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Abstract—Wildfires are one of the most challenging disasters
to control and are responsible for thousands of hectares burned,
infrastructure destroyed, and lives lost every year all over the
world. To develop robust systems capable of detecting and locat-
ing wildfires with high efficiency through supervised learning, it
is necessary to acquire extensive labelled datasets. However, the
number of publicly available images with associated annotations
is low. Moreover, there are thousands of images related to
forest fires available online, but without annotation. Furthermore,
generating all the required labels can be time-consuming and
costly. Therefore, this thesis hopes to take advantage of this
unlabelled data by proposing a system that uses self-supervised
learning to achieve the final goal of fire classification. The
proposed methodology is divided into two phases. First, a network
is trained to solve some tasks, different to the final task, using
the unlabelled dataset. Afterwards, by combining part of the
learned model with a small, labelled dataset, the final classifier
is achieved. When comparing the models only trained with the
small labelled dataset, the proposed methodology achieved a
better performance, proving that there are advantages to using
the unlabelled data available online.

Index Terms—Wildfire, Self-supervised learning, Deep learn-
ing, Convolutional neural networks, UAVs.

I. INTRODUCTION

W ILDFIRES are responsible for thousands of burned
hectares, infrastructure destroyed and human lives lost,

year after year. In mainland Portugal, wildfires were responsi-
ble for more than 861,000 hectares burned between 2016 and
2020, according to ICNF1.

The Firefront project2, which this thesis is part of, aims
to assist firefighting teams by developing a system that can
automate the detection, monitoring and fighting of wildfires
and potential re-ignitions. The idea is to implement this system
through aerial vehicles equipped with an RGB camera to
capture real-time images of the forest and, eventually, fires.

To develop robust systems capable of detecting and locating
wildfires with high efficiency through supervised learning, it
is necessary to acquire extensive datasets. Unfortunately, those
datasets are not publicly available and, even though there are
thousands of unlabelled images available online, the process
of labelling all those images can be very expensive and highly
time-consuming.

Therefore, we propose a methodology that can take advan-
tage of this huge number of unlabelled images without having
to manually generate the respective labels. As illustrated in
Fig. 1, first, a network is trained to solve some tasks, different
to the final task, using only the unlabelled data. Afterwards,

1https://www.pordata.pt/Portugal/Inc%c3%aandios+rurais+e+%c3%a1rea+
ardida+%e2%80%93+Continente-1192

2http://www.firefront.pt/

using part of the network obtained and a small, labelled
dataset, the final classifier is submitted to training, in order
to identify whether the image includes fire.

Fig. 1. Overview of self-supervised learning methodology.

II. STATE OF THE ART

Over recent decades, several methods have been developed
to identify fires in the early stages using image processing,
computer vision and deep learning.

A. Traditional methods

The first methods to appear that used image recognition for
fire detection were based on colour, movement and spatial and
time positioning, since these are the most relevant aspects of
the fire. Most of the traditional methods take advantage of
the colour histogram to identify the pixels as fire or non-fire.
However, the colour space used can differ [1], [2], [3]. These
methods require the definition of some thresholds and the pixel
is considered fire if it falls within such thresholds.

In order to improve this type of methodology, some methods
propose the use of background subtraction, which involves
the subtraction between a current image and a part of the
scene (background). The elements that do not form part of
the background are segmented and, with the help of some
thresholds, it is determined whether they correspond to fire.
In particular, the CICLOPE method, proposed in [4], was
implemented in Portugal and monitors 1,300,000 hectares
of Portuguese forest. Nonetheless, the cameras are fixed in
surveillance towers which means that not every part of the
forest is captured.

Finally, the implementation of a fire detection system in
Unmanned Aerial Vehicles (UAVs) using colour-based meth-
ods [5]. However, in areas surrounding the fire, it’s common
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to occur false positives, as the tonality is similar to the fire
colours. However, in areas surrounding the fire, it is common
for false positives to occur, as the tonality is similar to that of
the fire colours.

Overall, colour-based methods achieve high accuracy, but
they strongly depend on the information provided by the
authors, such as camera parameters and thresholds. Further-
more, they have a high false positive rate, most likely due to
environmental conditions and camera parameter changes.

More recently, deep learning has risen appeared and become
helpful in solving several tasks related to image recognition
in many different areas, by using neural networks, more
specifically CNN [6].

