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Abstract

The diagnosis of Alzheimer’s disease is only certain with a detailed post-mortem microscopic examina-
tion of the brain. Machine learning approaches are increasingly used in the development of predictive
models for the early diagnosis of Alzheimer´s disease. The major issues with such models are the lack
of interpretability at the clinical end and the lack of generalization of said models due to the heterogene-
ity of the data sources (instrumentation, monitoring protocol, individual demographics). To tackle these
issues, this work proposes a multi-diagnostic, multi-site, clinically interpretable tool using MRI imaging.
Furthermore, it presents the steps for the data consolidation where the MRIs are extracted from hetero-
geneous sources and are anonymized in order to maintain the anonymity of the patients subjected to
the study. In addition, the performance of the models is externally validated on data obtained indepen-
dently according to temporal, geographic, and/or domain differences. The models could not generalize
well for the target population as they generalized for the testing partitions of the original data. Out of
the three possible class labels, class Control showed the worst results, returning 100% of precision yet
significantly low levels of recall. MCI and AD classes returned similar results of precision, 29% and 30%
respectively, however, AD had 83% of recall whereas MCI only 43%. The gathered observations confirm
the difficulty of performing neuroimaging diagnostics under the different monitoring protocols, medical
classifications, and population demographics.

Keywords: Medical Resonance Imaging - Alzheimer´s disease - Mild Cognitive Impairment -
Predictive models - External Validation - Data Consolidation.
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Resumo

O diagnóstico da doença de Alzheimer só é certo com um exame microscópico post-mortem detalhado
do cérebro. As abordagens de Machine Learning são cada vez mais utilizadas no desenvolvimento
de modelos preditivos para o diagnóstico precoce da doença de Alzheimer. Os principais problemas
com tais modelos são a falta de interpretabilidade no final clı́nico e a falta de generalização dos referidos
modelos devido à heterogeneidade das fontes de dados (instrumentação, protocolos de monitoramento,
dados demográficos individuais). Para lidar com essas questões, este trabalho propõe uma ferramenta
multi-diagnóstica, multi-lugar, clinicamente interpretável usando imagens de ressonância magnética.
Além disso, apresenta as etapas para a consolidação dos dados onde as ressonâncias magnéticas
são extraı́das de fontes heterogêneas e anonimizadas a fim de manter o anonimato dos pacientes
submetidos ao estudo. Além disso, o desempenho dos modelos é validado externamente em dados
obtidos de forma independente de acordo com diferenças temporais, geográficas e / ou de domı́nio. Os
modelos não generalizaram bem para a população-alvo tal como generalizaram para os dados originais.
Das três classes possı́veis, a classe Control apresentou o pior resultado, retornando 100% de precisão,
mas apenas 16% de recall. As classes MCI e AD retornaram resultados semelhantes de precisão, 29%
e 30% respectivamente, no entanto, a classe AD teve 83% de recall, enquanto o MCI apenas 43%. As
observações recolhidas confirmam a dificuldade de realizar diagnósticos de neuroimagens ao abrigo
dos diferentes protocolos de monitorização, classificações médicas, e demografia populacional.

Keywords: Imagem por Ressonância Magnética - Doença de Alzheimer - Défice cognitivo leve -
Validação externa - Consolidação de dados.
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Chapter 1

Introduction

Dementia is a class of diseases associated with losses of memory and thinking abilities considerable
enough to interfere with the daily life of a person. Dementia associated diseases include Alzheimer’s
disease, Vascular dementia, Lewy body dementia, Parkinson’s disease and others. According to The
World Alzheimer Report 2019 [8] there are over 50 million people that have a dementia related disease
or, to simplify, every 3 seconds one person is diagnosed with dementia and such frightening numbers
are expected to increase up to 152 million people living with it by 2050.

The work here presented, focus on a specific dementia disease, Alzheimer’s disease, representing
two thirds of the total cases of dementia [9]. Currently, to diagnose such disease with total certainty is
only possible with a detailed post-mortem microscopic examination of the brain [10]. The fact that, for
the time being, it is not always easy to diagnose a patient with Alzheimer’s disease while still alive or
even at an early stage of progression does not mean that we should not discard the presence of more
robust diagnostic methods to be discovered. In fact, it is possible to diagnose patients with Alzheimer’s
with around 95 percent accuracy by using different types of tools for the purpose. The tools that might be
used to diagnose a patient are based on studying the history of the patients and their families and with
that, it is then possible to assess cognitive function by neuropsychological tests. The biggest problem
with such solution is that is highly dependable on medical professionals to determine the diagnose and
such diagnose might take several weeks to be accomplished. In addition, the diagnose may only be
performed already in a later stage of the disease when it is harder to delay or reverse the development
of the disease.

1.1 Problem Description

More and more approaches based on machine learning have been used in order to develop models
capable of providing an early and accurate diagnosis of Alzheimer’s disease or even of a preliminary
state of cognitive impairment preceding Alzheimer’s at a later time of life. The biggest setback of such
models is the need to guarantee their interpretability in face of the complex data available (combining
imagiology, cognitive scoring exams, demography, and clinical records) and the need to guarantee their
adequate generalization ability on external data i.e data the model has never seen.

At the moment, Magnetic Resonance Imaging based personalized diagnostic tools for dementia are
still scarce due to the several difficulties that arise when handling such models. The acquired data to
feed the models for classification is massive and heterogeneous in nature. When an MRI is performed,
the output of such exam is a compilation of images displaying the brain of the patient in 3 dimensions,
with a general resolution of over X thousands voxel [11]. In addiction, each image of the exam combines
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medical data, with static demographic information concerning the patient and the physician involved in
the exam.

Such data must be properly processed for research ends. As previously mentioned, these Magnetic
Resonance images contain information about the patient and some of it must be anonymized due to the
patient anonymity that must be maintained. The anonymization must be performed in ways that it makes
the identification of the patient impossible to the researchers and easy for the hospital or clinic, once it
receives an output from the models.

MRIs can be acquired using different technologies and protocols [12] so, it is only expectable that,
before such images are handled by the models, they must be pre-processed. There are several proto-
cols of acquisition, although, the two structural protocols of relevance for this paper are Magnetization
prepared rapid gradient echo (MP-RAGE) and Spoiled gradient recalled echo (SPGR), explained in the
Background section.

1.2 Research contributions

The main goal is to develop a multi-diagnostic, multi-site, and clinically interpretable tool for early diag-
nosis of AD using MRI imaging initially collected from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) and later, from several different hospitals or clinics. The solution proposed will also extend learn-
ing and assessment to new populations (new cohorts).

In accordance,the major contributions placed by our work are:

1. Validate the predictive power of the developed MRI diagnostic models for dementia in a Portuguese
population using retrospective data.

(a) Collect anonymized retrospective clinical and neuroimaging data from Portuguese hospitals
of the consorcim study NEUROBIOAI.

(b) Build a database capable of storing the images received by the hospitals.

(c) Test existing models with such data.

(d) Perform an external validation on the models with information the models have not yet seen.

2. Build an interface capable of visualizing important data from the database and manipulate it at will.

1.3 Outline

This work is organized as follows. Chapter 2 introduces important terms that must be acknowledge for
a better understanding of the paper. Chapter 3 displays some literature review to get a know-how of
the related work in the area. Chapter 4 introduces the proposed solution for this dissertation as well
as the evaluation methodology used to elaborate the work. Lastly, chapter 5 presents the results of the
proposed methodology followed by a discussion of said results.
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Chapter 2

Background

This chapter introduces essential background on Alzheimer’s Disease as well as presents information
on the neuroimaging exams performed in patients, such as the heterogeneity of the exams themselves
and the content of said exams, cohorts studies, or even aspects of data integration.

2.1 Medical Context

Alzheimer’s disease (AD) [9] is a neurodegenerative disease affecting primarily the regions of the brain
responsible for the memory of the individual such as the entorhinal cortex and hippocampus areas. AD
is associated with the destruction of the neurons and their connections. Statistically, is the leading cause
of dementia, comprising two thirds of cases of dementia related diseases. Cognitive complaints and mild
cognitive impairments can be identified and the progress of such diagnostic can be tracked. Typically,
there are three stages of importance when referring to a patient condition which are:

1. Cognitively normal is a state in which subjects present no signs of any kind of mental disorder
such as depression, MCI or any type of dementia [13, 14].

2. Mild Cognitive Impairment (MCI) is a medical condition in which individuals experience memory
concerns for reasons that go beyond normal aging, yet, it is not enough reason to be diagnosed
with dementia as daily tasks may still be accomplished with no signs of impairment [13, 14].

3. Alzheimer’s Disease.

Generally, the AD diagnoses are proceeded by specific exams, including Magnetic Resonance Imag-
ing that might be either Structural Magnetic Resonance Imaging (MRI) or functional Magnetic Res-
onance Imaging (fMRI). The first one, MRI, is a technique that utilizes magnets and radio waves with
the purpose of photographing the inside of a body part. Such technique may aid medical staff predict if a
patient will develop a disease, for instance AD or correctly diagnose it, as previously mentioned [15, 16].
The second type of MR exams is the fMRI, which is a specialized form of MRI that is used to examine
the brain and, therefore, the functionality of it by measuring small changes in the flow of the blood that
occur during the time frame of a specific brain activity [17]. Just like the structural MRI, an fMRI can
diagnose a patient with a certain disease as well as it is commonly used to assess the impact a previous
condition like a stroke had on the patient.

