guarantee that atomic read and reset operations can be performed by the control plane

between consecutive epochs (see section 3.5.3) the array of registers for Se(t) has been allocated dou-

ble size. Using this register in a mirrored fashion allows using only half of the sketch for reading and the

other half for writing. To determine which parts of the sketch is being read and which ones are being

written, this solution uses a epoch-bit with an associated offset.

The epoch verification is the first operation performed in the P4 program. A code snippet of this

operation is reported in Listing 4.6. This operation is meant to check whether or not an incoming packet

belongs to the current epoch or rather triggers an epoch change. This can be calculated with the number

of packets processed (lines 4-5), or as a time interval (lines 7-8). When using the number of packets to

define the size of an epoch, a register stores the number of packets processed for the current epoch.

When using a time interval instead, the timestamp of the first packet in each epoch is stored into a

register and all the subsequent packets timestamps are checked against the timestamp + epochsize

value. A timestamp greater than the timestamp + epochsize values triggers an epoch change (lines 15

and 19) and flips the one-bit sketch flag for the error sketch register.

1 reg_epoch_value.read(meta.epoch_value ,0);

2 #ifdef EPOCH_PKT /* epoch calculated with the number of packets processed */

3 if (meta.epoch_value >= EPOCH_SIZE) {

4 reg_epoch_value.write (0,1); // reset packet counter for the current epoch

5 #elif EPOCH_TS /* epoch calculated as time interval */

6 if ((standard_metadata.ingress_global_timestamp - meta.epoch_value) >= EPOCH_SIZE) {

7 reg_epoch_value.write(0, standard_metadata.ingress_global_timestamp);

8 #endif /* EPOCH TS Or PKT */

9

10 // start new epoch by flipping the epoch bit

11 reg_epoch_bit.read(meta.epoch_bit ,0);

12

13 if (meta.epoch_bit == 0) {

14 meta.epoch_bit = 1;

15 reg_epoch_bit.write(0,meta.epoch_bit);

16 } else {

17 meta.epoch_bit = 0;

18 reg_epoch_bit.write(0,meta.epoch_bit);

19 }

20 # flag to signal that epoch has changed

21 meta.epoch_changed_flag = 1;

22 }

Listing 4.6: Epoch verification mechanism for K-MELEON in P4.

Sketch Update - After the correct epoch is selected, the program proceeds with the update of the

sketch data structures. Analogous operations are performed onto the h sketches rows, so for the sake of

41

illustration, only operations related to a single row are presented here. Each of these h update is divided

into two parts. Listing 4.7 shows the P4 code for the first part of the update function of the first row of

each sketch. The function starts by reading and checking the control flag (line 1-2) to check whether

or not the sketch values from the previous epoch have been overwritten. If so, it updates the forecast

and error sketches with the observed value, without copying values from the previous epoch (lines 3-18).

Otherwise, the function copies the values from the previous forecast sketch and resets the error sketch

before updating (lines 20-32).

1 reg_controlFlag_sketch_row0.read(meta.ctrl ,meta.hash0);

2 if (meta.ctrl != meta.epoch_bit) { // If diff , copy forecast_sketch

3 reg_controlFlag_sketch_row0.write(meta.hash0 ,meta.epoch_bit); // Flip control flag

4

5 reg_forecast_sketch_row0.read(meta.forecast ,meta.hash0); // Sf(t)

6

7 // update error

8 meta.new_err = SKETCH_UPDATE - meta.forecast; // S’o(t) - Sf(t)

9 // Se(t) = S’o(t) - Sf(t)

10 reg_error_sketch_row0.write(meta.hash0+meta.err_offset ,meta.new_err);

11

12 // update forecast

13 meta.obs = SKETCH_UPDATE >> 1; // alpha*S’o(t)

14 meta.aux_forecast = meta.forecast >> 1; // (1-alpha)*Sf(t)

15 meta.new_forecast = meta.obs + meta.aux_forecast; // alpha*S’o(t) + (1-alpha)*Sf(t)

16

17 // Sf(t+1) = alpha*S’o(t) + (1-alpha)*Sf(t)

18 reg_forecast_sketch_row0.write(meta.hash0 ,meta.new_forecast);

19 } else { // else , only update with observed

20 // update error

21 reg_error_sketch_row0.read(meta.err ,meta.hash0+meta.err_offset); // Se(t)

22 meta.new_err = meta.err + SKETCH_UPDATE; // Se(t) + S’o(t)

23 // Se(t) = Se(t) + S’o(t)

24 reg_error_sketch_row0.write(meta.hash0+meta.err_offset ,meta.new_err);

25

26 // update forecast

27 reg_forecast_sketch_row0.read(meta.forecast ,meta.hash0); // Sf(t+1)

28 meta.obs = SKETCH_UPDATE >> 1; // alpha*S’o(t)

29 meta.new_forecast = meta.obs + meta.forecast; // Sf(t+1) + alpha*S’o(t)

30

31 // Sf(t+1) = Sf(t+1) + alpha*S’o(t)

32 reg_forecast_sketch_row0.write(meta.hash0 ,meta.new_forecast);

33 }

Listing 4.7: P4 logic to update sketch rows in K-MELEON.

The second part of the update function performs one extra operation per packet, called fake update,

to entirely copy the current forecast sketch Sf(t) into the error sketch Se(t) for the correct computation

of the forecast sketch Sf (t + 1) in the following epoch. This behavior is shown in the code snippet of

Listing 4.8. This requires storing into a counter the number of columns of the sketch data structure which

42

have already been updated by the fake update in the current epoch. The function starts by reading and

checking (lines 1-2) if the counter is greater than the width of the sketch. Whenever such a condition

holds, the sketches have been completely updated, therefore, no fake update is required within the

current epoch. Otherwise, the function increments the counter (line 3) and checks if the control flag

associated with that counter has already been updated (line 4-5). If none of the previous conditions

apply, it proceeds to updating the sketch data structures (lines 6-18) with the forecast sketch term of the

corresponding formulas.

1 reg_extraOp_counter.read(meta.counter ,0);

2 if (meta.counter < SKETCH_WIDTH) {

3 reg_extraOp_counter.write(0,meta.counter +1);

4 reg_controlFlag_sketch_row0.read(meta.ctrl ,meta.counter); // Sc(t)

5 if (meta.ctrl != meta.epoch_bit) { // If diff , copy forecast_sketch

6 // Sc(t) = !Sc(t)

7 reg_controlFlag_sketch_row0.write(meta.counter ,meta.epoch_bit);

8 reg_forecast_sketch_row0.read(meta.forecast ,meta.counter); // Sf(t)

9

10 // update error

11 meta.new_err_op = -meta.forecast; // -Sf(t)

12 // Se(t) = -Sf(t)

13 reg_error_sketch_row0.write(meta.counter+meta.err_offset ,meta.new_err_op);

14

15 // update forecast

16 meta.new_forecast = meta.forecast >> 1; // (1 - alpha)*Sf(t)

17 // Sf(t+1) = (1 - alpha)*Sf(t)

18 reg_forecast_sketch_row0.write(meta.counter ,meta.new_forecast);

19 }

20 }

Listing 4.8: Fake Update algorithm for K-MELEON in P4.

