
1 
 

 

Improving the forecast demand process for Emergency 
Medical Services: The case study of INEM 

Nika Shahidian 

Department of Engineering and Management, Instituto Superior Técnico, Universidade de Lisboa 

December 2021 

Abstract 

Emergency Medical Services (EMS) are a vital component of pre-hospital medical care. These services are 
paramount to save lives as they focus on providing quality care and minimizing response times. The Portuguese 
EMS system, SIEM, is responsible for providing prompt and adequate medical care for mainland Portugal. 
Complex planning decisions must be made, which require accurate demand estimates to serve as inputs. This 
work aims to identify forecasting models exploring spatial-temporal datasets and contextual data to provide 
reliable information for decision-makers to support their decisions about resource allocation, and to meet the 
volume of calls answered at dispatch centres. The time-varying Gaussian mixture model is recognized in the 
literature as the most suitable option for operational forecasting. Together with other Machine Learning models, 
these predictive models are developed, optimized, and validated. Validation with SIEM’s data shows that the 
Gradient Boosting model achieves, on average, 1.14% higher accuracy than the Gaussian mixture model. 
Furthermore, having surpassed all other models, boosting algorithms prove to be the most promising for similar 
applications. 

Keywords: Emergency medical services; Operational planning; EMS demand forecasting; Ambulance service 
demand; Gaussian mixture models; Machine Learning. 

1. Introduction 

Emergency medical services (EMS) are complex 
systems that are designed to provide medical 
assistance to patients with serious injuries or illnesses, 
and are a vital component of pre-hospital medical 
care. Such systems play a key role in preserving lives, 
as patients benefit from these services from the 
moment they make a call to 112 until the moment they 
receive pre-hospital medical care and are transported 
to the hospital where they will receive the appropriate 
treatment according to their needs (Bélanger et al. 
2019).  

The Portuguese Integrated Emergency Medical 
System, Sistema Integrado de Emergência Médica 
(SIEM), is managed by the National Emergency 
Medical Institute, Instituto Nacional de Emergência 
Médica (INEM). Their primary goal is to provide 
adequate and prompt medical care to patients in 
mainland Portugal.  

INEM is responsible for allocating scarce 
resources, which implies planning decisions that affect 
different planning levels. These decisions are, 
however, supported by intuition or simple averages at 
INEM due to the lack of decision support tools based 
on the state-of-the-art (Santos et al. 2019). 
Nevertheless, these decisions have an impact on the 
quality of the care that is provided, justifying the use of 
models addressed in the state-of-the-art to support 
decision-making. 

These decision support tools usually require as 
input variables the volume of call arrivals and 
transportation needs. Based on that, improvement in 
the forecasting process is a basis to ensure efficient 
planning, and hence contribute to reducing response 
times.  

The main goal of this work is to apply forecasting 
techniques to improve the planning of physical and 
human resources at INEM. The developed forecasting 
models should provide useful information for INEM to 

improve the management of its resources. The 
accuracy of these models contributes to matching 
demand and supply so that resources can be 
efficiently allocated both in time and location, and 
consequently, response times can be reduced. 
Secondary goals include characterizing the system 
and analysing historical data to provide managerial 
insights to INEM. Once the importance of accurate and 
reliable predictive models is recognized, the 
techniques that have been already applied in the 
literature are reviewed to identify potential gaps and 
improvement opportunities. In this context, forecasting 
models are developed and validated with the 
Portuguese case study, while comparing the 
performance of different techniques.  

The remainder of this paper is organized as 
follows. Section 2 presents a literature review, 
including both explored and unexplored methods for 
the problem of EMS forecasting. Section 3 describes 
the problem and introduces the case study. Section 4 
introduces the historical data, and presents an 
exploratory analysis. Section 5 presents the 
methodology of the work. Section 6 describes the 
elaboration process of the forecasting tool and shows 
the final results, including the limitations of the work. 
Section 7 proposes a decision support framework for 
future applications. Finally, Section 8 concludes the 
paper. 

2. Literature Review 

Accurate forecasts in fine time and space 
granularity provide information for EMS managers to 
make supported decisions at the operational level, and 
to assist with critical time-dependent decisions (Chen 
et al. 2016). In order to obtain these forecasts, data 
collected from EMS systems are used, which usually 
consist of a timestamp, occurrence location, priority 
level, vehicle(s) dispatched, etc. (Aringhieri et al. 
2017). Patterns are identified based on this data since 
demand volumes vary throughout months, days of the 
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week, and hours of the day. Even so, several attributes 
have been explored to explain the demand fluctuations 
in forecasting models, such as weather conditions, 
special events, and celebrations.  