The aforementioned exams may differ from source to source due to technological factors and ex-
amination protocols despite the type of exam being the same, thus, contributing to the heterogeneity
of exams. There are a lot of factors such as Heterogeneous data sources and data itself that are a
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consequence of the difference between exams, for instance, the brand of the machine performing the
MRI might generate an output file different from another brand. In addition, different hospitals or medical
clinics might keep track of different markers when performing the exam. Furthermore, there are several
protocols of acquisition of MRIs and the ones of relevance for this thesis are the following:

1. Magnetization prepared rapid gradient echo (MP-RAGE) is a sequence for structural brain
imaging that allows for the better distinction between gray matter, white matter and cerebrospinal
fluid in the brain by weighting a T1 gradient [18, 19].

2. Spoiled gradient recalled echo (SPGR) is a sequence characterized by superior soft tissue con-
trast compared with T1-weighted spin echo (SE) technique [20].

Due to these highly heterogeneous aspects in the exams, new protocols have been proposed. Digital
Imaging and Communications in Medicine (DICOM) [21] is a protocol developed to standardize the
digital format utilized in the storage and communications of images. With such protocol, Dicom files
specify standard metadata to facilitate cross-source studies since the type of information in said images
is the same and the format of the image itself is identical despite factors like the manufacture of the
machine performing the exams.

2.2 Data Extraction

Medical image acquisition is an essential step for conducting cohort studies that support the study of dis-
eases, along with their diagnostics, prognostics, and therapeutic treatments. In the context of neurode-
generative disorders, large-scale initiatives are available. Such images acquired are initially from ADNI,
short for Alzheimer’s Disease Neuroimaging Initiative, which is a large-scale cohort study conducted
by a consortium of universities and medical centers to develop imaging techniques and biomarkers pro-
cedures in pursuance of early detection of Alzheimer’s Disease and to keep track of the development
of the same [22]. Later on, images are also acquired from partner hospitals or medical clinics where
they are stored in the respective Picture Archiving and Communication System or PACS systems
of the entities that supplied the images. PACS is, as the name implies, software to store and facilitate
the communication between medical centers for imaging [23]. In the latter process of acquisition, Web
scraping is necessary to perform the task. Web scraping is a technique used to extract certain desired
data from a specific website, thus simulating a task that would be performed manually by a human. The
automatic extraction of unstructured data into structured databases, designed as the developer needs,
allows for the use and manipulation of the structured data as the user sees fit [24]. However, before such
technique is performed with the purpose of extracting images, the anonymization of the Dicom files is of
the utmost importance since Protected Health information or health data from an identifiable patient
is kept secret and compliant with the laws protecting the privacy of a subject [25]

After the extraction of the images, subsequent mining steps may be conducted to learn descriptive
and predictive models. This learning step can be generally led by the discovery of Neurodegenerative
biomarkers that are biological indicators of a medical state that can be objectively measured and be of
help when studying, tracking, and predicting outcomes for a specific neurodegenerative disease. [26].
Such models aim to aid in the process of diagnosis and aid in assigning an early intervention for a
possible disease a patient may come to develop. To perform such a demanding task those models must
yield good guarantees of predictive accuracy.
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2.3 Data Storage

During the process of decision and elaboration of a database, it is required to assess the main func-
tionality/purpose of the system to be developed. These systems might be differentiated into two main
categories, transactional or analytical systems.

2.3.1 OLTP and OLAP Systems

OLTP stands for On-line Transaction Processing, therefore being the pilar of transactional systems, as
mentioned before. This type of system is known for the simple on-line transactions (Update, Insert,
Delete) that performs at a high volume of requests.

On one hand, the main focus of OLTP is to process the queries at hand as fast as possible while at the
same time maintain the data integrity in the database, this is, the multiple accesses from several users
does not jeopardize the correct value of the data. On the other hand, OLTP is susceptible to security
problems. Since data is stored in full, it becomes susceptible to theft from external entities. Furthermore,
a single failure, an input mistake, for example, might cause a chain reaction where it becomes a highly
demanding task to recover from the original failure, therefore, resulting in high costs of time and money.

OLAP stands for On-line Analytical Processing and as the name suggests it is the foundation of an-
alytical systems. This type of system is characterized by a low volume of transactions. The consultation
of data in such systems might turn out to be a complex task and the data must be aggregated in order
to be displayed due to the high level of summarized data in the database so, it is only normal to expect
that for a specific use case, several data must be aggregated for an analytical report.

Contrary to OLTP, where the measure of performance is calculated by the total number of transac-
tions per a specific timeframe, OLAPs measure of performance is the efficiency of the query at hand
since the output of such request is then used for analytical purposes such as Data Mining where correct
data is a requirement. Wrong output from the queries would lead to wrong assumptions when analyzing
a certain situation. This way, it is possible to conclude that the time a query takes to be executed is not
a priority, rather than, the correct calculation of its output.

The OLAP systems are also known for the inclusion of a dimension called Time. With such dimension
in play, the stored data allows for the reporting of a subject´s history throughout time.

2.3.2 Relational and Multidimensional Databases

A relational database, as the name suggests, is based on relational models. These types of databases
organize data in rows and columns, in a 2-dimensional form,

Such kind of solution has the ability to ensure that the data is consistent all through every instance
or application. Furthermore, it is also labeled ACID which stands for Atomicity, Consistency, Isolation,
and Durability since it handles the data at a granular level.

On the other hand, we have this type of database that is considered the next step to relational
databases. Is common to see multidimensional databases built with relational ones. As the name
suggests, this type of database contains multidimensional arrays with 3 or more dimensions whereas,
relational databases contained arrays with 2 dimensions.

Multidimensional DBs are optimized for OLAP applications and/or data warehousing. Multidimen-
sionality allows the developer to handle data as he/she sees fit. We might even add a time dimension to
keep track of the history of a subject/object.

To best assess which solution might be better for the task at hand, table ?? displays some pros and
cons about each type of solution regarding some quality attributes.
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OLTP OLAP
Data origin OLTP is the original source of data Data in OLAP is a result of the consolida-

tion of several OLTP databases
Objective Consult/view the data. Performs tasks as

fast as possible
Analyse the data. Elaborate statistical anal-
ysis in order to aid in the decision making
process. Integrate different data sources
for the creation of a consolidated database.

Performance In general, it is very fast due to the high de-
tail of data stored

Optimized for analysis and data reading.
Queries might take longer to run depend-
ing on the amount of data

Modifiability Data is volatile, therefore, modifiable Data is referring to a certain time frame, so
data is not volatile

Maintenance Data updates are performed during each
transaction. High number of updates.
Data backup is crucial since errors might
develop chain reaction errors. Loss of data
incurs in high costs.

Data is updated during its loading. Might
be performed periodically.
Backup regularly is not necessary. Reload
of the OLTP databases to recover data.

Queries Simpler and standardized. Inefficient for
great amounts of data

More complex, requires aggregation of
data

Data Structures High level of detail High level of summarized data. Structured
in several dimensions

Security Users can freely manipulate data Users are only allowed read and insert data

Table 2.1: OLTP vs OLAP

Relational Database Multidimensional Database
Data origin OLTP is the original source of data Data in OLAP is a result of the consolida-

tion of several OLTP databases
Objective Consult/view the data. Performs tasks as

fast as possible
Analyse the data. Elaborate statistical anal-
ysis in order to aid in the decision making
process. Integrate different data sources
for the creation of a consolidated database.

Performance In general, it is very fast due to the high de-
tail of data stored

Optimized for analysis and data reading.
Queries might take longer to run depend-
ing on the amount of data

Modifiability Data is volatile, therefore, modifiable Data is referring to a certain time frame, so
data is not volatile

Maintenance Data updates are performed during each
transaction. High number of updates.
Data backup is crucial since errors might
develop chain reaction errors. Loss of data
incurs in high costs.

Data is updated during its loading. Might
be performed periodically.
Backup regularly is not necessary. Reload
of the OLTP databases to recover data.

Queries Simpler and standardized. Inefficient for
great amounts of data

More complex, requires aggregation of
data

Data Structures High level of detail High level of summarized data. Structured
in several dimensions

Security Users can freely manipulate data Users are only allowed read and insert data

Table 2.2: Relational vs Multidimensional databases

2.4 Data Science Concepts

This section is intended to provide some background on important Data Science concepts that the reader
must understand in order to better acknowledge the work displayed in this dissertation.

2.4.1 Predictive assessment

In data science, predictive models typically correspond to classification or regression models depending
on whether the condition of interest is nominal or numerical. Since an objective of this work is to predict a
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discrete class output, we map the target task as a classification model. Classification is the prediction
of the most suitable class for a data observation given as input. For a set of data observations X

= {x1,x2, ...,xn} and a set of attributes Y ={y1,y2, ...,ym}, a model M maps observations from X to
discrete output variables Y , thus predicting the adequate class for xnew [4]. The classification process
of the developed models is intended to differentiate and clearly diagnose a patient as CN or with MCI or
AD.

In order to assess how models behave in terms of generalization ability, several measures are used
to evaluate the performance of a model. Since the model at hand is a multi-class classifier i.e. cardinality
of the output space is > 2, it is required to use metrics capable of measuring the performance of the
different classes.

The first technique to be applied is a confusion matrix since it is a table summarizing the performance
of the model by displaying the contrast between the predicted values and the real values as seen in
Figure 2.3. To further analyze it, we have to find the TP (True Positives), TN (True Negatives), FP (False
Positives), and FN (False Negatives) for each class. To simplify, consider the example of HC (Healthy
control) in which, TP = a; TN = (c+f+h+i); FP = (b+c); FN = (d+g).