B. Deep learning methods

Unlike traditional methods, deep learning methods auto-
matically extract the most relevant features of objects which
leads to improved performance. Most of these methods rely
on supervised learning to train the networks, which means
human-annotated images are required to train the networks.

In accordance with [7], several architectures, such as
AlexNet [8], VGG16 [9] and SqueezeNet [10], were trained
using 160,000 labelled images to classify fire in an image.

Another supervised method [11] suggests the use of two
classifiers, one global and one on the patch level sharing the
initial layers of the AlexNet architecture allowing the network
to identify small regions of the fire.

The authors of [12] recommend image pre-processing op-
erations such as histogram equalization and smooth low-
pass filtering to eliminate irrelevant aspects of the image and
highlight the relevant elements of the fire.

The main disadvantage of these methods is the fact that
they need a vast labelled dataset to train the networks and
even though there are thousands of images available online,
the proportion of labelled images is very small. Furthermore,
depending on the type of task, the labels can be image level,
for classification, or pixel level, for segmentation, in which
case more time is required to generate the labels.

In [13],the authors developed a methodology that can seg-
ment an image using only image-level labels, outperforming
the methods that use pixel-level labels to segment the fire
regions in images. The method consists of two networks, the
first determines whether the image has fire or not, and if it
has, the image is used as input to a second network to perform
the segmentation of the fire regions of the image. However,
a significant number of images labelled on an image-level is
still required to train the classification network.

Therefore, this thesis aims to develop a methodology that
significantly reduces the number of labelled images needed to
train a classifier, by developing a system that takes advantage
of unlabelled images available online. The proposed method
uses self-supervised learning to pre-train the network and
thus reduce the number of labelled images required to train
the classifier. Additionally, this methodology does not require
techniques such as background subtracting and can therefore
be implemented both on aerial vehicles and fixed systems such
as surveillance towers.

III. SELF-SUPERVISED LEARNING

Self-supervised learning is a subset of unsupervised learning
as the data used for training is not human-annotated. However,
in this type of learning the network does not focus on clus-
tering the data, as is the case in most unsupervised methods.
Instead, it must learn the visual features from the unlabelled
data by solving one or more pretext tasks [14]. In order to solve
these tasks, labels are automatically generated from data itself
allowing the network to learn in a supervised manner without
requiring human annotation and therefore, drastically reduces
the time and money needed to generate the labels. Once the
training has finished, part of the learned network is used to
solve the target task, for example classification, detection or
segmentation. There are two ways to use the weights extracted
from the pre-trained network. On one hand, transfer learning
consists of using a previously trained network for some tasks
to help solve a different, but related problem, in this case,
fire classification. In contrast, fine-tuning involves using the
previously learned weights exclusively as initialisation of the
new network, retraining it for the final task. For the target
tasks, labelled data is needed but in a much smaller quantity.

According to [15], self-supervised pretext tasks can be
divided into three categories, as illustrated in Fig. 2 depending
on the objective function and architectures.

Fig. 2. Differences between the three self-supervised task categories [15].

1) Generative
The main idea behind these methods is to reconstruct
the input. Typically, an encoder is used to obtain the
representations, z, in the latent space from the input x and
then the decoder tries to reconstruct x from z obtaining
x̂. Finally, using a reconstruction loss, x̂ is compared to
x and the weights of the network are updated.One simple
example of these methods is the use of an autoencoder
[16] to reconstruct the input image x without applying
any distortion. In this case, the label is the input image
x. Alternatively, random noise can be applied to the input
image and in this case, the network reconstructs the image
without the noise [17].

2) Contrastive
As the name suggests, the learning process is achieved
by contrasting two elements. The contrast can be
context-instance where the goal is to find a relation
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between local features and the global representation.
For example, the authors of [18] suggested applying a
rotation multiple of 90º and the output of the network
should be the rotation applied with the aim of forcing
the network to detect the salient objects, recognise their
relative orientation and compare them with the dominant
orientation of all the objects. Another type of contrastive
method is instance-instance where the idea is to compare
the global representation of two inputs. In this case, some
transformations are applied to the training images so that
each initial image has two versions in the final training
set. Most of these methods, such as [19], [20], try to
maximise the similarity between positive pairs, where
positive pairs are two transformed versions of the same
image and the rest are treated as negative pairs.

