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Abstract 

Bone is a complex tissue of the human body with a wide variety of functions. Due to its importance, bone tissue 

engineering has been exploring new methods of facilitating the recovery of damaged bone, among which are 

scaffolds, a viable method and promising alternative to traditional methods. Scaffolds are artificially constructed 

porous support matrices which allow cell seeding, tissue regeneration, and provide support. These properties are 

dependent on the microstructure of the scaffold. TPMS geometries and optimized topologies are some of the better 

choices when it comes to designing these microstructures but their potentials are not yet fully understood. To 

compare these kinds of topologies, a set of TPMS geometries was chosen to compare with a series of optimized 

geometries created by a topology optimization tool. The optimized geometries were maximized for stiffness and/or 

permeability. The properties of all these topologies were calculated and compared. This comparison showed that 

while TPMS have some favorable properties, optimization tools can offer comparable or even better solutions of 

scaffold design, on top of being suitable for a wider variety of scenarios. 
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1 Introduction 

Scaffolds for bone tissue engineering (BTE) require 

high permeability, biocompatibility, bioactivity, 

degradability, and mechanical properties suited to 

the implantation site. Their internal geometry has a 

strong impact in these requirements, specifically 

permeability and mechanical properties. Triply 

periodic minimal surfaces (TPMS) have shown to be 

suitable in promoting tissue growth while providing 

the necessary support (Yoo, 2014). Optimized 

geometries focused on desired specifications are a 

promising alternative (Sturm et al., 2010) (Zhou & Li, 

2008). However, it is still not fully known which 

method of geometry creation is the most suitable for 

BTE.   

The aim of this work is to update an optimization tool 

used in Dias (2013) to create optimized geometries 

whose mechanical attributes and permeability are to 

be examined and compared to those of TPMS. With 

this, a further undertanding of the viability of 

optimized structures in BTE is sought.  

2 Literature Review 

3D printing and bioprinting allow for a precise control 

of the manufactured scaffold’s geometry (Egan, 

2019). Thus, careful consideration must be had when 

designing the geometry for the CAD models they use, 

as it will greatly impact mechanical properties, 

permeability, bioactivity, and biocompatibility 

(Zadpoor, 2015). The common approach used to 

create them is to design a unit cell and use it as a 

pattern for a lattice structure (Rosso et al., 2019) 

(Kladovasilakis et al., 2021) (Habib et al., 2016) 

(Egan et al., 2017). Depending on the desired 

properties of the scaffold as well as the materials and 

manufacturing method to be used, the unit cell can 

be a strut-like design, a TPMS, or an optimized 

geometry.  

TPMS are surfaces defined by zero mean curvature 

and local area minimization (Torquato & Donev, 

2004). They divide into continuous phases, making it 

possible to create structures with continuous and 

interconnected reinforcements. TPMS have been 

described showing enhanced mechanical properties 

and higher surface-to-volume ratio which greatly 

improves the bioactivity of the scaffold (Abueidda et 

al., 2019) (Yoo, 2014). Additionally, they have been 

able to obtain mechanical properties similar to that of 

bone and numerical simulation has considered them 

suited for further testing in BTE applications, but 

clinical verification of their viability is still lacking 
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(Castro, et al., 2020) (Castro et al., 2019) (Shi et al., 

2018).  

As an alternative, research has been done to use 

computer models to create optimized scaffold 

structures which have shown great potential for use 

in BTE scaffold design (Bendsøe & Sigmund, 2004) 

(Castilho et al., 2017) (Zhou & Li, 2008) (Dias et al., 

2014).  

3 Methodology 

3.1 Homogenization Theory 

The scaffolds in this work have a periodic 

microstructure of repeated cells, making the 

homogenization method an obvious and simple 

means to calculate their mechanical and permeability 

properties, following the method described by 

Guedes & Kikuchi (1990) and previously used by 

Dias (2013), Dias et al. (2014), and Coelho (2009). 

To apply a homogenization approach, three 

assumptions must be made about the problem: 

periodicity, uniformity, and scale separation. In other 

words, the domain heterogeneities must be 

periodically distributed, so that all the corresponding 

domain properties are also periodic; the macroscopic 

fields must be uniform for all the microscopic 

representative volumes of the macroscopic domain; 

and the characteristic length scale of the 

microstructure size (d) should be much smaller than 

that of the macroscopic domain (D). 