Reverting the sketch - K-MELEON needs to store the keys which contributed to the values of the

error sketch. Since storing the flow keys of all the flows which traversed the switch in one epoch could

not be easily feasible on common target architectures for the K-MELEON program, the majority vote

algorithm (MJRTY) proposed in [17] is leveraged by K-MELEON. The implementation of the majority vote

algorithm in K-MELEON is reported in Listing 4.9. The snippet only presents the code applied to the first

row of the sketch when the epoch-bit value is zero. Analogous code is executed across all the sketch’s

rows. Registers are required for storing the keys and the counters (lines 4-10). Similarly, as done for the

other sketches, each sketch row for MJRTY is represented as, and stored into, a distinct register. These

register structures are also replicated to allow consistent reading operations from the controller (see

Section 3.5.3 in Chapter 3). Each sketch cell stores three values: the counter, the source IP address,

and the destination IP address inside the same row. This MJRTY algorithm starts by setting the offset

required to update the source and destination addresses in the sketch register (lines 14-15). It checks

the epoch-bit (line 17) to decide which sketch to update, and then reads all values from the sketch, which

are associated with the current key (lines 18-20). Then, the algorithm checks if the flow key is the same

43

as the one stored inside the sketch (line 21). If so, it increments its counter (lines 30-32). Otherwise, it

decrements the counter (line 27-28) and, if the counter reaches zero, it replaces the stored key with the

new one (lines 22-25).

1 - - - - - - - - - - - | REGISTER DEFINITION | - - - - - - - - - - -

2

3 // [- - Counters - - | - - SRC IPs - - | - - DST IPs - -]

4 register <bit <32>>(SKETCH_WIDTH *3) reg_mjrty0_row0; // mjrty (Read)

5 register <bit <32>>(SKETCH_WIDTH *3) reg_mjrty0_row1;

6 register <bit <32>>(SKETCH_WIDTH *3) reg_mjrty0_row2;

7 // [- - Counters - - | - - SRC IPs - - | - - DST IPs - -]

8 register <bit <32>>(SKETCH_WIDTH *3) reg_mjrty1_row0; // mjrty (Write)

9 register <bit <32>>(SKETCH_WIDTH *3) reg_mjrty1_row1;

10 register <bit <32>>(SKETCH_WIDTH *3) reg_mjrty1_row2;

11

12 - - - - - - - - - - - - - | ALGORITHM | - - - - - - - - - - - - -

13

14 meta.src_offset = SKETCH_WIDTH;

15 meta.dst_offset = 2* SKETCH_WIDTH;

16 // compare candidate flow key with current flow key

17 if (meta.epoch_bit == 0) {

18 reg_mjrty0_row0.read(meta.tempsrc , meta.hash0+meta.src_offset);

19 reg_mjrty0_row0.read(meta.tempdst , meta.hash0+meta.dst_offset);

20 reg_mjrty0_row0.read(meta.tempcount , meta.hash0);

21 if (meta.tempsrc != hdr.ipv4.srcAddr || meta.tempdst != hdr.ipv4.dstAddr) {

22 if (meta.tempcount == 0){ //if counter is zero , add new key

23 reg_mjrty0_row0.write(meta.hash0+meta.src_offset , hdr.ipv4.srcAddr);

24 reg_mjrty0_row0.write(meta.hash0+meta.dst_offset , hdr.ipv4.dstAddr);

25 reg_mjrty0_row0.write(meta.hash0 , 1);

26 } else if (meta.tempcount > 0) { //if counter is not zero decrement counter by 1

27 meta.tempcount = meta.tempcount - 1;

28 reg_mjrty0_row0.write(meta.hash0 , meta.tempcount);

29 }

30 } else { // if keys are equal increment counter by 1

31 meta.tempcount = meta.tempcount + 1;

32 reg_mjrty0_row0.write(meta.hash0 , meta.tempcount);

33 }

Listing 4.9: Majority Vote Algorithm for sketch reversibility in K-MELEON.

4.2.2 Control Plane

The control plane logic of K-MELEON is written in Python. The controller uses the SimpleSwitchAPI

from the p4utils library to communicate with the data plane module. The controller program is divided

into three different modules, each module corresponding to a different file. One module implements the

main functionality of the controller, namely, initializing the data plane hash functions with pre-defined

polynomials, retrieving sketches and flow keys from the data plane, and performing change detection.

Another module mimics the behavior of the custom crc32 algorithm running inside the target switch

44

architecture (bmv2). This is needed because this specific hash is the one used in the P4 switch, so

we need to perform the hashing computations with this same function. The third module manages the

sketch data structures and supports the required operations for those structures.

K-MELEON leverages the control plane to compute the alarm threshold TA, the estimated error Ek

for each key k, and to compare the estimated Ek against TA. For that purpose, a controller reads the

error sketch Se(t) including the heavy changer flow keys from the reversibility mechanism. Whenever

an error estimate for a key Ek is greater than TA, a change is detected for the flow key k. Besides,

after retrieving the data necessary to the detection, the control plane cleans the corresponding data

structures allocated for the error sketch, the forecast sketch and the flow keys stored in the data plane

to ensure a clean status for the next epoch.

The controller periodically reads the epoch-bit flag to understand when epochs change. In Listing

4.10, we show how the data plane elements are extracted from the data plane by the controller. The

controller first reads the epoch-bit flag (line 2) and checks that it equals the one currently stored (line

3). If the stored epoch bit corresponds to the one just read, the controller aborts the operation since

the current epoch has not changed. Otherwise (line 4), the controller updates the stored epoch-bit

for the current epoch, and proceeds with reading the flow keys and error sketches row by row (lines

6-11). Afterwards, the controller converts the per-row information read from the data plane into their

respective representations using the sketch module (lines 13-23). Finally, the controller resets all flow

keys present in the data plane (lines 29-31) before performing change detection as defined before in the

python implementation of the k-ary algorithm.

1 self.registers = []

2 self.registers.append(self.controller.register_read("reg_epoch_bit")) #0 flag

3 if self.registers [0] != self.flag:

4 self.flag = self.registers [0]

5 if (self.registers [0][0] == 0): #choose error and mjrty

6 mjrty_row0 = self.controller.register_read("reg_mjrty1_row0")

7 mjrty_row1 = self.controller.register_read("reg_mjrty1_row1")

8 mjrty_row2 = self.controller.register_read("reg_mjrty1_row2")

9 err_row0 = self.controller.register_read("reg_error_sketch_row0")

10 err_row1 = self.controller.register_read("reg_error_sketch_row1")

11 err_row2 = self.controller.register_read("reg_error_sketch_row2")

12

13 self.registers.append(mjrty_row0[self.width :2* self.width]) #1 src ips

14 self.registers [1] = self.registers [1] + mjrty_row1[self.width :2* self.width]

15 self.registers [1] = self.registers [1] + mjrty_row2[self.width :2* self.width]

16

17 self.registers.append(mjrty_row0 [2* self.width :3* self.width]) #2 dst ips

18 self.registers [2] = self.registers [2] + mjrty_row1 [2* self.width :3* self.width]

19 self.registers [2] = self.registers [2] + mjrty_row2 [2* self.width :3* self.width]

20

21 self.registers.append(err_row0[self.width :2* self.width]) #3 error sketch

22 self.registers [3] = self.registers [3] + err_row1[self.width :2* self.width]

23 self.registers [3] = self.registers [3] + err_row2[self.width :2* self.width]

24

45

25 #reset mjrty keys and counters

26 self.controller.register_reset("reg_mjrty1_row0")

27 self.controller.register_reset("reg_mjrty1_row1")

28 self.controller.register_reset("reg_mjrty1_row2")

Listing 4.10: Read and Reset operations of K-MELEON data structures by the python controller.

4.3 Additional tools for testing and evaluation

The evaluation and testing phases of the traffic change detection algorithm K-MELEON required the

development of several ancillary tools. Specifically, those were mostly necessary to parse and analyze

traffic traces, and to analyze and compare detection results.