2.1 Explored Forecasting Methods 

The literature presents three types of forecasting 
models to explain EMS demand, regression models, 
time series, and spatial-temporal models, and each 
model is explored with a variety of forecasting 
techniques (Steins et al. 2019). 

2.1.1 Regression Models 

Regression models are the first models addressed 
to forecast EMS demand, however, these models 
suffer from multicollinearity and difficulty in selecting 
relevant predictors (Steins et al. 2019). Despite this, 
they are still explored nowadays due to their simplicity 
and ease of application.  

Aldrich et al. (1971) use thirty-two independent 
variables to apply a least squares regression 
forecasting model, while assuming a linear 
relationship between the dependent and the 
independent variables. The study indicates that aged 
people and single men generate more calls than the 
rest of the population. On the other hand, Siler (1975) 
adopts a nonlinear relationship and considers four 
socioeconomic variables to construct a multiple 
regression model.   

The effect of population aging on pre-hospital EMS 
demand is considered in the regression model 
developed by McConnel & Wilson (1998). Svenson 
(2000) also identifies a dependency of EMS use rates 
with age, by adopting a Poisson multiple regression 
analysis. Wong & Lai (2010) use a multiple regression 
model to examine the weather effects on daily 
demand, by assessing the dependency of selected 
variables against weather factors. The impact of age 
on EMS demand rates is also identified by Lowthian et 
al. (2011) in a study to measure the impact of 
population growth and ageing in emergency 
ambulance services.  

Recent regression models have aimed to 
incorporate the geographical area of EMS calls in 
addition to factors such as time, which is the case of 
Cramer et al. (2012). Recently, Steins et al. (2019) 
used a Zero Inflated Poisson regression model 
considering time as an independent factor, as well as 
socioeconomic and geographic factors. 

2.1.2 Time Series Models 

Since the 1980s, time series models such as 
autoregressive integrated moving average (ARIMA) 
and Holt-Winters methods have been explored to 
forecast call volumes and ambulance demand (Vile et 
al. 2016). Both methods are successful in overcoming 
many issues in regression techniques such as 
multicollinearity, autocorrelation, and the difficulty of 
selecting covariates (Vile et al. 2016). 

Baker & Fitzpatrick (1986) adopt Winters’ 
exponential smoothing model and use a multistep 
approach to determine the optimal parameters, while 
Channouf et al. (2007) recognize that EMS demand is 
influenced by when people work, commute, sleep, and 
celebrate. For daily volumes, they develop an 
autoregressive model and a doubly-season ARIMA 
model. Their results show that the autoregressive 
model’s performance is superior and that the ARIMA 

model performs poorly when forecasting more than 
one week into the future. For hourly call volume rates, 
they consider a multinomial distribution conditional on 
the total daily call volume, and compare it to a time 
series model fit on data at the hourly level. Their 
results show that the conditional distribution approach 
generally worked better. 

Contrasting the models proposed by Channouf et 
al. (2007) based on Gaussian linear time series, 
Matteson et al. (2011) assume that the hourly EMS 
call-arrival volume has a Poisson distribution. They 
combine an integer-valued time series models with a 
dynamic latent factor structure.  

The non-parametric technique for time series 
analysis known as the Singular Spectrum Analysis 
(SSA) has been of growing interest due to its flexibility, 
as it is not dependent on parametric assumptions like 
linearity, stationarity, and normality (Al-Azzani et al. 
2020). Vile et al. (2012) show that SSA produces 
superior long-term forecasts and comparable short-
term forecasts to well-established methods.  

Similar to Channouf et al. (2007), Ho Ting Wong & 
Lai (2014) also use ARIMA models to forecast daily 
demand. They show that by integrating weather 
factors such as temperature, the accuracy of daily 
EMS demand forecasts can be improved. ARIMA 
models have been modelled to incorporate 
seasonality, giving rise to SARIMA models, which 
have been explored by Gijo & Balakrishna (2016). 