3) Generative-Contrastive
This category is also called Adversarial Learning. In this
case, the network training process is divided into two
steps. First, fake samples are generated by the generator
component and according to the real data. Then the
discriminator has to compare the real samples with the
fake ones. In order to generate the samples, the network
architecture corresponds to an autoencoder, facilitating
the generative task but making the contrastive task more
complex.

IV. METHODOLOGY

The proposed system is intended to be implemented in aerial
vehicles equipped with an RGB camera to capture real-time
images of the forest and, eventually, the fire. The methodology
suggested is divided into two phases, the first is responsible
for pre-training the network by solving some pretext tasks
using unlabelled images related to forest and wildfires. The
second stage corresponds to the target task, in this case, fire
classification.

A. Self-supervised phase

For the self-supervised stage, three pretext tasks were de-
veloped to train the model to extract the fire representations
in three different ways. In all the tasks only images without
human annotations were used.

First, a generative task was implemented referred to as
image reconstruction and as the name suggests, the idea
is to reconstruct the input image, x, using an autoencoder
[16]. With this architecture, the image is first compressed
using the encoder component to obtain the representation
vector in the latent space. Then, using the decoder, the image
is reconstructed from the low dimension representation, as
suggested in Fig. 3, resulting in x̂ . The encoder input can
be both original images or transformed images. The purpose
of applying transformations to the images is to augment the
number of total images and allow a more diverse dataset.
Therefore, before training the transformations are applied and
the final training dataset has all the original images as well
as one or more transformed versions. In both cases, the
output must be the same as the input and not necessarily

the same as the original image. The transformations applied
were colour-based and geometric and the details are described
in Section IV-C. The architecture of the autoencoder used

Fig. 3. Autoencoder components to solve the image reconstruction pretext
task.

is described in Table I where Conv. stands for convolutional
and Avg. stands for average. For network training, the Mean
Squared Error given by

LMSE =
1

N

N∑
i=1

(xi − x̂i)
2, (1)

was used as loss function, the number of epochs was 60 and
for batch size 75 was used.

TABLE I
AUTOENCODER ARCHITECTURE FOR IMAGE RECONSTRUCTION PRETEXT

TASK.

Component Layer Kernel Activation
function Output

Conv. 3x3 ReLU 224x224x32
Avg. Pooling 2x2 - 112x112x32

Conv. 3x3 ReLU 112x112x32
Avg. Pooling 2x2 - 56x56x32

Conv. 3x3 ReLU 56x56x64
Avg. Pooling 2x2 - 28x28x64

Conv. 3x3 ReLU 28x28x64
Avg. Pooling 2x2 - 14x14x64

Conv. 3x3 Tanh 14x14x64

Encoder

Avg. Pooling 2x2 - 7x7x64

Transpose Conv. 3x3 ReLU 14x14x64
Transpose Conv. 3x3 ReLU 28x28x64
Transpose Conv. 3x3 ReLU 56x56x64
Transpose Conv. 3x3 ReLU 112x112x32
Transpose Conv. 3x3 ReLU 224x224x32

Decoder

Conv. 3x3 ReLU 224x224x3

Afterwards, a contrastive task, referred to as SimCLR [19],
was implemented which can be divided into four steps, as
shown in Fig. 4.

First, it is applied to each image of the batch two sets of
random transformations to achieve two different versions of
the same original image in the final batch. Versions obtained
from the same original image are considered a positive pair
while two versions generated from different original images
correspond to a negative pair. Consequently, each image of
the final batch has 1 positive pair and 2(N − 1) negative
pairs, so that in total there are 2N2 pairs since the pair
xi and xj is considered different from the pair xj and xi.
Moreover, the transformations are applied in each epoch and
therefore during the network training the transformations are
not constant resulting in different pairs along different epochs.
The transformations applied are described in Section IV-C.
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Fig. 4. Steps of SimCLR methodology [19]. The transformation applied to
xi was rotation and to xj was colour manipulation. (Adapted image [21])

The second step converts the transformed images xi and
xj into the respective representations, hi and hj , using an
encoder. These representation vectors are used later for the
target task.

The next step uses a non-linear projector to obtain the em-
beddings, zi and zj . According to the authors, the introduction
of the non-linear projector allows accuracy to be increased by
10%.