Trace Parsing tool. This tool is essential to running and testing the python implementations of the k-

ary and K-MELEON. Running each of these detection modules requires loading an entire packet trace to

memory, which depends on the size of the trace and on the resources available on the machine used for

testing. Because only the flow keys, the timestamp, and the size of the packet (for some configurations)

must be stored, a parser tool only stores these values in an array. This tool also helps with testing

multiple different configurations in parallel without unnecessarily overloading the compute and storage

resources on the testing environment.

Comparison Tool. Testing the correctness of the k-ary and K-MELEON implementations requires

comparing the changes detected by each of these solutions, including the thresholds, the number of

packets processed, and the estimates obtained for each of the changes detected in each epoch. To

facilitate the comparison of detection results with different algorithms, a custom tool was developed to

compute several measurements, such as the false positives and negatives, true positives and negatives,

and relative differences. The different algorithms share a similar format for their output files to ease the

comparison of their detection results.

Analysis Tool. Some general knowledge of the traffic used for testing was shown to be important for

the correct testing and evaluation of the developed algorithms. For example, if the packet rate for a given

trace was in the order of the hundreds of packets per second, choosing a small epoch size might not

collect enough information to perform the change detection task. By contrast, choosing a large epoch

size might incur in missing relatively quicker changes such as microbursts, for example. To specifically

aid with the aforementioned tasks, we developed an analysis tool. The tool takes a given network trace

as input and outputs relevant information about the trace such as the packet rate, and graphs describing

the changes in packet-rate across different time scales. Furthermore, this tool allows retrieving all flows

which exceed a given threshold for a given time scale, or the heavy flows, those that constitute a certain

percentage of the whole traffic. This last feature turns to be very useful to test different definitions of

microbursts for a given network trace.

46

4.4 Summary

In this chapter, we presented the implementation steps of K-MELEON. First, we introduced the im-

plementation of the k-ary sketch in python, described each of its modules, the main program, and the

optimizations required for testing. Afterwards, we described the implementation of K-MELEON. The main

obstacle was the constraint programming model of the target programmable switches, requiring care-

ful analysis to understand which actions could be performed in the data plane and which should be

offloaded to the controller. Finally, we introduced the additional tools created to aid in the testing and

evaluation of this work.

The next chapter dives into the evaluation of K-MELEON, describing the testing environment, the

validation of our k-ary implementation, and the evaluation of K-MELEON.

47

48

Chapter 5

Evaluation

The evaluation of K-MELEON consists of two main phases with different objectives. First, the aim is

to assess if the original k-ary algorithm can detect changes with high fidelity. Second, the goal is to

measure the accuracy in detection of K-MELEON, compared to its ancestor k-ary.

This Chapter is organized as follows. In Section 5.1 we describe the testing environment. Then, in

Section 5.2 we verify the accuracy of change detection achieved by the original k-ary. Finally, in Section

5.3 we report and discuss the evaluation of K-MELEON with respect to the detection of traffic changes.

5.1 Testing Environment

Datasets. The evaluation of K-MELEON uses several packet traces from two different datasets. The

CSE-CIC-IDS2018 dataset [69] can be used for identification of traffic changes in the context of network

intrusion detection – from now onward we refer to this dataset as network_attacks. This dataset con-

tains seven different categories of attacks (brute force, DoS, DDoS, etc.), that present different patterns

of network traffic change. We thus use an attack as a proxy for a traffic change event. The dataset

is labeled, helping assess the accuracy of detection of our approach. The second dataset used is

the data-center measurement trace (UN1) from [70] - from now onward we refer to this dataset as the

microbursts dataset. As recent work [71] has detected the presence of microbursts in this trace, the

evaluation with this dataset has the goal to understand whether K-MELEON can distinguish short-lived

traffic spikes within certain flows, commonly referred to as microbursts.

Experimental setup. There is not an open-source implementation of the k-ary algorithm proposed

in [18], so we have implemented a version in Python that is made available as open-source software with

this work. The effectiveness in detection of this implementation of k-ary was validated through extensive

testing against the labelled traces from the network_attacks dataset. The data-plane part of K-MELEON

was implemented in P4, while the control-plane logic was implemented in Python. The P4 reference

compiler p4c [72] and the P4-enabled software switch bmv2 [68] were used to compile and run K-

MELEON. The Scapy python library [73] was used to replay the packet traces from the selected datasets.

A set of additional Python scripts were developed to compare detection results with k-ary and K-MELEON

49

and produce specific evaluation metrics. The evaluation was performed on a COTS machine with an Intel

i7-8750H CPU and 16B of RAM, through a virtualized environment running Ubuntu 16.04. The source

code of K-MELEON and all the auxiliary software developed for testing has been made publicly available

on GitHub [24].

5.2 K-ary

The implementation of the k-ary sketching algorithm in python followed the description of the algo-

rithm in the original paper [18]. This section aims to validate the k-ary implementation by extensively

testing it against the network_attacks dataset. The goal is both to understand how effective is k-ary

in detecting changes, and also to analyse how the different configuration parameters affect its perfor-

mance. First, we evaluate the impact of the size of the sketch data-structure on the detection results

obtained against per-flow analysis1. Then, we evaluate the k-ary with respect to one use case: the abil-

ity to detect network attacks. Finally, a series of tests are performed to understand the impact of each

individual configuration parameter on the detection results.

5.2.1 Determining the sketch size

The k-ary sketch implementation was compared against a similar monitoring solution performing per-

flow analysis without memory compression, considered as ground truth. We perform change detection

with the two monitoring solutions using the traces from the network_attacks dataset. The metric used

is the relative difference as defined in [18] (see equation 5.1). The equation compares, in each epoch,

the alarm threshold values va obtained with k-ary, against the ground truth values ve.

Relative Difference =
va − ve
ve

· 100 (5.1)

Storing per-flow information in memory is the ideal solution. In practice, sketching algorithms trade off

monitoring accuracy for memory efficiency and so incur in collisions, storing information about multiple

flows in the same memory. As a consequence, per-flow information is estimated when using sketches

and, thus, the resulting values can introduce errors.

In k-ary, increasing the width (K) of the sketch data-structure decreases the probability of collisions

of different flows into the same buckets, while increasing the height (H) improves the estimates of the

sketch values. Therefore, the size (H × K) of the sketch data-structure influences the relative error

obtained by the algorithm. To measure the impact of the sketch size with regard to the monitoring task

targeted by this work, we run k-ary against the network_attacks traces using different sketch widths.

These results are reported in Figure 5.1.

As expected, using higher sketch widths (K) improves the performance of change detection of k-ary.

In this test, sketch widths of 32 buckets incurred in a higher number of collisions and so produced a

1We use per-flow analysis as the baseline. This represents the switch keeping all information necessary to the detection of
every change for every flow.

50

0

0.2

0.4

0.6

0.8

1

-8 -6 -4 -2 0 2 4 6 8

E
m

pi
ric

al
 C

D
F

Relative Difference (%)

K=32
K=64

K=128
K=512

K=1024
K=2048

Figure 5.1: Empirical CDF values obtained for the relative difference between k-ary and per-flow analysis
(ground truth) for different sketch widths (K), represented as the number of buckets per hash. The
number of hashes (H) is equal to 3.

relative difference of 7% in the worst case. Instead, sketch widths of 512, 1024, and 2048 show relative

differences lower than 0.5%, guaranteeing high fidelity in monitoring. Increasing the sketch width above

512 led to little to no improvement for this dataset, so this value represents a good memory/accuracy

trade-off. It should be noted that the traffic packet rate in these testing traces is relatively low (around

100 packets/s), containing 50 to 100 different flows per epoch (we consider epoch size of 20s for these

experiments). Higher packet rates and higher number of flows per epoch would require further memory.