Recently, Ho Ting Wong & Lin (2020) focus on 
understanding the effects of weather to help EMS 
management, like Ho Ting Wong & Lai (2014) and 
Wong & Lai (2010) had previously done. They 
aggregate records in time series data according to 
patients’ characteristics and then regress on 
meteorological data through multivariate forward 
regression. Also recently, Al-Azzani et al. (2020) 
compare the performance of four forecasting 
approaches, ARIMA, Holt-Winters, multiple 
regression, and SSA, on a selection of planning 
horizons (weekly, monthly, and 3-monthly). Their 
results show that ARIMA provides the most accurate 
forecasts for weekly and monthly predictions, and that 
long-term demand is best predicted by the SSA 
method.  

2.1.3 Spatial-temporal Models 

Contrary to time series and regression models, 
spatial-temporal models are capable of exploring both 
time and location. In addition to staffing and fleet size 
management, spatial-temporal demand estimates are 
critical to decisions such as the selection of station 
locations and for dynamic deployment planning (Zhou 
et al. 2015). 

Setzler et al. (2009) use Artificial Neural Networks 
(ANN) to predict call volumes at fine spatial and 
temporal granularity. The model considers four 
temporal attributes: hour of the day, day of the week, 
month, and season. Their results show that ANN 
outperform the local adopted practice (moving 
average model) at low spatial granularity with marginal 
gains. However, significantly lower computational 
effort is associated to the three models presented in 
Zhou (2016): a time-varying Gaussian Mixture Model 
(GMM), a spatial-temporal Kernel Density Estimation, 
and a Kernel Warping method. They assume an 
independent non-homogeneous Poisson process, and 
consider spatial and temporal patterns such as 



3 
 

location-specific seasonality, and daily and weekly 
seasonality. 

Both the time-varying GMM applied by Zhou et al. 
(2015) and the Kernel Density Estimation model 
applied by Zhou & Matteson (2015) show higher 
statistical predictive accuracy than the current industry 
practice, with a comparable computational expense. 
While the Kernel Density Estimation model is easy to 
interpret and use by non-experts, the proposed GMM 
proves to be a more accurate method for fine time and 
location scales. 

The time-varying GMM presented by Zhou et al. 
(2015) is further compared with the Kernel Warping 
method applied in Zhou & Matteson (2016) for 
Melbourne data. The complexity of this model lies in 
overcoming sparsity through smoothing, while 
capturing complex spatial-temporal patterns that 
require fine-resolution modelling. The results show 
that the Kernel Warping approach is slightly more 
adequate for highly complex spatial domains, although 
the accuracy improvement is not considered sufficient 
to justify the increased complexity of this model.  

The Bayesian approach, applied by Nicoletta et al. 
(2017), allows the combination of available data with 
prior information, and then have those results be used 
as prior information once new data is available. The 
model and the parameters considered are, however, 
not sufficient to capture the complex spatial-temporal 
dynamics inherent to EMS demand. The methods 
addressed in Zhou (2016) represent a more accurate 
model of the data by overcoming data sparsity and 
representing complex spatial and temporal patterns 
through priors and weights.  

2.2 Unexplored Forecasting Methods 

ML algorithms have been used in the literature for 
diverse applications (Erickson et al. 2017; Yildiz et al. 
2017), yet have not been directly applied to the 
problem of predicting EMS demand. 

2.2.1 Machine Learning Models 

ML algorithms are selected according to four 
learning approaches: supervised learning, 
unsupervised learning, semi-unsupervised learning, 
and reinforcement learning (Hafeez et al. 2021). The 
goal of supervised learning is to build a concise model 
capable of making predictions about future instances. 
To do so, it requires a training set with both inputs and 
outputs for each observation. Within this approach, 
problems can be modelled as regression or 
classification. Continuous values are predicted in 
regression problems, while a label or class is predicted 
in classification problems. 

The following ML algorithms are mainly used in the 
context of supervised learning, for both regression and 
classification problems. Naïve Bayes and K-Nearest-
Neighbour (KNN) have an explicit underlying 
probability model that gives a numerical probability as 
an output. When using these algorithms for 
classification problems, the model considers the 
probability of an instance belonging to each class. The 
Naïve Bayes algorithm assumes that each attribute is 
independent, while the KNN algorithm assigns the 
class or value of an unknown instance based on its 
nearest neighbours (Clark & Niblett 1989; Cover & 
Hart 1967). On the other hand, the Support Vector 
Machine (SVM) algorithm focuses on finding the 

optimal boundary between the training data (Boser et 
al. 1992).  

