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II. Resumo 

 

O aquecimento do Ártico está a levar a uma redução acelerada do gelo marinho, com modelos para 2100 

a indicar a redução de 43 a 94% da sua área em setembro e de 8 a 34% em fevereiro (IPCC, 2021). O 

aumento da duração da estação livre de gelo vai resultar numa maior exposição do litoral à ação das 

ondas, com o clima também a modificar a contribuição dos processos de erosão terrestre. Durante a curta 

época de água livre de gelo (junho a outubro) existe um aumento das tempestades costeiras no Mar de 

Beaufort, levando a um incremento na erosão costeira e inundações (Fritz et al., 2015, Ramage et al., 

2018) 

Este trabalho focou-se na comunidade costeira de Tuktoyaktuk (Territórios do Noroeste, Canadá), onde 

foram recolhidas imagens aéreas de alta resolução com recurso a veículos aéreos não tripulados (VANT), 

permitindo criar ortofotomapas e modelos digitais de superfície (MDS) que foram usados como base para 

um modelo probabilístico de inundação e um modelo hidrodinâmico, MOHID. 

A partir dos cenários RCP4.5 e RCP8.5 de subida do nível do IPCC, e usando o modelo probabilístico e o 

MDS de alta resolução, é esperado, respetivamente, que 29,2 a 32,2% (MOHID: 14,4 a 16,1 %) da área 

de estudo fique submersa em 2100. Estas percentagens podem variar de 76,5 a 80,7% (MOHID: 56 a 

60%) em episódios extremos associados a sobrelevação do nível do mar para tempestades com um 

período de retorno de 100 anos. 

Palavras-chave: inundação costeira, modelo bathtub, modelo hidrodinâmico, VANT, LIDAR, alterações 

climáticas 
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III. Abstract 

 

Arctic warming is leading to an increased reduction in sea ice, with models for 2100 indicating a reduction 

in the Arctic sea ice area from 43 to 94% in September and from 8 to 34% in February (IPCC, 2021). The 

increase of the sea-ice free season duration will result in more exposure of the coasts to wave action, with 

changing climate also modifying the contribution of terrestrial erosion processes. The increase of the sea-

ice free season duration will result in more exposure of the coasts to wave action, with changing climate 

also modifying the contribution of terrestrial erosion processes. During the short open water season (June 

to October) there has been an increase in coastal storms in the Beaufort Sea this has led to an increment 

in coastal erosion and flooding (Fritz et al., 2015, Ramage et al., 2018). 

This work focused on the Hamlet of Tuktoyaktuk (Northwest Territories, Canada), where ultra-high-

resolution surveys with unmanned aerial vehicles (UAVs) have been conducted, allowing to generate 

orthophoto mosaics and digital surface models (DSM) that were used as inputs for a probabilistic flood 

model and MOHID hydrodynamic model. 

From the IPCC scenarios RCP4.5 and RCP8.5, respectively, it is expected that 29.2 to 32.2% (MOHID: 

14.4 to 16.1%) of the study area is permanently submerged by 2100, only accounting for the sea level rise. 

These percentages can go up to 76.5 to 80% (MOHID: 56 to 60%) during a storm surge event with a 100-

year return period. 

Keywords: flood map, coastal flooding, bathtub modelling, hydrodynamic modelling, UAV, LiDAR, climate 

change 
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1.  Introduction 

 

1.1. Problem Characterization 

Arctic warming is leading to an accelerated reduction in sea ice. For the year 2100, models predict a 

reduction in the Arctic sea ice area from 43 to 94% in September and from 8 to 34% in February 

(IPCC,2021). The increase of the sea-ice free season duration translates in additional exposure of the 

coastline to wave action. This thesis focuses on the Beaufort Sea coastal Hamlet of Tuktoyaktuk (Northwest 

Territories, Canada). Regions in the northern hemisphere at higher latitudes will be more affected by climate 

change than lower latitude regions (Räisänen, 2001). The predicted reduction in sea ice (Johannssen et 

al., 2002) translates in a longer period for storms to erode the coastline. According to Johannssen et al. 

(2002), the expected increase in temperature during summer leads to the melting of ice-bounded sediments 

in coastal cliffs. 

The Beaufort Sea coast consists of unconsolidated sediments which makes it an exceptionally dynamic 

environment vulnerable to marine processes such as wave action, tides, storm surges, and ice push, as 

well as permafrost degradation processes, such as thermoerosion and thaw subsidence (Harper, 1990). 

For coastal settlements, the risk of storm-surge flooding associated with sea level rise is of major concern. 

Satellite data shows that the global mean sea level has been increasing at a rate of 3 ± 0.4 mm per year 

between January 1993 and July 2020 (NOAA, 2021), and in Tuktoyaktuk, with a rate of 2.75 ± 1.07 mm per 

year, from 1961 to 2020, based on detrended tide gauge data (NOAA, 2021). According to the 

Intergovernmental Panel on Climate Change (IPCC), the mean sea level is expected to rise more than 1 

m, by 2100, mainly due to thermal expansion of the oceans and increased melting of land ice (IPCC, 2021; 

Church et al., 2013a), leading to an increase in storm surge frequency. 

Tuktoyaktuk, depicted in Figure 1, is located in a low-lying area in the Kugmallit Bay, where severe coastal 

erosion destruction has been continuously documented (Danard et al., 2003; Solomon, 2005). The main 

cause of coastal erosion along the coast of Tuktoyaktuk is wind-induced storm surge events that are most 

frequent during late summer (Manson and Solomon, 2007; Jones et al., 2009). 
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Figure 1 – The Beaufort coast showing the location of Tuktoyaktuk. 

Storm surge exposes the settlements in coastal areas to flooding and structural destruction. Accurate and 

understandable forecasts, and inundation mapping products play important roles in preparing for and 

mitigating these events, including flood protection and evacuation. As a storm surge event happens, the 

sea leads to a rise in water level at the coast that can be extremely severe, as seen in Figure 2. 

 

Figure 2 – Storm surge event in Tuktoyaktuk that took place in the 4th of august 2019 where the wave run-
up reached several buildings located near Flagpole Point. 

The present rates of cliff erosion are projected to increase due to sea level rise, thaw of permafrost, and 

the increase in frequency of severe coastal storms during the open-water season, that is becoming longer. 

Measures to control coastal erosion in Tuktoyaktuk have been implemented over the past years but the 

effect of sea level rise translates in the need of continuously monitoring, maintenance and possibly, the 
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construction of new structures to mitigate erosion. The identification of areas prone to flooding is of major 

interest to support climate change adaptation and mitigation before Tuktoyaktuk becomes permanently 

uninhabitable. 

1.2. Objectives and Methodology 

The objective of this thesis is to produce and analyse the implications of ultra-high-resolution inundation 

maps that incorporate the IPCC Fifth Assessment Report (AR5) sea level rise projections for the scenarios 

RCP4.5 and RCP8.5, for the years of 2060 and 2100 and storm surge events with 50-year and 100-year 

return periods in Tuktoyaktuk, Northwest Territories, Canada. 

Two different models are used to identify flooded areas, a GIS-based bathtub model , and a hydrodynamic 

model, the MOHID Water. The models use two different elevation datasets for comparison: i: the most 

recent ultra-high-resolution surface model, surveyed with a senseFly eBee Plus in 2018, and ii. a LiDAR 

elevation model surveyed in 2004.  

1.3. Structure of the Thesis 

The thesis is divided in six chapters. The first, an introduction, serves as a characterization of the problem 

addressed, the objectives of the study and presents a brief description of the methodology used. 

The second chapter refers to the state of the art and the theoretical knowledge required to understand the 

processes covered in this thesis, followed by an in-depth characterization of the study area in chapter three. 

The methodology and a detailed description of the datasets and models used are contained in the fourth 

chapter. 

The flood assessment and mapping are described in the fourth chapter, where the elevation data used, and 

sea level rise scenarios are explained. 

Chapter five is dedicated to the analysis and discussion of the results, followed by the conclusion and 

suggestions for future works, included in chapter six. 

  



20 

 

2.  State of the Art 

As global warming and sea level rise in the Arctic accelerate (Comiso, 2003) and sea ice decreases (Barber 

and Hanesiak, 2004), impacts are expected to affect land further away from the current shore, increase in 

flood frequency and the salinization of thermokarst lakes. The expansion of the open water season and 

permafrost degradation (Jorgenson et al., 2006) translated in major increases in coastal erosion rates in 

the Arctic, namely in the Beaufort coast, where the rates are among the world’s highest (Solomon, 2005; 

Jones et al. 2009). 

According to the IPCC report (IPCC 2021) air temperature is “very likely” to continue increasing in the Arctic 

and sea ice cover to diminish. Drobot and Maslanik (2003) and Simmonds et al. (2008) indicate that coastal 

erosion will also increase in the Arctic because of higher temperatures and reduced sea ice coverage. More 

specifically, Manson and Solomon (2007), Jones et al. (2009), Gunther et al. (2013) and Hynes et al. (2014), 

point the Beaufort coast as one of the regions most affected by the phenomena. 

Models that aim to replicate water surface can use many variables as inputs depending on the complexity 

of the scenario to be modelled. In this study, to assess the areas prone to coastal flooding caused by storm 

surge events combined with the effects of climate change, represented by sea level rise, variables such 

storm surge and predicted sea level rise water levels at a local scale are fundamental to both modelling 

approaches. 

This chapter covers the theoretical background and state of the art of the essential building blocks of 

modelling used in this study, coastal dynamics, and identification of limitations in the context of this 

research. 

 

2.1. Sea Level Rise Projections 

One of the most substantial effects of climate change is sea-level rise (Stern, 2007; IPCC, 2013). The global 

mean sea level rise is depicted in Figure 3 and indicates that, by the year 2100, it is possible that it exceeds 

1 m (IPCC, 2013; Meehl et al., 2007; Church et al., 2013a). The large uncertainty range of global sea level 

(Milne et al., 2009) is explained by the different assumptions regarding future carbon emissions result in 

different sea level predictions.  
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Figure 3 - Time series of global annual change in mean surface temperature for the 2006–2100 period 
(relative to 1986–2005) from Coupled Model Intercomparison Project Phase 5 (CMIP5) concentration-
driven experiments. Projections are shown for the multi-model mean (solid lines) and the 5% to 95% 

range across the distribution of individual models (shading). Grey lines and shading represent the CMIP5 
historical simulations (IPCC, 2013). 

These projections are based in different contributions, such as thermal expansion of the ocean, surface 

melting and ice discharge from mountain glaciers and ice caps and from the Greenland and Antarctic ice 

sheets. Smaller contributions are also included, such as groundwater usage and water entrapment by 

dams. The possibility of a swift degradation of the West Antarctic ice sheet represents another level of 

significant uncertainty regarding the future projections of sea level rise (IPCC, 2019; Church et al., 2013a). 

Relative sea level is the change in sea level relative to the solid surface of Earth and it depends on various 

factors in addition to the projected global sea level such as local vertical motion, spatial variations of the 

distribution of glacial meltwater and ocean dynamics (James et al., 2014). The scenarios used in this thesis 

are established on the Representative Concentration Pathways (RCP) scenarios (Moss et al., 2010) as 

described in the Fifth Assessment Report (AR5) of the IPCC: RCP4.5 and RCP8.5. These scenarios 

represent different greenhouse gas concentration pathways where the number in each name corresponds 

to the net radiative forcing in W m-2 at 2100. The net radiative forcing is the difference between the energy 

that enters Earth’s atmosphere and the quantity that is radiated out of the system. The change in sea level 

at a given location depends on its distance to the source of meltwater and Canada possesses considerable 

mountains and ice caps, mainly in the west and northeast. The proximity to Greenland’s ice sheet, the 

mountain glaciers of the Coast Mountains and the Gulf of Alaska raises the significance of the effects of 

sea level rise (James et al., 2014).  Vertical land motion affects projections of relative sea level. Land uplift 

diminishes the effect of sea level rise, and even surpasses it, but land subsidence contributes to its 

aggravation. In Canada, the surface is uplifting and subsiding at various rates and varying across the 

country, as seen in Figure 4, due to the effects of the last continental glaciation isostatic rebound. In western 
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and northern Canada and surrounding regions, recent and present-day changes in ice mass also generate 

significant crustal motion. This effect is particularly noticeable in Alaska and Greenland, where the highest 

uplift rates were registered. (James et al., 2014).  

 

Figure 4 - Derived vertical crustal motion from GPS for Canada and surrounding regions (Craymer et 
al.,2011). 

According to James et al. (2014), Tuktoyaktuk is projected to experience a relative sea level rise, at, or 

close to the global mean for the year of 2100. 

2.1. Storm Surges 

A storm surge is defined as the difference between the observed water level and the level predicted for the 

astronomical tide. Surges are caused by atmospheric low-pressure systems and high winds associated 

with storms that pushes water onshore. The storm surge water level height depends on the orientation of 

the coastline compared to the storm track, the intensity, size and speed of the storm and local bathymetry. 

(NOAA, 2021) A schematic representation of a storm surge water level can be seen in Figure 5.  
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Figure 5 - Storm surge schematic representation. (NOAA, 2021) 

Storm surge should not be confused with storm tide. Storm tide is the combined water level rise of both 

storm surge and the astronomical tide (NHC, 2021). The increase in water height can lead to severe flooding 

in coastal areas, especially when a storm surge coincides with the normal high tide (McLean et al., 2001). 

Sea level rise associated with increased storm surges will impact coastal communities in many ways (Hinkel 

et al., 2013). In Arctic coastal regions severe ocean storms are frequent and intense (Terenzi, Jorgenson 

and Ely, 2014; Manson and Solomon, 2007) with surges ranging between 1.5 – 3.7 m along the Beaufort 

and Chukchi Sea coasts (Hume and Schalk, 1967; Reimnitz and Maurer, 1979). Storm surges are amongst 

the most devastating natural disruptions affecting Arctic coastal communities (Brunner et al., 2004). 

Together with reduced sea ice extent (Serreze et al, 2007), the increase in fetch and wave action (Overeem 

et al., 2011; Lintern et al., 2011), storm severity is expected to increase, translating in larger, more frequent 

storm surges (Manson and Solomon, 2007). 

2.2. Coastal Erosion 

About 34% of Earth’s coasts are affected by permafrost, yet only 35% of these coasts in the Arctic are 

lithified and the remaining 65% unlithified and hence, particularly vulnerable to coastal erosion (Lantuit et 

al., 2012). Coastal erosion is especially effective in coasts with excess ground ice due to the thermal 

influence of sea water and the volume loss upon thaw. Permafrost coastal erosion is limited to a few months 

a year, the ice-free summer season, and during this period, erosion rates can be similar to or higher than 

those of temperate regions (Overduin et al., 2014). According to Lantuit et al. (2012), the average Arctic 

coastal erosion rate is 0.5 m yr-1 and 3% of the Arctic coastline is retreating at a rate higher than 3 m yr-1.  
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Extreme 25 m erosion events were reported by Jones et al. (2009) in one year at Drew Point, an ice-rich 

site located on the Alaskan Beaufort Sea coast. Regionally, the highest erosion rates are observed along 

the Beaufort and East Siberian coasts, where bluffs of unlithified and ice-rich material are exposed and 

where cliff heights are generally low (Overduin et al., 2014). Extreme erosion rates can take place in a short 

period at specific locations (Dallimore et al., 1996; Barnhart et al., 2014),  while average erosion rates for 

longer coastal segments or long observation periods are generally much lower (Solomon, 2005). 

Storminess, waves and storm surges, duration of ice-free season, sea level and sea surface temperature 

are the regional factors acting on a larger scale, while local factors controlling erosion are related with 

sediment properties, such as cohesiveness and grain size, cryostratigraphy and geomorphology (cliff height 

and slope, exposure, underwater slope, presence of spits and barrier islands and coastal hinterland 

topography) (Solomon, 2005; Jones et al., 2009). The importance of the sea-ice free season, exposure to 

wave action and sea water temperature were studied by Barnhart et al (2014) in the Alaskan Beaufort Sea. 