A similar experiment was performed to measure the effect of changes in the height of the sketch

data structure. Figure 5.2 reports the relative difference obtained for the k-ary sketching algorithm with

different sketch heights (H), while using a fixed sketch width (K) of 2048 buckets. Five different height

values in the range [1,10] were tested. As expected, values of H higher than 2 produce more accurate

results, achieving relative differences under 0.1%. Increasing the height value (H) further has very little

impact on the relative difference. As a result, the sketch height (H) was set to 3 for all the following

experiments.

5.2.2 Use case: Attack Detection

One common use of a network change detection system is for the identification of network attacks.

We resorted to the labelled attack traces from the network_attacks dataset to measure the effective-

ness of the k-ary algorithm in detecting the attacks present in those traces.

This evaluation required tuning several configuration parameters for the k-ary algorithm, from the

choice of the forecasting model (NSHW or EWMA), and the values of the smoothing constant in the

51

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

E
m

pi
ric

al
 C

D
F

Relative Difference (%)

H=1
H=2
H=3
H=5

H=10

Figure 5.2: Empirical CDF values obtained for the relative difference between k-ary and per-flow analysis
(ground truth) for different sketch heights (H). The sketch width is K = 2048.

chosen forecast model, to the values of the application-specific threshold (T) and the size of the epoch.

We report about our exploration of the configuration space for k-ary next, in Section 5.2.3.

For this use-case, we tested epoch sizes between 5 and 20 seconds. We tested detection with k-ary

across all of the 11 traces in the network_attacks dataset and report the accuracy obtained with the

best configuration for each trace in Figure 5.32. The k-ary algorithm produced high detection accuracy

for all kinds of attacks featured in the traces. The algorithm has shown to achieve the best accuracy

with epoch size of 20 seconds for this experiment given the low packet rate of the testing traces. Faster

packet rates could most likely increase the accuracy even for shorter epoch sizes.

5.2.3 Exploring the configuration space for attack detection

Several parameters contribute to the detection accuracy achieved by the k-ary algorithm. Namely, the

number (H) and width (K) of the hash tables (and hence the size H ×K of the sketch data structure),

the application-specific threshold T , the epoch size, the choice of the forecast model, and the model

parameters. We have not explored this configuration space exhaustively in this work. Rather, we have

first focused on finding configurations which on average worked well across the tested traces from the

network_attacks dataset. Our main goal in this phase was to identify configurations which could fit into

a more constrained environment, like the one targeted for the development of K-MELEON, which could

work well on average.

2Accuracy is defined as the ratio between the number of correctly reported events (in other words, the sum of true positives
and true negatives) and the total number of events. On these sections we only report accuracy values as we are interested in
analysing the behaviour of the algorithm with different configurations. In the case of K-MELEON we will extend the analysis with
precision and recall metrics.

52

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11

A
cc

ur
ac

y

Traces

Epoch 20s
Epoch 10s
Epoch 5s

Figure 5.3: Empirical accuracy values obtained for each trace with the k-ary implementation in python.

Our experiments confirmed that the tuning of certain parameters may help improve detection accu-

racy.

Forecasting Model

We started testing two different forecasting models, namely, the Exponentially Weighted Moving

Average (EWMA) and the Non-Seasonal Holt-Winters (NSHW). We aimed to understand if using NSHW,

which requires more computation and memory, would give better results than using the simpler EWMA.

The comparison between the two models was done by selecting the best accuracy results obtained with

different parameter configurations, across all traces, for epoch sizes of 5, 10, and 20 seconds. Figure

5.4 reports the accuracy values obtained for those epoch sizes in a box plot, used here to show the

variability of our results across the tested traces. Each box represents the interquartile range and the

lines (whiskers) represent the variability of the values obtained outside the lower and upper quartiles.

Dots represent outliers, which can be easily ignored for an overall interpretation of these results.

The results obtained suggest that the average accuracy obtained with both forecasting models is

very similar. However, the accuracy with EWMA tends to decrease more rapidly than with the NSHW for

smaller epoch sizes. Overall, although both forecasting models present slightly worse detection accuracy

for smaller epoch sizes, these results show that on average they still detect changes with high accuracy.

Based on these results, we decided to use EWMA as a forecasting model for K-MELEON, since this

model can achieve comparable results with NSHW with lower computation and memory requirements.

53

0

0.2

0.4

0.6

0.8

1

5 10 20

A
cc

ur
ac

y

Epoch (s)

NSHW
EWMA

Figure 5.4: Empirical accuracy values obtained for each forecasting model using different epoch sizes.

Threshold

We are also interested in understanding how the application-specific threshold T can affect the ac-

curacy of detection for different traffic changes. Since it is very unlikely that multiple instances of the

algorithm can run at the same time, we tried to identify a single threshold value which could achieve

detection with sufficient accuracy with all the tested traces. We leveraged the results from the previous

experiments to identify the threshold values which provided the highest accuracy for the two forecasting

models evaluated. Figure 5.5 illustrates the cumulative distribution function of the application-specific

threshold for those experiments.

One configuration which matched all kinds of changes would require the use of a threshold value

as low as 0.4, for EWMA, the lowest value obtained across all traces. The NSHW model, on the other

hand, shows that it can use a higher threshold 0.5 for the same traces. However, the best configuration

is different for different traces/attacks. For instance, threshold of 0.8 could be used for traces 7, 8, and 9,

but a threshold of 0.5 would be better for the remaining traces. The aggregation of attacks by their type

could prove useful in achieving higher accuracy across similar attacks using the same configurations.

This is something to explore in the future.

Flow-keys

In our evaluation three kinds of flow-keys were tested: (1) destination IP and protocol, (2) source IP,

destination IP, and protocol, and (3) the five-tuple key (source IP, source port, destination IP, destina-

tion port, and protocol). We are interested in understanding if performing ”coarser” monitoring, using

smaller flow-keys, can still provide good results. Smaller flow-keys bring the benefit of lower memory

requirements for storing flow information.

54

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

E
m

pi
ric

al
 C

D
F

Threshold

EWMA
NSHW

Figure 5.5: Empirical optimal threshold values obtained for each trace.

Trace 1 2 3 4 5 6 7 8 9 10 11
EWMA 5T 5T 5T 5T 5T 5T 5T 2T, 5T 2T, 5T 5T 5T
NSHW 5T 5T 5T 5T 5T 5T 2T, 5T 2T, 5T 2T, 5T 5T 5T

Table 5.1: Best flow-key type for each trace in the network_attacks dataset, where 5T means the
five-tuple key and 2T means destination IP and protocol.

Table 5.1 reports the flow-key types which allowed the algorithm to achieve the best accuracy for

all tested traces (values in each column corresponds to a different trace). As expected, the five-tuple

key proved to be the most effective for all kinds of changes in the tested traces, independently of the

forecasting model used. However, there were cases (namely, the TCP SYN Flood attacks (7, 8, 9)),

where a coarser flow-key (IP and protocol) allowed the algorithm to achieve the same level of accuracy

as with the five-tuple key.

5.3 K-MELEON

The goal of this work was to build a change detection system capable of running within the con-

straints of the P4 programming model. Towards that goal, the main logic of the k-ary algorithm has been

preserved in K-MELEON through careful restructuring of its operations. This restructuring has introduced

approximations in some of the operations of the original algorithm, like, for example, in the computation

of the forecast sketch, as explained in Section 3.5.1. The main question we ask in the evaluation is

therefore if K-MELEON achieves the same level of detection accuracy and resource usage compared to

k-ary.