 

Figure 3.1: Scheme of the homogenization method. 
Left: domain of the scaffold Ωε; center: detail of the 
domain; right: unit cell Y. d is the characteristic length 
scale of the microstructure size, represented by y; D 
is the characteristic length scale of the scaffold, 
represented by Y. Adapted from Dias et al. (2014). 
 

Following the work of Guedes & Kikuchi (1990), the 

elasticity and permeability coefficients are calculated 

through: 
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Here EH are the homogenized elastic coefficients, the 

𝜒̅ functions represent deformation nodes for a unit 

cell subject to 6 unit average strains, the χm functions 

represent the microstructure pressure perturbations 

for a unit average pressure gradient in each direction 

m, and Kim
H  is a matrix representing the homogenized 

coefficients of permeability. 

3.2 Optimization Tool 

The optimization tool used in this work is an updated 

and improved version of the one described by Dias 

(2013). Originally written in FORTRAN 77, it was 

converted to Fortran 90 to facilitate memory 

allocation and future alterations. Many of the user 

given inputs were altered, preventing redundancy, 

adding more control over the chosen problem, and 

removing the need to recompile the program 

whenever certain inputs needed to be changed. 

Outputs were made easier to read and identify.    

This optimization obtains geometries for unit cells by 

solving topology optimization problems in which it 

must define whether there is material or not at each 

point of the microstructure domain. For this, the 

material density ρ is used as a variable field and its 

maximum (1) and minimum (0) values correspond to 

solid and void material, respectively. 

While other mesh sizes can be used, for this work all 

cells were defined by 20x20x20 models of 8-node 

cuboid elements. 

The relative permeability (FPerm) of a scaffold was 

then defined as the average of the homogenized 

coefficients on the main directions, and calculated by: 

𝐹𝑃𝑒𝑟𝑚 =
𝐾11

𝐻 + 𝐾22
𝐻 + 𝐾33

𝐻

3
 (3-3) 

FPerm is a relative value which can go from 0 (in the 

case of a completely solid cell) to 1 (when the cell is 

completely void). 

The stiffness of a scaffold is then calculated by: 

𝐹𝐸𝑙𝑎𝑠𝑡 =
𝜀𝐸𝐻𝜀

2
 (3-4) 

Where EH are the homogenized elastic coefficients, 

and ε is a given strain field.  
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3.2.1 Problem Formulation 

The density field describing the scaffold’s 

microstructure will be the solution of the topology 

optimization problem described generally as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝐹𝑜𝑏𝑗 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝐹𝑖(𝜌) ≤ 𝐹𝑖
∗,   𝑖 = 1, … , 𝑚 (3-5) 

 0 ≤  𝜌 ≤ 1 

Where Fobj is the objective function and Fi are the 

constraint functions. The solution of an optimization 

problem is based on the resolution of the necessary 

optimal conditions of Karush-Kuhn-Tucker (KKT) 

(Coelho, 2009). A finite element (FE) procedure was 

used to solve the elasticity and permeability 

homogenization problems for the cells. Additionally, 

the SIMP model is followed, meaning that the final 

geometry ideally only has densities of 0 or 1, as long 

as no failure to converge is met.  

The method of moving asymptotes (MMA) was 

employed to solve the topology optimization problem 

itself (Svanberg, 1987), since it was shown to be very 

well adjusted to solving problems with a high number 

of design variables, which in this case are the density 

values for each element of the cell.  

3.3 CFD Permeability 

Computational fluid dynamics (CFD) through the 

software FLUENT ® ANSYS ® (Ansys Inc., 

Canonsburg, Pennsylvania, USA) was chosen as the 

alternate method to calculate scaffold permeability, 

following procedures used by Pires (2019) and 

Guerreiro et al. (2020).  

3.4 TPMS geometries 

The models for the TPMS topologies created for this 

work were designed computationally, using the 

program developed by Dinis et al. (2014).  

For this work, nine TPMS topologies were used for 

comparisons: SP, SD, and SG, with porosities of 

approximately 60%, 70% and 80%, following 

previous work (Pires, 2019) (Dias, 2013) (Guerreiro 

et al., 2020). These TPMS geometries will in the rest 

of this work be referred to by their geometry and 

porosity. 

4 Results and Discussion 

4.1 Optimization attribute variability 

The optimization tool was run for the multi-objective 

problem type, for VF values of 20, 30, and 40, for all 

initial solutions and for α values between 0.1 and 0.9. 