The Random Forest algorithm is an ensemble 
method that builds multiple decision trees to diversify 
the use of the training data and build a generalized 
model. The logic behind the ensemble method is to 
build several models and combine those that perform 
best. The most popular are boosting and bagging 
(bootstrap aggregating). Boosting combines multiple 
weak learners into a single strong learner by 
sequentially training predictors, while bagging trains 
the models in parallel on different random subsets of 
the training dataset. Once the training stage is 
complete, the prediction for a new instance is made by 
aggregating the predictions of all the learners in the 
ensemble. The Random Forest algorithm trains 
models via bagging method, randomly selecting from 
two attributes to continue each decision tree (Ho 
1995). The Extremely Randomized Trees (Extra 
Trees) algorithm is similar to Random Forest, only it 
adds additional randomization to each decision tree 
(Geurts et al. 2006). On the other hand, the Gradient 
Boosting algorithm is a boosting method that 
minimizes the loss function calculated for each 
observation, and creates decision trees to predict the 
errors (Breiman 1997). Adaptive Boosting (AdaBoost) 
is similar to Gradient Boosting except instead of 
working with full decision trees, it uses decision 
stumps which only have one node and two leaves 
(Freund & Schapire 1997). Finally, the Bootstrap 
Aggregating (Bagging) algorithm builds decision trees 
using different subsets from a dataset (Breiman 1996).  

2.2.2 Performance Improvement 

Training and validation are common processes in 
ML algorithms. The first consists of identifying patterns 
between the inputs and outputs from historical data. 
The second aims to ensure that the developed model 
is generalizable by using a test set to compare 
predictions with the real values. The validation process 
can be performed using cross-validation, which 
increases the reliability of the measured efficiency 
since it is based on resampling procedures (Raschka 
2018). 

Two problems can arise in the training process, 
known as overfitting and underfitting. Overfitting 
occurs when the model is not generalizable, i.e., it 
performs well on the training dataset but not on other 
sets of data. Contrarily, underfitting occurs when the 
model is not able to identify the patterns and 
underlying structure of the data (Géron 2019). For this 
purpose, learning curves are used to identify whether 
the training model is overfitting or underfitting the data. 

A series of steps are followed to ensure that a 
generalizable model with the best accuracy is 
obtained. The dataset is prepared by removing 
attributes that provide redundant information to the 
model in order to reduce the input dimensionality. 
Hence, this increases the training and prediction 
speed, and the models become more practical since 
fewer inputs are required. Attribute selection methods 
for supervised learning can be separated into four 
groups: filter methods, wrapper methods, embedded 
methods, and hybrid methods (Jain & Singh 2018; 
Venkatesh & Anuradha 2019). Filter methods select 
attributes regardless of the learning algorithm by 
exploring statistical measures, while wrapper methods 
use a heuristic approach to consider possible subsets 



4 
 

of attributes, and evaluate the model’s performance 
with each one. In embedded methods, the attribute 
selection process is incorporated in the training of the 
learning algorithm, and hybrid methods combine 
several approaches to take advantage of the benefits 
of different methods (Guerra-Manzanares et al. 2019; 
Venkatesh & Anuradha 2019).  

Once a relevant dataset is obtained, the model’s 
hyperparameter values are fine tuned to check for 
accuracy improvement possibilities. The three most 
popular hyperparameter tuning methods are Grid 
Search, Random Search (RS), and Genetic Algorithm 
(GA) (Liashchynskyi & Liashchynskyi 2019). Grid 
Search tests every possible combination of values in a 
pre-defined set, while RS is more efficient by testing 
random combinations (Bergstra & Bengio 2012). On 
the other hand, GA is an evolutionary search algorithm 
that sequentially selects, combines, and varies 
hyperparameters in a manner that simulates the 
process of natural selection (Liashchynskyi & 
Liashchynskyi 2019). 

3. Case Study 

EMS systems, such as INEM, are complex 
structures built to provide medical assistance as fast 
as possible to patients with serious injuries or 
illnesses. The benefit provided is a unique and vital 
component of the health care system, as it provides 
primary care and serves as a bridge to hospital care. 

3.1 EMS Planning 

To minimize response times and ensure fair 
service and efficient use of resources, EMS require 
thorough planning. Planning is, however, complex and 
challenging due to the variability in terms of volume, 
location, and priority of calls (Ingolfsson 2013). 