55

5.3.1 Preliminary note

Our first experiments evaluating K-MELEON required running multiple instances of our solution with

different configuration parameters across many different network traces. These experiments consist of

emulations, so real packets are generated and traverse the network stacks of the source host, bmv2

switch, and destination host. However, running experiments in the behavioral model software switch

bmv2 is very time consuming. The software switch is also not optimized for performance. As a conse-

quence of the slow packet processing and I/O rate, each evaluation run could take hours, and was a

bottleneck for evaluation of K-MELEON. For this reason, we decided to develop, for testing purposes, an

additional version of k-ary in python, mimicking exactly the approximations of K-MELEON. This means

that we perform simulations, instead of emulations. Importantly, the simulations run orders of magnitude

faster, from hours to less than 1 minute in most cases. Several tests were performed across different

traces, using the two versions, and the results were identical in all runs.

Hence, all the results reported in the rest of this Section were performed using the K-MELEON imple-

mentation in Python. However, our tests with the two versions give us high confidence that the results

produced with the P4 version would be identical.

5.3.2 K-MELEON vs k-ary

The validation of the proposed solution requires, as a first step, computing the relative difference,

defined in [18] as the difference between the total energy (square root of the sum of second moments

for each epoch), between K-MELEON and k-ary. In this experiment, several sizes of the sketch data

structure are considered, varying the sketch height from 1 to 5. In Figure 5.6, which illustrates the

results for this experiment, it can be seen that most of the mass is concentrated around the 0% point on

the x axis, with very few points that differ more than 0.2% from the corresponding k-ary ones, for any H.

Moreover, the curves corresponding to each distinct value of H show a very similar trend. In conclusion,

these results show that the change detection capabilities of K-MELEON are very similar to those of kary,

and that the height of sketch (H) has little to no effect on the measured relative difference.

Since some approximation is introduced by K-MELEON in the computation of the forecast sketch in

EWMA, we measured any possible impact of these approximations, specifically varying the smoothing

constant α values, which affect the level of approximation introduced in the model. To this end, K-

MELEON and k-ary were run on eleven traces from the network_attacks dataset, fixing the algorithm

configuration except for the smoothing constant a values. Finally, each value of the application threshold

TA obtained with the K-MELEON was compared with the value of TA obtained with k-ary, using a relative

difference metric, as done previously.

The results of this experiment are illustrated in Figure 5.7. The figure shows the average empirical

CDF for the relative difference obtained for different values of the smoothing constant alpha. These

results show that K-MELEON incurred in less than 0.3% relative difference for any tested α value. Inter-

estingly, the relative difference varies slightly according to the value of α used. This variation illustrates

the error introduced by the approximations required to run k-ary in the data plane. As multiplication

56

0

0.2

0.4

0.6

0.8

1

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

E
m

pi
ric

al
 C

D
F

Relative Difference (%)

H=1
H=2
H=3
H=5

H=10

Figure 5.6: Empirical CDF values obtained for the relative difference between k-ary and K-MELEON for
different sketch heights (H).

is performed using bit-shifts, the smoothing constant α will introduce an increasing error rate with the

number of bit shifts. The smoothing constant α = 0.5 only requires one bit shift, whereas α = 0.75

and α = 0.875 require two and three bit-shifts (and additions), respectively, and the error rate slightly

increases accordingly.

The two experiments above show that K-MELEON achieves comparable detection performance as

k-ary (requirement R1), despite the approximations introduced. Besides, it is worth mentioning that K-

MELEON does not achieve this result at the cost of additional memory. It should be clear from our design

that the memory consumption for both schemes is very similar. We will return to this point in Section

5.3.5.

5.3.3 Detecting network attacks

To assess the ability of K-MELEON to detect the attacks present in the network_attacks traces, we

considered the following metrics:

Accuracy =
TP + TN

TP + TN + FP + FN
(5.2)

Precision =
TP

TP + FP
(5.3)

Recall =
TP

TP + FN
(5.4)

The experiments require executing K-MELEON with different configurations across different epoch

57

0

0.2

0.4

0.6

0.8

1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

E
m

pi
ric

al
 C

D
F

Relative Difference (%)

a=0.5
a=0.625
a=0.75
a=0.875

Figure 5.7: Empirical CDF values obtained for the relative difference between k-ary and K-MELEON for
different alpha values (α).

sizes, while counting: the number of attacks detected (true positives), the false alarms (false positives),

the attacks not detected (false negatives), and the benign traffic undetected (correctly) as an attack (true

negatives).

Figure 5.8 reports the detection performance with varying epoch sizes (in seconds) of K-MELEON,

using traces including ping of death, SNMP reflection, smurf, TCP syn flood, and UDP flood attacks.

All attacks last around 10 seconds – an important detail to interpret the results that follow. The metrics

include detection accuracy, precision, and recall. For these experiments, we present average values

among several configurations of the sketch and of the forecast model per tested trace.

The main take away is that K-MELEON is an effective change detector. It is able to achieve close to

100% accuracy for epoch sizes greater or equal to 10 seconds, without generating any false negatives

(Recall is always 1 – i.e., we are detecting all attack-related changes). The reader will note the precision

results do not make K-MELEON particularly interesting to be used alone as an intrusion detector. Sev-

eral false positives, or false alarms, are raised, which is undesirable. Indeed, the traces include other

traffic changes that K-MELEON correctly detects but that are unrelated to the network attacks. In prac-

tice, anomaly-based detectors typically analyse changes in traffic patterns with statistical or ML-based

techniques [1].

In all experiments our system detects a change either in the same epoch it occurs or in the subse-

quent. We are thus confident in fulfilling R3 and R4 when we perform evaluations with real hardware,

which is left as future work.

58

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

E
m

pi
ric

al
 C

D
F

Accuracy

0.1
1

10
60

120

(a) Accuracy.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

E
m

pi
ric

al
 C

D
F

Precision

0.1
1

10
60

120

(b) Precision.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

E
m

p
ir

ic
a
l
C

D
F

Recall

0.1
1

10
60

120

(c) Recall.

Figure 5.8: Empirical CDF for network attacks.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

E
m

p
ir

ic
a
l
C

D
F

Accuracy

0.1
1

10
60

120

(a) Accuracy.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

E
m

pi
ric

al
 C

D
F

Precision

0.1
1

10
60

120

(b) Precision.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

E
m

pi
ric

al
 C

D
F

Recall

0.1
1

10
60

120

(c) Recall.

Figure 5.9: Empirical CDF for microbursts.

5.3.4 Detecting microbursts

Towards a more comprehensive evaluation of K-MELEON as a generic change detector, we also

tested K-MELEON with regard to the detection of microburst events, another crucial kind of network

traffic change. For this purpose, three different traces from the microbursts dataset were used. In

these experiments, we considered as a microburst any flow, within a 1 second time window, whose

count was 20 times higher than the average flow, and accounted for at least 20% of all traffic in that

time window. This definition is aligned with the literature on the topic [3]. The evaluation methodology

is very similar to the one for the detection of network attacks. Each trace was tested against multiple

configurations of the K-MELEON for each epoch size. The metrics considered in this evaluation were the

accuracy, precision, and recall.

Figure 5.9(a) shows K-MELEON is very accurate for every epoch size. This is a good result but

should be taken with a grain of salt, as will be clarified in the other plots. In this dataset the number of

true negatives (normal events not labelled — correctly — as microbursts) is significantly higher than the

other metrics, and accuracy is therefore always close to 1.

Figure 5.9(b) illustrates the precision obtained for each epoch size and its results are more interest-

ing. They show that with an epoch size of 1 (the maximum duration of a microburst) K-MELEON detects

microbursts with a median precision close to 85%. For epoch size values of 10 and 60 seconds the re-

sults slightly decrease but they are anyway more or less acceptable. For the largest and smallest epoch

sizes the precision results are very poor, as they are way over or way under the defined duration for a

microburst.