Real diagnosis
HC MCI AD

HC a b c
Predicted
diagnosis

MCI d e f
AD g h i

Table 2.3: Example of confusion matrix

With the confusion matrix calculated, it is possible to calculate the performance metrics Accuracy,
Precision, Recall and Specificity. Simply calculating the Accuracy, the ratio between the number of
correctly classified points to the total number of points, is not a good approach since the data could be
highly imbalanced so the model classifies all the data points as the majority class data points. Since
Accuracy might not be a good metric when facing imbalanced datasets, it is introduced the following
metrics for the example where given a specific class of interest, for instance, HC, then:

1. Precision is the fraction of instances correctly predicted as HC out of the total classified instances
as HC,

Precision =
TP

TP + FP
(2.1)

2. Recall or Sensitivity is the fraction of instances correctly predicted as HC out of the the total HC
subjects,

Recall =
TP

TP + FN
(2.2)

3. Specificity is the fraction of all negative instances that are correctly predicted as negative,

Specificity =
TN

TN + FP
(2.3)

4. Balanced Accuracy is a better metric to use with imbalanced data since it accounts for both the
positive and negative predicted classes without misleading with imbalanced data,

BAC =
Recall + Specificity

2
(2.4)

By calculating such metrics under different probability thresholds, it is then possible to calculate Area
under the ROC (receiver operating characteristic) curve. ROC is the graph showing the performance
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of a classification model at all classification thresholds in where the X-axis is the Specificity and the Y-
axis is the sensitivity. The area under the ROC (AUC) represents how well the model is capable of
distinguishing between HC, MCI, and AD. The higher the AUC is, the better the classifier is at predicting
each class of interest.

As it is possible to see from the aforementioned information, Recall and Specificity are asymmetric
as they only consider either the positives or the negative values but on some occasions, it is required
to consider both values. For that reason, a metric to be introduced is the Matthews Correlation Coef-
ficient or MCC which is a symmetric metric. The higher the coefficient is the better the predictions are
despite the fact that one class might be disproportionately under or over-represented.

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2.5)

Another task to perform when performing the external validation is to detect if the models are over-
fitting or not. Overfitting occurs when a function corresponds too closely to the training data, i.e. the
model does not generalize well from the training data, performing poorly on external/new data.

To detect such an event, evaluation metrics from the training set and the test set will be compared
to assess how close are the two values for a varying number of observations. In the event of the model
presenting a high accuracy in the training set and a considerably lower accuracy on the test set tell us
that the model is overfitting, if the train accuracy remains constant and the test accuracy worsens, and
external data will not be properly classified.

Another way to detect if the model is more susceptible towards underfitting or overfitting risks is by
looking at the bias-variance trade off. Bias represents the difference between the predicted values
and the real values. Variance is the variability of the predictive model for a given data point. Figure 2.1
illustrates the bias-variance trade-off. A model with a high bias does not pay enough attention to the
training data and simplifies the model to a point where it is oversimple (underfitting). On the other hand,
a model with high variance excessively analysis the training data and does not perform well on new data
due to the low generability.

(a) (b)

Figure 2.1: Bias-variance trade off [1, 2]

The last evaluation principle worth mentioning is a learning curve, which provides an overview
of predictive performance considering different sizes of training samples. According to Perlich et.al.[3],
learning curves are commonly used to display the predictive accuracy of the models on the test examples

8



considering the variation of the training examples as shown in Figure 2.2

Figure 2.2: Model accuracy on test examples as a function of the size of the training examples [3]

Perlish et.al. [3] also acknowledge the different use of learning curves in Machine Learning. These
may be used in two different scenarios:

1. In most cases, learning curves are used to obtain an overview of the predictive generalization
performance regarding different training sizes as is the case in this thesis.

2. More specifically in Artificial Neural Networks, learning curves have been used to show the differ-
ences between in and out-of-sample performance considering different training sizes.

2.4.2 Predictive modeling

Part of the work presented in this thesis is based on predictive models developed prior to my involvement
in the external validation. For that reason, this section is meant to aid the reader by providing several
insights on machine learning models that appear further ahead.

The first model being presented is the Support-Vector Machine or SVM for short. According to
Cristianini [27], SVM is a supervised machine learning model that can be used for either classification
or regression problems and makes use of algebraic and statistical properties to distinguish two classes.
SVM classifies a new instance by drawing a hyperplane between two classes.

Figure 2.3: Hyperplane separating the two classes [4]
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There are cases where a linear division is not possible. In such cases which it is not possible to
simply divide the two class instances, SVM makes use of the Kernel trick which projects the alinear data
into a dimension with more coordinates until it finds one where it is possible to draw a plane capable of
correctly divide the class instances [28].

Similar to SVM, Decision Trees, DT for short, are supervised learning algorithms that may be used
for either classification or regression problems. As the name implies, a DT is in fact a tree that displays
the features that best discriminates the observed population, and the deeper we go into a DT the higher
the level of detail.

In order to Figure out the root of the tree, there are several algorithms capable of doing so. An exam-
ple is the classic ID3 algorithm, which uses information theoretical measures to assess the relevance of
attributes. The lowest entropy is selected to be the root and so on until a decision tree is created. An
example of a decision tree can be seen in Figure 2.5 where the goal is to predict if a person is either
healthy or diabetic.

Figure 2.4: Simple example of a decision tree extracted from the work of Mehrab Sayadi, et.al. [5]

When mentioning Random Forests or Extra Trees, RF and ET respectively, one is mentioning
an ensemble of decision trees. The idea is that the more decision trees the ensemble has, the more
accurate the model will be as the output of the models represents the output of several decision trees
combined [29, 30]. The differences between each of the two predictive models are:

1. Both models split the training data but such split is performed in a different way since RF looks for
an optimal split point in the training data whereas in the case of ET, said split point is chosen at
random.

2. While RF uses the ”Bootstrap Method” [29] to calculate the quantity of data sample to use, ET
uses the whole entire data sample.

Another predictive model worth mentioning is the Linear Discriminant Analysis, LDA for short,
whose goal is to find a vector w that maximizes the separation between the classes y of labeled data
consisting of n-dimensional points xi, after projecting said classes onto w .

Similar to Principal Component Analysis (PCA), LDA looks for linear combinations of variables
that best describe the data [31] but contrary to PCA, LDA deals with labeled data and tries to maximize
the discrimination between the classes.
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Figure 2.5: Example of instances from two classes projected onto W. [4]

According to Shwartz et al. [32] logistic regression or LR for short, is a classification algorithm
that is used to assign observations to a discrete set of classes. A LR is a specific case of a perceptron
model, where the activation function is given by the sigmoid function,

φsig(x) =
1

1 + e( − x)
(2.6)

Figure 2.6: Example of Logistic Regression [6]
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Chapter 3

Related Work

The consolidation of data and its external validation are not novel topics in computer science, although,
the purpose of the application domain and the unique challenges associated with the available data
sources make a given project unique based on its own constraints. Therefore, the purpose of this section
is to present a compilation of related work. Section 3.1 introduces work related to data consolidation
whereas section 3.2 presents work referring to external validation.

3.1 Data Consolidation

Volosnikov et al. [33] proposed a tool capable of allowing unified access to heterogeneous and dis-
tributed data. According to the paper, the heterogeneity of data sources increases the difficulty to
perform comprehensive research. Furthermore, the data presenting the heterogeneous indicators of
medical exams range in type, some even might be considered heavy, for instance, MRI or fMRI. Such
images demand an intensive preprocessing phase in order to use them in a research analysis. To tackle
the problems that arise due to the heterogeneity of data sources and the the required preprocessing of
the images, the committee of authors then introduces the developed tool. Such implementation makes
use of a service-oriented architecture, commonly known as SOA, preventing a series of problems that,
otherwise, would have arisen. Compliance to the law when it comes to handling the personal informa-
tion of each patient subjected to the study along with scaling difficulties and the use of new resources
are examples of problems could have appeared. The tool developed uses python libraries to access
and store the heterogeneous data and the interface and work environment of the tool was implemented
using MEAN stack or Mongo, Angular, Express, Node.

Similar to the work previously mentioned [33], the solution presented in this paper must handle the
consolidation of medical imaging and all the problems that may emerge with it. The data used to preform
our own analysis is handed by a grid of hospitals hence the heterogeneity of the data sources. Since the
files gathered and being used are raw MRIs, it is also necessary for them to undergo a preprocessing
phase in order to analyse them. Since each hospital is a unique case, each one of them demands
a different way to extract required data from the servers into our workstation. For the time being, web
scrapers are being used to access and extract data from the PACS system of each hospital. The interface
of the solution here proposed is implemented in python as for all the access and storage of content in the
database created in our workstation. Since the anonymization of data is performed by the hospital by a
script developed alongside the proposed solution, compliance to the law in terms of handling personal
information does not raise a problem since the anonymization process was accepted by each supplier
of data and the research work is compliant with HIPAA, GDPR and other data privacy regulations.
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Data Warehousing, as the name suggests, it is used to store data from disparate sources. The
work of Saliya Nugawela[34] identifies the main obstacles of data integration of healthcare data and the
proposal of a data warehousing model capable of integrating fragmented data in a cardiac surgery unit.
The work proposes a star schema to organise the data collected along with an enterprise architecture.
The main difference between such solution and the one presented in this thesis, is that the solution
presented here follows a snowflake schema. The less space it is wasted, the more information can be
stored. In a star schema a lot of the information turns out to be redundant whereas in the snowflake
there is almost no redundancy.

3.1.1 Data security and privacy related issues

With the use of digital technology in practically every aspect of medicine to collect clinical data related
to a patient, personal information is stored inside each digital files. As previously mentioned, Dicom
entered the field to simplify the exchange and storage of digital data. According to Newhauser et al.
[35], researchers have the obligation to remove PHI from all electronic medical records used in the
research of a patient outcome for a certain condition, specially, before such images are made public.
Attributes inside a Dicom image might be deidentified, pseudoanonymized or even fully anonymized
in order to comply with the regulations of HIPAA [36] in the United States of America or, for instance,
GDPR [37] in Europe. The goal of the article was to develop and test a prototype software code capable
of automatically anonymizing all the required information stored inside the EMRs without losing the
records integrity, thus, proposing the deletion or overwriting of certain dicom fields containing protect
health information.