Günther et al. (2015) focused on the importance of the temporal synchronism of open water with warm 

summer air temperatures in the southern Laptev Sea.  
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3.  Characterization of the Study Area 

 

3.1. Regional Setting 

The Tuktoyaktuk Peninsula, Figure 6, is a 40 km wide peninsula that stretches northeast for 160 km from 

Tuktoyaktuk to Cape Dalhousie. The peninsula lies within the zone of continuous permafrost with a 

permafrost thickness from 200 m to over 600 m (Judge et al., 1987; Burn and Kokelj, 2009). It is 

characterized by poorly drained areas that typically contain polygonal terrain and organic soils (Kokelj et 

al., 2014; Steedman et al., 2016). Rolling, ice-rich irregular mounds of glacial debris are locally frequent 

(Aylsworth et al., 2000). The peninsula is rich in lakes and water bodies with depths that can exceed two-

thirds of the winter ice thickness (Burn, 2002). The drainage of these lakes causes permafrost to build up 

and the presence of lake sediments (Mackay, 1992), provides a nutrient-rich soil for shrubs to colonize 

(Marsh et al., 2009). The vegetation is characterized by dwarf-shrub tundra along the whole peninsula 

(Timoney et al., 1992).  

 

Figure 6 – The Tuktoyaktuk Peninsula area (Côté and Burn, 2002). 

The region is characterised by colder and drier conditions near the coast with warmer and wetter conditions 

inland. The mean annual air temperature for 1981-2010 at Tuktoyaktuk was -10.1 ± 1.3 ºC, a mean annual 

snowfall of 103.1 cm and 74.9 mm of mean annual rainfall (Environment Canada, 2021). The wind regime 

in Tuktoyaktuk is bimodal during late summer with higher frequencies of north-westerly and south-easterly 
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winds (Solomon, 2005; Manson and Solomon, 2007; Atkinson, 2005; Hudak and Young, 2002). Increasing 

air temperatures registered since the 1970s have been associated with an increase in permafrost 

temperatures (Smith et al., 2005; Burn and Kokelj, 2009; Burn and Zhang, 2010). 

 The bathymetry of the Beaufort Sea is shown in Figure 7. The region is characterized by very shallow 

nearshore seaward slopes surrounding Tuktoyaktuk Peninsula and the Mackenzie Bay with coast-parallel 

isobaths and a very low gradient. The most notable slopes start occurring past the 50 m isobath as the 

distance to shore increases (Wolfe et al., 1998). 

 

Figure 7 – Bathymetric contours surrounding Tuktoyaktuk Peninsula (Wolfe et al., 1998) 

 Offshore sea ice is present for approximately 9 months of the year, preventing wave action and coastal 

processes. Sea ice limits the open-water season to approximately 3 months, from mid-July to mid-October. 

The occurrence of offshore sea ice limits wave action even during the open water season, meaning that 

the Beaufort Sea has relatively low wave-energy (Harper, 1990). Tidal currents are often slow, with speeds 

under 15 cm s-1 for more than 90% of the time (Fissel and Birch, 1984). The currents in shallow waters 

close to the coast are assumed to be principally wind driven (Harper, 1990). The tide amplitude in the 

Beaufort Sea ranges from 0.3 m for neap tides and 0.5 m for spring tides. Storm surges caused by strong 

winds are frequent and surveys of log debris indicate storm surge water height of 2.4 m above mean sea 

level in Tuktoyaktuk (Harper et al., 1998). Coastal communities are most vulnerable if a storm surge peaks 

during a high-tide event. Tuktoyaktuk’s average seasonal cycle is described by highest tides occurring from 

May to September, corresponding to the open-water months.  
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3.2. Characteristics of the Hamlet of Tuktoyaktuk 

The Inuvialuit Hamlet of Tuktoyaktuk, located in Tuktoyaktuk Peninsula (Figure 7), has 995 inhabitants 

(Northwest Territories Bureau of Statistics, 2021) and is the most northern community on the mainland. Its 

name in Inuvialuktun means “resembling a caribou”. The hamlet was formerly known as Port Brabant, and 

nowadays is commonly abbreviated to “Tuk”. In 1934 the Hudson’s Bay Company selected this site as an 

alternative to Herschel Island and as the most suitable harbour in the region for transhipping freight brought 

by barge down the Mackenzie River to bigger ships for distribution along the Arctic Coast. During the 1950s 

the decline in fur prices and the beginning of the Distant Early Warning (DEW) Line construction triggered 

a population shift from the surrounding areas to Tuktoyaktuk. In the 70s and 80s, oil exploration originated 

massive changes in the community by making large numbers of people transition to a wage-earning 

economy. The oil and gas industry started to decline in the late 80s, originating a high level of 

unemployment. Nowadays, limited employment is available through private business and government 

services. Tourism during summer provides seasonal employment to a few people, especially after the 

construction of the Dempster Highway in 2017 that brought Tuk closer to Inuvik and strengthened its access 

to the South (Community of Tuktoyaktuk, 2008). Before the construction of the Dempster Highway, Tuk 

was only accessed by sea, a winter road or by airplane. Tuktoyaktuk’s infrastructure comprise the 

Mangilaluk School, providing education up to the 12th grade, a community hall (Kitti Hall), and several 

recreational facilities, such as a swimming pool and a gymnasium and a health centre. The municipal 

infrastructure includes a fire hall, sanitation by door-to-door truck and a gravel road system (NWT Bureau 

of Statistics, 2013). The Tuk area contains two large pingos (small hill in Inuvialuit), a dome-shaped mound 

with a layer of soil over a large core of ice, and is the entry point for Pingo Canadian Landmark, a protected 

area that extends for approximately 16 km2 and includes Canada’s highest pingo at 49 m. The peninsula 

on which the Hamlet of Tuk is located, is composed mostly of glaciofluvial sands, typically 2 to 3 m thick, 

and underlain by massive ground ice (Rampton and Bouchard, 1975). The tundra landscape and near-

shore are characterized by sparse but varied flora and fauna, including many species crucial to the 

community livelihood and diet, such as caribou, bears, muskox, fox, geese, ducks, seals, whales, and fish 

(Carmack and Macdonald, 2002; Manson et al., 2005). Figure 8 shows the spatial distribution of the 

buildings located in the study area (approximately 2 km2) and the boundaries for flood modelling and 

mapping in this study. 



28 

 

 

Figure 8 –Study area boundary and spatial distribution of the assessed buildings extracted from NWT 
Administration of the Territorial Land Acts System (ATLAS) (Government of Northwest Territories, 2021). 

Imagery Sources - Basemap: ESRI, Study area: 2018 UAV Orthophotomap. 

3.3.  Coastal Erosion and Flooding in Tuktoyaktuk 

According to Solomon (2005) the Tuktoyaktuk Peninsula is characterized by coastal retreat rates of 0.7 to 

0.8 m yr-1. The Hamlet of Tuktoyaktuk, which has a long history of coastal erosion issues related with the 

high content in ground ice, shows rates from 1 to 2 m yr-1 in areas without artificial shore protection. 

Tuktoyaktuk is one of the best-equipped coastal settlements of the western Canadian Arctic, regarding not 

just quantity but variety of infrastructure and services due to past military presence and oil industry (Couture 

et al., 2002). According to Johnson et al. (2003), the Longard tubes built in 1976 resulted in a successful 

protection but were destroyed in 1981. In 1987 (Aveco, 1986) a shoreline reclamation program was 

undertaken, and the sandbag system constructed provided protection until 1993, when a strong storm 

removed over 50% of the installed protection. Values of 4 to 8 m of shoreline retreat were recorded along 

the coastline and the north and south spits were washed over. In 1998, forty concrete slabs were 

constructed (Trillium, 1997), protecting approximately 100 m of coastline and still functioning nowadays. 

Predictions of the shoreline position were formulated by Solomon (2002) based on the historical retreat rate 

before the construction of the current protection measures, the physical characteristics of the standing 

protection systems and partition of the erosion area into segments with similar physical features. The 

Flagpole pt. 
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proposed shoreline positions for 10 and 25 years are represented in Figure 9. It is important to note that 

this study was done almost 20 years ago and that the present erosion rates are higher than the ones used 

by Solomon (2002), implying that the proposed erosion estimates could represent a conservative approach 

for the present situation. 

 

Figure 9 - Coastal erosion progression estimates (Johnson et al., 2003). 
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The latest higher erosion rates are possibly attributable to the increase in frequency and extremity of storm 

surges (Brown et al., 2003) due to changes in fetch, combined with the diminishing of sea ice, sea level 

rise and increases in sea surface temperature (Jones et al., 2009a) and air temperature (Günther et al., 

2013b). The severe coastal erosion rates and uncertainty regarding the future positioning of the shoreline, 

changes in seabed topography and local wave dynamics are issues that directly impact the process of 

inundation mapping for longer periods of time. Consequently, there is a high demand for models and 

information that accurately identify areas at risk for such events in the future, as a basis for sustainable 

shoreline management, urban planning and development of adaptation and mitigation strategies (McLean 

et al., 2001). Occasional storm surges in the Beaufort Sea have been identified as potential hazard to the 

coastal structures (Department of Public Works, 1971; Henry, 1975; Henry & Heaps, 1976; Reimnitz & 

Maurer, 1978, 1979), where water levels of 2 to 3 m above mean sea level (MSL) were registered inundated 

considerable areas of low-lying tundra. These surges occur mostly during late summer (Harper et al., 1988). 

Henry (1974) studied storm surge events higher than 0.9 m for between 1962 and 1973. The frequency of 

severe surges was not distributed evenly in time and the highest water level ever registered by 

Tuktoyaktuk’s tide gauge occurred on October 4, 1963. This event was observed at Barrow, Alaska, one 

day earlier, where the sea level rose 3 m above MSL, becoming the highest level ever observed at Barrow. 

Frequency and magnitude of storm surge occurrence is normally documented through the analysis of long-

term tidal records. However, tidal records for Tuktoyaktuk extend back only to 1961 (Figure 10), with some 

significant gaps between 1981 to 1991 and 1992 to 2003, and the largest known surges, with water levels 

of approximately 3 m above MSL and winds up to 40-50 m/s that occurred in 1944 and 1970 (Reimnitz et 

al., 1979), are not part of the record.  

 

Figure 10 – Open-water season hourly water level data extracted from Tuktoyaktuk tide gauge. 
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An insufficient number of extreme surges have been logged to precisely estimate return periods, crucial for 

flood mapping. Henry (1984) suggests that an alternative approach is to use numerical models that 

incorporate wind stresses and pressure gradients as the driving forces, but information on extreme winds 

over the Beaufort Sea is very limited and field observations of water height are essential to validate the 

results. Manson & Solomon (2007) studied historical records of wind speeds and directions, water levels, 

sea-ice extent, and temperature changes to understand variability in past storm surge events and used 

climate modelling to predict future changes of the Beaufort Sea shorelines. The predicted increase in peak 

storm wind speeds lead to higher water levels, beach migration and more extreme flooding. The results of 

the predicted return periods of peak storm water levels are summarized in Table 1 and provide a benchmark 

for the storm water levels derived in this study. 

Table 1 – Modelled return periods of peak storm water levels (m above CD) calculated by Manson & 
Solomon (2007). 

 

Winter surges also occur (Solomon et al., 2009), causing pressure ridge development, ice scour, breakup 

of ice roads and potential flooding. The phenomenon, called ice push, combined with winter surges can 

reach land posing risk to human life and infrastructure. In this study, only open water season storm surges 

were included to derive design return periods and to produce inundation maps. 
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4.  Data and Methods 

 

4.1. Introduction 

 The methodological process used for this study is summarized in Figure 11. Initially, to create the base 

data for modelling, the Global Navigation Satellite System (GNSS) real time kinematic (RTK) data acquired 

in the field during the summer of 2019 was processed and imported to GIS.  Features such as water bodies, 

culverts and the shoreline were digitized in ArcGIS Pro using the 2018 UAV footage, and the LiDAR 

elevation datasets added to the geodatabase. Infrastructure data was obtained from Administration of the 

Territorial Land Acts System (ATLAS) map viewer (Government of Northwest Territories, 2021), a 

Government of Northwest Territories open geodatabase and the nautical chart used to derive bathymetry, 

from the Canadian Hydrographic Service. The data used for harmonics and storm surge water level analysis 

was gathered from Fisheries and Oceans Canada (DFO) and processed in Microsoft Excel and MATLAB 

and it was then combined with the IPCC local sea level rise predictions to create the simulated RCP4.5 and 

RCP8.5 scenarios. The collected and processed data was used for the two modelling approaches, in 

ArcGIS Pro for the bathtub model, and in MOHID Studio for the hydrodynamic model MOHID Water. 

In a final stage, the water surface outputs from both models for the years of 2020, 2060 and 2100 were 

overlayed with the infrastructure data in order to identify buildings and roads affected by the different 

scenarios of flooding. 
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Figure 11 – Methodology flowchart. 
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4.2. Topographic Data 

Elevation models are considered as one of the most important spatial datasets in many geographical 

information systems (GIS). The most used terms in literature are digital elevation model (DEM), digital 

terrain model (DTM) and digital surface model (DSM). Although the distinction between the terms is not 

clear and agreed on, some doctrines may apply. A DEM represents a “bare” land surface model, free of 

trees, buildings and other features that considered non-ground. A DSM is an elevation model that contains 

everything that is surveyed. It contains buildings, canopy, and the ground, if not covered. The DTM is a 

more generic term referring to a DEM that can include terrain morphology, flow and drainage patterns, and 

soil properties (Li et al., 2005). 

Formulation of flood hazard and inundation mapping is one of the examples of preparedness phase in 

disaster management, by lowering possible impacts to coastal communities and providing information on 

how to react during flooding events (Khan et al., 2008). Identifying flooding extents and how deep the 

flooded area is, is required in coastal flood management and flood damage assessment. To assemble this 

information, elevation data that accurately represents earth’s surface is one of the key components for 

precise flood investigations. 

Casas et al. (2006) demonstrated that the accuracy of the output of any flood model was highly dependent 

on the digital elevation model (DEM) quality by evaluating the effects of different DEM sources on flood 

modelling in terms of outputs such as inundation extents and the elevation of water surface. Thus, it is 

critical to know which elevation sources could provide higher vertical accuracy and spatial resolution before 

the selected DEM is used for the assessment of flood hazard risk (Li et al., 2010).  

4.2.1.  Airborne LiDAR  

Li et al. (2010) showed that LiDAR proved to be an efficient method for obtaining terrain data with high 

resolution as compared to other sources of elevation data. According to Sampson et al. (2016), LiDAR 

DEMs are considered, nowadays, the most reliable terrain models used in flood modelling and the most 

used ones. LiDAR sensors are complex sensors for the acquisition of 3D data used for creating topographic 

models. They can be used during night-time or in low light conditions, with shadows or clouds and extremely 

versatile in tree-covered areas. This technology is composed by a sensor that emits a signal to the target 

object, measures the travelled time and the intensity of the returned signal, and a receiver that detects the 

reflected signal of the pulse, its positioning and navigation systems (GNSS) (Baltsavias, 1999; Wehr and 

Lohr, 1999). In Canada, a study conducted by Webster et al. (2006) used two LiDAR systems to generate 

high-resolution DEMs to identify areas prone to coastal flooding and erosion and possible socioeconomic 

and ecosystem impacts of sea level rise and storm surge events at the New Brunswick coast, this is an 

area highlighted in a national study by Shaw et al. (1998) as being vulnerable to sea level rise. The flood 

inundation and flood depth were validated by field visits to compare the results with the water levels 

observed during a flood event in January 2000, with the results showing that the flood extent and depth 
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were accurate within 10 to 20 cm. Another study using LiDAR technology in flood mapping in North Carolina, 

from Bales et al. (2007), achieved a difference between the measured and simulated water levels of less 

than 25 cm, with a LiDAR DEM with approximately 20 cm of vertical accuracy. Many other successful 

applications of lidar DEMs in storm surge flood risk mapping on Prince Edward Island, Canada, are 

published, such as McCulloch et al. (2002) and Webster et al. (2001; 2003; 2004a; 2004b). 

In this study, the LiDAR DEM used was provided by the Geological Survey of Canada and it was surveyed 

in 2004 using a manned aircraft, producing a model with 1 m of spatial resolution.  The DEM, defined on 

the Canadian Geodetic Vertical Datum of 1928 (CGVD28) was converted to the modernized vertical datum 

of CGVD2013, represented in Figure 12, using the ArcGIS Pro transformation tool. After the transformation, 

the LiDAR dataset was 31 cm higher (average). Véronneau (2014) studied the vertical transformation from 

CGVD28 to CGVD2013 across Canada, obtaining a value of -32 cm for Tuktoyaktuk. 

 

Figure 12 - 2004 LiDAR DEM of the study area in CGVD2013 and a spatial resolution of 1 meter. 

Pingo 

Pingo 
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4.2.2.  UAV Digital Surface Model 

Manned airborne platforms such as airborne LiDAR, provide both high spatial resolution and rapid sweeping 

times, but in practice, their use is limited by operational and logistical intricacy, safety, and high cost. It 

becomes feasible over medium to large areas and it remains constrained, mostly, to commercial operators. 