59

H 1 3
K 32 64 32 64
B 4 8 4 8 4 8 4 8

Baseline 1600 3200 1600 3200 1600 3200 1600 3200

K-ary 384
(-76%)

768
(-76%)

768
(-52%)

1536
(-52%)

1152
(-28%)

2304
(-28%)

2304
(+44%)

4608
(+44%)

K-MELEON
388

(-75.75%)
772

(-75.875%)
776

(-51.5%)
1544

(-51.75%)
1164

(-27.25%)
2316

(-27.625%)
2328

(+45.5%)
4632

(+44.75%)

Table 5.2: Memory consumption (in bytes). Baseline values were calculated with 100 flows per epoch.

The results for recall are shown in Figure 5.9(c). Again, using epoch sizes of 120 seconds hinders

the detection performance, as the recall is close to 0 for most configurations. The epoch size of 1 second

is again the one with best median, of around 0.5. This means that around half of all microburst events

are detected. We conjecture that increasing slightly the epoch size, for example to 2, may improve the

results as the microbursts events will appear in its entirety in a single epoch, but we leave testing this

hypothesis as future work. Similarly to the precision results, the recall decreased as the epoch size

increases.

Overall, the evaluation of microburst detection showed that K-MELEON is potentially capable of per-

forming generic change detection, not only of heavy changers. These last experiments further confirmed

that one single configuration is not enough to accurately perform detection of all kinds of changes. Differ-

ent applications on attacks require different configurations. Again, as the events are detected right after

the epoch where they happen, K-MELEON can potentially detect several microbursts fast, immediately

as they occur.

5.3.5 System performance and resource usage.

We implemented our program to run on our Intel Tofino. The code was compiled successfully with

the Tofino SDE. This demonstrates it achieves line rate performance (6.4 Tbps, R5).

The memory consumption for K-MELEON and the original k-ary is similar, as they both use 3 main

sketches of equal size. A difference is that K-MELEON requires additional space to store a second error

sketch (to be used when changing epochs), while k-ary needs to keep the observed sketch in memory,

something not required in our streaming-based design. But they are of the same size, cancelling out.

However, our system further requires a control sketch that uses 1 bit per bucket. As a result, the relative

increase in total memory of K-MELEON over k-ary is equal to 1 − 1
3×B , where B is the bucket size.

Table 5.2 presents the memory consumption for several sketch values, and compares them against the

baseline values using per-flow analysis.

There are two main takeaways. First, the memory consumption of K-MELEON is roughly the same

as that of k-ary, for these realistic sketch values (R2). Second, the sketch versions represent important

memory savings when compared to the baseline, up to a point. For the larger sketch sizes (H=3 and

K=64), the sketch uses more memory than the baseline alternative of storing all flows. This is a result

of the small number of active flows in the trace used as reference in this experiment (only roughly 100

flows per epoch, on average). This is a result of the small scale of the tesbed used to generate this

60

network_attacks testbed. In any realistic mid- to large-scale network the number of active flows is

expected to be in the order of the several thousands [15], so the memory efficiency of the sketch-based

versions would become evident. This can be demonstrated by the results with the smaller sketches

(H = 1 and K = 32). In this case the memory savings are considerable, and this is achieved with an

insignificant relative difference error of less than 0.2% compared to the baseline.

5.4 Summary

This chapter presented the evaluation of k-ary and K-MELEON, two solutions for the traffic change

detection problem. First, we described the testing environment and the datasets used for evaluation

in Section 5.1. Afterwards, we validated the k-ary sketch implementation by comparing it against the

per-flow analysis baseline. This section also included results on our exploration of the configuration

space for k-ary. In section 5.3, we report the evaluation of K-MELEON against the k-ary algorithm on its

ability to detect changes, with small resource consumption and with the guarantee to run at line rate in

a programmable switch.

61

62

Chapter 6

Conclusions

This thesis presented K-MELEON, a system that detects significant traffic changes for any type of flow.

K-MELEON revisits traditional change detection algorithms and proposes a new streaming-based design

that fits the computation model and constraints of programmable switches. By performing the required

computations in-network, as the packets traverse the switch, K-MELEON can potentially respond to sub-

second changes and scale to Tbps speeds.

We studied the state of the art in the fields of programmable networks and change detection tech-

niques and selected the existing solution which best fit our purpose, the k-ary sketching algorithm. More

specifically, we leverage the k-ary sketch to build a solution capable of performing change detection

almost entirely in the data plane of programmable switches using the P4 language.

One of the main challenges consisted in fitting the k-ary operations into such a constrained program-

ming model. For instance, most operations performed by the forecasting model of the k-ary sketching

algorithm required floating-point arithmetic, which was not feasible to implement in P4. Instead, these

operations had to be approximated using bit-shifts.

Another main obstacle was the batch-based nature of the original k-ary. More specifically, the k-ary

algorithm performs all forecasting and change detection operations at the end of one epoch, as a batch.

This solution does not fit the pipelined model of hardware packet processors, and thus required careful

modifications to the k-ary functions to be implemented in a stream-based fashion on each packet, within

the constraints of the target P4-capable platform.

6.1 Achievements

In summary, the contributions of this dissertation are:

• The design of K-MELEON, an online change detection system that speeds and scales up detection

by leveraging programmable switches.

• The implementation of a prototype in P4 [22, 23], available open-source.

63

• An evaluation that demonstrates K-MELEON achieves the same level of accuracy as the offline k-

ary solution, and detects changes from any type of flow (not only heavy-hitter traffic as existing

work [16, 17]).

6.2 Discussion and future work

Our initial exploration of in-network change detection with K-MELEON shows its promise as an online

change detector. To foster discussion on an area still on its early days of leveraging network programma-

bility, in this section we discuss some limitations of K-MELEON and avenues we think are worth exploring

in the general context of change detection.

Detection entirely in the data plane. The current design of K-MELEON is still bottlenecked at the

switch CPU. At the end of each epoch, the control plane must read the entire error sketch and the keys

stored in the current epoch to compute and compare the alarm threshold TA with the error estimates Ek.

This limits scalability and introduces latency that may be crucial for timely detection of certain events.

We are currently offloading this task to the control plane due to the relative complexity of computing

F2 and Ek. While challenging, the complexity may not be insurmountable, however. We are exploring

target-specific parallelizations to avoid this offload, both “horizontal” and “vertical”. The first is to perform

various sub-parts of a complex operation across multiple stages (similar to pipelining), transporting

partial results using packet metadata between stages. The second is to perform multiple operations in

parallel in the same stage, aggregating the results in subsequent stages. The challenge is being able to

perform the required calculations within the limited number of stages of the target platform.

Configuration space. Several parameters contribute to the detection accuracy of K-MELEON. Namely,

the number (H) and width (K) of the hash tables (and hence the sizeH×K of the sketch data structure),

the application-specific threshold T , the epoch size, the choice of the forecast model, and the model pa-

rameters. We have not explored this configuration space exhaustively. Rather, we have so far focused

on finding configurations which on average worked well across the tested traces. Our experiments con-

firmed that the tuning of certain parameters may considerably help improve detection accuracy. For

instance, we clearly observed the influence of changing the smoothing constant α of the Exponentially

Weighted Moving Average (EWMA) forecast model to achieve better detection results. Because the

search space is large, we consider as an interesting avenue of research the development of automatic

profilers (e.g., using Bayesian optimization techniques) to find the most adequate parameters for a given

application.

Target-specific optimizations. The design of K-MELEON considers a high-speed switching chip like

Tofino [21] as target platform. The prototype was tested on the bmv2 software switch but it also compiled

on our Intel Tofino switch. The P4 program mostly deals with partitioning K-MELEON data structures and

sketch operations accordingly along the switch’s pipeline, since the number and type of those operations

already generally abide by the target’s specific constraints. Besides, we believe that architecture specific

support for mathematical operations, provided through extern objects, could help us further optimize the

operations of K-MELEON.