Finally, the last step corresponds to the loss function re-
ferred to as Normalized Temperature-Scaled Cross-Entropy
Loss (NT-Xent). To determine the loss it is first necessary to
calculate the similarity between two embeddings of the same
batch according to

sim(zi, zj) =
zTi zj

∥zi∥ ∥zj∥
. (2)

Ideally, the value for the similarity of a positive pair will be
high and in contrast, a negative pair should result in lower
values. With the similarity function defined, the NT-Xent loss
function is given by

ℓi,j = −sim(zi, zj) + log
(∑2N

k=1 1[k ̸=i]exp
(

sim(zi,zj)
τ

))
(3)

where i and j are a positive pair and τ is the temperature
parameter with a value of 0.1 as this achieves the best results
The NT-Xent function has two terms, the first relates to the
similarity maximisation and the second is the contrastive term.

The main disadvantage is that this loss function needs a
huge batch size to increase network performance. According
to the authors of SimCLR, the best results were achieved when
batches with 8,192 images were used, as the bigger the batch
size, the more negative pairs there will be, easing the algorithm
convergence. On another hand, the loss function benefits
from embeddings with lower dimensions. Finally, when more
epochs were used to train the network, the performance gap
between models trained with a smaller batch size decreased.

Considering the number of images in the dataset is reduced,
the batch size is 128 images. To compensate for the small
dataset, 200 epochs were used. Lastly, the architecture used
consists of an encoder and a projector. The encoder component
is identical to that shown in Table I and the projector is
a combination of four layers. The first is a Flatten layer,
responsible for converting the encoder output to a single
vector, the second layer is a Dense layer with 64 neurons,

followed by an ReLU activation layer and finally another
Dense layer with 64 neurons.

The third and last pretext task is the Barlow Twin task
proposed by [20]. This method is very similar to SimCLR
since the goal is the same, that is, to maximise the similarity
between positive pairs and minimise the agreement between
negative pairs using similar architecture. Furthermore, positive
and negative pairs are obtained the same way, i.e. with the
same transformations. The pipeline of Barlow Twins’ method
is shown in Fig. 5. As with SimCLR, for each original image,

Fig. 5. Steps of Barlow Twins methodology [20]. (Adapted image)

xi, of the batch, two sets of transformations are applied
obtaining two new versions, xA

i and xB
i . Moreover, the positive

pairs are divided into two sets, A and B, so that each image in
set A has its positive pair in set B and the remaining images
of set B are its negative pairs. Likewise, each image of the
set B has a single positive pair in set A and the remaining
images of set A are its negative pairs. In this case, the authors
consider the pair xA

i and xB
i to be identical to the pair xB

i and
xA
i and therefore is only counted once. So, for a batch with N

images, each image has one positive pair an N − 1 negative
pairs, resulting in a total of N2. New transformed versions
of each image are obtained in each epoch which means new
pairs are obtained for each epochs.

Using an encoder the representations of each version is
determined and will be used for the target task after the
self-supervised phase is complete. Once the representations
are obtained they will serve as input to a projector and the
embeddings, zAi and zBi , are computed.

Finally, the loss can be calculated using the proposed loss
function in [20]. This loss function is the main difference
between the two methods, SimCLR and Barlow Twins, since
this function allows small batch size to be used without
compromising network performance. To compute the loss
function, it is first necessary to calculate the cross-correlation
matrix, C, between the embeddings using

Cij ≜
∑

b z
A
b,iz

B
b,j√∑

b(z
A
b,i)

2)
√∑

b(z
B
b,j)

2
. (4)

where b is the batch index and, unlike SimCLR, i and j can be
a positive (i = j) or negative (i ̸= j) pair. The main idea of the
proposed loss function is to force C to be equal to the identity
matrix, and as such, the representations of the positive pairs
must be similar and minimise the redundancy between these
two vectors. The function is divided into two terms, the first is
the invariance term that ensures that the network is invariant to
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the distortions applied and the second term is the redundancy
reduction responsible to force independence between negative
pairs. The Barlow Twins loss function is given by

LBT ≜
∑
i

(1− Cii)2 + λ
∑
i

∑
j ̸=i

C2
ij (5)

where λ is a positive constant that allows a compromise
between the two terms of the loss function. According to
the authors, the value that provides best performance is 0.005
accordingly this was the value used in this thesis.