Not all of the resulting topologies met the VF 

requirements due to local solutions. Optimized 

structures were created under these criteria for strain 

fields ε=[1,1,1,0,0,0] and ε=[0,0,0,1,1,1], 

representing a triaxial normal strain field and a triaxial 

shear strain field, respectively.  

It can be initially seen that some parameters were 

much more likely to lead to a converged solution than 

others. In Table 4.1, it can be seen that the initial 

solution d7 was more likely to lead to favorable 

converged solutions, whereas in Table 4.2 the same 

can be said for d1 and d4. Additionally, there are 

more geometries with 60% porosity than of the other 

porosities. The amount of material at disposal with 

60% porosity makes it more likely to obtain a 

mechanically sound structure, following the 
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requirements of Fobj. In addition, a lot of structures for 

high porosity values had “fluid pockets”, as the 

optimization tool sought to reach the required VF by 

removing material from places where it wouldn’t 

greatly affect mechanical properties. 

Table 4.1: Properties of optimized topologies created using the multi-objective problem for the given α values, 
initial solutions, VF, and for ε=[1,1,1, 0,0,0]. 

Initial 

solution 

α VF 

(%) 

Permeability FPerm Exx FElast 

ε=[1,1,1,0,0,0] 

FElast 

ε=[0,0,0,1,1,1] 