64

Bibliography

[1] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai. Kitsune: An ensemble of autoencoders for online

network intrusion detection. In 25th Annual Network and Distributed System Security Symposium,

NDSS 2018.

[2] P. Wendell and M. J. Freedman. Going viral: Flash crowds in an open cdn. In Proceedings of the

2011 ACM SIGCOMM Conference on Internet Measurement Conference, IMC ’11, 2011.

[3] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy. High-resolution measurement of data center

microbursts. In Proceedings of the 2017 Internet Measurement Conference, IMC ’17, 2017.

[4] V. Paxson. Bro: A system for detecting network intruders in real-time. Comput. Netw., Dec. 1999.

[5] M. Roesch. Snort - lightweight intrusion detection for networks. In Proceedings of the 13th USENIX

Conference on System Administration, LISA ’99, 1999.

[6] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita. Network anomaly detection: Methods, systems

and tools. IEEE Communications Surveys Tutorials, 16(1), 2014.

[7] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter, K. Agarwal, J. Carter, and R. Fonseca.

Planck: Millisecond-scale monitoring and control for commodity networks. In Proceedings of the

2014 ACM Conference on SIGCOMM, SIGCOMM ’14, 2014.

[8] G. Cormode and S. Muthukrishnan. What’s new: Finding significant differences in network data

streams. IEEE/ACM Transactions on Networking, 13(6):1219–1232, 2005.

[9] M. Yu, L. Jose, and R. Miao. Software defined traffic measurement with opensketch. In 10th

{USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 13), pages

29–42, 2013.

[10] R. Harrison, Q. Cai, A. Gupta, and J. Rexford. Network-wide heavy hitter detection with commodity

switches. In Proceedings of the Symposium on SDN Research, pages 1–7, 2018.

[11] Q. Huang, X. Jin, P. P. Lee, R. Li, L. Tang, Y.-C. Chen, and G. Zhang. Sketchvisor: Robust network

measurement for software packet processing. In Proceedings of the Conference of the ACM Special

Interest Group on Data Communication, pages 113–126, 2017.

65

[12] Q. Huang, P. P. Lee, and Y. Bao. Sketchlearn: relieving user burdens in approximate measurement

with automated statistical inference. In Proceedings of the 2018 Conference of the ACM Special

Interest Group on Data Communication, pages 576–590, 2018.

[13] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman, R. Friedman, and V. Sekar. Nitros-

ketch: Robust and general sketch-based monitoring in software switches. In Proceedings of the

ACM Special Interest Group on Data Communication, pages 334–350. 2019.

[14] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman. One sketch to rule them all:

Rethinking network flow monitoring with univmon. In Proceedings of the 2016 ACM SIGCOMM

Conference, pages 101–114, 2016.

[15] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and J. Rexford. Heavy-hitter de-

tection entirely in the data plane. In Proceedings of the Symposium on SDN Research, pages

164–176, 2017.

[16] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao, X. Li, and S. Uhlig. Elastic sketch:

Adaptive and fast network-wide measurements. In Proceedings of the 2018 Conference of the ACM

Special Interest Group on Data Communication, pages 561–575, 2018.

[17] L. Tang, Q. Huang, and P. P. Lee. Mv-sketch: A fast and compact invertible sketch for heavy

flow detection in network data streams. In IEEE INFOCOM 2019-IEEE Conference on Computer

Communications, pages 2026–2034. IEEE, 2019.

[18] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-based change detection: Methods,

evaluation, and applications. In Proceedings of the 3rd ACM SIGCOMM conference on Internet

measurement, pages 234–247, 2003.

[19] R. Miao, R. Potharaju, M. Yu, and N. Jain. The dark menace: Characterizing network-based attacks

in the cloud. In Proceedings of the 2015 Internet Measurement Conference, IMC ’15, 2015.

[20] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica, and M. Horowitz.

Forwarding metamorphosis: Fast programmable match-action processing in hardware for sdn.

ACM SIGCOMM Computer Communication Review, 43(4):99–110, 2013.

[21] Intel programmable ethernet switch products. URL https://www.intel.com/content/www/us/en/

products/network-io/programmable-ethernet-switch.html.

[22] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco,

A. Vahdat, G. Varghese, et al. P4: Programming protocol-independent packet processors. ACM

SIGCOMM Computer Communication Review, 44(3):87–95, 2014.

[23] The p4 language consortium. URL https://p4.org/.

[24] K-meleon github repository. URL https://github.com/netx-ulx/dataplaneChangeDetection.

66

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://p4.org/
https://github.com/netx-ulx/dataplaneChangeDetection

[25] N. Feamster, J. Rexford, and E. Zegura. The road to sdn: an intellectual history of programmable

networks. ACM SIGCOMM Computer Communication Review, 44(2):87–98, 2014.

[26] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig. Software-

defined networking: A comprehensive survey. Proceedings of the IEEE, 103(1):14–76, 2014.

[27] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,

and J. Turner. Openflow: enabling innovation in campus networks. ACM SIGCOMM Computer

Communication Review, 38(2):69–74, 2008.

[28] O. S. S. Version. 1.5. 0 (protocol version 0x06). Open Networking Foundation, 2015.

[29] J. Proença, T. Cruz, E. Monteiro, and P. Simões. How to use software-defined networking to improve

security-a survey. In European Conference on Cyber Warfare and Security, page 220. Academic

Conferences International Limited, 2015.

[30] A. Lara, A. Kolasani, and B. Ramamurthy. Network innovation using openflow: A survey. IEEE

communications surveys & tutorials, 16(1):493–512, 2013.

[31] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J. Zhou,

M. Zhu, et al. B4: Experience with a globally-deployed software defined wan. ACM SIGCOMM

Computer Communication Review, 43(4):3–14, 2013.

[32] H.-P. Development Company. Hp switch software openflow v1.3 administrator guide k/ka/wb15.18.

Technical report, Hewlett-Packard Development Company, L.P., April, 2016.

[33] R. Bifulco and G. Rétvári. A survey on the programmable data plane: Abstractions, architectures,

and open problems. In 2018 IEEE 19th International Conference on High Performance Switching

and Routing (HPSR), pages 1–7. IEEE, 2018.

[34] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams. In Interna-

tional Colloquium on Automata, Languages, and Programming, pages 693–703. Springer, 2002.

[35] P4-16 language specification. URL https://opennetworking.org/wp-content/uploads/2020/

10/P416-Language-Specification.html.

[36] J. Kučera, D. A. Popescu, H. Wang, A. Moore, J. Kořenek, and G. Antichi. Enabling event-triggered

data plane monitoring. In Proceedings of the Symposium on SDN Research, pages 14–26, 2020.

[37] C. I. NetFlow. Introduction to cisco ios netflow a technical overview. White Paper, Last updated:

February, 2006.

[38] M. Wang, B. Li, and Z. Li. sflow: Towards resource-efficient and agile service federation in ser-

vice overlay networks. In 24th International Conference on Distributed Computing Systems, 2004.

Proceedings., pages 628–635. IEEE, 2004.

[39] B. Claise and S. Bryant. Specification of the ip flow information export (ipfix) protocol for the ex-

change of ip traffic flow information. Technical report, RFC 5101, January, 2008.

67

https://opennetworking.org/wp-content/uploads/2020/10/P416-Language-Specification.html
https://opennetworking.org/wp-content/uploads/2020/10/P416-Language-Specification.html

[40] E. Teramoto, M. Baba, H. Mori, Y. Asano, and H. Morita. Netstream: traffic simulator for evaluating

traffic information systems. In Proceedings of Conference on Intelligent Transportation Systems,

pages 484–489. IEEE, 1997.