Maintaining data security without leaving an electronic medical records like Dicom images opened
to privacy related issues tends to be a rather delicate and unique process. The way each image is pro-
cessed highly depends on the objective of the recipients research, therefore, depending on the purpose
some information might be necessary and can not be entirely anonymized. Throughout the years, sev-
eral works [38, 39, 40, 41] have been discussing different methods and techniques for the anonymization
of the PHI present inside the Dicom images and the method presented in this article is no different as
explained further ahead.

3.2 Predictive model validation

After the development of a predictive model, it is necessary to validate it in order to understand how
the model behaves in terms of performance. A core element of validation of the predictions models
is to contrast internal with external validation. Section 3.2.1 presents some related work expressing
the usefulness of biomarkers for aiding in an MCI diagnosis when there is suspicion of said condition.
Despite the fact that section 3.2.1 is not the main focus of the work, it still has some considerable
synergies with the work at hand.
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Figure 3.1: Schematic representation of internal (I.V), external (E.V) and internal-external (I-E.V) valida-
tion.

3.2.1 Biomarkers Discovery

Bocchetta et al. [42] studied the relevance of AD biomarkers such as cerebrospinal fluid (CSF), medial
temporal atrophy (MTA), fluorodeoxyglucose positron emission tomography (FDG-PET) and amyloid-
PET by AD European consortium centers, obtained by inspecting MRIs in the diagnosis of MCI. Accord-
ing to the article, the most used biomarker is clearly MTA with 75% of the respondents claiming to always
or at least frequently use it. The second most used is CSF markers with 22% of respondents using it, fol-
lowed by FDG-PET with 16% and finally amyloid-PET with 3%. In terms of confidence in the use of such
markers in the early diagnosis of MCI, only 45% of the consortium centers that answered the survey
considered that MTA had a ”moderate” contribution to the diagnosis whereas 79% felt ”very/extremely”
confident in a diagnosis of early MCI due to AD when levels of amyloid and neural injury biomarkers
were abnormal, especially when the measurement of the levels of both were simultaneously abnormal,
thus, being an indicative of AD signature.

Figure 3.2: Staging Alzheimer’s disease with dynamic biomarkers (Image from Jack et al. [7])

Other literature corroborates conclusions as the ones, aforementioned, for instance, the work by Jack
et al. [7] in which, the authors provide a framework developed with the purpose of testing hypothesis
presenting correlations between changes in AD biomarkers throughout time and clinical diseases stages
or even between temporal changes in AD biomarkers themselves. As shown in figure 3.2, it is possible to
understand that biomarkers like MTA, detected through the use of structural MRI might not be as relevant
as one would predict despite the frequent use of said markers due to abnormalities only presenting at a
later stage of the disease. On the other hand β-amyloid abnormalities seem to appear at an early stage
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of the disease, thus, corroborating the highly confidence level in a diagnosis where amyloid levels were
abnormal.

3.2.2 External validation

Despite the fact that a predictive model is validated internally, an external validation is required and
essential since, in that way, it is possible to test the model on a population acquired in an independent
way. By doing so, external validation allows for the assessment on the generalization of a predictive
model, allowing for a better understanding on how the model performs on a new population.

Most of the predictive models used in a Alzheimer’s disease related issues make use of deep learning
techniques. According to the work of Qiu et al. [43] there is a lack of external validation methods being
implemented in deep learning techniques based predicted models since such models are developed,
i.e. trained and tested, with data from a single group of subjects who share a defining characteristic.
The fact that a lack of external validation methods exists, deep learning models applied to AD tend to fall
short on the expected outcome considering the fact that such models have a decrease on performance
and their comprehensibility is limited since these models work as a ”black-box” and provide no elucidate
diagnostic review.

Furthermore, external validation is necessary in prediction research. The work of Bleeker et al. [44]
elucidates the fact that predictive models tend to perform better when facing data used to train and de-
velop the model rather than when facing data new to the model. The results from predictive models
tend to be considered with regard to the internal validation and with almost no regard for the external
one. Bleeker et al. [44] present the limitations to internal validation, therefore, expressing the impor-
tance of external validation. The predictive model used in the paper aims at classifying the presence of
serious bacterial infections in children with fever (total amount of 376). Internal evaluated performance
on average of 0.83 for the apparent area under the receiver operating characteristic curve and 0.76
after applying a bootstrapping method to provide bias-corrected estimates of model performance. After
validating the model internally, a small set of 179 individuals was validated externally and the authors
obtained a performance of 0.57 proving that only validating a small data set internally is not enough
and in the future models who do it, tend to fall short on performance. External validating is, therefore,
considered essential and vital to be performed on a model before inserting it in clinical practices.

To summarise, let us consider the work of Siontis et al. [45] where the goal of the authors was to
evaluate how often newly developed risk prediction models undergo external validation and how well
they perform in such validations. The method used to try and find an answer was to evaluate 127
new prediction models. Only in about 25% of the models, an external validation was encountered and
that the probability of having such validation method to be performed by different authors was 16%
proving that external validation of predictive models in different studies is uncommon and, therefore,
their performance might be considerably lower when facing said validation.

To perform a clear external validation on a predictive model, it is necessary to expose such model
to different data, that it has not encountered before. The difference in the data has to be, according to
Moons et al. [46], in these parameters:

1. Temporal differences so that a temporal external validation might be performed since the individu-
als presented on the data that the model is facing belong to the same cohort but to different time
periods.

2. Geographical difference in the data allow for a geographical external validation considering new
individuals from different locations, this is, patients subject to prediction by the model are from a
different clinic or hospital.
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3. Domain differences express new individuals who are considerably different from the individuals
from which the model was developed representing, thus, a domain validation.

The procedure, then, consists in applying the models to the data with the aforementioned differences
and recalculating the performance of the model based on discrimination, calibration and classification
measures.

3.2.3 Internal and internal-external validation

Depending on the literature and on the predictive model case where such model is inserted, external
validation may or may not be essential to correct the model due to low values in perfomance. However,
internal validation and, in some cases, internal-external validation are some types of validations that are
present in the developmento of the models. The work by Steyerberg et al. [47] expresses the fact that
internal validation is essential and the preferred method for validation is the bootstrapping aproach to
estimate the performance of the model. Since some type of external validation might be considered in
time of development, the authors also recommend an internal-external validation. That way, the model is
tested with a different sample, although with the same characteristics, as seen in figure 3.1, keeping the
model from returning overly optimistic performance values, thus offering a more realistic assessment.
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Chapter 4

Development

To better understand the solution at hand, first, we need to acknowledge the functional requirements
of the said solution. Such requirements aim to represent what the developed solution must be able to
satisfy and how it performs a certain task given a specific input by the user. Depending on the goal,
different tasks must be performed to obtain the correct output for the user query. For that reason, the
objectives of this dissertation are:

1. Guarantee proper anonymization and privacy of neuroimaging data.

2. Receive imaging from the hospitals/clinics.

3. Easily and quickly handle input from users.

4. Store required data in a database.

5. Return analysis based on the individuals from an hospital e.g. diagnosis.

6. Perform external validation on the new population showing the generalization guarantees and vul-
nerabilities.

For the better understanding of the reader, it is important to note that the solution here presented
was developed with the purpose of aiding the Institute of Biophysics and Biomedical Engineering under
the project NEUROBIOAI. The need for a solution capable of storing the data acquired from the partner
hospitals as well as a critical analysis of how the predictive models behave under a new population, the
Portuguese one, resulted in the solution presented in the next sections.

4.1 Project’s Architecture

A scheme of the architecture of the tool developed as well as other relevant steps can be found in Figure
4.1.
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Figure 4.1: Full schematic view of the project

As seen in the scheme, the project consists of four main subgroups:

1. Data consolidation - The section consists of acquiring and handling images from the partner
hospitals related to the patients at a specific hospital. Such images must be anonymized and,
later, stored in order for the predictive models to have access to this new information. Such data
is consolidated in the developed database.

2. Service layer - This layer is meant for handling all sorts of requests to access and alter the
database if necessary.

3. External validation - The models, after proper training, must undergo a critical analysis so that it
is possible to assess how the models handle new data.

4. Graphical user interface - In order for everyone to have access to the database, a centralized
app (GUI) was developed in order to manipulate the database as the user sees fit.

Figure 4.1 shows two possible pathways: 1 and 2. Path number one is the one where the user must
request the classification of a patient outside the developed GUI. And path 2 is the one where the GUI
is capable of requesting that classification.

4.2 Data Consolidation

For a better classification of future patients, the predictive models need not only images from ADNI but
also require images from hospitals or clinics. The preprocessing and spatial alignment on new data
is essential to make images more easily comparable, but not necessarily similar. In that matter, before
receiving such images, it is necessary to prepare them and, only after, extract such data from the partner
hospitals and clinics.

4.2.1 Data anonymization

The first stage of the extraction of the images is to anonymize the information that might be identifiable
of the patient. Inside each DICOM file, besides the image itself, there are several tags with information
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regarding the patient as seen in 4.2. The main goal is to de-identify or remove data from the DICOM
files from the hospitals/clinics, thus, enabling the sharing of such images to outside of the hospital guard
without breaking any security and data privacy protocols.

Figure 4.2: Example of a DICOM file using RadiAnt DICOM Viewer

With this process, the data is anonymized to the entity receiving the images, as it is not possible for
the receiving end to obtain the original values from the images or find the original person behind the
anonymization as the data is either removed or de-associated from the patient as a consequence of
using hash keys to replace ids. The data is de-identified to the hospital/clinic end since the alterations to
the image are stored, thus, enabling the hospital/clinic to identify the patient once a diagnose has been
made by the receivers end (IBEB).