There are three different planning levels defined, 
each referring to different planning horizons: strategic, 
tactical, and operational. On the strategic level 
decisions are made for several years, on the tactical 
level decisions refer to periods of one month to one 
year, and on the operation level decisions are made 
on a daily basis or in real time (Reuter-Oppermann et 
al. 2017). At each planning level different EMS 
planning decisions are made, such as the following 
(Bélanger et al. 2019): 

- Strategic level: location of ambulance 
stations, fleet dimensioning, staff hiring;  

- Tactical level: location of ambulances’ 
standby sites, staff scheduling and crew 
pairing, fleet management strategies; 

- Operational level: ambulance location and 
relocation, ambulance dispatching, 
assignment of calls to resources. 

These planning decisions require accurate inputs, 
such as correct demand estimations, to ensure that 
there are sufficient resources available at the right time 
and place. 

Forecasting Levels 

Planning problems on all three levels require 
forecasting as an input. Forecasting can also be 
divided into the same three levels depending on which 
decision level it supports (Reuter-Oppermann et al. 
2017).  

Operational forecasts must be accurate as they 
are the input for critical operational planning decisions 
that may have a direct impact on the survivability of the 

victim if not optimized. Failure in accurately estimating 
demand can result in inefficient resource allocation, 
and preventable time inefficiencies.  

Short-term forecasts provide real time decision 
support for dynamic ambulance deployment and 
hourly operational deployment plans, while large time 
period forecasting is useful for strategic planning and 
budgeting (Reuter-Oppermann et al. 2017). 

3.2 SIEM 

SIEM serves as an extension of the Emergency 
Departments of National Health Service hospitals in 
mainland Portugal. It is responsible for the intervention 
process from the moment a call is placed until the 
patient is transferred to an appropriate health unit. 
SIEM’s intervention process consists of six stages 
(INEM 2013): 

- Detection: emergency situation detected by 
civilian and 112 calls; 

- Alert: screening, triage, priority level 
assignment and vehicle dispatch by Pre-
hospital Emergency Technician (TEPH); 

- Pre-aid: guidance and assistance to a caller to 
perform first-aid basic care if necessary; 

- Initial aid in the accident’s location: after 
vehicle arrival, stabilization of the victim and 
initial treatment; 

- Transport and care during transit: 
transportation to the appropriate health unit 
and in-transit treatment; 

- Transfer and treatment in health unit: transfer 
of the victim to receiving health unit to finalize 
treatment. 

Resources 

To achieve the objectives of the organization, 
INEM has financial, technological, logistic, and human 
resources (INEM 2018). The human resources of 
INEM are mainly Pre-hospital Emergency Technicians 
(TEPHs), nurses, and doctors. The logistic resources 
include all emergency medical vehicles at INEM’s 
disposal. In 2018, the INEM fleet was made up of 658 
emergency medical vehicles distributed throughout 
mainland Portugal, and an additional 62 seasonal 
reinforcement vehicles (INEM 2018). 

There are a total of ten types of vehicles available 
to INEM. The most commonly dispatched vehicles 
owned and managed by INEM are Medical Emergency 
Ambulances (AEM), Vehicles of Medical Emergency 
and Reanimation (VMER), and Immediate Life 
Support Vehicles (SIV). Each one of these vehicles 
serves a different purpose:  

- AEM vehicles are basic life support 
emergency vehicles that require a crew of two 
TEPH;  

- VMER vehicles are advanced life support 
vehicles with advanced medical equipment, 
that require a doctor and a nurse;  

- SIV vehicles are differentiated ambulances 
with immediate life support equipment, that 
require a nurse and a TEPH. 

Call Triage 

Urgent Patient Dispatching Centres (CODUs) 
ensure, for mainland Portugal, daily and continuous 
emergency medical call reception, forwarded through 
the European Emergency Number 112. The calls are 
answered by TEPHs, who are supported by a team of 
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medical doctors and psychologists. They evaluate, 
through a system of triage algorithms and in the 
shortest possible time, the received aid requests to 
determine the necessary and adequate resources for 
each case (INEM 2018).  

There has been a significant increase in 
emergency calls placed throughout the years. In 2018, 
1,393,594 emergency calls were answered by CODU, 
representing an increase of 16% since 2013, and 1.9% 
from 2017. This rise in demand has been justified by 
the ageing population and increase in chronic 
diseases (INEM 2018).  