The architecture used to solve this pretext task is similar to
SimCLR since the encoder is also identical to that shown in
Table I, and it also has a projector component. However, in
contrast to SimCLR, the Barlow Twins loss function takes ad-
vantage of embeddings with higher dimensions. The projector
starts with a Flatten layer followed by three Dense layers with
1024 nodes and after each of the two first Dense layers comes
a batch normalisation layer and an ReLU activation layer. The
batch size and the number of epochs used during the training
was 128 and 70, respectively.

B. Supervised phase

The supervised task is classification and consists of iden-
tifying fire in an image. In this case, a small dataset with
image-level annotations was used but unlike self-supervised
pretext tasks, no transformation was applied to the dataset.
The classifier was a combination of part of the network
trained with one of the self-supervised pretext tasks and two
new layers. From the self-supervised pre-train network, the
encoder component was extracted, the architecture for which
is illustrated in Table I. A further two layers were appended to
the encoder, first a Global Average Pooling and then a Dense
layer with one neuron, and sigmoid as the activation function.

C. Dataset

In order to develop the proposed model, it is crucial to
create an image dataset as big and as diverse as possible for
each of the abovementioned phases. For this thesis, images
were gathered from different sources in order to have enough
to train and evaluate the models during both phases. In total,
2,500 images were collected, of which 692 came from the
Portuguese Firefighters website [22] and 1,808 from a dataset
created by one of the works from the Firefront project [13].
Table II shows the image distribution for each of the phases.

TABLE II
IMAGE DISTRIBUTION FOR EACH PHASE.

Name Phase # Images Fire [%]

A Self-supervised 2000 -

B Supervised 500
Positive 70

Negative 30

For network training during the self-supervised phase, the
dataset A is split into two parts, one with 90% for training
and the other 10% for validation. This partition allows the

evolution of the loss to be monitored and ensures that the
network is not overfitting. For the supervised phase, the cross-
validation technique was used since the dataset available for
this phase is reduced. Cross-validation requires the division
of the dataset into multiple folders. Ten folders were defined
and, as such, each iteration had 450 images to train (90%) and
50 for testing (10%). This procedure allowed us to determine
whether the classifier was overfitting and to compare the
performance of the different classifiers.

During the self-supervised phase, the application of several
transformations to the dataset was explored with the purpose
of augmenting the number of images to train the network. The
studied transformations were colour-based and geometric.

• Colour-based transformations: The colour-based trans-
formation considered was the manipulation of the Hue,
H, and Saturation, S, channels by converting the RGB
images to the HSV colour-space and randomly modifying
the channels. Even though the network cannot learn to
identify fire exclusively through the colour histogram,
colour is one of the most important features of fire and
therefore the variation of the channels must be moderate,
especially in the hue channel. The variation of the S
channel provides wider diversity regarding the luminosity
of the images, while the manipulation of the H channel
enables the network to learn the shapes and edges of the
objects.

• Geometric transformations: This type of transformation is
particularly useful when the network has to learn without
relying on the object position in the image. In the case of
forest images captured with an aerial vehicle, fire, as well
as other objects, may not occupy the same position and
orientation in the image. In this way, the network must
be exposed to different perspectives so that it is not based
solely on these two aspects. Firstly, the impact of apply-
ing rotations to the image was investigated, however, such
rotations should be small to avoid providing the network
with unrealistic examples. Then, other transformations
were explored such as horizontal flip, and crop and resize.

Table III shows all the different transformations studied
during this thesis and Fig. 6 provides an example of each
transformation applied to the images.

TABLE III
LIST OF POSSIBLE TRANSFORMATIONS APPLIED TO THE IMAGES DURING

THE SELF-SUPERVISED PHASE.

Transformation Description

Colour Random variation of H channel up to 20 %;
Random variation of S channel up to 30 %.

Rotation Random rotation between 1 and 20º.

Horizontal
Flip Horizontal flip.

Crop and
Resize

Cropping a square of the image with random
dimension between 100 and 200 pixels followed
by resizing to original dimension of the image.

In addition to studying the application of these transfor-
mations alone, combinations of transformations in the same
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dataset were also analysed. The groups of transformations used
were:

i) Colour
ii) Rotation

iii) Horizontal Flip, Crop and Resize
iv) Colour or Rotation
v) Colour + Rotation

vi) Crop and Resize, Horizontal Flip and Rotation
vii) All

(a) Original

(b) Colour (c) Rotation

(d) Horizontal Flip (e) Crop and Resize

Fig. 6. Examples of transformations applied to images during self-supervised
phase.