d7 0.1 80 2.22×10⁻³ 0.61 7.97×10⁻² 1.99×10⁻¹ 1.87×10⁻² 

d7 0.1 70 8.78×10⁻⁴ 0.45 1.17×10⁻¹ 3.72×10⁻¹ 5.74×10⁻² 

d7 0.1 60 2.59×10⁻⁴ 0.23 1.49×10⁻¹ 6.46×10⁻¹ 1.20×10⁻¹ 

d7 0.2 80 2.33×10⁻³ 0.61 7.80×10⁻² 1.95×10⁻¹ 1.78×10⁻² 

d3 0.2 70 6.83×10⁻⁴ 0.26 8.78×10⁻² 4.14×10⁻¹ 6.93×10⁻² 

d7 0.2 70 5.04×10⁻⁴ 0.41 8.79×10⁻² 4.14×10⁻¹ 7.23×10⁻² 

d7 0.2 60 2.95×10⁻⁴ 0.30 1.56×10⁻¹ 6.51×10⁻¹ 1.21×10⁻¹ 

d7 0.3 80 2.68×10⁻³ 0.63 8.52×10⁻² 1.92×10⁻¹ 1.48×10⁻² 

d1 0.3 70 7.35×10⁻⁴ 0.45 1.06×10⁻¹ 3.70×10⁻¹ 5.84×10⁻² 

d7 0.3 70 5.64×10⁻⁴ 0.33 8.52×10⁻² 4.02×10⁻¹ 6.99×10⁻² 

d1 0.3 60 2.98×10⁻⁴ 0.24 1.51×10⁻¹ 6.39×10⁻¹ 1.18×10⁻¹ 

d3 0.3 60 3.31×10⁻⁴ 0.24 1.47×10⁻¹ 6.32×10⁻¹ 1.17×10⁻¹ 

d7 0.3 60 2.96×10⁻⁴ 0.24 1.47×10⁻¹ 6.32×10⁻¹ 1.18×10⁻¹ 

d7 0.4 80 3.21×10⁻³ 0.64 8.59×10⁻² 1.88×10⁻¹ 1.35×10⁻² 

d1 0.4 70 7.21×10⁻⁴ 0.34 8.81×10⁻² 4.16×10⁻¹ 7.08×10⁻² 

d7 0.4 70 5.53×10⁻⁴ 0.34 8.81×10⁻² 4.16×10⁻¹ 7.25×10⁻² 

d4 0.4 60 5.15×10⁻⁴ 0.37 1.49×10⁻¹ 5.20×10⁻¹ 1.01×10⁻¹ 

d7 0.4 60 3.30×10⁻⁴ 0.25 1.48×10⁻¹ 6.26×10⁻¹ 1.16×10⁻¹ 

d1 0.5 70 7.74×10⁻⁴ 0.45 1.07×10⁻¹ 3.09×10⁻¹ 3.57×10⁻² 

d7 0.5 70 5.53×10⁻⁴ 0.34 8.81×10⁻² 4.16×10⁻¹ 7.25×10⁻² 

d7 0.5 60 3.42×10⁻⁴ 0.34 1.48×10⁻¹ 6.23×10⁻¹ 1.14×10⁻¹ 

d7 0.6 80 2.52×10⁻³ 0.65 9.60×10⁻² 1.75×10⁻¹ 1.03×10⁻² 

d4 0.6 70 1.43×10⁻³ 0.48 1.14×10⁻¹ 3.04×10⁻¹ 5.06×10⁻² 

d7 0.6 70 1.22×10⁻³ 0.49 1.33×10⁻¹ 3.37×10⁻¹ 4.15×10⁻² 

d6 0.6 60 3.18×10⁻⁴ 0.32 1.54×10⁻¹ 6.10×10⁻¹ 1.11×10⁻¹ 

d7 0.6 60 3.76×10⁻⁴ 0.32 1.49×10⁻¹ 6.22×10⁻¹ 1.14×10⁻¹ 

d6 0.7 60 8.37×10⁻⁴ 0.37 2.12×10⁻¹ 4.96×10⁻¹ 7.19×10⁻² 

 

For the normal strain field, most of the optimized 

structures were shaped like SPs. The higher elastic 

modulus associated with these structures might have 

been the cause for this phenomenon (Maskery et al., 

2018). For the shear strain field, the majority of the 

structures were, however, a series of diagonal pillars. 

These later ones would realistically not be possible to 

print, as there is nothing supporting their separate 

parts. However, because the optimization tool 

considers them as part of an infinitively periodical 

structure, the homogenized elasticity coefficients, 

especially in the directions of the strain field, are 

computed as generally on the same scale as those of 

the normal strain field geometries. 

For most cases, optimized topologies can achieve 

the same parameters as TPMS, or higher values. For 

80% and 70% porosity, the optimized structures 

obtained all have higher permeability than the TPMS. 
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SG60’s permeability falls within the range of values 

from the optimized geometries, but these still achieve 

higher permeability values. The Young’s modulus 

Exx of optimized topologies created for a deformation 

field ε=[0,0,0,1,1,1] is, as expected, much lower than 

that of the other topologies. For ε=[1,1,1,0,0,0], the 

Optimized structures once again show values higher 

or equal to those of TPMS.

Table 4.2: Properties of optimized topologies created using the multi-objective problem for the given α values, 
initial solutions, VF, and for ε=[0,0,0,1,1,1].  

Initial 

solution 

α VF 

(%) 

Permeability FPerm Exx FElast 

ε=[1,1,1,0,0,0] 

FElast 

ε=[0,0,0,1,1,1] 

d1 0.2 80 3.72×10⁻³ 0.70 8.05×10⁻³ 1.33×10⁻¹ 8.46×10⁻² 

d3 0.2 80 3.71×10⁻³ 0.70 8.05×10⁻³ 1.33×10⁻¹ 8.49×10⁻² 

d7 0.2 80 2.02×10⁻³ 0.62 1.92×10⁻⁷ 6.31×10⁻⁷ 1.18×10⁻⁷ 

d1 0.2 70 2.80×10⁻³ 0.59 1.83×10⁻² 2.06×10⁻¹ 1.19×10⁻¹ 

d4 0.2 70 1.21×10⁻³ 0.59 2.26×10⁻⁷ 7.38×10⁻⁷ 1.41×10⁻⁷ 

d1 0.2 60 1.08×10⁻³ 0.48 3.51×10⁻² 2.95×10⁻¹ 1.54×10⁻¹ 

d4 0.2 60 6.23×10⁻⁴ 0.46 3.20×10⁻⁷ 9.95×10⁻⁷ 2.01×10⁻⁷ 

d7 0.2 60 9.26×10⁻⁴ 0.41 2.94×10⁻² 2.67×10⁻¹ 1.43×10⁻¹ 

d4 0.4 60 6.27×10⁻⁴ 0.46 3.19×10⁻⁷ 9.93×10⁻⁷ 2.01×10⁻⁷ 

d7 0.5 80 2.28×10⁻³ 0.54 4.91×10⁻³ 1.17×10⁻¹ 6.16×10⁻³ 

d4 0.5 60 6.15×10⁻⁴ 0.46 3.51×10⁻² 9.99×10⁻⁷ 2.03×10⁻⁷ 

d6 0.5 60 1.02×10⁻³ 0.42 3.12×10⁻² 2.76×10⁻¹ 1.48×10⁻¹ 

 

The same generalizations cannot be made for FElast 

values. Again, the optimized topologies created for 

ε=[0,0,0,1,1,1] underperform. The other optimized 

topologies have value ranges that encompass the 

TPMS’s totally or partially, with SP70 and SD80 

having a higher value, as well as the SD80. The 

optimized geometries made for ε=[0,0,0,1,1,1] show 

great variability of FElast values, including both 

higher and much lower values than the TPMS. 