Technological advancements in UAVs created an alternative surveying method that allows capturing 

spatial, spectral, and temporal data with relatively small investments. Drones provide higher versatility, 

adaptability and flexibility compared to manned airborne platforms or satellites and can be quickly and 

repeatedly deployed for ultra-high spatial resolution and high temporal resolution (Pajares et al., 2015). A 

successful and efficient survey requires well-timed data, and the high versatility of UAVs makes them ideal 

tools for frequent elevation and imagery acquisition at very fine scales, and targeted surveying of rapid 

changes such as extreme flood events, coastal erosion, and hydrological processes. The significant cost 

reduction of UAVs and sensors, and current developments in processing software and computing power 

led to a swift expansion in drone applications in the last decade (Giordan et al., 2020; James et al, 2019). 

The recent developments in RTK technology for GNSS used in UAVs results in faster surveying and more 

accurate models with centimetric to decimetric resolutions even in large survey areas (Favalli et al., 2018). 

Some studies addressed the use of UAVs in environmental surveying and modelling, in particular on water 

flow modelling. Successful applications of UAV derived DEM as topographic input for rainstorm modelling 

is shown in Backes et al. (2019) and flood modelling to replicate real flood events in Mourato et al. (2017) 

and  Langhammer et al. (2017), where limitations were found mostly in tall, highly vegetated areas, which 

is not the case in our study area. UAVs were used for water surface detection after a flood event by 

Hashemi-Beni et al. (2018). Schumann et al. (2018) compared the accuracy of a UAV-derived structure 

from motion (SfM) DEM, such as the one used in this study, with a LiDAR DEM and assessed its reliability 

for flood mapping using a bathtub approach. The results showed that both elevation models generated 

accurate inundated areas with less than 30 cm difference between models. Annis et al. (2020) reached a 

98 % flood extension matching from UAV-DEM (0.25 m resolution and ± 0.1 m vertical accuracy) flood 

maps compared to 72 % obtained from a LiDAR DEM with 1 m resolution and 0.15-0.3 m vertical accuracy.  

Tuktoyaktuk’s high-resolution DSM and orthophotographic maps were obtained by digital photogrammetry 

methods linking image matching and SfM algorithms. In this study, the UAV used was a fixed wing (96 cm 

wingspan) eBee Plus from Sensefly. The surveys took place on the 2nd  and 3rd of August 2018 where a 

4.6 km2 area was covered with a spatial resolution of 0.1 m. The UAV was equipped with a senseFly 

S.O.D.A camera with a F/2.8-11, 10.6 mm (35 mm equivalent: 29 mm) RGB lens with a resolution of 20 

MP, The UAV data processing was done in Pix4D Mapper Pro using an AMD Ryzen 9 3900X 12-Core CPU  

with 64 GB of RAM and a Nvidia GTX 1060 Ti to perform feature detection, image matching and modelling 

using Pix4D’s disclosed SfM algorithms. The average ground sampling distance (GSD) was 2.32 cm, the 

number of calibrated images 5020 out of 5955 (due to large areas with water) with 4 ground control points 

and a total of 12 independent checkpoints with a mean error of 0.17 m in Z. The fast-changing nature and 

spatial variability of environmental processes occurring in Tuktoyaktuk requires data of corresponding high 
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spatial and temporal resolution. The UAV SfM DSM produced after processing and corrected with ground 

control points (GCPs) is shown in Figure 13. 

 

Figure 13 - DSM derived from the UAV flights and used for modelling with a cell size of 0.1 by 0.1 m. 

 

UAV 



38 

 

4.2.3. Field Survey of Culverts 

 The surveyed culverts are represented in Figure 14. The height coordinate provided by the RTK GNSS 

system with a precision of approximately 3 cm in x, y and z, and the diameter measured in-situ was used 

to interpolate each culvert profile. It was assumed that all surveyed culverts allow the flow of water despite 

the condition of many was impossible to assess due to the presence of debris obstructing the section.  

  

Figure 14 – Location of all the surveyed culverts included in both models.  

Figure 15 shows the importance of including the culvert system in the flood modelling of Tuktoyaktuk. The 

visible flooded area would not be included in the model output if the surveyed culvert system was not 

implemented in the models. 
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Figure 15 – Culverts 1 and 2, representing the connectivity of an area that was previously considered as 
unconnected in the DEMs without the incorporation of the culvert system. A) Facing North. B) Facing 

South. 

 The culverts’ profiles were generated with the Trend interpolation tool in ArcGIS Pro. The geometry only 

reflects the diameter and length of the pipe, resulting in a projected surface in a rectangular shape. Figure 

16 shows the original UAV DSM surrounding culverts 1 and 2 and a picture taken during a storm event that 

shows the water flowing and connecting the inner area with the sea. The changes are also visible in Figure 

17, where the profile of culvert 1 is represented in detail and compared with the original elevation. This 

process was replicated for the elevation datasets used in MOHID after the resampling to 5 x 5 m cell size 

that would, otherwise, cause the generalization of the culvert features leading to the loss of connectivity.  

 

Figure 16 – Original UAV DSM with two of the surveyed culverts. Note that the topography of the culverts 
is visible in the DSM. 

A) B) 



40 

 

 

Figure 17 – Elevation changes after the implementation of linear interpolation for Culvert 1. 
 

4.3. Tide Data and Storm Surge Assessment 

The map in Figure 18 shows the location where the predicted sea level rise (SLR) scenarios data from 

(Church et al., 2013) used in this thesis was extracted. This location was selected because it was the closest 

available data to the study area. The sea level rise data used is represented in Figure 19. It is possible to 

see that the average values for both RCP scenarios, and its confidence intervals starts diverging more 

significantly after the year 2040. In 2100, the uppermost limit of the 95% confidence interval for scenario 

RCP8.5 indicates a threatening sea level rise of 0.95 m surrounding Tuktoyaktuk. 

 

Figure 18 – Location of Tuktoyaktuk relative to the IPCC sea level rise data predictions sampling point 
from https://icdc.cen.uni-hamburg.de/las/getUI.do (Church et al., 2013). 
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Figure 19 – Predicted sea level rise based on IPCC Scenarios RCP4.5 and RCP8.5 with a confidence 
interval of 95% relative to 1986-2005 for Tuktoyaktuk – extracted at 70.5 N; 133.5 W from 

https://icdc.cen.uni-hamburg.de/las/getUI.do (Church et al., 2013). 

The contribution of land subsidence registered in Tuktoyaktuk is of 1.68 mm year-1 (James et al., 2014), 

corresponding to approximately 17 cm in 100 years, but this process is not considered in the sea level rise 

projections in this thesis, due to the uncertainty regarding how the phenomenon affects spatially the study 

area. On top of the SLR scenarios two storm surge return periods were included in the flood analysis, a 50-

year return period and a 100-year return period. To calculate the return periods, it was necessary to isolate 

the water level records from Tuk’s tide gauge into their three components: mean sea level (MSL), 

astronomical tide and non-tidal residual (Pugh, 1987), by performing a harmonic analysis. For the harmonic 

analysis, only the years with 50% or more of completion data were used to estimate tide harmonics, as 

suggested by Parker (2007). The software package used in MATLAB was UTide (Codiga, 2021) tool. Since 

the harmonic function of degree zero reflects the MSL, estimated yearly, by subtracting the modelled 

harmonics output from the tide gauge hourly data, the resulting non-tidal residue is detrended of the SLR 

(Vieira et al., 2012). This process was applied to all the available water level time series of hourly data, for 

the open water season, in order to extract the yearly maximum of the non-tidal residual that corresponds 

to the storm surge water level. The yearly maximum storm surge water level was then inputted for the 

extreme event analysis where a simple Gumbel distribution was used to compute flood return periods for 

the storm surge scenarios modelled (Al-Mashidani et al., 1978).  

4.4. Time-lapse Cameras for Storm Surge Analysis 

To register the dynamics of a storm surge event, a PENTAX Optio WG-2 GPS camera was installed in the 

Tuktoyaktuk Community Learning Centre with a time-step of 5 minutes. It operated from 04/08/2019 06:50 

to 05/08/2019 22:00 (local time). Pictures taken during a storm surge event on the 5th of August were also 
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used to visually validate the models’ outputs. These locations, represented in Figure 20, were chosen 

because the monitored areas included distinguishable reference points in the UAV orthophotomap that 

facilitated the visual validation process and where the water surface was sheltered from strong wave action.   

 

Figure 20 – Location of the time-lapse camera and other pictures taken during the storm event of the 5th 
of August 2019.  

4.5.  Driftwood Mapping 

Driftwood accumulation caused by strong winds and wave action is very frequent along the shore 

surrounding the study area. An example of driftwood accumulation in Tuktoyaktuk is illustrated in Figure 

21. The driftwood debris can serve as indicators of past flooding events (Harper, 1985; Whalen et al., 2009) 

and due to the high-resolution of the UAV imagery, as seen in Figure 21 B, it was possible to map these 

features with precision. 

Kitti Hall 

Tuk Community 

Learning Centre 
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Figure 21 – Driftwood accumulation in Tuktoyaktuk. A) Picture taken during field work. B) Driftwood debris 
visible from UAV footage 

The geographic distribution of the driftwood features, manually digitized in ArcGIS Pro along the uppermost 

limit of the debris as linear features using the UAV orthophoto map is available in the Appendix (See Figure 

A 1). Whalen (2005) used the LiDAR DSM along the Mackenzie Delta to extract the Z coordinate of the 

driftwood features to identify past flooding maximums. In this study the approach was based on the tide 

gauge data instead of the height of the driftwood features. According to the tide gauge data analyzed, the 

highest hourly water level registered by the tide gauge was 2.23 m above Chart Datum on the 04/10/1963 

at 14:00. This water level was used as input to run simulations on both bathtub and hydrodynamic models 

and on both elevation datasets to test the hypothesis of the 2.23 m above Chart Datum being the highest 

water level that occurred in Tuktoyaktuk. To validate the results, the driftwood uppermost limit polylines 

were converted to points with the Generate Points Along Lines tool in ArcGIS Pro with 1 m distance from 

each other. The outputs of the models were overlayed by the point features to identify which points were 

marked as flooded and which hazard class, for the bathtub model, and flooded for the hydrodynamic model. 

The points that were not contained by the modelled water surface were marked as “Mismatching Points”. 

4.6. Bathtub Flood Modelling 

4.6.1.  Model Description 

Using elevation and water level data as core variables is a common practice in flood management. This 

simplified modelling technique is called bathtub model and there are only two variables in play: the 

inundation level and elevation. There are, however, several sources of uncertainty affecting the resulting 

inundation maps, such as the accuracy of the elevation model, the uncertainty related with the sea level 

rise projections, converting Chart Datum (CD) to the elevation data vertical datum, evenness of the tidal 

height across the study area and the uncertainty associated with the process of computing storm surge 

water levels and return periods.  

The bathtub inundation model is based on the simplistic premise that an area with an elevation less than 

the input flood level will be considered as flooded. Hence, the inundated areas are identified by a simple 

calculation procedure over the raster elevation dataset where all cells with values lower than the input are 

A) B) 
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marked as flooded. Since only elevation data is needed for its application, estimates regarding hydrological 

data must be made if this data is absent, which is a common case. There are two fundamental ways to 

construct the bathtub model: with or without hydrological connectivity (Van de Sante et al., 2012). Models 

that include hydrological connectivity require that, in addition to being below the flood level, a specific cell 

or area must be hydrologically connected to the source of flooding, in this case the shoreline, for it to be 

inundated. Many studies that used bathtub models to map coastal flood inundation worldwide and both 

hydrologically connected and non-connected variations (Titus and Richman, 2001; Strauss et al., 2012). 

Van de Sante et al. (2012) suggested that the model that contemplates hydrological connectivity is better 

suited for coastal flood since it only affects the adjacent land zone. 

 The bathtub model used was designed to incorporate the measured uncertainties regarding water level 

and elevation data and represent them in the flood maps by using 4 classes of probability. This brief 

description is focused on elevation and how its associated errors affect flood maps. The bathtub model 

uses a single-value water elevation surface, obtained from Tuktoyaktuk’s tide gauge, and, in this case, 

overlaid on two different sets of topography, LiDAR and UAV. Using the local CD allows adjusting elevations 

to a uniform tidal stage to obtain, for example, the mean highest astronomical tide (MHAT) water level, for 

the study area. However, converting datums creates uncertainty (Yunus et al., 2016). The tidal surface is 

not spatially constant. In this case only one tide gauge was used, meaning that no interpolation was made, 

and the same water height is applied to the study area, but it is necessary to determine the difference 

between the water level registered by the tide gauge in meters above CD and the vertical datum of the 

elevation data, CGVD2013. This was achieved by sampling different elevation points across the shore of 

the study area, represented in Figure 22, using the water uppermost limit, computing the differences 

between the CGVD2013 value of Z and the tide gauge water level in m above CD registered at the time of 

the survey and calculating the mean value of the differences that results in a global value of uncertainty 

expressed by the standard deviation of the samples.   
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Figure 22 – Spatial distribution and location of the points used to determine the difference between Chart 
Datum and CGVD2013. Basemap: ESRI. 

Another source of uncertainty, potentially higher and with spatial variability is the elevation data itself and 

its error, expressed as its RMSE. In this model, the technique used to estimate the areas of higher 

uncertainty is the one described by NOAA (2010). Without water level inaccuracies, the inundation from a 

single-value water surface is dependent only on the elevation uncertainty. The errors in elevation data are 

reported as the RMSE and incorporate horizontal errors (FEMA, 2003).  RMSE is equivalent to standard 

deviation (SD) if the data is unbiased (De Smith et al., 2007). In this study it is assumed that RMSE of both 

elevation datasets is analogous to SD for allowing the computation of a z-score from the data incorporated 

in the model. The RMSE was computed for each elevation dataset, by applying the general equation:  

𝑅𝑀𝑆𝐸 =  √
∑ ‖𝑦(𝑖) − 𝑦(𝑖)̂ ‖

2𝑁
𝑖=1

𝑁
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 The locations of the points used to sample the elevation datasets were chosen randomly from a set of 

points surveyed in 2019 with RTK positioning with a precision of approximately 3 cm in x, y and z are 

represented in Figure 23. 

 

Figure 23 – Spatial distribution of the points used to determine elevation dataset RMSE. A) UAV. B) 
LiDAR. 

To compute a z-score the RMSE must be substituted for SD as seen in Equation (1): 

𝑍𝑠𝑐𝑜𝑟𝑒(𝑣𝑎𝑙𝑢𝑒) = (𝑉𝑎𝑙𝑢𝑒 − 𝑀𝑒𝑎𝑛(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛))/𝑆𝐷(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 

The z-score is the number of standard deviations a specific value deviates from the mean as shown in 

Figure 24. 

 

Figure 24 - Z-scores / Standard-Scores and normal distribution. 

(1) 

A) B) 
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Equation (1) must be rewritten to incorporate the inundation level and the elevation at a given cell in a 

specific location X,Y. 

𝑍𝑠𝑐𝑜𝑟𝑒(𝑋,𝑌) = (𝑊𝑎𝑡𝑒𝑟 𝐿𝑒𝑣𝑒𝑙 − 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛(𝑋,𝑌))/𝑅𝑀𝑆𝐸(𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎) 

Applying Equation (2), the z-score is computed for any elevation data for the given water level and then 

used to find the percentile rank, represented as Cumulative % in Figure 24. This method uses a cumulative 

approach, therefore, all the area under the curve, instead of the discreet area between standard deviations 

and the mean. The probability is determined by centring the respective normal distribution function at the 

topographic profile to evaluate the input flood water level occurrence probability in a certain elevation at a 

given location as depicted in Figure 25. A comprehensive example is explained in NOAA (2010). 

 

Figure 25 - Estimation of flooding probability for an inundation level of 2.5 m for different terrain elevations 
accounting for uncertainty by applying NOAA’s Coastal Services Center method. Adapted from (Antunes 

et al., 2019). For the indexes, see Table 2. 

The z-score outputs provide a basic understanding of the uncertainty of the flood mapping. They emphasize 

that uncertainty is not uniform. This plays a big role regarding slope. Areas with low slope angle have higher 

uncertainty, this meaning that a small vertical error will generate a large horizontal error. In areas with higher 

slopes, a large vertical error is limited to a certain horizontal expression of that error. In a coastal cliff, for 

example, large vertical errors translate in small horizontal errors. A particular flood extent can have low 

uncertainty for a given water level and high uncertainty for another water level. This phenomenon occurs 

because the second level falls at an elevation extent with lower slopes (NOAA, 2010). 