V. TOOLS USED

For the development of the proposed system, the code was
compiled through the Google Colab components [23]. The
processor used was the Intel(R) Xeon(R) CPU @ 2.30GHz, the
GPU component was NVIDIA-SMI 470.74 and the maximum
RAM available was 12 Gb.

Furthermore, the environment where the system was devel-
oped used the Python version 3.7.12 and the Tensorflow [24]
and Keras [25] libraries.

The use of this work environment revealed some limitations
in the system development. It proved to be impossible to use
more than 5,000 images to train the models or increase the
batch size. By incrementing either of these parameters, the
session would close, and progress was lost.

VI. EXPERIMENTAL RESULTS

So that it is possible to determine the usefulness of using
self-supervised learning to pre-train a classifier, it is essential
to determine the baseline. In this case, the baseline is achieved
when the classifier is trained only in a supervised manner.
Consequently, using only set B from the Table II and without
applying any type of transformation, the classifier is randomly
initialised and trained. Table IV shows the average results of
the accuracy and F1 score.

TABLE IV
BASELINE CLASSIFIER PERFORMANCE.

Average Accuracy [%] Average F1 Score [%]

82.8 (±3.9) 87.0 (±3.6)

A. Comparison between different pretext task and baseline

In order to determine whether there is an advantage to
using self-supervised learning for network pre-training, the
best models of each pretext task studied are compared with
the baseline.

For the image reconstruction (IR) task, the classifier with the
best performance was obtained when pre-trained using Colour
transformation to increase the training set. In this case, Colour
transformation was applied to the initial set containing 1,000
images, so that in the final training set, each image had exactly
two versions, the original and one transformed image. In this
task, the transformed versions of each original images were
obtained before the network training, therefore the images are
constant in all epochs.

For the two contrastive tasks, SimCLR and Barlow Twins,
each image of the initial set is required to have two versions
to train the network, as shown in Fig. 4 and Fig. 5. For both
tasks, the classifier with the best performance was acquired in
a similar manner, i.e. by using the same group of transforma-
tions. Thus, to obtain the two versions, Colour and Rotation
transformation was simultaneously applied. In the end, half
of the versions were the original image and the other half
corresponded to the transformed images. For both tasks, the
2,000 images from set A in Table II.

In both contrastive methods, the batches contain 128 images
which means it’s requires 16 iterations to cover the initial
set of images. Unlike image reconstruction pretext task, the
transformations are applied to each batch and not to the entire
dataset directly. The total number of final samples is equal to
the sum of all the pairs in each epoch, therefore, in SimCLR
there are 2 · 1282 · 16 = 524.288 final samples and for Barlow
Twins there are 1282 · 16 = 262.144 final samples in each
epoch.

After the self-supervised phase, the encoder component of
each resultant network was extracted and used to initialise
the respective classifiers. To train each classifier, the 500
images from dataset B in Table II were used without any
transformation being applied.

The results shown in Table V suggest that the classifiers
obtained from image reconstruction and Barlow Twins pretext
tasks can achieve better performances compared to the base-
line. However, it is essential to execute a statistical test to be
able to infer that these tasks provides better performance when
compared to the baseline.

The F1 Scores from each iteration of cross-validation pro-
vided the data used to calculate the statistical test t-Test.
Through the t-test results, it is only possible to state that
the pretext task image reconstruction allowed a classifier with
better performance than the baseline to be achieved, since
only in this case is the p-value less than 5%. Generally,
the contrastive tasks score better results when compared to
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TABLE V
PERFORMANCE OF THE BASELINE AND THE BEST CLASSIFIERS OBTAINED

FOR EACH OF THE PRETEXT TASKS.

Pretext task Average
Accuracy

[%]

Average
F1 Score

[%]
Name # Initial

images
Transf.

Baseline - - 82.8 (±3.9) 87.0 (±3.6)

IR 1, 000 Colour 87.2 (±4.5) 90.9 (±3.1)

SimCLR 2, 000

Colour
+

Rotation
83.0 (±5.6) 86.9 (±5.2)

Barlow
Twins

2, 000

Colour
+

Rotation
86.0 (±5.7) 89.5 (±5.0)

TABLE VI
PERFORMANCE OF THE BEST CLASSIFIERS FOR EACH OF THE PRETEXT

TASKS WHEN TRANSFER LEARNING AND FINE-TUNING IS CARRIED OUT.