Optimized geometries for ε=[1,1,1,0,0,0] show a 

range of FElast values encompassing most of the 

TPMS, but not reaching as high as the SP60 and 

SP70. For 80% porosity, all TPMS achieve higher 

FElast values than these optimized geometries.  

While there are some specific cases in which 

Optimized geometries cannot replicate the combined 

attributes of TPMS, the wide choices of initial 

parameter values allow for wide variety of end results. 

This means that an Optimized geometry can be 

made to be better tailored to a problem than any 

TPMS at hand. 

4.2 Optimizing TPMS geometries 

The previously mentioned set of 9 TPMS was used 

as initial solutions in the optimization tool, with 

ε=[1,1,1,0,0,0]. From each of these TPMSs, four 

different geometries were created: two from the 

rigidity optimization problem and another two from 

the permeability optimization problem. For each of 

these sets of twos, one of the geometries was 

created utilizing solely the constraint function on the 

VF, while the other used the two constraint functions 

of the given problem type. 

The objective of these tests was to see if the given 

TPMS could have their permeability properties 

Optimized, while maintaining the same porosity and 

elastic properties, or if they could have their elastic 

properties Optimized, while maintaining the same 

porosity and permeability properties.  

The properties of the resulting geometries were very 

similar or equal to those of the TPMS. As seen in 

Table 4.3, the variations in values are very small, with 

every attribute showing a maximum deviation an 

order of magnitude smaller than the original value, 

with the exception of porosity, which has a maximum 

deviation of 3%. 

These optimized geometries only suffered minor 

alterations, which explains why the attributes 

retained very similar values.
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Table 4.3: Maximum deviations of values between TPMS and the optimized structures which used them as initial 
solutions. 

TPMS Porosity (%) Permeability (CFD, mm²) FPerm Exx Felast ε=[1,1,1,0,0,0] 

SD60 0.750 0.000 2.768×10⁻⁷ 1.868×10⁻³ 5.316×10⁻³ 

SD70 0.000 0.000 7.767×10⁻³ 0.000 0.000 

SD80 0.600 1.610×10⁻⁵ 1.858×10⁻⁸ 2.316×10⁻³ 6.781×10⁻³ 

SG60 0.000 0.000 3.612×10⁻³ 0.000 3.000×10⁻⁸ 

SG70 0.000 0.000 1.399×10⁻² 0.000 3.000×10⁻⁸ 

SG80 0.225 2.426×10⁻⁵ 1.679×10⁻² 3.690×10⁻⁵ 3.403×10⁻³ 

SP60 0.000 0.000 6.386×10⁻⁴ 0.000 1.500×10⁻⁷ 

SP70 0.000 0.000 4.640×10⁻⁶ 0.000 1.000×10⁻⁸ 

SP80 3.000 0.000 4.005×10⁻⁸ 7.767×10⁻³ 4.073×10⁻² 

Maximum 

deviation 
3.000 2.426×10⁻⁵ 1.679×10⁻² 7.767×10⁻³ 4.073×10⁻² 

 

Because the Fobj to be minimized is not well-behaved 

(that is, it does not have a single global minimum, but 

instead has multiple local minimums in addition to the 

global one), the results given by it are local best 

solutions. Given that the initial solutions already 

fulfilled the constraint function requirements, the fact 

that the objective function could not be further 

minimized implies that the TPMS structures are 

already considered a local best.  

4.3 Replication of TPMS properties 

For this section the goal was to create optimized 

structures with some of the same properties as 

TPMS. To do this, two sets of nine optimized 

structures were made, one under the rigidity 

optimization problem, and the other under the 

permeability optimization problem. For each set, the 

properties of the TPMS were used in the constraint 

functions. All structures used the same initial solution 

d7 and ε=[1,1,1,0,0,0].  