The process of anonymization consists in deleting or replacing with random values DICOM’s header
tags that allow for identification of the patient. Tags that are anonymized are permanently de-identified
from their source. On the other hand, de-identification of some tags replaces the tags’ values with
artificial identifiers, random key of 10 characters, that can still be used to re-identify the patient, but only
by authorized personnel of the hospital sharing the data.

Authors in different literature [48, 49, 50] provide different advice regarding the removal of some of
the tags kept within the scope of the research project. It must be emphasized, though, that the tags from
table A.1 are either de-identified – and only re-identifiable by the hospital - or completely anonymized as
their nature does not allow them to be used in patient re-identification efforts. The decisions regarding
the anonymization of the images are considered and thought of under the hospitals/clinics supervision.
Before implementing such a script, the project’s partners must accept and agree on the process ex-
plained above.

4.2.2 Data Storage

After the extraction of the images from the hospitals, it is required to have someplace to store the content
of said images. For that reason, a local database must be created with the required tables to store the
data that feeds the models for classification.

With all displayed in section 2.3, the solution that fits best the requirements is a relational model due
to several reasons such as:

1. All the information can be stored in a single database so, OLAP functionality would not be that
much of an asset.

2. Since one of the main reasons is for the scientists at IBEB to consult the data as it is stored in the
database without any integration performed to it, a relational model suits the problem better.

3. Each image contains a high amount of data and that amount must be multiplied by hundreds of
thousand other images, OLAP queries would take substantial time to run.
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4. Future users of the database are not experienced in this matter so there is a need for a simple,
efficient, and free way of inserting and manipulating the data.

5. Several data that was not relevant to the project was discarded in the data anonymization process
so, the data being stored is of the utmost importance and must not be summarized as the user
may need to see the raw content of each entry.

Although a multidimensional approach would benefit the project, after careful consideration and since
the database would run at a local level with limited access, a relational approach was a more suitable
way to store the data as it also leaves space for a multidimensional approach in the future if the project
has such necessities, through the use of a ROLAP (Relational On-line Analytical Processing) method
creating a new layer on top of the relational one.

4.3 Graphical user interface

The primary goal taken into account during the development of the GUI was to allow the user to insert
new data into the database without having to write any SQL query in the console. The GUI allows for
the easy and fast insertion of new patients into the database with very few interactions or effort.

To sum up, the GUI must perform the following requisites:

1. Add new patients by providing the age of the first visit of the patient at the hospital and the prelim-
inary diagnosis. When adding a patient, it is also possible to select the Dicom images of the said
patient from a directory.

2. Access and display the tables with the data from a patient or all patients, among other relevant
data.

The GUI was developed in python with several libraries, including Dash, the framework where the
interface is built on. Some images of the Dash app can be seen in the Appendix B.

4.3.1 Input files

As previously mentioned, the main goal of the GUI is to allow for the insertion of new patients. The
hospitals and clinics send a CSV file with minimal information regarding the patients together with all the
DICOM files concerning the patients’ MRI.

For that matter, the developed app is prepared for receiving simultaneously a CSV and all the images
the user wants to. The service layer, then, checks the database for duplicates and in case it finds, it does
not insert the content of said MRIs into the database.

4.3.2 View Data

Not only the insertion of new data was considered in the development of the database. One great asset
of the Dash library is that, since it uses the Plotly library, it is capable of displaying several visualization
tools that able the user in terms of getting to know the population present in the database.

In order for a better understanding, the figures ahead display the database populated with only a few
patients.

Figure 4.3 displays a parallel coordinates chart capable of displaying vital information about the
subjects such as age, gender, the hospital where the images were taken, and the diagnosis attributed to
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the patient. This visualization tool also represents the lines in such a way that it displays the diagnosis
by color.

Figure 4.3: Parallel coordinates displaying a general view of the database

One great concern was to enable the user to quickly get statistical values regarding different aspects
of the database population. Figure 4.4 shows data about the Diagnosis gender, imaging protocols of
acquisition, and the image source.

Figure 4.4: One sunburst and two pie charts displaying relevant information about the images and
patients

The user is also able to get an idea of how each class of interest is affecting the subject of several
ages. The scatter plot in Figure 4.5 shows, for each age, how many patients there are with the a certain
diagnose.
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Figure 4.5: Number of patients / Age

Lastly, the user is able to consult all the tables as he/she sees fit as the example on Figure 4.6 shows.
The only table that is not being displayed is the table regarding the usernames and other details of each
user profile in the database. Only a user assigned with such privileges can access such data.

Figure 4.6: Example of the table regarding some information about a patient

4.4 Models Description

As previously mentioned, part of the work presented in this dissertation is based on predictive models
developed prior to my involvement in the project. Such predictive models were developed by the in-
vestigator Vasco Sá at IBEB and so were the illustrative images used in section 4.4. In order to better
understand the work presented next, let us first start this section project by clarifying the reader on how
the existing predictive models behave and how they are developed.

4.4.1 Training the models

When mentioning ”the models” in any part of this thesis, the reader must understand that said models
are the result of the output of seven trained models which are: Support-Vector Machine (SVM), Deci-
sion Trees (DT), Random Forest (RF), Extra Trees (ET), Linear Discriminant Analysis (LDA), Logistic
Regression (LR), and Stochastic Gradient Descent (LR-SGD).

In the training process of each of the seven models, it is performed a five-fold Cross-Validation.
With this, feature selection is also performed in order to reduce dimensionality. The classification of
an MRI is based on the previously mentioned models along with a Genetic Algorithm Hyperparameter
Optimization.

After each model has performed the aforementioned steps, a ranking metric is calculated in order to
assess the best models to use in the test set. Such ranking metric is as follows:

Ranking Metric = MCCtestfolds − σMCCtestfolds (4.1)

where MCCtestfolds is the average value from the Matthew Correlation Coefficient of each fold and
σMCCtestfolds is the standard deviation of the Matthew Correlation Coefficient of each fold.
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After calculating a ranking metric for each model, it is then necessary to choose the ones to use in
the test set based on said metric by selecting the ones that present a ranking metric higher than the
average of ranking metrics of the seven models.

After all these steps it is time to refit the models on the entire training set. Figure 4.7 presents an
overview on the aforementioned process.

Figure 4.7: Overview of the training of the models

4.4.2 Testing the models

When testing the models on any population, the process is always the same. A dataset containing the
data extracted from the MRIs is separated into three binary datasets:

1. A dataset containing only patients classified as Healthy or as AD ( 1 vs 3)

2. A dataset containing only patients classified as Healthy or as MCI ( 1 vs 2)

3. A dataset containing only patients classified as MCI or as AD ( 2 vs 3)

For each binary dataset, the models output a combined probability of each model representing the
likelihood of that specific patient having a certain diagnose.

Combined probability = Outputprobabilityeachmodel (4.2)

where Outputprobabilityeachmodel is the average probability returned by each model.
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In the case of 1 vs 3 and 2 vs 3 the output of the models represent whether a patient has AD or not.
The case of 1 vs 2 represents the likelihood of having MCI, as it is possible to see in figure 4.8

Figure 4.8: Overview of the testing stage of the target predictive models

4.5 External Validation

The goal of this section is to describe the process that took place in order to assess the performance of
the models in a real-life situation. For that measure, the models were executed using data from hospitals
that are partners of the project. Several hospitals are joining but in the time this thesis was developed
only two hospitals, Hospital Vila Franca de Xira and Hospital Fernando Fonseca, were able to supply
medical images in the available time span.

4.5.1 Measures in training

In order to assess how well the models are generalizing we considered the use of learning curves and
calculation of the bias and variance which allowed understand the following:

1. The variation of performance by varying the number of patients used in the training process;

2. If the models are properly fitted or if they are overfitting or underfitting;

3. If the dataset used in the training and in the validation is representative of the population;

With that said, let us first get into the dataset used to train the models. Such dataset is composed
of patients classified as Control, MCI or AD. Figure 4.9 displays the distribution by class and gender,
figures D.1, D.2 and D.3, in appendix D, display the distribution by age group of the original population
for class Control, MCI and AD, respectively.

26



Figure 4.9: Distribution by class and gender of the original population

As previously seen in Section 4.4, where the models are described, there are seven models for each
one of the three different scenarios. The dataset that contains the patients from Figure 4.9 represents
the original population which is then split so that 70% of the available data is used in the training leaving
the other 30% for testing. These models were trained with patients who were classified with either one
of the two classes in a scenario, i.e.:

1. Control vs MCI: Consists on a dataset of patients classified by the hospitals as Control or MCI

2. MCI vs AD: Consists on a dataset of patients classified by the hospitals as MCI or AD

3. Control vs AD: Consists on a dataset of patients classified by the hospitals as Control or AD.

Each dataset of each scenario is then divided in order to plot the learning curves, i.e. 80% is used
to plot the training error curve and the or 20% is used for the validation curve so, in order to assess the
different learning rates of the models by the number of observations (patients), the learning curves were
plotted for the group sizes presented in table 4.1. It is important to note that the maximum value in each
group size represents the entire 80% mentioned before:

Model Group sizes

Control vs MCI [1, 40, 80, 120, 160, 200, 240, 280, 312]
MCI vs AD [1, 40, 80, 120, 160, 200, 240, 280, 296]

Control vs AD [1, 40, 80, 120, 160, 200, 240, 280, 303]

Table 4.1: Different dataset sizes for the learning curves plotting.