Pretext task Transfer Learning
F1 Score

[%]

Fine-tuning
F1 Score

[%]
Name # Initial

images
Transf.

IR 1, 000 Colour 70.5 (±4.1) 90.9 (±3.1)

SimCLR 2, 000

Colour
+

Rotation
66.9 (±7.2) 86.9 (±5.2)

Barlow
Twins

2, 000

Colour
+

Rotation
74.1 (±4.7) 88.4 (±5.0)

generative tasks. However, considering that the data available
for training the networks is reduced, it becomes complicated to
generate so many negative pairs and consequently, the network
has more difficulty in meeting the goal. Furthermore, the
images used for the training are similar given that the existent
objects, such as trees, smoke, and fire, are common in many
of the images.

B. Transfer-learning vs. Fine-tuning

With this experiment, it is expected that the results between
two pre-trained classifiers with the same pretext task can be
compared, but one is obtained by fine-tuning and the other with
transfer learning. In this experiment, the pre-trained networks
that achieved the best performances described in Section VI-A
were used.

The results presented in Table VI allow us to conclude
that by using fine-tuning instead of transfer learning, it is
possible for classifiers to achieve a better performance. This
suggests that, although the previously learned network helps
the initialisation of the classifiers, the learned weights are not
fully adequate for the classification task and require some
adjustment.

C. Number of images during self-supervised phase

In this experiment, two ways of incrementing the dataset
were considered to train the network during the self-supervised
phase. First, the aim was to verify whether the classifiers could
achieve better performance when the number of original im-
ages used during the supervised phase increased. Furthermore,
given that contrastive tasks require a large number of images
and as 2,000 is a reduced set, the impact of further reducing
the number of images used was not analysed. Thus, for this
experiment, only the image reconstruction pretext task was
used. The number of images used for training ranged between
500, 1,000 and 2,000, all belonging to set A in Table II, with
no transformation being applied to the images. Once again,
from the networks obtained, the encoder was extracted and the
respective weights were used to initialise the classifier. To train
and evaluate the performance of each classifier, the 500 images
from set B were used without applying any transformation.

From the results presented in Table VII, it is not possible
to conclude that increasing the number of original images
during the self-supervised phase is beneficial or harmful when
initialising the encoder weights of the classifier. Comparing
the results of the three classifiers with the baseline, the
performance of the pre-trained classifiers for the different
number of images appear to surpass the baseline. However,
to confirm this assertion, it is essential to perform the t-Test.

TABLE VII
CLASSIFIER PERFORMANCES AS A FUNCTION OF THE NUMBER OF IMAGES

USED FOR TRAINING DURING THE SELF-SUPERVISED PHASE.

# Images during
self-supervised phase

Average Accuracy
[%]

Average F1 Score
[%]

Baseline 82.8 (±3.9) 87.0 (±3.6)

IR with
500

84.0 (±4.5) 88.1 (±3.2)

IR with
1, 000

84.2 (±2.6) 88.3 (±2.4)

IR with
2, 000

84.2 (±4.3) 88.5 (±3.0)

After calculating the t-Test between the baseline and each
pre-trained classifier for the different pretext tasks, none of the
classifiers presented a p-value lower than 5%. Thus, it is not
possible to state that increasing the number of original images
necessarily results in a classifier with better performance.

The second approach to increase the dataset was to use data
augmentation. In this case, each image in the initial set A has
at least one version in the final set, one being the original
version of the image and possibly transformed versions. As a
starting point, 1,000 original images from set A were used
and to which some transformations were applied. For the
first transformation groups, that is, Colour, Rotation, Colour
or Rotation and Colour + Rotation, the ratio of transformed
images was altered between 50% and 100% obtaining 1,500
and 2,000 total images, respectively.

Observing Fig. 7, the situations in which colour trans-
formation was applied to all images, that is, in the case
of the Colour and Colour + Rotation groups,performance
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improvement can be seen when comparing the cases where
the classifier was pre-trained with 1,000 original images and
2,000 images (1,000 original and 1,000 transformations). On
the contrary, the use of non-colour transformations does not
contribute to an improvement in performance of the resulting
classifiers, exhibiting similar performance to the pre-trained
classifier with just the initial 1,000 images.