Due to the nature of the optimization tool’s problem 

types, it was not always possible to meet both 

constraint function attribute values, or even optimize 

the objective function attribute above that of the 

respective TPMS. The SG80 case under permeability 

optimization was not considered due to consistently 

failing to meet constraint function values. 

Comparing the values of Table 3.1 with those of 

Table 4.4 and Table 4.5, a common factor that can 

be noted is that the structures optimized for 

permeability will often show higher FElast values 

than the ones optimized for rigidity. This is because 

both constraint functions of the later problem type 

lead to higher porosity and FPerm values, making it 

so that the highest FElast value achievable can 

become lower. The reverse is observed in the 

structures optimized for permeability, where their 

FPerm values are often lower due to the constraint 

functions pushing for a lower porosity and higher 

FElast values. 

Taking a particular case, the geometry for SG70 in 

Table 4.4 keeps almost the exact porosity required 

but reaches a higher FPerm and thus higher 

permeability, with a lower FElast. In another example, 

that of the geometry for SD60 in Table 4.5, it can be 

seen a case where some porosity was sacrificed but 

all the other attributes managed to obtain higher 

values than the respective TPMS. While some trends 

can be seen in these tables, such as the increment 

of FElast as the porosity decreases for each set of 

optimized geometries replicating properties of a type 

of TPMS, vast differences in shape can alter some of 

these trends.  

Overall, it cannot be said that the optimization tool in 

its current state can easily create a topology with the 

same porosity and FElast (or FPerm) as a pre-

existing structure, but with a higher FPerm (or FElast).  
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Table 4.4: Attributes of nine geometries created from the same initial solution under the rigidity optimization 
problem. Constraint functions used the VF and FPerm of the respective TPMS. 

TPMS Porosity (%) Permeability (CFD, mm²) FPerm Exx FElast ε=[1,1,1,0,0,0] 

SD60 62.40 1.10×10⁻³ 0.32 1.32×10⁻¹ 5.44×10⁻¹ 

SD70 70.20 1.46×10⁻³ 0.54 1.49×10⁻¹ 2.86×10⁻¹ 

SD80 89.60 4.47×10⁻³ 0.76 4.32×10⁻² 7.32×10⁻² 

SG60 64.80 1.20×10⁻³ 0.44 1.84×10⁻¹ 3.66×10⁻¹ 

SG70 69.90 1.46×10⁻³ 0.55 1.52×10⁻¹ 2.93×10⁻¹ 

SG80 79.80 2.74×10⁻³ 0.65 8.11×10⁻² 1.83×10⁻¹ 

SP60 59.60 3.30×10⁻⁴ 0.26 1.51×10⁻¹ 6.33×10⁻¹ 

SP70 70.40 6.85×10⁻⁴ 0.37 9.74×10⁻² 3.80×10⁻¹ 

SP80 79.80 2.52×10⁻³ 0.63 7.73×10⁻² 1.89×10⁻¹ 

 

Table 4.5: Attributes of 8 geometries created from the same initial solution under the permeability optimization 
problem. Constraint functions used the VF and FElast of the respective TPMS. 

TPMS Porosity (%) Permeability (CFD, mm²) FPerm Exx Felast ε=[1,1,1,0,0,0] 

SD60 53.70 8.34×10⁻⁴ 0.35 2.81×10⁻¹ 6.27×10⁻¹ 

SD70 62.70 2.54×10⁻⁴ 0.44 1.75×10⁻¹ 4.18×10⁻¹ 

SD80 73.30 1.41×10⁻³ 0.56 1.31×10⁻¹ 2.53×10⁻¹ 

SG60 54.30 8.76×10⁻⁴ 0.36 2.74×10⁻¹ 6.04×10⁻¹ 

SG70 64.00 1.13×10⁻³ 0.43 1.99×10⁻¹ 4.08×10⁻¹ 

SP60 52.80 5.90×10⁻⁴ 0.32 2.92×10⁻¹ 6.56×10⁻¹ 

SP70 68.30 4.98×10⁻⁴ 0.41 9.39×10⁻² 4.47×10⁻¹ 

SP80 71.20 2.21×10⁻³ 0.55 1.44×10⁻¹ 2.77×10⁻¹ 

5 Conclusions and Future Work 

The objective of this work was to update a preexisting 

optimization tool and use it to gain a better 

understanding of the properties of optimized 

topologies, in order to determine if they are a viable 

option, or even a better option than the more widely 

used TPMS structures. In this section, the results 

obtained during this work are reviewed, and ideas for 

future research are discussed. 