[41] Y. Li, R. Miao, C. Kim, and M. Yu. Flowradar: A better netflow for data centers. In 13th {USENIX}

Symposium on Networked Systems Design and Implementation ({NSDI} 16), pages 311–324,

2016.

[42] P. Laffranchini, L. Rodrigues, M. Canini, and B. Krishnamurthy. Measurements as first-class arti-

facts. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pages 415–423.

IEEE, 2019.

[43] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh, V. Jeyakumar, and C. Kim.

Language-directed hardware design for network performance monitoring. In Proceedings of the

Conference of the ACM Special Interest Group on Data Communication, pages 85–98, 2017.

[44] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and W. Willinger. Sonata: Query-driven

streaming network telemetry. In Proceedings of the 2018 conference of the ACM special interest

group on data communication, pages 357–371, 2018.

[45] G. Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch and

its applications. Journal of Algorithms, 55(1):58–75, 2005.

[46] C. Estan, G. Varghese, and M. Fisk. Bitmap algorithms for counting active flows on high speed links.

In Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement, pages 153–166,

2003.

[47] A. Metwally, D. Agrawal, and A. El Abbadi. Efficient computation of frequent and top-k elements in

data streams. In International Conference on Database Theory, pages 398–412. Springer, 2005.

[48] V. Braverman and R. Ostrovsky. Zero-one frequency laws. In Proceedings of the forty-second ACM

symposium on Theory of computing, pages 281–290, 2010.

[49] V. Braverman and R. Ostrovsky. Generalizing the layering method of indyk and woodruff: Re-

cursive sketches for frequency-based vectors on streams. In Approximation, Randomization, and

Combinatorial Optimization. Algorithms and Techniques, pages 58–70. Springer, 2013.

[50] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao, X. Li, and S. Uhlig. Elastic sketch:

Adaptive and fast network-wide measurements. In Proceedings of the 2018 Conference of the ACM

Special Interest Group on Data Communication, pages 561–575, 2018.

[51] V. Paxson. Bro: a system for detecting network intruders in real-time. Computer networks, 31

(23-24):2435–2463, 1999.

[52] M. Roesch et al. Snort: Lightweight intrusion detection for networks. In Lisa, volume 99, pages

229–238, 1999.

68

[53] C. S. Hood and C. Ji. Proactive network-fault detection [telecommunications]. IEEE Transactions

on reliability, 46(3):333–341, 1997.

[54] I. Katzela and M. Schwartz. Schemes for fault identification in communication networks. IEEE/ACM

Transactions on networking, 3(6):753–764, 1995.

[55] A. Ward, P. Glynn, and K. Richardson. Internet service performance failure detection. ACM SIG-

METRICS Performance Evaluation Review, 26(3):38–43, 1998.

[56] J. Tölle, O. Niggemann, et al. Supporting intrusion detection by graph clustering and graph drawing.

In Proceedings of Third International Workshop on Recent Advances in Intrusion Detection RAID

2000, 2000.

[57] N. Ye et al. A markov chain model of temporal behavior for anomaly detection. In Proceedings

of the 2000 IEEE Systems, Man, and Cybernetics Information Assurance and Security Workshop,

volume 166, page 169. West Point, NY, 2000.

[58] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-based change detection: Methods,

evaluation, and applications. In Proceedings of the 3rd ACM SIGCOMM conference on Internet

measurement, pages 234–247, 2003.

[59] R. Schweller, A. Gupta, E. Parsons, and Y. Chen. Reversible sketches for efficient and accurate

change detection over network data streams. In Proceedings of the 4th ACM SIGCOMM conference

on Internet measurement, pages 207–212, 2004.

[60] L. Tang, Q. Huang, and P. P. Lee. Mv-sketch: A fast and compact invertible sketch for heavy

flow detection in network data streams. In IEEE INFOCOM 2019-IEEE Conference on Computer

Communications, pages 2026–2034. IEEE, 2019.

[61] R. S. Boyer and J. S. Moore. Mjrty—a fast majority vote algorithm. In Automated Reasoning, pages

105–117. Springer, 1991.

[62] Barefoot tofino. https://www.barefootnetworks.com/products/brief-tofino/, 2020. Ac-

cessed: 2021-06-28.

[63] C. Kim. Programming the network data plane: What, how, and why? URL https://conferences.

sigcomm.org/events/apnet2017/slides/chang.pdf.

[64] S. Muthukrishnan. Data streams: Algorithms and applications. In Manuscript based on invited talk

from 14th SODA, 2003.

[65] S. Ibanez, G. Antichi, G. Brebner, and N. McKeown. Event-driven packet processing. In Proceed-

ings of the 18th ACM Workshop on Hot Topics in Networks, pages 133–140, 2019.

[66] N. K. Sharma, A. Kaufmann, T. Anderson, A. Krishnamurthy, J. Nelson, and S. Peter. Evaluating the

power of flexible packet processing for network resource allocation. In 14th {USENIX} Symposium

on Networked Systems Design and Implementation ({NSDI} 17), pages 67–82, 2017.

69

https://www.barefootnetworks.com/products/brief-tofino/
https://conferences.sigcomm.org/events/apnet2017/slides/chang.pdf
https://conferences.sigcomm.org/events/apnet2017/slides/chang.pdf

[67] Multiprocessing python package. https://docs.python.org/3/library/multiprocessing.html.

Accessed: 2020-05-29.

[68] The behavioral model version 2 (bmv2), the reference p4 software switch. URL https://github.

com/p4lang/behavioral-model.

[69] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani. Toward generating a new intrusion detection

dataset and intrusion traffic characterization. In ICISSp, pages 108–116, 2018.

[70] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics of data centers in the wild. In

Proceedings of the 10th ACM SIGCOMM conference on Internet measurement, pages 267–280,

2010.

[71] X. Chen, S. L. Feibish, Y. Koral, J. Rexford, and O. Rottenstreich. Catching the microburst culprits

with snappy. In Proceedings of the Afternoon Workshop on Self-Driving Networks, pages 22–28,

2018.

[72] p4c, the reference compiler for the p4 programming language. URL https://github.com/p4lang/

p4c.

[73] Scapy, the packet library for packet manipulation. URL https://scapy.net/.

70

https://docs.python.org/ 3/library/multiprocessing.html
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/p4c
https://github.com/p4lang/p4c
https://scapy.net/

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Acronyms
	Introduction
	Contributions
	Structure of the document

	Background
	Programmable Networks
	Programmable Control Planes
	Programmable Data Planes
	The P4 Language

	Traffic Measurements
	Traditional Methods
	Sketch-based Methods

	Traffic Change Detection
	Summary

	Design
	Problem definition
	The k-ary sketching algorithm
	Requirements for change detection
	Challenges with on-line change detection
	Stream-based change detection: k-meleon
	Computing the Error and Forecast Sketches
	Fake Updates
	Reading sketches consistently
	Approximating Floating-Point Arithmetic
	The Role of the Control Plane

	Summary

	Implementation
	The k-ary in a high-level language
	The Main Program
	Exploring the configuration space

	k-meleon
	Data Plane
	Control Plane

	Additional tools for testing and evaluation
	Summary

	Evaluation
	Testing Environment
	K-ary
	Determining the sketch size
	Use case: Attack Detection
	Exploring the configuration space for attack detection

	k-meleon
	Preliminary note
	k-meleon vs k-ary
	Detecting network attacks
	Detecting microbursts
	System performance and resource usage.

	Summary

	Conclusions
	Achievements
	Discussion and future work

	Bibliography