In this model, the error in determining the water surface is also contemplated, with the Chart Datum  

conversion to CGVD2013. The error that is associated with the water surface is not linked to the elevation 

error, which allows a sum of squares errors to be performed as stated in Equation (3).  

𝑇𝑜𝑡𝑎𝑙 𝑆𝐷 = (𝐸𝑟𝑟𝑜𝑟 (𝑆𝐷)1
2
+ 𝐸𝑟𝑟𝑜𝑟 (𝑆𝐷)2

2
+ … + 𝐸𝑟𝑟𝑜𝑟 (𝑆𝐷)𝑁

2
)0.5 

(2) 

(3) 
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For a single-value water level model, the total SD error would be summed as seen below in Equation (4) 

based on the assumption that RMSE(elevation) is equal to SDElevation: 

𝑆𝐷𝐼𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 = ( 𝑆𝐷𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛
2 + 𝑆𝐷𝑤𝑎𝑡𝑒𝑟 𝑙𝑒𝑣𝑒𝑙

2)0.5 

Substituting SDInundation for RMSE(Elevation Data) in Equation (4) yields: 

𝑍𝑠𝑐𝑜𝑟𝑒(𝑋,𝑌) = (𝐼𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛(𝑤𝑎𝑡𝑒𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒) − 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛(𝑋,𝑌))/𝑆𝐷(𝐼𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛) 

The errors and uncertainties associated with the sea level rise scenarios, the results from the harmonic and 

storm surge analyses were also incorporated by the same approach, where 𝑆𝐷𝑡𝑜𝑡𝑎𝑙 is defined as: 

𝑆𝐷𝑡𝑜𝑡𝑎𝑙 = ( 𝑆𝐷𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛
2 + 𝑆𝐷𝐶ℎ𝑎𝑟𝑡 𝐷𝑎𝑡𝑢𝑚 𝑡𝑜 𝐶𝐺𝑉𝐷2013

2 + 𝑆𝐷𝑡𝑖𝑑𝑒
2 + 𝑆𝐷𝑠𝑒𝑎 𝑙𝑒𝑣𝑒𝑙 𝑟𝑖𝑠𝑒

2 + 𝑆𝐷𝑠𝑡𝑜𝑟𝑚 𝑠𝑢𝑟𝑔𝑒
2)0.5 

Substituting 𝑆𝐷(𝐼𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛) in Equation (5) for 𝑆𝐷𝑡𝑜𝑡𝑎𝑙 from Equation (6): 

𝑍𝑠𝑐𝑜𝑟𝑒(𝑋,𝑌) = (𝐼𝑛𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛(𝑤𝑎𝑡𝑒𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒) − 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛(𝑋,𝑌))/𝑆𝐷𝑡𝑜𝑡𝑎𝑙 

Based in Marcy et al (2011), after creating the computed raster dataset with the z-scores, a first Reclassify 

tool converts the z-score of each cell to its respective Cumulative % with the normal distribution. A second 

use of the Reclassify tool changes the Cumulative % values to 4 classes of probability that depict the 

mapping confidence as seen in Table 2. 

Table 2 – Probability range and hazard classes used for mapping. Adapted from Antunes et al. (2019). 

Hazard Class Level 

Low Moderate High Extreme 

2 3 4 5 

Flood Probability 20–40 % 40 – 60 % 60–80 % >80 % 

 

4.6.2.  Model Setup 

The bathtub model offers a simplistic approach compared to hydrodynamic modelling, which translates in 

a faster design and implementation. The model ran on LiDAR and UAV elevation data, based on the 

approach described in the previous chapter. RCP 4.5 and RCP 8.5 SLR scenarios were added on top of 

the derived mean highest astronomical tide and for both storm surge return periods (50-year and 100-year). 

The hydrological connectivity of cells was set by the Region Group tool in ArcGIS Pro with eight neighbours, 

meaning that the connectivity is evaluated in both orthogonal and diagonal of each input. Culverts that allow 

the flow of water from and to areas that would be unconnected by analysing solely the elevation data, were 

incorporated in both elevation datasets. A third level of hydrological connectivity is related with the 

shoreline. Since the focus in a bathtub approach is sea level rise (SLR), flooding will only occur if there is 

(4) 

(5) 

(6) 

(7) 



49 

 

connectivity to the sea. To model this phenomenon, the Buffer tool was used to the digitized shoreline of 

0.5 m radius to create a polygon that is used to select polygons by location that are connected to the 

shoreline and remove the unconnected ones. The hydrological connectivity approach is represented in 

Figure 26 c). 

 

Figure 26 – Different bathtub approaches. (a) zero connectivity rule; (b) four-way connectivity in 
orthogonal directions, excluding cells not connected to the sea and (c) eight-way hydrological connectivity 
rule for 1 m SLR where a cell is flooded only if it is connected to a water body directly or via adjacent cells 

in either orthogonal or diagonal directions (Yunus et al., 2016). 

 The ArcGIS Pro Model Builder layout designed specifically for this study to automate the modelling process 

of the bathtub approach is represented in Figure 27. After obtaining the layer with the flooded areas by 

hazard class, the layers Building Footprints, Roads and Parcels were overlayed to generate maps of the 

affected infrastructures by hazard class.



        

 

Figure 27 – ArcGIS Pro Model Builder process used for bathtub modelling.



  
  
  

  

4.7. Hydrodynamic Flood Modelling (MOHID) 

4.7.1.  Model description 

MOHID Water is a 3D numerical model that simulates free surface water bodies developed by MARETEC 

(Marine and Environmental Technology Research Centre) at Instituto Superior Técnico, University of 

Lisbon. MOHID Studio was developed to aid the implementation of the model with a complete GUI, GIS 

data processing, simulation editing, visual representation of results, plotting time series and exporting tools. 

The model has been used in several coastal and estuarine locations and it can simulate complex features 

of flows (Mateus & Neves, 2013). It started with a finite-differences approach and later incorporated 

baroclinic mode (Santos, 1995) and finite volumes for generic vertical coordinates (Martins, 2001).  

The computation of horizontal velocities the module Hydrodynamic solves Navier-Stokes’s equations using 

the hydrostatic approach and Boussinesq and Reynolds approximations (Franz et al. 2017): 

 

Where 𝑉 represents the control volume, 𝐴  the surface of the control volume, 𝑣𝐻⃑⃑ ⃑⃑  = (𝑢, 𝑣) the horizontal 

velocity vector, 𝑣 = (𝑢, 𝑣, 𝑤) the velocity vector, �⃑�  the surface normal, 𝑛𝐻⃑⃑⃑⃑  ⃑ the normal of the horizontal plane, 

𝑣𝑇 the turbulent viscosity, 𝜌 the water density, 𝑝 the water pressure, 𝑔 the acceleration of gravity, 𝜂 the 

water level, �⃑�  the earth rotation vector and 𝐹  the external forces. In Equation (8) the first component 

represents advection, the second diffusion, the third pressure gradient forces, the fourth Coriolis and the 

fifth external forces. 

Water pressure is calculated by: 

 

In Equation (9) 𝑧 is the vertical coordinate and 𝑝𝑎𝑡𝑚 the atmospheric pressure. 

To compute the density, MOHID utilizes the state equation from UNESCO (Fofonoff and Millard, 1983). 

The density is computed as a function of temperature salinity and pressure. The computed values are then 

used in the water velocity calculation, depicted in Equation (8). The hydrostatic equilibrium approximation 

states that the pressure in one point only depends on the weight caused by the water column in this point. 

This is valid when the vertical forces, excluding the gravity force, are negligible compared to the force of 

gravity. The Boussinesq approximation states that the differences in densities are ignored except when 

multiplied by the acceleration of gravity. Figure 28 represents the communication between the different 

modules and how they relate with the module Hydrodynamic (MARETEC, 2012). 

(8) 

(9) 
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Figure 28 - Hydrodynamic Module flux of information with other modules. Adapted from MARETEC 
(2012). 

The computation of the free surface is assured by solving the continuity equation for an uncompressible 

fluid in 2D. The height of the free surface is determined only by the horizontal fluxes of flow and any other 

sources or sinks of water resulting in (Leitão 2002): 

 

In Equation (10) the control volume is unknown, 𝜌 is known and the horizontal velocities were computed, 

but since the horizontal grid is well defined, the equation is solvable with only one unknow left which is the 

free surface height. To compute the vertical velocity, it is necessary to apply the divergence theorem and 

Leibniz integral rule to the continuity equation for an uncompressible fluid resulting in Equation (11) (Leitão 

2002), where ℎ is the depth. 

  

The equations’ spatial discretization achieved by the finite volumes’ method. The discretized equations are 

applied to a control volume where the solution is independent of cells’ geometry. For the horizontal spatial 

discretization, an Arakawa-C (Arakawa, 1966) is used. Water properties are computed at the cells’ centre 

while velocities are computed at the surfaces. Since the solution of the equations is independent of the 

𝜕

𝜕𝑡
=  𝜌 𝑑𝑉 =   𝜌 (𝑣𝐻⃑⃑ ⃑⃑   ∙  �⃑� ) 𝑑𝐴 + 𝑆𝑜𝑢𝑟𝑐𝑒𝑠 − 𝑆𝑖𝑛𝑘𝑠

𝐴𝑉

 (10) 

(11) 
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geometry of the cells, it is possible to use a generic vertical discretization (Martins et al. 1998), allowing 

different types of layers in the same model’s domain. Sigma layers (Figure 29) adapt to bathymetry and to 

the water height. Utilizing sigma layers for the water surface is useful given its advantage in adapting to the 

change of the water level. 

 

Figure 29 – Sigma layers with 4 layers. Adapted from MARETEC (2012) 

The temporal discretization of equations is made possible by an ADI (Alternating Direction Implicit) 

algorithm proposed by Leendertse (1967). 

4.7.2.  Model Setup 

MOHID modules are selected and combined according to the geometrical requirements and state variables. 

The modules used were, Atmosphere, Geometry, Hydrodynamic, InterfaceWaterAir, Model (core module), 

Tide, Turbulence and WaterProperties. For this study, the adopted geometry was composed by 3 sigma-

type layers with 0.4, 0.3 and 0.3 relative thickness, from bottom to top. Since the main interest was the 

behaviour of the water surface, the layer geometry was kept at 2D. All other water properties were set as 

default. To maintain model stability, the horizontal viscosity (VISCOSITY_H) was set at 0.001 m2/s. A 

simplified workflow for the hydrodynamic modelling process is represented in Figure 30. 

 

Figure 30 –Hydrodynamic modelling workflow diagram. 
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The hydrodynamic model grid was set with a regular cell size of 5 x 5 m and an extent as seen in Figure 

31. Since the study area is surrounded by shallow waters and the hydrodynamics of the model are based 

in tidal forcing, designing a smaller model extent has the advantage of using a smaller grid cell size and, 

therefore, decreasing elevation data loss to resampling algorithms.  

 

Figure 31 – Hydrodynamic model extent and excluded areas. 

 

 The Tidal Forcing Points shown in Figure 31, represent the locations where MOHID Studio’s Tidal Tool 

was used. The water level used for each simulation was forced in these points to generate the tide and 

then validated at the Tide Gauge point. The location of Tidal Forcing Points on the western and northern 

limits of the hydrodynamic grid is justified by the fact that these are considered the open boundaries of the 

system, so the model accurately represents flow direction as tide changes. The water level was read at 

69°26'19.18"N, 132°59'36.51"W. Bathymetry data was derived from the nautical chart “Chart 7685 – 

Tuktoyaktuk Harbour and Approaches” obtained from the Canadian Hydrographic Service website. The 

points given in height above Chart Datum with known depth were digitized manually and interpolated using 

the inverse distance weighted (IDW) method. The output is represented in Figure 32. 

Tidal Forcing Points 

Tide Gauge 
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Figure 32 – Interpolated bathymetry surface used in the hydrodynamic modelling. 

MOHID reads elevation data as DAT format (.dat). Two combined raster datasets of bathymetry and 

elevation models were created. One composed by the LiDAR elevation model and bathymetry and the 

other by the UAV surface model and bathymetry. This data transformation was done on ArcGIS Pro by 

replacing the values of the elevation on the bathymetry raster, creating a continuous and gapless dataset 

that was exported to MOHID Studio as XYZ files (.xyz). To this point, the LiDAR dataset kept the original 1 

x 1 m cell size and the UAV dataset 0.1 x 0.1 m. After importing the XYZ files, a grid with a cell size of 5 m 

by 5 m was created (Figure 32) in MOHID Studio and the XYZ data converted to DAT by the built-in tool 

“xyz to grid data”. Both elevation datasets where resampled to 5 x 5 m cells using the IDW interpolation 

option after applying the Construct Grid Data tool, resulting in the following general parameters: 
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The grid data datasets are represented in the Appendix for UAV (see Figure A 3) and for LiDAR (see Figure 

A 4). 

4.8. Validation of the Model Results 

4.8.1.  Local Knowledge and Field Observations 

Knowledge shared by the local community allowed the validation process of the inundation models. The 

information was provided in form of geodata provided by the staff of the Hamlet of Tuktoyaktuk (see Figure 

A 2), informal interviews and testimonials by locals. Several visits to the most affected areas were arranged 

by the Hamlet where detailed information regarding reference points from previous flood events were 

recorded. The contribution of Calvin Pokiak (Hamlet of Tuktoyaktuk) was essential for this study, his 

enthusiasm, interest, and knowledge were vital to better understand the dynamics and the impacts of past 

flooding events in Tuk. 

4.8.2.  UAV Imagery Analysis and Chart Datum Conversion 

The use of the georeferenced aerial footage facilitates the process of validation due to the high number of 

pictures taken along the shoreline. The timestamp of each picture was used to relate the shoreline water 

height with the water level given by the tide gauge at the locations represented in Figure 33. These points 

were used to establish the correspondence between Chart Datum and the vertical datum of both DSM and 

DEM, CGVD2013, by extracting the value of Z from the UAV DSM at the uppermost limit of the water 

surface to compute the difference between the water level recorded at the tide gauge at the time of the 

picture taken by the UAV. 
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Figure 33 – Location of the points used to validate the inundation models.  

To effectively compare the models, the points are located along shore segments that did not change 

significantly from the LiDAR DEM to the UAV DSM, thus the reduction in sample size compared to the 

points used to convert the Chart Datum to CGVD2013.  
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5. Analysis and Discussion of the Results 

5.1. Data Uncertainty Assessment 

5.1.1.  Chart Datum Conversion to CGVD2013 

Figure 34 shows the location of the points where the tool Sample was used to determine the difference 

between Chart Datum and CGVD2013 and the spatial variability of the absolute error computed for each 

sampling point in relation to the average value of 0.61 m. The smaller numbers represent the point identifier 

while the numbers with the white halo are the values of the absolute error for a given point. The results 

show a high spatial and numerical variability in the computed differences. These differences can be 

explained by the weather conditions that disrupt the water surface and cause waves, the difficulty in 

identifying the exact location of the uppermost limit of the water surface in the images, the inherent vertical 

and horizontal errors of the surface model and the travel time of the tidal wave to the tide gauge. 

 

Figure 34 - Absolute error in meters by gauge height sampling point.



        

 

Table 3 – Gauge height sampling point data summary used for Chart Datum conversion.