5.1 Conclusions 

To explore the properties of optimized topologies, a 

topology optimization tool previously used in Dias 

(2013) and Dias et al. (2014) had its code updated to 

Fortran 90, and was changed to allow a series of 

problem types at the users choice. The optimized 

geometries created were then compared with TPMS 

geometries. 

To explore the range of values that the attributes of 

optimized topologies can obtain, a series of them 

were created using the multi-objective problem, for all 

the initial solutions and porosities used. When 

comparing attribute values, it could be seen that 

optimized geometries achieved much wider range of 

permeability and elasticity values than the TPMS. For 

the same porosities, optimized topologies could be 

made to obtain both permeabilities and elasticity 

values. It is of note that for triaxial normal strain fields, 

the optimized topologies resulted in SP-like 

geometries, despite none of the initial solutions being 

similar to that shape. 

When using the chosen TPMS geometries as initial 

solutions for the optimization tool, it was found that 

the resulting optimized geometry did not improve 

upon the original, presenting little to no changes. 

Given that the objective function to be minimized, 

which is used to define the problem in the 

optimization tool, has multiple local minimums in 

additional to the global minimum, the TPMS 

structures can be one of these local minimums or 

local solutions. 
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Creating optimized geometries from the same initial 

solution d7 using permeability optimization with a 

constraint on elasticity or elasticity optimization with 

a constraint on permeability to obtain the same 

attributes as the TPMS geometries yielded a series 

of geometries with attributes in the same scale as the 

TPMS ones. Not all geometries were optimized, and 

those who were tended to show changes in porosity 

in order to obtain the higher permeability or elasticity. 

Overall, optimized topologies were shown to have 

more specificity and versatility, as they can be 

created for specific load scenarios and permeability 

or stiffness requirements. Topology optimization 

tools such as the one used in this work can be used 

for a variety of materials and be edited to use other 

problem types, such as mechanobiology-based 

optimization algorithms or steady-state Navier–

Stokes flow optimization (Boccaccio et al., 2018) 

(Zhou & Li, 2008). 

With this versatility in mind, and given that optimized 

topologies were shown in this work to also be able to 

obtain permeability and mechanical properties on par 

with TPMS geometries, it can be concluded that 

optimization has a lot of potential not only for scaffold 

design in BTE but in other areas of tissue engineering 

as well.  

5.2 Future Work 

The results obtained throughout this work showcase 

the importance of studying the capabilities of 

topology optimization tools and their possible 

application in BTE. This has given rise to further work 

regarding not only the optimization tool itself but also 

the use of optimized topologies. 

One of the major drawbacks of the optimization tool 

used was the limitations in problem construction. In 

addition to maximizing permeability, elasticity, or a 

mix of both, other parameters relevant for scaffold 

construction should be explored, such as surface 

area, or wall shear stress, which relate to the 

bioactivity and degradability of the scaffold. For 

example, it might prove useful to maximize a 

geometry’s mechanical properties to ensure it 

supports the loads at the implantation site, while 

placing a constraint on wall shear stress, in order to 

prevent too-slow degradation. 

In addition, the optimization tool did not take into 

account whether the optimized structure could be 

printed and safely implanted. For a triaxial shear 

strain field, the vast majority of the optimal 

geometries were composed of separate pieces of 

material. These geometries could only realistically 

hold shape if printed with solid walls, which would 

severely affect the scaffold’s permeability. In a triaxial 

normal strain field, this was a much more uncommon 

phenomenon (only present when elasticity was not 

taken into consideration). However, structures with 

“fluid pockets”, that is, structures with isolated pores 

with no connectivity, would be occasionally produced, 

more commonly for the highest porosity used: 80%. 

While these do not produce a great impact on the 

mechanical properties and aid in meeting VF 

requirements, these pores could end up filled with 

toxic materials during the printing process. Following 

scaffold degradation, these materials are released, 

making it unsuitable for use in tissue engineering. In 

the future, it would be ideal for the optimization tool 

to identify and avoid outputting geometries having 

such incompatibilities with the manufacturing process. 

Further research on the applicability of optimized 

topologies for BTE is also needed. Ultimately, it is 

through ex-vivo and in-vivo testing that we might 

better understand if optimized topologies do meet the 

requirements of scaffolds in BTE.  
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