Once a call is answered by CODU, a TEPH begins 
the triage process to determine the severity of the 
incident and the appropriate vehicles required to 
dispatch. Since 2012, this triage process has been 
done through the use of the Telephonic Triage and 
Counselling System (TETRICOSY), which allows for 
standardization of procedures and high efficiency. The 
software, developed by INEM, assigns a priority level 
for the incident according to the information provided 
by the call operator (INEM 2018). Although there is a 
total of nine priority levels (P1-P9), an emphasis is 
placed on those with the most frequency:  

- Priority 1 (P1): critical life-threatening 
incidents, originating the dispatch of several 
advanced life support emergency medical 
vehicles; 

- Priority 3 (P3): urgent situation and 
dispatching of basic life support emergency 
medical vehicles; 

- Priority 5 (P5): non-urgent situation where the 
triage results in no vehicle dispatching and the 
call is transferred to the appropriate health 
support line; 

- Other priorities: other situations that require 
differentiated assistance.  

Throughout the years, the percentage of P3 calls 
has been increasing significantly, and they hold a large 
majority of the total number of emergency calls 
(around 70-75%). The second most common medical 
emergencies are of P1 priority (around 10-15%), 
followed by P5 calls (around 7-12%) (Santos et al. 
2019). The remaining priorities represent less than 
13% of the total volume of calls. 

3.3 Problem Definition 

In order to tackle the problem of estimating call 
volumes and emergency vehicles demand, addressed 
in the literature as Forecasting of EMS Demand and 
Ambulance Service Demand, this work aims to 
present a forecasting model validated with real data 
shared by INEM. Both types of forecasting are directly 
related to INEM’s operational planning problems. 
Currently, the demand forecasts are based on 
averages from the historical ratio of calls. An updated 
decision support tool based on state-of-the-art 
methodologies will certainly contribute to more 
effective and efficient planning. 

4. Exploratory Data Analysis 

Historical data from 2017 to 2018 shared by INEM, 
together with a large number of attributes, are 
presented in two datasets. The data is aggregated in 
discrete time and spatial intervals. The first dataset 
contains hourly volumes of calls of priorities P1 and P3 
answered per each of the eighteen districts in 
mainland Portugal. The second dataset has the 

number of dispatches of vehicles SIV, VMER, and 
AEM per 8-hour shift from each of the twenty bases in 
the municipality of Lisbon. Other than the differences 
in time intervals and spatial origin of demand, the 
remaining attributes are equal for both datasets.  

4.1 Attributes 

The sixty-five attributes available in the datasets 
are grouped into nine categories: weather, special-
event, resident population, age, gender, employment, 
seasonal patterns, accident/crime, and occurrence 
type. While most of the attributes are obtained from 
sources such as the National Institute of Statistics, 
occurrence type contains historical information 
registered by INEM in the form of thirty-seven types of 
medical occurrences. The majority of these 
occurrences suffered a small growth in 2018. 

The relationship between attributes is measured 
through a coefficient of correlation, which indicates the 
strength of the statistical association between two 
attributes. Pearson’s correlation coefficient is selected 
to evaluate linear relationships due to its wide 
application in the literature (Liu et al. 2020; Rastegari 
et al. 2019). Although with some exceptions, high 
correlation is found between attributes within the same 
category. Between categories, little to no correlation is 
observed with categories weather, special-event, and 
employment. A positive correlation is found between 
most other categories, except for age that presents 
negative correlation with the others.  

Out of the thirty-seven attributes of category 
occurrence type, ten of them can be considered as 
rare since they have low daily occurrence rates, 
resulting in a lack of correlation with other attributes 
due to their sporadic behaviour.  

4.2 Target Variables 

There are a total of five target variables for the 
problem at hand: P1 and P3 call volumes available in 
the call dataset; and SIV, VMER, and AEM vehicle 
dispatches from the vehicle dataset.  

P1 calls typically result in the dispatch of two out of 
the three vehicles under analysis, while P3 calls 
usually only result in the dispatch of one life support 
emergency medical vehicle, such as AEM or SIV.  

Calls of priority P3 are significantly more frequent 
than P1, P3 having on average 5.24x higher demand, 
and this gap increased in 2018. Nonetheless, both 
priority calls had a significant demand growth from 
2017 to 2018, with 3.9% and 5.43% increases for P1 
and P3 calls, respectively. The highest demand 
volumes are observed in the most populated districts, 
Lisbon, Porto, and Setúbal. On the other hand, Faro, 
Beja, and Portalegre present the greatest volumes per 
resident population.  

AEM vehicles are significantly more issued than 
VMER and SIV vehicles. In 2017, the proportion of 
dispatches was the following: 4.77% SIV, 16.54% 
VMER, and 78.69% AEM. The next year, SIV and 
VMER vehicles represented a slightly bigger portion of 
dispatches, leaving AEM vehicles with 77.29% of 
dispatches. Although it is not significant, this could 
indicate a trend towards a more balanced distribution.  