OBJECTID Img Date (UTC) Hour (UTC) Hour (UTC-6)
Flight 

Number

Z Drone 

(m)

Tide Gauge 

Water Level (m 

above Chart 

Datum)

Difference 

(m)

Absolute 

Error (m)

Relative Error 

(m)

Squared 

Error

WindSpeed 

(km/h)

Wind 

Direction 

(10s Deg)

1 EP-11-32389_0032_0162 01/08/2018 18:49:00 12:49:00 1 -0.217 0.51 0.73 0.12 0.20 0.01 8 11

2 EP-11-32389_0032_0110 01/08/2018 18:46:00 12:46:00 1 -0.100 0.51 0.61 0.00 0.00 0.00 8 11

3 EP-11-32389_0032_0145 01/08/2018 18:48:00 12:48:00 1 -0.327 0.51 0.84 0.23 0.38 0.05 8 11

4 EP-11-32389_0032_0228 01/08/2018 18:56:00 12:56:00 1 -0.229 0.51 0.74 0.13 0.22 0.02 7 11

5 EP-11-32389_0032_0345 01/08/2018 19:00:00 13:00:00 1 -0.294 0.51 0.80 0.20 0.32 0.04 7 11

6 EP-11-32389_0033_0017 01/08/2018 19:50:00 13:50:00 2 0.057 0.52 0.46 0.14 0.36 0.02 7 10

7 EP-11-32389_0033_0058 01/08/2018 19:53:00 13:53:00 2 -0.005 0.52 0.53 0.08 0.21 0.01 7 10

8 EP-11-32389_0033_0093 01/08/2018 19:55:00 13:55:00 2 0.134 0.52 0.39 0.22 0.14 0.05 7 10

9 EP-11-32389_0033_0119 01/08/2018 19:56:00 13:56:00 2 -0.217 0.52 0.74 0.13 0.08 0.02 7 10

10 EP-11-32389_0033_0148 01/08/2018 19:58:00 13:58:00 2 -0.004 0.52 0.52 0.08 0.01 0.01 7 10

11 EP-11-32389_0034_0086 01/08/2018 23:18:00 17:18:00 3 0.248 0.81 0.56 0.05 0.05 0.00 10 9

12 EP-11-32389_0034_0167 01/08/2018 23:23:00 17:23:00 3 0.195 0.81 0.62 0.01 0.04 0.00 10 9

14 EP-11-32389_0034_0254 01/08/2018 23:28:00 17:28:00 3 0.243 0.82 0.58 0.03 0.13 0.00 10 9

15 EP-11-32389_0034_0261 01/08/2018 23:29:00 17:29:00 3 0.239 0.82 0.58 0.03 0.09 0.00 10 9

16 EP-11-32389_0034_0338 01/08/2018 23:33:00 17:33:00 3 0.289 0.82 0.53 0.08 0.13 0.01 10 9

17 EP-11-32389_0035_0036 02/08/2018 00:18:00 18:18:00 4 0.319 0.87 0.55 0.06 0.04 0.00 15 8

18 EP-11-32389_0035_0122 02/08/2018 00:16:00 18:16:00 4 0.343 0.87 0.53 0.08 0.12 0.01 15 8

19 EP-11-32389_0035_0214 02/08/2018 00:25:00 18:25:00 4 0.297 0.88 0.58 0.02 0.04 0.00 15 8

20 EP-11-32389_0035_0249 02/08/2018 00:27:00 18:27:00 4 0.347 0.88 0.53 0.07 0.40 0.01 15 8

21 EP-11-32389_0035_0268 02/08/2018 00:28:00 18:28:00 4 0.248 0.88 0.63 0.02 0.46 0.00 15 8

22 EP-11-32389_0037_0367 02/08/2018 17:15:00 11:15:00 5 -0.192 0.66 0.85 0.24 0.25 0.06 15 5

23 EP-11-32389_0037_0463 02/08/2018 17:21:00 11:21:00 5 -0.235 0.65 0.88 0.28 0.28 0.08 15 5

24 EP-11-32389_0037_0178 02/08/2018 17:05:00 11:21:00 5 -0.089 0.67 0.76 0.15 0.22 0.02 15 5

25 EP-11-32389_0037_0175 02/08/2018 17:05:00 11:05:00 5 -0.095 0.68 0.78 0.17 0.20 0.03 15 5

26 EP-11-32389_0039_0081 02/08/2018 17:56:00 11:56:00 7 -0.162 0.58 0.74 0.13 0.12 0.02 10 1

27 EP-11-32389_0039_0243 02/08/2018 18:05:00 12:05:00 7 -0.160 0.57 0.73 0.12 0.22 0.02 10 1

28 EP-11-32389_0039_0308 02/08/2018 18:09:00 12:09:00 7 -0.120 0.56 0.68 0.07 0.02 0.01 10 1

29 EP-11-32389_0039_0418 02/08/2018 18:16:00 12:16:00 7 -0.194 0.55 0.74 0.14 0.28 0.02 10 1

30 EP-11-32389_0039_0470 02/08/2018 18:19:00 12:19:00 7 -0.043 0.55 0.59 0.01 0.14 0.00 10 1

31 EP-11-32389_0041_0022 02/08/2018 19:35:00 13:35:00 9 0.040 0.48 0.44 0.17 0.69 0.03 12 4

32 EP-11-32389_0042_0358 02/08/2018 20:12:00 14:12:00 10 -0.041 0.48 0.52 0.09 0.00 0.01 13 3

33 EP-11-32389_0042_0097 02/08/2018 19:57:00 13:57:00 10 0.293 0.48 0.19 0.42 0.00 0.18 13 3

34 EP-11-32389_0042_0434 02/08/2018 20:17:00 14:12:00 10 -0.126 0.48 0.61 0.00 0.17 0.00 13 3

35 EP-11-32389_0042_0500 02/08/2018 20:20:00 14:20:00 10 -0.128 0.48 0.61 0.00 0.20 0.00 13 3

36 EP-11-32389_0042_0577 02/08/2018 20:25:00 14:25:00 10 -0.221 0.49 0.71 0.10 0.60 0.01 13 3

37 EP-11-32389_0043_0154 02/08/2018 20:54:00 14:54:00 11 0.022 0.51 0.49 0.12 0.20 0.01 10 5

38 EP-11-32389_0043_0179 02/08/2018 20:56:00 14:56:00 11 0.269 0.51 0.24 0.37 0.37 0.13 10 5

40 EP-11-32389_0043_0203 02/08/2018 20:57:00 14:57:00 11 0.024 0.51 0.49 0.12 0.09 0.01 10 5

41 EP-11-32389_0043_0233 02/08/2018 20:59:00 14:59:00 11 0.126 0.51 0.38 0.22 0.27 0.05 10 5

44 EP-11-32389_0032_0463 01/08/2018 19:07:00 13:07:00 1 -0.153 0.51 0.66 0.06 0.24 0.00 7 11

45 EP-11-32389_0032_0510 01/08/2018 19:09:00 13:09:00 1 -0.259 0.51 0.77 0.16 0.14 0.03 7 11



  
  
  

  

Table 3 summarizes all the timestamps of the UAV footage, coordinates and heights for each point utilized 

in the process. The box plot in Figure 35 shows the statistics obtained for the difference between the value 

measured at the tide gauge in Chart Datum the sampling from the UAV DSM in CGVD2013. The boxplot 

reflects the variability of the data with a standard deviation equal to 15 cm (SDCD to CGVD2013), but during the 

validation process, the value adopted of 0.61 m (mean) for the conversion of the tide gauge data in Chart 

Datum to CGVD2013 resulted in high precision in the modelled water-surfaces. 

 

Figure 35 – Boxplot of Gauge Height Sampling Points difference between CGVD2013 and Chart Datum. 

 

 

 

 

 

 

 

 

 

 

 

 

Average 0.61

Median 0.61

Stdev 0.15

Population 41
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Elevation Data 

 For the bathtub model, as explained in Chapter 3, the RMSE was calculated for both UAV and LiDAR 

elevation datasets. The computed RMSE and spatial distribution obtained by the IDW tool of the squared 

differences is expressed in Figure 36. 

 

Figure 36 – Spatial distribution of the squared differences of Z-GPS and Z-DSM and Z-DEM in 
CGVD2013. 

The RMSE in meters of the LiDAR dataset is higher, resulting in a higher overall uncertainty and, therefore, 

an increase in area of flood hazard classes of lower probabilities. Figure 36 shows that the interpolated 

surfaces of the squared differences of the different elevation models is very distinct and that varies 

significantly from location to location. A notorious deviation can be observed in the LiDAR DEM, especially 

in southeast region of the study area where the values ranging from 0.1 to 0.9, translating in larger flood 

extents associated with lower probability hazard classes, There are, however, areas where the UAV DSM 

has the same magnitude of deviation as the LiDAR DEM, indicating where the model could use more GCPs 

to improve its vertical accuracy, such as Flagpole Point, the area surrounding Mangilaluk School and the 

south shore of Tareoknitok Lagoon.  

Tareoknitok 

Lagoon 

Flagpole Pt. 

Mangilaluk School 
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The output of subtracting the two elevation datasets is shown in Figure 37. As expected, the higher 

differences represent the shrub-vegetated areas and features such as cars, boats, and buildings, that are 

eliminated in the generalization process of creating a DEM, as opposed to a DSM. Although, it is possible 

to identify an overall agreement of the LiDAR elevation by Flagpole Point (areas in light blue) with 

differences ranging from -50 to -10 cm. In areas without vegetation or buildings, both datasets show the 

lowest differences in absolute value, as it represents the areas where both models are expected to 

represent the same surface. The uncertainty regarding the conversion from CGVD28 to CGVD2013 of the 

LiDAR dataset could explain some of the deviations, but since the phenomenon is not uniform across the 

study area, it can be a consequence of localized poorer vertical accuracy. Another possible cause is related 

with soil subsidence and, since there is no vegetation contributing to higher elevations for the UAV DSM in 

the sectors with negative values. The dark red areas highlight not just the buildings that are included in the 

UAV DSM, but also indicate deposition of new sediments along the western shoreline, while the dark blue 

shows where coastal erosion processes had been the most effective. It is worth mentioning the positive 

effects of the concrete slabs installed in Flagpole point on protecting the shore from shoreline retreat caused 

by erosion. 

  

Figure 37 – Difference between UAV DSM and LiDAR DEM in CGVD2013. 

Flagpole pt. 

Ptarmigan pt. 

Water Reservoir 
Airstrip 
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5.2. Harmonic Analysis of the Tides 

Figure 38 shows the hourly harmonized time series data and tidal range for the open water season obtained 

with UTide. It reflects the rise of mean sea level and applying a linear trend fit to the data resulted in a value 

of approximately 2.2 mm/year of mean sea level rise with a 𝑅2 = 0.938, as shown in Figure 39. This value 

is lower than the most recent data published by NOAA that sets the value for mean sea level rise in 

Tuktoyaktuk as 2.75 ± 1.07 mm/year from 1961 to 2018 and 3.5 ± 1.1 mm/year from 1961 to 2007 published 

by Manson & Solomon (2007). 

 

Figure 38 – Output of harmonic analysis for Tuktoyaktuk tide gauge in meters above Chart Datum. 

 

 

Figure 39 – Yearly maximum tide height and linear trend in meters above Chart Datum derived from the 
harmonic analysis. 
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The adopted Mean Highest Astronomical Tide (MHAT) water level was 0.92 m above chart datum (0.31 m 

in CGVD2013) and a value of SD of 0.02 m (SDTide) obtained from UTide summary output. The water level 

used to define the MHAT was obtained by computing the mean of the maximum tide height of the years 

2017 to 2020. The yearly maximum values are represented in Figure 39 and occur usually between mid-

July to mid-August.  

5.3. Storm Surge Analysis 

The hourly residual water levels in Figure 40 were then used in the extreme event Gumbel analysis that 

requires the highest water level recorded by year.  

 

Figure 40 – Residual non-tidal hourly water level plotted after removing the astronomical tide and MSL 
obtained by harmonic analysis. 

The non-exceedance probability plot and the quantile-quantile plot (Figure 41) reflect the significant gaps 

in data and inputs with similar water levels by the two slight deformities between quantiles 0.7 and 1.2. 

The outputs from the Flood Frequency Distribution (FFD) package for the Gumbel distribution (Benkaci, 

2021) are represented in Figure 42. The values used for flood mapping were the average values of 50-year 

return period and 100-year return period and correspond to 1.9 and 2.1 m, respectively. The uncertainty 

associated to the Gumbel distribution was set as the SD derived from the 95% confidence interval and a 

value of 0.35 and 0.44 m (SDStorm Surge) to represent the higher uncertainty, larger intervals, of higher return 

periods. The storm surge water levels obtained for different return periods are summarized in Table 4. 

Distribution parameters, correlation coefficient and RMSEGumbel extracted from FFD are summarized in 

Table 5. 

 

● Residual non-tidal water level 
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Figure 41 – Gumbel frequency distribution and QQ-plot from the Gumbel distribution. 

 

Figure 42 – Gumbel distribution output of the storm surge water levels obtained from MATLAB Flood 
Frequency Distribution package. 

Table 4 – Average storm surge water level by return period with a 95% confidence interval. 

Return Period 
(years) 

Non-Exceedance 
Probability 

Quantile 
(%) 

Lower 
Boundary 

Upper 
Boundary 

2 0.5 0.9 0.8 1.1 

5 0.8 1.2 1.1 1.6 

10 0.9 1.4 1.2 1.9 

20 0.95 1.7 1.4 2.3 

50 0.98 1.9 1.6 2.7 

100 0.99 2.1 1.7 3.1 

500 0.998 2.6 2.1 3.9 

1 000 0.999 2.8 2.2 4.2 

10 000 0.9999 3.5 2.7 5.3 

R² = 0.9995
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Table 5 – Gumbel distribution summary output. 

Gumbel Distribution Parameters 
a 0.8 

b 0.3 

Correlation Coefficient 0.989 

Root Mean Squared Error (RMSE Gumbel) 0.07 

5.4. Validation of the Models 

5.4.1.  UAV Imagery Analysis 

The results of the visual validation process of both bathtub and hydrodynamic models for the LiDAR and 

UAV elevation datasets are presented as a summary, due to the high number of point-by-point analysis 

performed. Figure 43 serves as an example of the validation of the bathtub model for the points 1 and 4 for 

the LiDAR DEM (A) and UAV DSM (B) highlighting the differences between the outputs as the UAV 

produces a centimetric alignment with the manually digitized shoreline interface. The water surface 

simulated by the bathtub model on the LiDAR DEM shows precise positioning along the shoreline segment, 

even with a 1 x 1 m cell size, but the main difference resides in the flood probability classes returned by 

each elevation dataset. The UAV displays an almost perfect alignment with the shoreline feature, with 

hazard classes 5 and 4 limiting the water surface, while the LiDAR data outputs a similar flooded extent, 

the hazard classes range from 2 to 3 in both sides of the water-land interface. The phenomenon illustrated 

in Figure 43 is verified in the majority of the points used for validation (1, 2, 4, 5, 12, 19, 20, 22, 23, 29 and 

30) with hazard class 4 and 5 describing almost perfectly the shoreline, however there are exceptions where 

the hazard class that better describes the shoreline feature drop to 3 or even 2, that is the case of points 

11, 14, 15, 16 and 17 that are all located in central sector of the study area facing north, indicating that, 

especially in this area, all the probability classes should definitely be considered for flood mapping. For all 

the points validated the LiDAR only matched the water surface with classes not higher than 3 although the 

simulated water surface showed an overall accuracy as depicted in Figure 43 and not exceeding 5 m further 

inland from the shoreline. 
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Figure 43 – Bathtub model validation and shoreline prediction for sampling points 1 and 4. A) LiDAR 
DEM. B) UAV DSM 

Figure 44 illustrates the accuracy of MOHID coupled with LiDAR (A) and UAV (B) elevation datasets for the 

validation points 15 and 16 showing the situation when, due to the resampling algorithm used in changing 

cell sizes to 5 x 5 m, the flooded extents are extremely similar, where only 3 cells differ, with the LiDAR 

flooding additional 75 m2. The hydrodynamic model ran on both elevation datasets returned very similar 

extents for the remaining shoreline of the study area with a precision such as the one illustrated in Figure 

44. The UAV model only estimated flood extents further inland when compared to the LiDAR surrounding 

point 5 in Flagpole Point, where it is known that the UAV typically shows elevation values below the LiDAR 

DEM. The simulated extents for the points and surrounding shoreline segments analysed did not show 

deviations from the shoreline polyline feature higher than 15 m for both UAV and LiDAR.  

A) B) 
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Figure 44 - MOHID validation and shoreline prediction for sampling points 15 and 16. A) LiDAR DEM. B) 
UAV DSM. 

5.4.1.  Storm Surge Time-lapse Analysis 

a) Flood event: 4th of August 2019 

It is possible to differentiate the water level caused by the storm surge from the wave set-up and run-up by 

using as reference the water level of the inner bay. Both models create a highly detailed and accurate 

representation of the water surface. The circle shapes were used as reference points to aid the comparison 

of the different models. In the distance it is possible to see a small strand close to the buildings in Figure 

45 that gets flooded by the water level registered at 17:40. Both models show an accurate flood extent up 

to the patch of grass. There is a noticeable difference in the output flood maps. The LiDAR DEM produces 

an evident overestimation compared to the UAV DSM,  

Figure 46 A) and C), in the bathtub model. This overestimation is higher in the bathtub model. The 

hydrodynamic model provided similar results on both UAV and LiDAR datasets for this event. 