In addition, in order to complement the analysis of the learning curves, the bias-variance trade-off
was another metric that was implemented. Such metric allows us to get a better insight on whether or
not the model is overfitting or underfitting so, for that measure, the average expected loss, average bias,
and the average variance were calculated for each one of the models.
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After all the models were trained, the models were compared with each other in order to analyze
the variance thus, allowing us to understand if there is any difference overall between the models. To
evaluate such difference, it was used the One-way ANOVA instead of a t-test since it is a parametric test
that tests for statistically significant differences between three or more models whereas a t-test allows
for just two. The data analyzed by the One-way ANOVA were the values from the accuracy from each
one of the five folds of each model, as mentioned in section 4.4.1.

It is important to know that before running the One-way ANOVA, there are some assumptions that
were verified as the One-way ANOVA depends on such dependencies to work [51], which are:

1. The distribution of the values from all five folds in each model must be normal, a condition verified
using the Shapiro-Wilk test.

2. All models must be independent of each other.

3. All models must have equal variances.

Despite analyzing if there is a statistical significant difference between the predictive models, it is
also necessary to see which models differ or not from other models. That way it is possible to compare
models in pairs by conducting a Post-Hoc testing using the Bonferroni correction.

4.5.2 Testing the models on a Portuguese population

After the analysis performed in the training dataset , the next stage of the work is to run the models
on a Portuguese population. As mentioned before, hospitals provided MRIs for their patients, with the
accompanying diagnostics. Such hospitals were Hospital Vila Franca de Xira (HVFX) and Hospital
Fernando Fonseca (HFF).

Target population

The target population is composed of HVFX and HFF patients. Figure 4.10 displays the distribution of
the population by gender and diagnosis and as it is possible to see there are very few patients diagnosed
with AD. In contrast, there is a great number of Control patients. Such imbalance can be explained by
two factors:

1. When providing the images, the hospitals prepared patients with dementia and not AD, exclusively
so, the patients with AD are a fraction of the whole that is patients with Dementia.

2. When pre-processing the images, the protocols of acquisition of the images (ex: MP-Rage, SGPR,
Sag) did not match any protocol accepted by the models.
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Figure 4.10: Distribution of the target population by gender and diagnose

Regarding the age group of the population, figures D.4, D.5, D.6 display the distribution of the popu-
lation for each class of interest by age group and, as expected, patients diagnosed as AD or MCI range
from 55 years old onwards whereas patients diagnosed as Control range from 25 years old onwards
which, once again is expected since AD is a disease that occurs, mostly, at later stages of life.

After getting a general view of the population, it is now time to present the measures that are imple-
mented in order to interpret the performance of the models on said population.

The first evaluation step to be applied is the confusion matrix analysis since it allows us to have a
generalized and summarized view of the performance of the models for the multiclass problem. Having
calculated the confusion matrix is then possible to get the values of the precision, sensitivity, and speci-
ficity, as well as the balanced accuracy of the model. Although accuracy is calculated too, relying just
on such metric may be considerably misleading when handling an imbalanced dataset. The confusion
matrix and the balanced accuracy can address that as they account for both the positive and negative
predicted classes without misleading performance summaries in the presence of imbalanced data.

After having calculated the specificity and the sensitivity, the Area under the ROC (receiver operating
characteristic) curve is suggested to assess how well the model is capable of distinguishing between
HC, MCI, and AD. With precision and sensitivity calculated as well, the precision-recall curve is also
suggested.
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Chapter 5

Results and Discussion

5.1 Data anonymization

The developed script receives, as mentioned before, DICOM files that contain confidential information
from the patient as seen in figure 4.2. After anonymization the script produces 3 files and the anonymized
image itself.

The first produced file, Keys.csv, contains the original identifier from the patient and the new identifier
generated by the script. This way, once there is a new classification for the patient, the hospital can re-
identify the patient.

The second generated file, PhysicianName.csv, stores the real name of the physician that performed
the exam as well as its new ID.

Lastly, AccessionNumber.csv is the last file that is produced, storing the accession number of the
exams, which is basically the ID of a specific exam, as well as the new ID created by the script.

All these files are only in the possession of the hospital/clinic so, IBEB has no knowledge of the
content of such files.

The images are the most important part of the anonymization and as it is possible to see, figures
5.1 and 5.2 display a frame from an MRI exam from an ADNI patient. Figure 5.1 presents informa-
tion regarding the patient that must be anonymized. Such information is the patient ID (009 S 1030),
patient name (009 S 1030), birth date (26/05/1939) and others.

Figure 5.1: MRI image before anonymization.

The anonymization of that image consisted on the deletion of the tags regarding the PHI tags and
the result of such process can be seen in figure 5.2.
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Figure 5.2: MRI image after anonymization.

5.2 Database

The database schema developed is presented in Figure B.4. It consists on a set of tables as follows:

Table Name Column Name Content Meaning Data Type

Patients Info

Patient ID ID of the Patient varchar(255)
Sex Gender of the Patient varchar(255)

Age First Visit Age of the patient at the first visit at the hospital/clinic Numeric
Preliminary Diagnosis First diagnose given to the patient varchar(255)

Hospital Source of patient varchar(255)

All Exams
Exams ID ID of the exam varchar(255)
Patient ID ID of the Patient varchar(255)
Scan Date Date of the exam Date

Exams Info
Exams ID ID of the exam varchar(255)

Tag ID of the dicom tag varchar(255)
Value Content of the dicom tag varchar(255)

Dicom Tags

Tag Tag that identifies the attribute varchar(255)
Tag Name Name of the dicom tag varchar(255)

Value Representation Describes the data type and format of Tag value varchar(255)
Retired Tells if tag is still being used or not boolean

Diagnosis History
Patient ID ID of the Patient varchar(255)

Date Date of the diagnosis Date
Diagnosis Diagnosis given to the patient varchar(255)

User

Username username varchar(15)
Email User’s email varchar(50)

Password User’s password varchar()
Admin Tells if user is a admin or not boolean

ADNI Control Several Variables Attributes regarding non imaging exams from ADNI Varchar(255)/ Boolean/ Numeric

PD Control Several Variables Attributes regarding non imaging exams from Parkinson’s disease Markers Initiave Varchar(255)/ Boolean/ Numeric

Table 5.1: Database tables
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Figure 5.3: General view of the relational database model
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A set of questions must be answered by the database. Appendix provides a list of the most impor-
tant/frequent queries. For illustrative purposes we consider one of said queries:

1. What is the total number of patients with each diagnose for the different age groups?.

Query:

SELECT

"Last_Diagnosis",

"Age"

Count("Age") as Number_of_patients

FROM

public."Patients_Info"

GROUP BY

("Last_Diagnosis", "Age");

5.3 Statistical Validation

This section has the purpose of presenting and discussing the results obtained on the original population
of the ADNI initiative and the target Portuguese population. Section 5.3.1 presents the results obtained
for the learning curves, bias-variance trade-off and the ANOVA tests implemented in the models as soon
as they were trained. Section 5.3.2 presents the results of the validation performed on the models. Such
validation was performed on the original data available and on the the target data which represents the
the patients from Hospital Vila Franca de Xira and Hospital Fernando Fonseca.

5.3.1 Validation using the original (heterogeneous) population

In order to assess the generalization ability of models, i.e how they change in terms of performance
over different population sizes as well as seeing if any model is underfitting or overfitting, Figures 5.4a,
5.5a, 5.6a show the plotted learning curves for each one of the seven models in each one of the three
possible scenarios (Control vs MCI, Control vs AD and MCI and AD). The plotted figures display the
mean square error for both the validation set and the training set.

34



(a) (b)
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(e) (f)

(g)

Figure 5.4: Learning curves in the Control vs MCI scenario for SVM-Linear (a), Decision Trees (b),
Random Forests (c), Extra Trees (d), Linear discriminant analysis (e), Logistic Regression (f) and Logistic
Regression with Stochastic Gradient Descent (g) when training the models.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.5: Learning curves in the Control vs AD scenario for SVM-Linear (a), Decision Trees (b),
Random Forests (c), Extra Trees (d), Linear discriminant analysis (e), Logistic Regression (f) and Logistic
Regression with Stochastic Gradient Descent (g) when training the models.

36



(a) (b)

(c) (d)

(e) (f)
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Figure 5.6: Learning curves in the MCI vs AD scenario for SVM-Linear (a), Decision Trees (b), Ran-
dom Forests (c), Extra Trees (d), Linear discriminant analysis (e), Logistic Regression (f) and Logistic
Regression with Stochastic Gradient Descent (g) when training the models.
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Similar to the learning curves, the bias and variance are also calculated in order to complement
the analysis, assessing how well-fitted are the targeted models. Tables 5.2, 5.3, 5.4 show the results
obtained for each one of the seven models in each one of the three possible scenarios (Control vs MCI,
Control vs AD, MCI and AD) of the bias, variance and the expected loss.

Control vs MCI
SVM-Linear DT RF ET LR LDA LR-SGD

Average expected loss 0.376 0.426 0.390 0.339 0.288 0.333 0.200
Average bias 0.294 0.299 0.257 0.199 0.170 0.151 0.060

Average variance 0.081 0.127 0.134 0.141 0.118 0.182 0.140

Table 5.2: Bias and variance for each model in the Control vs MCI scenario.