Dispatches of vehicles SIV, VMER, and AEM in the 
municipality of Lisbon are spatially aggregated 
according to the base from which the vehicle left. From 
2017 to 2018, demand only increased for SIV vehicles 
at 5.72%, whilst VMER demand decreased by 0.59% 
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and AEM decreased by 7.07%. In the two years under 
analysis, the majority of SIV dispatches originated 
from two bases: b0 (77.79%) and b4 (15.58%). 
Similarly, the majority of dispatches involving VMER 
vehicles were concentrated from three bases: b9 
(29.06%), b10 (35.68%), and b11 (34.09%). AEM 
dispatches are the most varied, although ten out of 
twenty bases issued less than 1.10% of all AEM 
vehicles. The vast number of zero dispatches per shift 
is noteworthy, with no dispatches of SIV, VMER, and 
AEM vehicles in 94.07%, 85.63%, and 61.45% of 
observations, respectively. 

Both call and vehicle demand are dependent on 
the time of day, day of week, month, and season. 
Regarding the time of day, a distinct demand pattern 
is identified with the lowest volumes during the night, 
peak in the morning, and slow decrease throughout 
the day. Standard deviation is also lower during the 
night. Although not as pronounced, weekdays have 
higher demand comparatively to weekends. Also, 
Monday is the day of the week with the highest 
demand and Sunday typically has the lowest. 
Regarding yearly patterns, the beginning and end of 
the year are the periods with the highest demand, and 
demand decreases sequentially throughout the middle 
of the year. There is a slight increase in call volumes 
in August, although it is not replicated in vehicle 
demand. The standard deviation of August is also 
significantly higher than the remaining months, which 
is a probable consequence of the intense heat that 
frequently impacts Portugal during this month. These 
yearly patterns may also be related to the effects of the 
season. Higher call and vehicle demand volumes are 
observed during autumn and winter, summer being the 
season with the lowest demand and winter with the 
highest.  

5. Methodology 

The workflow identified for the development of 
predictive models based on ML algorithms is used as 
the computational methodology of this work (Al-Janabi 
et al. 2017; Stetco et al. 2019; Were et al. 2015). The 
data was collected, pre-processed, and treated for 
outliers prior to this work, so these procedures are not 
performed. 

Following the initial exploratory data analysis, 
presented in the previous section, the prediction 
approach (regression or classification) is defined to 
determine the need for label designation and to select 
the appropriate evaluation metrics. For each ML 
algorithm that is applied, the subset of attributes is 
selected through a suitable method, and the model is 
trained and tested via cross-validation using default 
hyperparameters. After all the results are obtained, the 
models with the best performance are selected and 
subjected to hyperparameter tuning procedures to 
maximize accuracy. The final models are compared 
with one another through appropriate measures, 
conclusions about their performance are obtained, and 
a final model capable of producing accurate 
predictions is chosen.  

6. Experimental Results 

With the goal of elaborating a forecasting tool 
directed towards operational planning, the GMM and 
eight other ML algorithms are selected and tested to 
identify the best performing model. These eight ML 
algorithms are the following: Naïve Bayes, KNN, SVM, 

Random Forest, Extra Trees, Gradient Boosting, 
AdaBoost, and Bagging. The developed model is 
expected to be an improvement on the existing 
prediction methods currently in use by INEM. 
However, this improvement is not measurable 
because the planning decisions are currently guided 
by intuition.  

The experiments are conducted on a laptop with a 
2.90GHz Intel Core i7-7500U processor and 8.00GB 
of RAM, with two cores, running on Windows 10. 

6.1 Data Preparation 

A separate model is developed for each target 
demand volume that is predicted, i.e., for each type of 
vehicle (SIV, VMER, and AEM) and each priority level 
call (P1 and P3). The highest available granularity 
level is used since the forecasts are directed towards 
short-term operational planning. This means that call 
demand is predicted on an hourly level and vehicle 
demand for 8-hour shifts. The twenty bases in Lisbon 
represent the spatial location of the vehicle demand 
and call demand is grouped by the eighteen districts in 
mainland Portugal. 

The two datasets are subjected to a normalization 
procedure to obtain uniform data due to the extreme 
differences in the range of values of the attributes. The 
homogenization of the data facilitates the training 
process by ensuring a lower computational cost and 
increasing the ability of the model to rapidly converge. 
The normalization process is done via a min-max 
scaling method, rescaling the dataset so the values of 
each attribute are in the same [0,1] range.  