 

A) B) 
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Figure 45 – Time-lapse pictures taken during the storm surge event on the 4th of august 2019. A) 07:05. 
B) 17:40. (Local time) 

 

 

 

 

 

 

 

Figure 46 – Results of both flood models ran on the different elevation datasets rendered in ArcGIS Pro at 
the time-lapse camera position for the water-level read at 17:40. A) Bathtub model and UAV DSM. B) 

MOHID and UAV DSM. C) Bathtub model and LiDAR DEM. D) MOHID and LiDAR DEM. 

b) Flood event: 5th of August 2019 

It is possible to see in the yellow circled areas (Figure 47 and Figure 48) the increased detail and accuracy 

of the UAV surface model depicting the tallest vegetation above the water level with a lower probability 

class than 5. The same result is visible where the road is flooded, estimated with probability classes of 5, 4 

and 3, versus a class 2 of the LiDAR dataset over a larger extent. Figure 49 shows an example where the 

LiDAR model is not able to achieve the same quality of results as the UAV DSM. Despite its tendency to 

over-estimate flooded areas, in this specific location, the less accurate elevation leads to the creation of an 

A) B) 

A) B) 

C) D) 
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unconnected area that is floodable by the given water level but discarded due to no hydrological 

connectivity. 

 

Figure 47 – Picture taken on Tuktu Road by Kitti Hall on the 5th of august 2019 at 9:47 AM (GMT -6:00) 
during a storm surge event with a water level of 1.39 m above Chart Datum. 

 

Figure 48 - Bathtub model output for the same water level as Figure 47 by hazard class, rendered in 
ArcGIS Pro. A) UAV DSM B) LiDAR DEM  

 

Figure 49 - Hydrodynamic model output at the same location and same time a Figures 64 and 65, 
rendered in ArcGIS Pro. A) UAV DSM. B) LiDAR DEM. The yellow polygon represents an unconnected 

area, therefore classified as not flooded. 

A) B) 

A) B) 
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5.4.2. Historical Flood Event: 1963 – Highest Water Level Recorded 

The results of using the uppermost limit of the driftwood located in the study area, which is assumed as 

representing this extraordinary flood event, is represented for the bathtub model in Figure 50 for both 

elevation datasets. 

 

Figure 50 – Bathtub model output for UAV DSM, LiDAR DEM and the areas estimated by both datasets 
for all hazard classes (2 to 5), for the water level of 2.23 m above CD registered at 2:00 PM on 4/10/1963. 

Figure 50 shows that the flooded areas obtained by the bathtub model applied on both elevation datasets 

correspond with great accuracy, to the uppermost limit of the driftwood. There are no significant driftwood 

features above the estimated flooded areas, and in many locations the uppermost limit of the flooded areas 

aligns, with centimetric precision, with the debris.  
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To illustrate the accuracy of both elevation datasets a side-by-side comparison of the UAV and LiDAR 

outputs is showed in Figure 51. The north-western coastline segment shows a significant number of 

mismatching points near Flagpole Point. This area is particularly exposed to strong winds and wave action 

that combined with the high slopes may result in higher wave run up that can push the driftwood debris 

higher and further inland. Both models perform similarly in terms of the total number of matching points, the 

UAV identified 85.5% and LiDAR 86.1% from a total of 106 333 points. While the LiDAR identifies a higher 

total number of matching points due to the larger flood extent caused by higher overall uncertainty value, 

the UAV model can identify more flooded points in the class with flood probability of >80% (Figure 52).  

 

Figure 51 – Matching driftwood locations by hazard class and mismatching points for the bathtub model 
for the water level of 2.23 m above CD registered at 2:00 PM on 4/10/1963. A) UAV DSM and B) LiDAR 

DEM. 

 

Figure 52 – Number of driftwood points identified as matching points by the elevation dataset and by 
hazard class for the bathtub model. 

A) B) 
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The analysis performed for the bathtub model was replicated for the hydrodynamic model and the results 

are illustrated in Figure 53 . The model ran on the UAV DSM identified 8 494 (87.5%) points and the LiDAR 

9428 (88.7%) from a total of 106333 driftwood points. Both elevation models show that most of the 

mismatches occur around Flagpole point, also seen in the bathtub model. Despite the incorporation of a 

wave module to simulate and include wave run up could increase the matching rate surrounding Flagpole 

point, all the models performed well by successfully marking the driftwood debris as flooded, with the UAV 

bathtub model being the most conservative compared to the other models, but, with higher probability areas 

identified. The results of both hydrodynamic and bathtub models sustain the possibility of the storm that 

occurred in 1963, or a storm with a similar magnitude, that was not recorded by the tide gauge, as the 

highest water level historically registered in Tuktoyaktuk. 

 

 

 

 

 

 

 

 

 

 

 

 

5.5. Sea Level Change and Shore Line Retreat in the 21st 

Century 

Tables Table 6, Table 7, Table 8 and Table 9 summarize the computed inputs for bathtub and hydrodynamic 

models. Tables Table 7 and Table 9 include the water level measured at 69°26'19.18"N 132°59'36.51"W 

and ∆, in m, which represents the difference between the imposed tide water level and the model output 

for each epoch. The registered differences between the input and the output water surface level ranged 

from 3 to 7 mm for the hydrodynamic model. 

Figure 53 - Matching driftwood locations and mismatching points for the hydrodynamic model for the 
water level of 2.23 m above CD registered at 2:00 PM on 4/10/1963. A) UAV DSM and B) LiDAR DEM. 

A) B) 
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Table 6 – UAV DSM bathtub model inputs used for the sea level rise simulations by scenario, all SD 
values are in m. 

 

Table 7 – UAV DSM hydrodynamic model water level inputs and outputs for the sea level rise simulations 
by scenario. 

 

Table 8 –LiDAR DEM bathtub model inputs used for the sea level rise simulations by scenario, all SD 
values are in m. 

 

Table 9 – LiDAR DEM hydrodynamic model water level inputs and outputs for the sea level rise 
simulations by scenario. 

 

Figure 54 illustrates the total sum, in m2, of the flooded areas computed by each model, by scenario and 

by elevation dataset. The “all classes” represents the total sum of the areas identified as hazard classes 2, 

3, 4 and 5. The values for 2020 do not correspond to any RCP scenario, since there is no effect of sea level 

rise. Instead, the computed areas set the baseline for the comparison of the models based on the mean 

highest astronomical tide value of 0.92 m above CD.  

Scenario Year
Water Level Input (m 

CGVD2013)
σ Scenario

σ Chart 

Datum to 

CGVD2013

σ Tide σ Total

2020 0.31 0.15 0.02 0.19

2060 0.54 0.07 0.15 0.02 0.20

2100 0.79 0.14 0.15 0.02 0.24

2060 0.58 0.07 0.15 0.02 0.20

2100 0.99 0.14 0.15 0.02 0.24

RCP 4.5

RCP 8.5

Flood Scenario Year

Mean Highest 

Astronomical Tide 

(m above Chart 

Datum)

Sea 

Level 

Rise 

(m)

Storm 

Surge 

Water 

Level (m)

Water Level 

(m above 

Chart Datum)

Water Level 

Input (m - 

CGVD2013)

Model 

Output (m - 

CGVD2013)

∆ (m)

2020 0.00 0.92 0.31 0.31 -0.004

2060 0.23 1.15 0.54 0.54 -0.005

2100 0.49 1.40 0.79 0.79 0.005

2060 0.27 1.19 0.58 0.58 -0.003

2100 0.69 1.60 0.99 0.99 0.007

0.92 0

0.92 0

RCP 4.5

RCP 8.5

Scenario Years
Water Level Input (m 

CGVD2013)
σ Scenario

σ Chart 

Datum to 

CGVD2013

σ Tide σ Total

2020 0.31 0.15 0.02 0.29

2060 0.54 0.07 0.15 0.02 0.30

2100 0.79 0.14 0.15 0.02 0.33

2060 0.58 0.07 0.15 0.02 0.30

2100 0.99 0.14 0.15 0.02 0.33
RCP 8.5

RCP 4.5

Flood Scenario Year

Mean Highest 

Astronomical Tide (m 

above Chart Datum)

Sea 

Level 

Rise 

(m)

Storm 

Surge 

Water 

Level (m)

Water 

Level (m 

above 

Chart 

Datum)

Water Level 

Input (m - 

CGVD2013)

Model 

Output (m - 

CGVD2013)

∆ (m)

2020 0.00 0.92 0.31 0.31 -0.004

2060 0.23 1.15 0.54 0.54 -0.004

2100 0.49 1.40 0.79 0.79 0.007

2060 0.27 1.19 0.58 0.58 -0.003

2100 0.69 1.60 0.99 0.99 0.007

0.92 0

RCP 8.5 0.92 0

RCP 4.5
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 The total flood extent obtained by the bathtub model is higher than by MOHID for every simulation, 

especially for the years 2060 and 2100 because of sea level rise projections that introduce more uncertainty 

to the model as it increases in the inundated areas of lower probabilities by also increasing the effective 

water level for each different hazard class. For the year 2020, MOHID estimates that the percentage of the 

study area flooded is 7.7 and 9.1% for the UAV and LiDAR models respectively, while the bathtub model 

values are 16.3% for the UAV and 19.5% for LiDAR. In 2060, for the scenario RCP4.5, the difference 

between the hydrodynamic model results and the bathtub increases when compared to 2020, MOHID 

predicts 8.9 and 10.6% for the UAV and LiDAR, respectively, but the bathtub model outputs 22.4% for the 

UAV and 25.7% for the LiDAR. The same trend is visible for the RCP8.5, representing 9.3% for UAV and 

11% for LiDAR in MOHID, compared to the bathtub’s 23.5 and 26.6 % for UAV and LiDAR, respectively. 

For the flooded areas predicted for the year of 2100, the same trend applies, where the hydrodynamic 

model (RCP4.5) returns 14.4 and 16.8% of the study area flooded for the UAV and LiDAR, respectively, 

and 16.1 and 18.8% for RCP8.5. The bathtub model estimates for the scenario RCP4.5 29.,2% for the UAV 

and 31.5% for LiDAR, while the most extreme scenario represented by RCP8.5 shows that the UAV 

estimates 32.2% and the LiDAR 35.9% of the study area as flooded. Figures Figure 55 and Figure 56 show 

the fraction of total flooded extent for each hazard class by scenario and elevation dataset, by year. The 

year 2020 is not considered a RCP scenario, since there is no sea level rise. The computed area for class 

5 is higher for the UAV DSM, which results from the higher robustness of the UAV data compared to the 

LiDAR DEM. This occurred in all simulations and is explained by the overall lower uncertainty of the UAV 

data compared to LiDAR. The model ran on UAV produces an overall smaller extent compared to LiDAR, 

except for class 5. For the year 2020 a total of 273 816 m2  is computed by for UAV  and 327 089 m2 for 

LiDAR, where the most notable differences are explained by the changes in the western beach profile from 

2004 to 2018 and the intertidal areas surrounding the water reservoir.  
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Figure 54 – Comparison of the total area flooded (m2) of both models for LiDAR and UAV by scenario. 
The year 2020 does not correspond to any RCP scenario and only represents the mean highest 

astronomical tide added to the 2020 mean sea level. The “all classes” classification stands for the 
grouping of the hazard classes from 5 to 2. 

 

Figure 55 – Bathtub model results comparison between the total area flooded by hazard class for the 
RCP4.5 scenario. 
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Figure 56 - Bathtub model results comparison between the total area flooded by hazard class for the 
RCP8.5 scenario. 

Figure 57 and Figure 58 show that the predicted flooded areas have similar extents for classes 4 and 5, but 

for the LiDAR elevation dataset, classes 2 and 3 cover more area compared to UAV. This is more evident 

in scenario RCP8.5 due to higher values of uncertainty associated with the modelled scenario, represented 

as 1 and 2 in Figure 58. The differences stated in the analysis for the year 2020 are still visible in the 

western beach area, where the LiDAR floods a larger area compared to the UAV. Even for the RCP8.5 

scenario, the beach extent is not considered as flooded by the UAV DSM. The differences between UAV 

and LIDAR outputs for the year 2100 and the scenario RCP8.5 on the bathtub model are available in the 

Appendix (see Figure A 5). There are a few areas where only the UAV model classifies as flooded namely 

a small extent by the water reservoir and the sports field.  
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Figure 57 –Bathtub model predicted highest astronomical tide for the year 2100 by hazard class on UAV 
DSM. A) RCP4.5 and B) RCP8.5 

 

Figure 58 – Bathtub model predicted highest astronomical tide for the year 2100 by hazard class on 
LiDAR DEM.A) RCP4.5 and B) RCP8.5. 
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Figure 59 - Hydrodynamic model predicted highest astronomical tide in 2020 and for 2060 and 2100 
based on the UAV DSM. A) RCP4.5 and B) RCP8.5. 

 

Figure 60 - Hydrodynamic model predicted highest astronomical tide in 2020 and for 2060 and 2100 
based on the LiDAR DEM. A) RCP4.5 and B) RCP8.5. 

The results of the hydrodynamic model for 2100 coincide with the uppermost limit of hazard class 3 of the 

bathtub model outputs for the current flooding events. This means that the estimated sea-level rise in 2100 

will generate a permanent situation, at least as bad as the current flooding events, and without considering 

the coastal erosion effects, nor the effects of the isostatic subsidence and permafrost degradation. The 

A B 

A B 
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differences in the water surfaces generated from UAV and LiDAR for both hydrodynamic and bathtub 

approaches are represented in Figure 61. While the hydrodynamic model overlaps the bathtub model 

classes 5 to 3 in the majority of the coastline, exceptions are found around the water reservoir, Kitti Hall 

and the sports field, where the bathtub model (for both UAV and LiDAR datasets) shows high probability of 

flooding, but not the MOHID. 

 

Figure 61 – Differences between MOHID and bathtub models for the year 2100 on a RCP8.5 scenario. A) 
UAV DSM. B) LiDAR DEM. 

5.6. Storm Surge Flood Modelling in the 21st Century 

5.6.1. 50-year Return Period Storm Surge Event 

a) Synthesis of results 

Tables Table 10, Table 11, Table 12 and Table 13 summarize the input and output data obtained from the 

bathtub and hydrodynamic models for the two elevation datasets, when a storm surge event with a 50-year 

return period is added to the MHAT and sea level rise scenarios RCP4.5 and RCP8.5 are used.  

Table 10 – UAV DSM bathtub model inputs used for the sea level rise and a 50-year return period storm 
surge by scenario. 

 

Scenario Years
Water Level Input (m 

CGVD2013)
σ Scenario

σ Chart 

Datum to 

CGVD2013

σ Tide
σ Storm 

Surge
σ Total

2020 2.21 0.15 0.02 0.35 0.40

2060 2.44 0.07 0.15 0.02 0.35 0.40

2100 2.69 0.14 0.15 0.02 0.35 0.42

2060 2.48 0.07 0.15 0.02 0.35 0.40

2100 2.89 0.14 0.15 0.02 0.35 0.42

RCP 4.5

RCP 8.5
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Table 11 - UAV DSM bathtub model inputs used for the sea level rise and a 50-year return period storm 
surge by scenario. 

 

Table 12 – LiDAR DEM bathtub model inputs used for the sea level rise and a 50-year return period storm 
surge by scenario. 

 

Table 13 - LiDAR DEM hydrodynamic model water level inputs and outputs for the sea level rise and a 
50-year return period storm surge by scenario. 

 

b) Flood mapping 

The total area flooded, in m2, for the 50-year return period simulations, reflects the same trend in estimating 

larger flood extents by both bathtub and hydrodynamic models ran on LiDAR data and smaller inundated 

areas calculated by MOHID compared to bathtub model. For the year 2020, MOHID, shows that 47.5% of 

the study area is considered flooded using the UAV and 52.3% for the LiDAR, while the bathtub model 

results range from 57.1 to 65.8% for the UAV and LiDAR, respectively. In 2100, with a projected sea level 

rise of 0.69 m for the RCP8.5 scenario, the UAV bathtub model covers 76.2% and the LiDAR 83.7% of the 

study area with all four hazard classes while the hydrodynamic model, shows a range from 50.6% (UAV) 

to 59.4% (LiDAR) which correspond approximately to the bathtub model’s classes of 4 and 5 combined. 

The year 2020, as stated in chapter 5.5, does not resemble any RCP scenario, since it represents the 

highest astronomical tide added to the mean sea level and the 50-year return period storm surge water 

level of 1.9 m. 