Control vs AD
SVM-Linear DT RF ET LR LDA LR-SGD

Average expected loss 0.386 0.545 0.465 0.201 0.366 0.352 0.231
Average bias 0.253 0.210 0.313 0.057 0.238 0.086 0.057

Average variance 0.133 0.335 0.152 0.144 0.128 0.267 0.173

Table 5.3: Bias and variance for each model in the Control vs AD scenario

MCI vs AD
SVM-Linear DT RF ET LR LDA LR-SGD

Average expected loss 0.179 0.252 0.180 0.190 0.187 0.193 0.167
Average bias 0.100 0.148 0.091 0.142 0.108 0.086 0.068

Average variance 0.079 0.104 0.089 0.049 0.079 0.106 0.099

Table 5.4: Bias and variance for each model in the MCI vs AD scenario

The analysis of the learning curves 5.4, 5.5, 5.6 and tables 5.2, 5.3, 5.4 allows us to see that for
scenario:

1. Control vs MCI, decision trees will not be benefit from the increase of instances in the training set
since the validation and training error curves have already converged. LR-SGD may be overfitting
since the validation error is high wheres as the training error is much lower resulting in a high
variance;

2. Control vs AD, LDA is overfitting as a result of the decreasing training error and the increasing of
the validation error. A case of overfitting may be identified in the extra trees due to the low bias
and the relatively higher variance;

3. MCI vs AD, models seem to present lower levels of bias and a higher value of variance, with the
exception of SVM-linear.

The overall conclusion, is that the models may not generalise as well as they could as seen by
the low bias and higher variance, hence the much higher validation error when compared against the
training error. The training set sizes do not allow for an extensive analysis of the models so the best
recommendation would be to increase the instances available in the training, i.e. gather a higher number
of patients which can be used to re-train the models so that the learning curves could show the validation
and training error curves converged which it not happening for the most cases.
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Comparing the models with ANOVA

After the aforementioned metrics were calculated and the training process was concluded, it was also
necessary to compare the models with each other and see if they are equal in any way. Since we need
our data to follow a normal distribution and the variance must be the same for all the data [51], table 5.5
displays the results from the Saphiro-Wilk test where it compares the balanced accuracy from the folds
of each model. The results prove that the data follows as normal distribution as the p-value is above
0.05 in all cases for each one of the model.

Model svm-linear dt rf et lda lr lr-sgd
p-value (Control vs MCI) 0.109 0.637 0.557 0.967 0.669 0.794 0.515

p-value (MCI vs AD) 0.771 0.062 0.763 0.437 0.592 0.147 0.196
p-value (Control vs AD) 0.414 0.399 0.071 0.071 0.918 0.348 0.155

Table 5.5: P-values of each model for each one of the three scenarios

Regarding the homogeneity of variance table 5.6 shows the p-values obtained after comparing the
models in each one of the three scenarios under the Levene’s test. As it is possible to see, the Levene’s
Test [52] of homogeneity of variances is not significant (p-values > 0.05) thus, concluding there is no
statistical difference in the variability of the models within a scenario.

Control vs MCI Control vs AD MCI vs AD
P-values 0.969 0.99 0.834

Table 5.6: Levene’s test for each scenario

After verifying the assumptions above, a Post-Hoc Test [53] was performed to see which models
significantly differ from each others. The Post-Hoc test with the Bonferroni correction returned false for
all the pairs of models comapred which means that, no model differs significantly from other models.

5.3.2 Generalization analysis in a Portuguese population

When running the models for the target population (Hospital Vila Franca de Xira + Hospital Fernando
Fonseca), the confusion matrix in Figure 5.7a is obtained. Table 5.7 complements the confusion matrix
since it allows us to know the values of precision, recall/sensitivity, F1-score, and the number of patients
that support such calculus.
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(a) (b)

Figure 5.7: Confusion matrix of the target population 5.7a and the original population 5.7b

Target Population Original Population
Precision Recall F1-score Support Precision Recall F1-score Support

Control 1.00 0.16 0.28 43 0.88 0.72 0.79 651
MCI 0.30 0.43 0.35 7 0.39 0.54 0.45 191
AD 0.29 0.83 0.43 18 0.66 0.79 0.72 247

Table 5.7: Predictive accuracy for Portuguese population

Starting with the class Control, it is clear that the models do not classify any patients as Control when
they should not be classified as such hence the precision value of 1 (100%) which in other words mean
that the fraction of instances correctly predicted as Control is 100% out of the total classified instances
as Control. On the other hand, the value of the recall is only 0.16 which means that out of the 43 patients,
the models might not have wrongly classified AD or MCI patients as Control but, the low value of recall
means that 84% ( 36 patients) of the Control patients were classified as either MCI or AD patients.

In the case of the MCI patients, the precision value decreases substantially from 1 to 0.30 but on the
other hand, the recall value increased from 0.16 to 0.43. One might say that these values are preferable
when looking at f1-score which is higher. Out of all the patients classified as MCI, the models lacked the
ability to accurately find all the MCI patients since 57% of the MCI patients were classified as AD. Such
low values may be explained by the low support value of patients (only 7 patients in the entire target
population).

Lastly, looking at the AD patients, the precision value is 0.29, which represents that out of all the
patients classified as AD only 29% of those were correctly classified as AD. In contrast, 83% of the
patients with AD were correctly classified as AD.
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Figure 5.8: Precision Recall curve obtained in the target population 5.8a and the original population 5.8b

The ROC curves displayed in figure 5.9a represent the trade-off between sensitivity and specificity.
Such curves are useful since they do not rely on the distribution of classes which comes in handy
considering the number of control patients is not balanced with the number of AD patients (43 control to
18 AD patients) and allows for the better interpretation of the MCI class (7 patients).

(a) (b)

Figure 5.9: ROC curves obtained in the target population obtained in the target population 5.9a and the
original population 5.9b

The models can be interpreted by comparing their performance against a baseline which is the FPR
= TPR diagonal that represents the expected values a random classifier would return. The models’
performance is considered low since the curves are closer to the 45 degrees diagonal when they should
be closer to the top-left corner of the graph as it is the case on the original population.

In addition, to obtain a better view of the models output, figure 5.10 displays the distribution of
probabilities for the patients diagnosed by the hospitals as Control, MCI and AD. The main goal of said
figure is to show that, for instance, Control patients are classified as AD as proved by the high probability
in the AD column, hence the lack of ability to predict control patients. The same event occurs for the
MCI patients as the class with higher probabilities is AD instead of MCI. As mentioned before, 83% of
the patients classified as AD were in fact AD patients. The predicted value is given with a high level of
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confidence hence the low values of control and MCI probability in 5.10c.

(a) (b) (c)

Figure 5.10: Distribution of calculated probabilities for patients diagnosed by the hospitals as Control
5.10a, MCI 5.10b or AD 5.10c

Overall, it is possible to see that the models cannot generalise well for the target population as they
generalize for the original data. Such disparity in results may be explained by the relatively small size of
training set in which the models were trained or even by the fact that the exams used when validating
the models presented new protocols of acquisition of MRIs.

42



Chapter 6

Conclusion

The work presented in this dissertation focuses on a specific dementia disorder, Alzheimer’s disease,
which accounts for two-thirds of all dementia cases. The fact that diagnosing a patient with Alzheimer’s
disease at an early stage of development is not always straightforward does not rule out the possibility
of more powerful diagnostic tools being developed in the future. In reality, by utilizing various sorts of
technologies, it is feasible to diagnose individuals with Alzheimer’s disease with high precision. The tools
used nowadays are based on the examination of the patient’s and their families’ medical histories, after
which neuropsychological tests can be performed to assess cognitive function but with the downside
that such tests may take time and might be performed at a later stage of the disease.

Machine learning approaches are used in this work to construct predictive models capable of de-
livering an early and accurate diagnosis of Alzheimer’s disease or even a preclinical stage of cognitive
impairment preceding Alzheimer’s at a later period in life. The most significant challenges of such mod-
els is the necessity to ensure their interpretability and ability to handle complex data, as well as their
ability to generalize on external data since the data collected to feed the classification models is large
and heterogeneous in nature. The specified data consists on Medical Resonance Imaging records,
which contain not only medical information but also demographic information about the patient. The
data collected from the hospitals needed to be anonymized before receiving said images in order to
maintain the anonymity of the patients and the medical professionals. Furthermore, it was necessary
to build a centralized solution capable of storing the data so it could be later used in the study. This
dissertation aimed to validate models under a heterogeneous population to ensure adequate represen-
tation of the Portuguese population and guarantee sufficient generalization capability of the models. In
face of all the requirements, a relational database was developed in order to store the content of the
MRIs received from the hospital. Prior to the reception of said data, a script was developed so that the
MRIs could be anonymized and later sent. The existence of a database resulted in the development of
Graphic User Interface capable of manipulating the database by allowing the user to insert new data or
view data and statistics from the database content. In addiction, a validation of the predictive models
was performed, being the latter the main focus of this dissertation. To assess the generalization ability
of the models, these are tested on a target population consisting of patients from Hospital Vila Franca
de Xira and Hospital Fernando Fonseca. Before running the models on the target population, learning
curves are plotted which together with the bias and variance calculus allow to understand whether or
not the models are adequately fit on the data. ANOVA and a Post-Hoc test are used in order to com-
pare the models with each other and see if they were equal in any way. To figure how well the models
were generalizing for the target population, commonly used measures were calculated in order to extract
statistics on the capabilities of the models.

The learning curves showed that the models are not yet at a point of maturity. Both the learning
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curves and the bias-and-variance calculus allowed to understand that some models could be facing an
underfitting or overfitting problem when handling Control vs MCI patients, as is the case of the models
with Logistic Regression or with Linear Discriminant Analysis due to high values of bias. In addition,
the learning curves showed, in the case of Linear Discriminant Analysis, a decreasing training error
and an increasing validation error for an increased data size. The Post-Hoc test showed that all the
pairs of models compared presented no significant difference in the variability of the models within each
scenario. Regarding the results on the target population, the models showed that they lack the ability
to generalize well on the new population as they did on the original one. For class Control, 100%
was achieved on precision whereas in the case of Recall or F1-score only 16% and 28%, respectively,
was achieved. Class MCI had slightly different results with 30% of precision, 43% of recall and 35%
of F1-score while the AD class presented a 29% of precision, 83% of recall and 43% of F1-score.
Furthermore, the Area Under the Receiver Operating Characteristics for class Control showed an area
of 36%, followed by MCI area of 74% and AD with 0.47%. Overall, the results showed that the models do
not have the desired ability to generalize well for a new population. Although the results for the AD class
were better and no false negative were returned for the control class, i.e. no patient with Alzheimer’s
disease was classified as control, the models did not perform well on the population.