Fig. 7. Performance of pre-trained classifiers as a function of increasing the
total number of images by applying transformations to 50% and 100% of the
images.

4,000 and 5,000 images. In the case of the 4,000 images,
the Colour, Rotation and Colour + Rotation transformations
were applied so that the final training set had 1,000 original
images, 1,000 with colour transformation, 1,000 with rotation
transformation and 1,000 simultaneously transformed with
colour and rotation. To obtain the 5,000 images, in addition
to the transformations described above, it was also applied
crop, resizing and horizontal flip were also , simultaneously
applied , to the 1,000 initial images. It should be noted that
despite reaching a training dataset with more images, it is
not guaranteed that augmenting the dataset using multiple
transformations results in better performance [26]. In the case
of reduced datasets, applying several transformations, such as
rotation, colour manipulation and cropping may not prevent
the model from overfitting.

Table VIII shows the performances of the classifiers for
each of the situations. In this case, despite overfitting not
being seen, it was also not possible to achieve a performance
improvement compared to the pre-trained classifier with the
Colour grouping. The best option is to apply exclusively
Colour transformation to duplicate the set since better results
are obtained and less memory, GPU and time is consumed.

VII. CONCLUSIONS AND FUTURE WORK

For fire detection, one of the main challenges identified is
the lack of labelled image datasets to train the models for
the supervised tasks, such as classification or segmentation.
To make up for the scarcity of these datasets a solution was
developed that would take advantage of thousands of publicly
available images without annotations.

The main purpose of this thesis was to determine if self-
supervised learning could overcome methods that rely exclu-
sively on supervised learning when there is a small labelled

TABLE VIII
CLASSIFIER PERFORMANCES WHEN USING 1000, 2000, 4000 AND 5000

IMAGES WITH DIFFERENT GROUPS OF TRANSFORMATIONS DURING
SELF-SUPERVISED PHASE.

Transformation
Groups # Images Average Accuracy

[%]
Average F1 Score

[%]

Original 1000 84.2 (±2.6) 88.1 (±3.2)

Colour 2000 87.2 (±4.5) 90.9 (±3.1)

Colour, Rotation
and Original 4000 86.0 (±3.9) 89.6 (±3.8)

All 5000 86.6 (±3.9) 90.2 (±3.2)

dataset for training and evaluating models. Hence, three dif-
ferent pretext tasks were used to determine the impact that
self-supervised learning could have on the classification net-
work. For the generative pretext task proposed, that is, image
reconstruction, the classifier outperformed the baseline, which
was trained using only supervised learning. In particular, an
improvement of 3.9% for F1 Score was observed. Therefore, it
is possible to conclude that the use of self-supervised learning
to initialise a classifier is worthwhile. In the case of contrastive
tasks, although there is no improvement over the baseline,
the Barlow Twins task achieves a similar performance. The
main explanation for not surpassing the baseline performance
is related to the fact that the networks need more images to
solve the contrastive tasks proposed in this thesis.

Initially, the idea was to use a larger unlabelled dataset.
However, this was not possible since the virtual environment
where the system was developed did not allow the dataset to
be increased, at the expense of ending the session without
saving the progress achieved.

An aspect that proved to be relevant when verifying the
usefulness of self-supervised learning was the introduction of
transformations. The influence of applying different transfor-
mations was analysed, first when used individually and then
mixed with others. The transformation that was seen to have
more impact was the Colour transformation which, when used
individually, surpassed the baseline performance.

Additionally, at an early stage of wildfires, the fire is often
hidden from aerial view due to vegetation. Nevertheless, the
smoke produced by the fire quickly becomes visible in an
aerial perspective thus its detection can play a crucial role
in monitoring and detecting forest fires. In the future, the
classification and segmentation of smoke can be studied using
the proposed methodology.

Moreover, it is hoped that this work will serve as a moti-
vation to further study methodologies that use self-supervised
learning, as it has been proven that it can surpass supervised
methods when there is limited labelled data available. Further-
more, self-supervised learning is an emerging solution and, in
this thesis, only a small set of methods was addressed. The
literature is constantly evolving, so it may be beneficial to
study other techniques.

Finally, with this dissertation, we hope to have developed
a methodology that will contribute to the Firefront project,
assisting firefighting forces in monitoring fires.
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