Flood Scenario Year

Mean Highest 

Astronomical Tide 

(m above Chart 

Datum)

Sea 

Level 

Rise 

(m)

Storm 

Surge 

Water 

Level (m)

Water Level 

(m above 

Chart Datum)

Water Level 

Input (m - 

CGVD2013)

Model 

Output (m - 

CGVD2013)

∆ (m)

2020 0.00 2.82 2.21 2.21 -0.004

2060 0.23 3.05 2.44 2.41 0.031

2100 0.49 3.30 2.69 2.67 0.025

2060 0.27 3.09 2.48 2.54 -0.061

2100 0.69 3.50 2.89 2.88 0.015

0.92 1.9

RCP 8.5 0.92 1.9

RCP 4.5

Scenario Years
Water Level Input (m 

CGVD2013)
σ Scenario

σ Chart 

Datum to 

CGVD2013

σ Tide
σ Storm 

Surge
σ Total

2020 2.21 0.15 0.02 0.35 0.46

2060 2.44 0.07 0.15 0.02 0.35 0.46

2100 2.69 0.14 0.15 0.02 0.35 0.48

2060 2.48 0.07 0.15 0.02 0.35 0.46

2100 2.89 0.14 0.15 0.02 0.35 0.48

RCP 4.5

RCP 8.5

Flood Scenario Year

Mean Highest 

Astronomical Tide (m 

above Chart Datum)

Sea 

Level 

Rise 

(m)

Storm 

Surge 

Water 

Level (m)

Water 

Level (m 

above 

Chart 

Datum)

Water Level 

Input (m - 

CGVD2013)

Model 

Output (m - 

CGVD2013)

∆ (m)

2020 0.00 2.82 2.21 2.21 -0.004

2060 0.23 3.05 2.44 2.41 0.031

2100 0.49 3.30 2.69 2.67 0.025

2060 0.27 3.09 2.48 2.54 -0.061

2100 0.69 3.50 2.89 2.88 0.015

0.92 1.9

RCP 8.5 0.92 1.9

RCP 4.5
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Figure 62 illustrates the differences of the total area flooded for 2100 between elevation datasets for the 

bathtub model. The differences between the LiDAR and the UAV partially reside in the fact that the LiDAR 

does not include features such as buildings, sheds and sizeable containers used as storage units or even 

cars and boats that are possible to identify in the UAV DSM. These features are easily identifiable but there 

are other significant differences across the study area where the LiDAR model inundates further inland, 

namely, in the island formed south of the water reservoir, around the DEW-Line peninsula and the western 

shore near the airstrip. Overall, both elevation models show similar uppermost limits for the given flood 

scenario. The areas where the UAV DSM floods further inland (red) are located primarily in the northern 

sector of the study area where the average distance from the LiDAR uppermost limit is less than 10 m.      

 

Figure 62 - Comparison between total area flooded by elevation dataset for the bathtub model. The 
scenario represented is RCP8.5 for the year of 2100 and a 50-year return period storm surge. 

The map in Figure 63 represent the outputs of the hydrodynamic model for the 50-year return period storm 

surge simulations on UAV DSM. The results of the model on both elevation datasets show a significant 

overlap of the computed flooded extents, following the previous results analysed. For that reason, only the 

500 

DEW-Line 
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UAV results are shown from now on. The maps derived from LiDAR data and RCP 4.5 scenario are 

available in the Appendix (see Figures Figure A 6, Figure A 7 and Figure A 8). 

  

Figure 63 - MOHID  flooded areas for 2020, 2060 and 2100 for the RCP8.5 scenario with a 50-year return 
period storm surge on UAV DSM. 

A 50-year return period (1.9 m above CD) storm surge results in a complete separation of Tuktoyaktuk and 

the DEW-Line peninsula from mainland even in 2020 if synchronized with a high late-summer tide. By 2100, 

for the scenario RCP8.5 (Figure 63), Flagpole Point becomes isolated, and another breakage is formed by 

Mangilaluk School, representing the most significant differences between the scenarios RCP4.5 and 

RCP8.5. 

UAV 

UAV 

UAV 

Flagpole Pt. 

Sports field. 

DEW-Line 

Mangilaluk 

School 
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c) Exposure of infrastructure to flooding 

The overlay of the flood maps obtained from the UAV surface model and local infrastructure is shown in 

Figure 64 and Figure 65 for bathtub and hydrodynamic models for the scenario RCP8.5. The results for 

RCP4.5 are available in the Appendix (see Figure A 14 and Figure A 15). The results from the hydrodynamic 

model match 82% of the buildings identified by the bathtub model and classified as hazard class 5.but the 

remaining buildings from class 5 and the ones belonging to hazard classes 2, 3 and 4 by the bathtub model 

are not considered affected by flooding by MOHID due to the larger extents outputted by the static model, 

that creates a higher effective flood water level due to the incorporation of uncertainty of each simulation, 

resulting in a higher total of buildings affected by flooding. The differences between the flood extents 

obtained by both models and RCP scenarios reflect the differences in the buildings identified by each 

simulation because it is an overlay of the modelled water surface with the existing building footprints layer. 

By comparing the results for the year 2100 on a RCP4.5 scenario by affected buildings, it is clear the 

conservative approach of the bathtub model that can identify 432 individual features, where 280 correspond 

to a hazard class 5 (> 80% probability of being flooded), versus MOHID with only a total of 230 features. 

The areas with the most notable differences are located south of Flagpole Point, the area surrounding Kitti 

Hall, and Mangilaluk School marked by the buildings with classes ranging from 2 to 4, not visible in MOHID. 

The results for the RCP8.5 scenario depicted in Figure 64 for the UAV DSM reveal a total of 381 buildings 

are affected by a 50-year return period storm surge according to MOHID while the bathtub model identifies 

total of 493, where 332 belong to hazard class 5, 78 with class 4, 52 with class 3 and 31 with class 2. In 

comparison with RCP4.5 there is an increase in matching where MOHID matches all the hazard class 5 

buildings and 49 belonging to hazard class 4. The most notable differences, where the bathtub model 

identifies additional features compared to MOHID are located between Flagpole point and the sports field 

in the north sector of the study area, the area surrounding the school and Kitti Hall, and the western area 

marked with the black circle in Figure 64 A). It is important to note that the water level for this scenario also 

correspond to a 100-year return period storm over a RCP4.5 scenario for the year 2100.  
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Figure 64 – Flooded buildings by model for the year 2100 and scenario RCP8.5 with a 50-year return 
period storm surge event on UAV DSM. A) Bathtub. B) MOHID. 

Highlighting the transportation network becomes a useful way to visualize which road segments require 

most attention when it comes to prioritize road maintenance operations such as the ones performed 

frequently across Tuktoyaktuk during the warmer months, such as oil spraying the dirt road surfaces to 

decrease dust clouds by vehicles and promote water drainage, and deposition of new material to maintain 

the centre of the road higher and mitigate the effects of erosion caused by the traffic. The flood depth maps 

available in the Appendix (see Figures Figure A 12 and A Figure A 13) were used to assess the severity of 

flooding across the road network. In 2100, the concordance between models for RCP4.5 scenario with a 

50-year return period storm surge over the UAV DSM shows that all the main roads in Tuktoyaktuk’s 

transportation network become severely disrupted by flooding across the study area, isolating many 

different areas from road access. Some roads can still be traversed even if considered flooded depending 

on the water depth. The most dramatic depths, ranging from 1 to 2 m, in several points of Beaufort Road, 

Kitti Lane and Tuktu Road, Old Airport Road and Tingmivik Road, meaning that they become untraversable. 

For the scenario RCP8.5, the results show a significant increase in the affected road network for all classes 

when compared to RCP4.5 across all the study area. Such event can push the water further inland covering 

more than 200 m in the end of the airstrip facing northwest. The flood depth maps, generated from the 

bathtub model coupled with the UAV DSM, allowed the identification of new road segments that are now 

untraversable (Figure 65) when compared to the RCP4.5 scenario, such as the Beaufort Road segment 

and Centennial Road by the sports field, Ocean View Road and the only access to the DEW-Line, Quimavik 

Road.  

 

UAV 
UAV 

A) B) 
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Figure 65 – Flooded roads obtained from bathtub model for the year of 2100 and RCP8.5 scenario for a 
50-year return period storm surge event on UAV DSM. 

5.6.2. 100-year Return Period Storm Surge Event 

a) Synthesis of results 

The inputted data and outputs regarding the 100-year return period storm surge for both bathtub and 

hydrodynamic models over the sea level rise scenarios RCP4.5, RCP8.5 and the MHAT are summarized 

in Tables Table 14, Table 15, Table 16 and Table 17. 
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Quimavik Rd. 

Tingmivik Rd. 
Old Airport 

 Rd. 

Ocean View Rd. 

Centennial Rd. 

Tuktu Rd. 

Mangilaluk Loop 



87 

 

Table 14 – UAV DSM bathtub model inputs used for the sea level rise and a 100-year return period storm 
surge by scenario. 

 

Table 15 – UAV DSM hydrodynamic model inputs used for the sea level rise and a 100-year return period 
storm surge by scenario. 

 

Table 16 – LiDAR DEM bathtub model inputs and outputs used for the sea level rise and a 100-year 
return period storm surge by scenario. 

 

Table 17 – LiDAR DEM hydrodynamic model inputs and outputs used for the sea level rise and a 100-
year return period storm surge by scenario. 

 

b) Flood mapping 

The computed total area flooded in m2 for all the simulations regarding the 100-year return period storm 

surge and follows the same trend identified for the 50-year return period with LiDAR data returning larger 

flooded extents than the UAV and the bathtub model flooding more areas than MOHID. The year 2020 is 

not considered a RCP scenario, since it represents the current sea level conditions. The results show that 

Scenario Years
Water Level Input (m 

CGVD2013)
σ Scenario

σ Chart 

Datum to 

CGVD2013

σ Tide
σ Storm 

Surge
σ Total

2020 2.41 0.15 0.02 0.44 0.48

2060 2.64 0.07 0.15 0.02 0.44 0.48

2100 2.89 0.14 0.15 0.02 0.44 0.50

2060 2.68 0.07 0.15 0.02 0.44 0.48

2100 3.09 0.14 0.15 0.02 0.44 0.50

RCP 4.5

RCP 8.5

Flood Scenario Year

Mean Highest 

Astronomical Tide 

(m above Chart 

Datum)

Sea 

Level 

Rise 

(m)

Storm 

Surge 

Water 

Level (m)

Water Level 

(m above 

Chart Datum)

Water Level 

Input (m - 

CGVD2013)

Model 

Output (m - 

CGVD2013)

∆ (m)

2020 0.00 3.02 2.41 2.41 -0.001

2060 0.23 3.25 2.64 2.67 -0.031

2100 0.49 3.50 2.89 2.88 0.014

2060 0.27 3.29 2.68 2.67 0.011

2100 0.69 3.70 3.09 3.08 0.013

0.92 2.1

RCP 8.5 0.92 2.1

RCP 4.5

Scenario Years
Water Level Input (m 

CGVD2013)
σ Scenario

σ Chart 

Datum to 

CGVD2013

σ Tide
σ Storm 

Surge
σ Total

2020 2.41 0 0.15 0.02 0.44 0.53

2060 2.64 0.07 0.15 0.02 0.44 0.53

2100 2.89 0.14 0.15 0.02 0.44 0.55

2060 2.68 0.07 0.15 0.02 0.44 0.53

2100 3.09 0.14 0.15 0.02 0.44 0.55

RCP 4.5

RCP 8.5

Flood Scenario Year

Mean Highest 

Astronomical Tide (m 

above Chart Datum)

Sea 

Level 

Rise 

(m)

Storm 

Surge 

Water 

Level (m)

Water 

Level (m 

above 

Chart 

Datum)

Water Level 

Input (m - 

CGVD2013)

Model 

Output (m - 

CGVD2013)

∆ (m)

2020 0.00 3.02 2.41 2.41 -0.001

2060 0.23 3.25 2.64 2.63 0.003

2100 0.49 3.50 2.89 2.89 -0.001

2060 0.27 3.29 2.68 2.67 0.006

2100 0.69 3.70 3.09 3.08 0.012

0.92 2.1

RCP 8.5 0.92 2.1

RCP 4.5
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a 100-year return period storm, equivalent to 2.1 m above CD added to the MHAT, inundates 57.1% (UAV) 

and 65.8% (LiDAR) of the study area by using the bathtub model and 47.5% (UAV) and 52.3% (LiDAR) by 

MOHID. In 2060 all the percentages increase from 1 to 3% with the higher values corresponding to RCP8.5 

scenario for the LiDAR simulations. For the year 2100, the bathtub model returns 80.7% (UAV) and 90.1% 

(LiDAR), while MOHID water surface covers 60 and 65% for the UAV and LiDAR, respectively. Figure 66 

depicts the differences between the outputs of the bathtub model for the 100-year return period storm surge 

event, coupled to the sea level rise projections for the year 2100 according to scenario RCP8.5. The results 

align with the previous storm surge scenarios analysed for the 50-year return period, where the difference 

in the areas calculated for the two elevation datasets reside in building footprints being accounted for in the 

LiDAR DEM and few distinct patches of shrub-vegetated land in the southern and south-eastern sectors of 

the study area where the difference between UAV and LiDAR is higher. The areas flooded only in the UAV 

DSM represent a very small fraction of the total area and they are located in Flagpole Point, reaching 10 m 

on average further inland compared to the LiDAR, and an even smaller extent by the DEW-Line. 

 

Figure 66 – Comparison between the UAV DSM and LiDAR DEM outputs from the bathtub model for the 
year 2100 and scenario RCP8.5 for a 100-year return period storm surge event. Hazard classes (2 to 5) 

are grouped as one single class. 
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The differences between the outputs of MOHID for the two elevation datasets are represented in Figure 67, 

As observed for the bathtub model, the LIDAR DEM larger extent is explained by the building footprints and 

patches of vegetated land located in the south of the study area and along the shore of Tareoknitok Lagoon, 

while the UAV DSM shows that most of the additional flooded areas are located in the north sector, where 

the difference between UAV and LiDAR displays the lowest values. 

 

Figure 67 - Comparison between the UAV DSM and LiDAR DEM outputs from the hydrodynamic model 
for the year 2100 and scenario RCP8.5 for a 100-year return period storm surge event. 

The 100-year return period storm surge event combined with the RCP4.5 scenario simulated in MOHID for 

the years 2060 and 2100 is available in the Appendix for the UAV DSM and LiDAR DEM (see Figure A 10 

and Figure A 11). The darker blue areas represent what areas are flooded by a 100-year return period 

storm surge over the 2020 MHAT. The results reveal new breakage areas, when compared to a 50-year 

return period storm, in Flagpole point, by 2060 (1), south of Mangilaluk school (2), and in the access to the 

airstrip for the year 2100 (3). In Figure 68, the results represent the most pessimistic scenario simulated in 

this study where a 100-year return period storm surge is synchronized with the MHAT and the RCP8.5 SLR 
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projection. The differences between RCP4.5 and RCP8.5 are located in the centre of the study area, 

surrounding and between the pingos, and in the northern sector, where the flood extents are amplified in 

relation to scenario RCP4.5. 

 

Figure 68 - MOHID water flooded areas by year for with a 100-year return period storm surge on UAV 
DSM and RCP8.5 scenario. 

c) Exposure of infrastructure to flooding 

The buildings and roads identified as affected by the simulated water surfaces for 100-year return period 

storm surge are represented in Figure 69 and Figure 70 for the bathtub model by 2100. The MOHID results 

are not shown since the bathtub provides a more conservative approach allowing the categorization of the 

affected buildings by the probability of flooding. 

UAV 

UAV 
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Figure 69 - Flooded buildings identified by the bathtub model for the year of 2100 by scenario for a 100-
year return period storm surge event over the UAV DSM. A) RCP4.5. B) RCP8.5. 

In Figure 69 there are 510 different features inside the flood extent for the scenario RCP4.5 and 544 for 

RCP8.5. While both scenarios are devastating to the local community, there are differences between the 

flood extents worth mention. The areas identified by scenario RCP8.5 that are not displayed in RCP4.5 are 

marked by the circle in the figure. Another difference is that most buildings that belong to classes 4 and 3 

are now classified as 5 and 4 due to the increase in the sea level difference between scenarios. The road 

network analysis for the RCP8.5 scenario combined with a 100-year return period storm surge is depicted 

in Figure 70. There are no notable differences when comparing the extents of flooded roads to the 50-year 

return period scenario for the same year, except in the circled area marked in Figure 69 B), where the road 

is now marked as affected by flooding with hazard classes ranging from 3 to 2 and an overall transition from 

lower probability hazard classes to higher ones in RCP8.5. 

A) B) 
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Figure 70 – Flooded roads identified by the bathtub model for the year of 2100 by scenario for a 100-year 
return period storm surge event over the UAV DSM.  