The main hypothesized reason for this inability to generalize well is the low volume of available pa-
tients used in the training of the models. One would recommend adding more patients to the training
process so that the models could achieve optimal performance in training. The learning curves showed
the training and validation error curve did not converge due to the low volume of instances so, by adding
more patients this problem could be solved. Another reason for the low generalization capacity is con-
sidered to be the different image acquisition protocols of the MRIs in the target population.

6.1 Future Work

Despite the relevance of the produced results from the targeted models, there are some measures that
could be implemented in order to improve the overall performance of the models. First, the extension
of the predictive models to another population since new populations result in different data that might
correlate better with the models’ requirements, so that models could be retrained under a more hetero-
geneous populations and, consequently, generalize better on a new target population. In addition, it
would be interesting to see alternative supervised classification principles to assess whether the per-
formance of the models. Third, the proposed data consolidation and external validation principles can
be considered to expand the scope of the work in order to handle new neurological diseases. Finally,
regarding the database and the GUI, it would be interesting to deploy the database onto a remote server
so that several entities could access it and easily insert new data with the necessary guarantees of
security, privacy and usability.
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Appendix A

Data anonymization

Table A.1: DICOM header tags to be treated.

Tag Name Action
(0008,0096) Referring Physician Identification Sequence Deleted
(0008,1048) Physician(s) of Record Deleted
(0008,1049) Physician(s) of Record Identification Sequence Deleted
(0008,1050) Performing Physician’s Name Deleted
(0008,1052) Performing Physician Identification Sequence Deleted
(0008,1060) Name of Physician(s) Reading Study Deleted
(0008,1062) Physician(s) Reading Study Identification Sequence Deleted
(0010,0050) Patient’s Insurance Plan Code Sequence Deleted
(0010,0101) Patient’s Primary Language Code Sequence Deleted
(0010,1090) Medical Record Locator Deleted
(0010,2180) Occupation Deleted
(0010,1002) Other Patient IDs Sequence Deleted
(0010,1040) Patient’s Address Deleted
(0010,1060) Patient’s Mother’s Birth Name Deleted
(0010,0021) Issuer of Patient ID Deleted
(0010,2160) Ethnic Group Deleted
(0010,21B0) Additional Patient History Deleted
(0010,1005) Patient’s Birth Name Deleted
(0010,2150) Country of Residence Deleted
(0010,2152) Region of Residence Deleted
(0010,2154) Patient’s Telephone Numbers Deleted
(0038,0300) Current Patient Location Deleted
(0038,0400) Patient’s Institution Residence Deleted
(0008,0021) Series Date Deleted
(0008,002A) Acquisition DateTime Deleted
(0008,0031) Series Time Deleted
(0008,0032) Acquisition Time Deleted
(0008,0081) Institution Address Deleted
(0008,0092) Referring Physician’s Address Deleted

Continued on next page
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Table A.1 – DICOM header tags to be treated (continuation).
Tag Name Action

(0008,0094) Referring Physician’s Telephone Numbers Deleted
(0008,1040) Institutional Department Name Deleted
(0008,1070) Operators’ Name Deleted
(0040,A120) DateTime Deleted
(0040,A121) Date Deleted
(0040,A122) Time Deleted
(0008,1010) Station Name Deleted
(0008,1030) Study Description Deleted
(0008,2111) Derivation Description Deleted
(0010,4000) Patient Comments Deleted
(0020,4000) Image Comments Deleted
(0040,0275) Request Attributes Sequence Deleted
(0040,A730) Content Sequence Deleted
(0010,0030) Patient’s Birth Date Deleted
(0010,0010) Patient’s Name Deleted
(0020,0052) Frame of Reference UID Deleted
(0020,0200) Synchronization Frame of Reference UID Deleted
(0008,0020) Study Date Deleted
(0008,0023) Content Date Deleted
(0008,0030) Study Time Deleted
(0008,0033) Content Time Deleted
(0020,000D) Study Instance UID Deleted
(0020,0010) Study ID Deleted
(0040,A123) Person Name Deleted
(0008,0014) Instance Creator UID Deleted
(0008,1155) Referenced SOP Instance UID Deleted
(0010,0032) Patient’s Birth Time Deleted
(0010,1000) Other Patient IDs Deleted
(0010,1001) Other Patient Names Deleted
(0010,1020) Patient’s Size Deleted
(0010,1030) Patient’s Weight Deleted
(0018,1000) Device Serial Number Deleted
(0040,A124) UID Deleted
(0088,0140) Storage Media File-set UID Deleted
(3006,0024) Referenced Frame of Reference UID Deleted
(0010,0020) Patient ID Pseudo-anonymized
(0008,0018) SOP Instance UID Kept
(0008,001A) Related General SOP Class UID Kept
(0008,0022) Acquisition Date2 Kept
(0008,0060) Modality Kept
(0008,0070) Manufacturer Kept
(0008,1080) Admitting Diagnoses Description Kept
(0008,1090) Manufacturer’s Model Name Kept
(0010,0020) Patient ID Pseudo-anonymized

Continued on next page
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Table A.1 – DICOM header tags to be treated (continuation).
Tag Name Action

(0010,0040) Patient’s Sex Kept
(0010,1010) Patient’s Age Kept
(0014,40A2) Image Quality Indicator Size Kept
(0018,0024) Sequence Name Kept
(0018,0050) Slice Thickness Kept
(0018,0080) Repetition Time Kept
(0018,0081) Echo Time Kept
(0018,0082) Inversion Time Kept
(0018,0087) Magnetic Field Strength Kept
(0018,0091) Echo Train Length Kept
(0018,0093) Percent Sampling Kept
(0018,1020) Software Version(s) Kept
(0018,1310) Acquisition Matrix Kept
(0018,1314) Flip Angle Kept
(0018,9005) Pulse Sequence Name Kept
(0018,9075) Diffusion Directionality Kept
(0018,9076) Diffusion Gradient Direction Sequence Kept
(0018,9087) Diffusion b-value Kept
(0018,9089) Diffusion Gradient Orientation Kept
(0018,9117) MR Diffusion Sequence Kept
(0018,9125) MR FOV/Geometry Sequence Kept
(0018,9147) Diffusion Anisotropy Type Kept
(0018,9240) RF Echo Train Length Kept
(0018,9241) Gradient Echo Train Length Kept
(0018,9423) Acquisition Protocol Name Kept
(0019,000A) NumberOfImagesInMosaic Kept
(0019,000B) SliceMeasurementDuration Kept
(0019,000C) B value Kept
(0019,000D) DiffusionDirectionality Kept
(0019,000E) DiffusionGradientDirection Kept
(0019,000F) GradientMode Kept
(0019,0027) B matrix Kept
(0019,10bb) DTI diffusion directions Kept
(0019,10bc) DTI diffusion directions Kept
(0019,10bd) DTI diffusion directions Kept
(0019,10d9) Concatenated SAT Kept
(0019,10df) DTI diffusion directions Kept
(0019,10e0) DTI diffusion directions Kept
(0019,0028) BandwidthPerPixelPhaseEncode Kept
(0020,000D) Study Instance UID Kept
(0020,000E) Series Instance UID Kept
(0021,105A) Diffusion direction Kept
(0029,1001) Private Sequence Kept
(0029,1090) Private Byte Data Kept

Continued on next page
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Table A.1 – DICOM header tags to be treated (continuation).
Tag Name Action

(0054,0081) Number of Slices Kept
(2001,1003) B value Kept
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Appendix B

GUI screens

Figure B.1: GUI’s login page

Figure B.2: GUI’s home screen
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Figure B.3: GUI’s add new patient page

Figure B.4: GUI’s update profile page
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Appendix C

Database

C.1 Relevant queries

1. What is the distribution of patients in terms of age, gender, hospital and diagnose?

Query:

SELECT

"Patients_Info"."Patient_ID",

"Patients_Info"."Age",

"Patients_Info"."Gender",

"Patients_Info"."Last_Diagnosis",

"Patients_Info"."Hospital"

FROM

public."Patients_Info";

2. What is the gender distribution for each known diagnose?

Query:

SELECT

"Last_Diagnosis",

"Gender"

FROM

public."Patients_Info";

3. What protocols were used for imaging and how do they represent the population?

Query:

SELECT

"Value" as Protocol_Name

FROM

public."Exams_Info"

WHERE

"Tag" = ’(0018,1030)’;
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4. What is the percentage of patients from each hospital/clinic?

Query:

SELECT

"Value" as Image_Source

FROM

public."Exams_Info"

WHERE

"Tag" = ’(0008,0080)’;

5. What is the total number of patients with each diagnose for the different age groups?.

Query:

SELECT

"Last_Diagnosis",

"Age"

Count("Age") as Number_of_patients

FROM

public."Patients_Info"

GROUP BY

("Last_Diagnosis", "Age");

6. What does table X contain?

Query:

SELECT

*

FROM

table X;
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Appendix D

External Validation

D.1 Training and testing population

Figure D.1: Distribution of class Control by age group
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Figure D.2: Distribution of class MCI by age group

Figure D.3: Distribution of class AD by age group
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D.2 Target population

Figure D.4: Distribution of class Control by age group

Figure D.5: Distribution of class MCI by age group
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Figure D.6: Distribution of class AD by age group
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