The combination of sea level rise scenario RCP8.5 and a 100-year return period storm surge correspond 

to the most pessimistic simulation and represents the uppermost limit of the water surface which is crucial 

in infrastructure and territorial flood risk assessment from a precautionary and conservative perspective.  

5.7. Presently Flood Exposed Infrastructure 

 In this chapter is presented an analysis and assessment of the built environment that is endangered by the 

flood events of 50 and 100-years return periods coupled with the 2020 MHAT of 0.92 m above CD. The 

analysis was done on both hydrodynamic and bathtub models, although, due to lower uncertainty of the 

elevation data and no sea level rise projections, the results are shown only for the bathtub model flood 
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maps. This model was chosen since it provides insight regarding flood probability instead of a rigid single 

water level flood map. 

5.7.1. Transportation and Buildings 

The road network and buildings affected by the 50 and 100-year return period storms based on the bathtub 

model coupled with the UAV data are represented in Figure 71 and Figure 72.   

 

Figure 71 – Roads by flood hazard class obtained by the bathtub model over UAV DSM for two different 
storm surge events in 2020. A)50-year return. B) 100-year return period. 

As seen in Figure 71, the segment of Beaufort Road, west of the water reservoir is one of the two possible 

land connections to mainland, along with Old Airport Road. Both roads become flooded by the 50-year 

return period storm surge becoming highly susceptible to flooding. If both roads are not traversable, there 

is no other connection available to the north part of the hamlet, leaving it completely isolated from the 

mainland. Figure 72 represents the buildings that were identified as susceptible to flooding for the year of 

2020. In case of relocation, buildings marked as class 5 should be considered as highest priority. Despite 

coastal erosion is not as intense in the eastern shore of Tuktoyaktuk and the strongest storm winds that 

generate the most dramatic wave run up heights blow from northwest, many of these buildings are still 

endangered in case of severe storm surge events as the ones included in the simulations.  

 

A) B) Old Airport Rd. 

Beaufort Rd. 
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Figure 72 – Buildings by flood hazard class obtained by the bathtub model over UAV DSM for a 50-year 
(left) return period storm surge and 100-year (right) return period for 2020. 

The results presented in this thesis may be used as an update to the current flood risk geodata available 

at the Northwest Territories ATLAS (Government of Northwest Territories, 2021) as seen in Figure 73. 

According to the description available online in the ATLAS User Manual, the “Floodway” layer represents 

the floodway to assist in flood damage reduction that shows all elevations below that designated under the 

Canada – Northwest Territories Agreement Respecting Flood Damage Reduction and Flood Risk Mapping 

in the mid-1980s, and “Flood Fringe” is defined as the area that where the elevation is 1.0 m or less higher 

than the flood water elevation. The output of the bathtub model for the UAV DSM identifies 423 flooded 

features: 199 hazard class 5, 70 class 4, 63 class 3 and 91 class 2, while the total of the features contained 

in both Floodway and Floodfringe are 264, where 33 belong in the latter. There is a clear overlap by 

buildings identified with higher probability classes (5 and 4) and both Flood Risk layers, but 159 features, 

from all hazard classes, are outside the boundaries. The buildings not included in the ATLAS layers are 

located in the north sector, by Flagpole Point, north of Kitti Hall and Mangilaluk School and two small 

clusters south of the sports field and by the northwest shore of Tareoknitok Lagoon,  
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Figure 73 – Detail of the overlay of ATLAS’ (Government of Northwest Territories, 2021) “Flood_Risk” 
layer and the year 2020 bathtub model result for a 100-year return period storm surge as affected 

buildings by hazard class. 
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6. Conclusions and Outlook 

The results obtained from this study show that it was possible to model and map with great accuracy the 

water surface changes in different scenarios in the Hamlet of Tuktoyaktuk. The models allowed the 

quantification and identification of flooded areas and to categorize the built environment by its vulnerability 

to sea level rise and storm surge events. 

The main goal of this thesis focused in developing a methodology that permitted the identification, with 

precision, of areas vulnerable to coastal flooding including two different sea level rise scenarios, for the 

years of 2060 and 2100, and extreme events with two different return periods. It was possible to conclude 

that the quality and availability of the data played a major role in flood mapping and that there is a significant 

water level data gap from 1982 to 1991 and 1992 to 2003 that can impact the results obtained by tidal 

harmonic analysis and extreme event analysis of storm surge levels. Regarding elevation data, using a 

UAV-derived well-georeferenced surface model with higher vertical and horizontal accuracy and spatial 

resolution, reduced significantly the overall uncertainty included in the bathtub model and, therefore, 

reduced over-estimation of flooded areas compared to LiDAR.  

The lower uncertainty of the UAV data drastically improved the water-surface modelling. With the tightening 

of areas with hazard classes of lower probabilities, the model showed precise overlaps of probability classes 

between 99.9% and 40% (classes 5 to 3) with the water surface captured by the UAV footage, as well as 

by time-lapse cameras, used as ground truthing data. This reinforces the advantage of UAV over the 

available 2004 LiDAR data. Having an ultra-high-resolution mosaic of the study area revealed a major 

advantage to derive the local difference between vertical datums, to validate results by replicating the 

conditions registered at the time of the flight and identify details to a centimetric precision in 2D and 3D. 

Regarding the hydrodynamic modelling, the resampling from 0.1 x 0.1 m to 5 x 5 m cell size significantly 

reduced the vertical accuracy of the UAV model due to the interpolation algorithm. This transformation 

resulted in similar outputs for both LiDAR and UAV elevation datasets by diluting the differences. The 

culvert system had to be manually edited and exaggerated to be represented in 5 x 5 m cells after the 

smoothing effect of the algorithm. For a simplistic modelling of the water surface, the results show that 

complexity of the hydrodynamic model does not translate directly in a more accurate flood mapping. By 

maintaining the original cell size, the bathtub model does not loose vertical data and it offers the advantage 

of probabilistic mapping allowing the quantification of the flooded area and identification of the susceptibility 

by different hazard classes of specific locations. These drawbacks were also identified by Seenath et al. 

(2015) when comparing two different hydrodynamic models with a GIS-based bathtub approach. While the 

hydrodynamic model predicts an 8.9% submersion of the total study area by 2060 with a RCP4.5 SLR 

scenario and 14.4% in 2100, for the same epoch, the bathtub model returns 22.4% and 29.2% respectively. 

For RCP8.5, MOHID returns 9.3% in 2060 and 16.1% as the bathtub model calculates 23.5% and 32.2% 
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respectively. The percentage of the study area affected by an extreme flood event of 100-year return period 

coinciding with the MHAT can reach up to 80.7% for RCP8.5 and the year of 2100 using the UAV elevation. 

For 2020, in case of a flood event with a 50-year return period combined with the highest tide, represents 

a complete isolation of the hamlet from land, a situation that has occurred several times in the past. The 

modelling approach used in this study is based on the present physical conditions and on keeping them 

constant. While this might be a satisfactory assumption for some sectors of the study area, it is not the case 

for the western and northern coastline due to high rates of coastal erosion and sediment transport and 

deposition patterns. The changes in landforms and their geometry affect coastal hydraulics that translate 

in changes in tidal elevations. These variables are not included in bathtub approaches but can be minimized 

with continuous surveying and hydrodynamic modelling. The cartography in this thesis was created to be 

used as a tool for coastal planning adaptation for the community of Tuktoyaktuk and provide an updated, 

more accurate and pre-emptive version of the flood maps currently available on Northwest Territories 

ATLAS (Government of Northwest Territories, 2021).  

 There are many aspects of flood modelling, not necessarily related with the quality of the elevation data, 

that can be continuously implemented and developed to improve the methodology used in this study. 

Including wave set up and wave run up will lead to an overall increase in floodable areas for storm surge 

scenarios. Wave models such as SWAN (Simulating Waves Nearshore) can be coupled with hydrodynamic 

models to address this limitation if accurate wave and wind data is provided. The current available wave 

and wind data for Tuktoyaktuk reveals significant gaps where the most recent data is hourly data from 

September 2014 to February 2015. From the hydrodynamic analysis and in-situ observations, the shore 

exposed to the predominantly and stronger storm winds and waves from north-west, act as a physical 

barrier to wave action. Deploying a buoy to record wave data during the open water season can lead to 

major improvements regarding the inclusion of wave modelling in future flood mapping and coastal erosion 

dynamics. For the bathtub model, the incorporation of uncertainty of the elevation data is achieved by using 

a single value of RMSE that represents the global error of the dataset. However, it is known that errors 

show spatial variability, meaning that it is possible to break the study area in smaller sectors, of similar 

values of RMSE to better represent the uncertainty and leading to a more accurate spatial representation 

of uncertainty for a given sector.  

The soaring coastal erosion rates in Tuktoyaktuk create an intricate aspect for flood modelling by sculpting 

the coast constantly. Incorporating these changes would only be possible by updating the elevation data 

more frequently, at least, along the most affected coastline sectors. The morphological changes caused by 

coastal erosion can lead to the exposure of areas that are currently identified as not affected by coastal 

flooding.  
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8. Appendix 

 

OBJECTID X Y Z Drone Z GPS Z GPS - Z Drone
Squared 

Difference

1 578602.89 7704493.03 3.250 3.467 0.216 0.047

2 578548.32 7704829.72 3.719 3.543 -0.176 0.031

3 578284.74 7704997.98 3.024 3.323 0.298 0.089

6 577884.97 7704084.48 5.539 5.665 0.126 0.016

8 577480.99 7704148.25 4.340 4.502 0.162 0.026

9 576763.88 7705173.12 3.828 3.940 0.112 0.013

10 577407.32 7705074.85 2.721 2.867 0.146 0.021

13 576782.75 7705856.42 7.423 7.423 -0.001 0.000

17 576890.42 7706443.69 2.595 2.670 0.075 0.006

18 576876.56 7706449.70 2.587 2.734 0.147 0.022

19 576878.00 7706454.49 2.372 2.513 0.141 0.020

20 576886.02 7706454.22 2.047 2.099 0.052 0.003

27 576776.61 7705675.20 1.400 1.452 0.052 0.003

29 576746.87 7705443.26 1.057 1.082 0.025 0.001

33 576684.69 7705353.35 0.620 0.769 0.149 0.022

37 576962.87 7705227.42 1.347 1.394 0.047 0.002

40 576951.17 7705716.98 2.234 2.397 0.163 0.027

41 577189.07 7705329.76 1.254 1.343 0.089 0.008

42 577199.47 7705295.22 2.680 2.716 0.036 0.001

43 577792.04 7705191.86 1.422 1.377 -0.045 0.002

44 577796.21 7705188.44 1.588 1.594 0.006 0.000

45 577644.09 7705046.69 0.349 0.286 -0.063 0.004

47 577672.01 7704546.97 1.153 1.120 -0.033 0.001

48 577709.32 7704462.44 1.722 1.762 0.040 0.002

49 577836.51 7704475.06 1.472 1.479 0.007 0.000

50 577838.41 7704473.42 1.607 1.569 -0.038 0.001

51 577840.38 7704471.71 1.663 1.686 0.023 0.001

52 577842.30 7704470.07 1.795 1.788 -0.007 0.000

53 577844.54 7704468.20 2.239 2.248 0.009 0.000

54 577846.09 7704466.87 2.670 2.639 -0.031 0.001

55 577037.65 7704841.60 1.187 1.367 0.180 0.032

56 577028.04 7704812.84 2.067 2.022 -0.045 0.002

57 577015.71 7704642.73 1.289 1.336 0.047 0.002

58 578568.64 7704768.21 1.565 1.492 -0.073 0.005

59 578531.87 7704764.59 1.243 1.242 -0.001 0.000

Table A 1 - GPS points used to determine the RMSE of the UAV DSM. 

 



110 

 

 

 

Table A 2 - GPS points used to determine the RMSE of the LiDAR DEM. 

OBJECTID X Y Z LiDAR Z GPS Z GPS - Z LiDAR
Squared 

Difference

2 578548.32 7704829.72 3.448 3.543 0.094 0.009

4 578443.65 7704199.08 4.637 5.587 0.950 0.902

7 577802.18 7704111.83 3.996 4.013 0.016 0.000

13 576782.75 7705856.42 7.240 7.423 0.182 0.033

14 577052.86 7705912.46 2.059 1.914 -0.145 0.021

17 576890.42 7706443.69 2.541 2.670 0.129 0.017

24 576826.41 7706146.44 2.194 2.162 -0.032 0.001

25 576723.52 7705653.82 1.029 1.526 0.497 0.247

27 576776.61 7705675.20 1.439 1.452 0.013 0.000

28 576784.14 7705670.01 1.621 1.555 -0.066 0.004

31 576806.98 7705471.45 1.427 1.694 0.267 0.071

33 576684.69 7705353.35 0.559 0.769 0.210 0.044

37 576962.87 7705227.42 1.525 1.394 -0.131 0.017

39 576927.65 7705687.60 2.195 2.400 0.205 0.042

41 577189.07 7705329.76 1.211 1.343 0.132 0.017

42 577199.47 7705295.22 2.672 2.716 0.044 0.002

43 577792.04 7705191.86 1.307 1.377 0.070 0.005

44 577796.21 7705188.44 1.569 1.594 0.025 0.001

45 577644.09 7705046.69 0.018 0.286 0.268 0.072

46 577633.85 7705050.56 0.545 0.402 -0.143 0.020

47 577672.01 7704546.97 1.092 1.120 0.028 0.001

48 577709.32 7704462.44 1.871 1.762 -0.109 0.012

49 577836.51 7704475.06 1.465 1.479 0.014 0.000

50 577838.41 7704473.42 1.646 1.569 -0.077 0.006

52 577842.30 7704470.07 1.750 1.788 0.038 0.001

56 577028.04 7704812.84 1.801 2.022 0.221 0.049

57 577015.71 7704642.73 1.453 1.336 -0.117 0.014

58 578568.64 7704768.21 1.817 1.492 -0.325 0.106

69 578604.42 7704516.58 3.725 3.533 -0.192 0.037
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Figure A 1 - Driftwood uppermost limit derived from the UAV orthophotomaps, manually digitized and 
vectorized as linear features. 
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Figure A 2 - Flood and coastal erosion affected locations, comments and historical water heights 
identified by the staff of Hamlet of Tuktoyaktuk (Courtesy of Calvin Pokiak – unpublished). 
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Figure A 3 – MOHID Grid data (5 x 5 m) of the UAV DSM combined with the bathymetry derived from 
Tuktoyaktuk Harbour nautical chart, rendered in ArcGIS Pro.  

 

Figure A 4 - MOHID Grid data (5 x 5 m) of the LiDAR DEM combined with the bathymetry derived from 
Tuktoyaktuk Harbour nautical chart, rendered in ArcGIS Pro.  
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Figure A 5 - Differences and overlapped extents of the bathtub model with a sea level rise scenario 
RCP8.5 for UAV and LiDAR with all hazard classes grouped for the year 2100. 
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Figure A 6 - MOHID flooded areas for 2020, 2060 and 2100 for the RCP4.5 scenario with a 50-year 
return period storm surge on UAV DSM. 
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Figure A 7 - MOHID flooded areas for 2020, 2060 and 2100 for the RCP4.5 scenario with a 50-year return 
period storm surge on LiDAR DEM. 
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Figure A 8 - MOHID flooded areas for 2020, 2060 and 2100 for the RCP8.5 scenario with a 50-year return 
period storm surge on LiDAR DEM. 
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Figure A 9 - MOHID flooded areas for 2020, 2060 and 2100 for the RCP4.5 scenario with a 100-year 
return period storm surge on LiDAR DEM. 
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Figure A 10 – MOHID flooded areas by year for with a 100-year return period storm surge on 
UAV DSM and RCP4.5 scenario. 
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Figure A 11 - MOHID flooded areas for 2020, 2060 and 2100 for the RCP8.5 scenario with a 100-year 
return period storm surge on LiDAR DEM. 
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Figure A 12 - Flood depth for the RCP4.5 scenario and a storm surge event with a 50-year return period 
on UAV DSM. 
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Figure A 13 - Flood depth for the RCP8.5 scenario and a storm surge event with a 50-year return period 
on UAV DSM. 
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Figure A 14 - Flooded buildings by model for the year 2100 and scenario RCP4.5 with a 50-year return 
period storm surge event on UAV DSM. A) Bathtub. B) MOHID. 

  

 

Figure A 15 - Flooded roads by model for the year 2100 and scenario RCP4.5 with a 50-year return 
period storm surge event on UAV DSM. A) Bathtub. B) MOHID. 
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