A classification prediction approach is selected for 
this application, and four metrics are selected to 
evaluate the models: Receiver Operating 
Characteristics (ROC) Area Under the Curve (AUC), 
accuracy, Precision, and Recall.  

This approach requires the transformation of the 
continuous outputs of the target variables into classes. 
These classes are defined through unsupervised 
learning, via the K-means clustering algorithm. An 
optimal number of two clusters is obtained for all target 
variables, resulting in binary classification problems. It 
is important to note that the obtained classes 
demonstrate imbalance in terms of the number of 
observations in each class. For all the target variables, 
the number of instances in cluster 0 is significantly 
higher (>75%) than cluster 1.  

6.2 GMM Application 

Two methods are explored for the selection of the 
most relevant subset of attributes, a filter and a 
wrapper method. The selected filter method, 
Pearson’s correlation coefficient, is used for a 
correlation analysis (CA). The attributes with a 
correlation higher than 0.4 or lower than -0.4 with the 
target variable are selected. After this, attributes with 
correlation higher than 0.8 or lower than -0.8 with each 
other are removed, remaining only the one with the 
highest correlation with the target variable (Guerra-
Manzanares et al. 2019; Pallonetto et al. 2019; 
Rastegari et al. 2019). GA is selected as the wrapper 
and it is applied over 5 generations with a crossover 
probability of 0.5, mutation of 0.2, and with a 
population size of 15. The algorithm converges within 
the 5 generations since all the individuals in the final 
population present the same solution.  
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The hyperparameters of the GMM are tuned via 
two methods, RS and GA, both with the goal of 
maximizing accuracy. For RS, the parameters are 
sampled uniformly although not all parameter values 
are tried out, but rather 10 parameter settings are 
sampled from the specified listed values. The GA is 
run through 5 generations with a population size of 15, 
crossover probability of 0.9 and mutation of 0.03.  

Stratified cross-validation with 5 folds is used to 
preserve the percentage of samples in each class. 
Four GMM models are obtained at this stage: two are 
built on the CA dataset, having the hyperparameters 
of one been tuned with RS and the other with GA; the 
other two models are constructed on the GA dataset, 
with the same distinction in tuning processes. 
Regarding attribute selection, CA overall provides 
better results than GA. Additionally, the CA method is 
significantly faster computationally, further supporting 
the choice to use this practice. Different preferences 
are shown in regard to hyperparameter tuning 
methods depending on the evaluation metrics, with 
AUC and accuracy recommending RS and GA, 
respectively.  

6.3 ML Application 

Similar to the GMM application, both CA and GA 
are used as attribute selection methods in the ML 
algorithms. The CA results in exactly the same 
selection of attributes since it is independent of the 
learning algorithm. This is not the case for the GA 
method, which must be repeated for each of the eight 
algorithms.  

For this application, the hyperparameter tuning 
process is only conducted after the evaluation of the 
ML models with default hyperparameters to identify 
the ones that best model the data. Preliminary results 
of accuracy and AUC obtained from a stratified 5-fold 
cross-validation identify algorithms Gradient Boosting 
and AdaBoost as the ones that result in the best 
performing models. The third best performing 
algorithm is SVM, however, the lengthy computational 
time of this algorithm does not justify its further 
exploration for operation planning. 

An analysis of the AUC and accuracy metrics 
shows that Gradient Boosting performs best with the 
attributes selected through GA, and AdaBoost 
performs best with the CA dataset. The main 
difference between these two datasets is the number 
of attributes that are selected for each. For this data, 
the CA method selects significantly fewer attributes, 
44.8 on average, while the GA method selects on 
average 83.3 attributes. Therefore, in this case, 
Gradient Boosting performs best with additional 
attributes while AdaBoost prefers fewer attributes. 

Identically to the GMM application, 
hyperparameter tuning is performed both via RS and 
GA. Performance improvements for both models are 
more significant with RS.  

6.4 Results Analysis 

The models are studied through analyses of 
learning curves, ROC curves, Precision-Recall curves, 
and confusion matrices, to obtain a deeper 
understanding of the performance of each one.  

Learning curves measure the quality of the model’s 
fit to the data and provide a view of its generalization 
ability. In general, the models show adequate 
behaviour, reaching a point of stability with a small gap 

between the training and the validation curves. There 
are two situations where the learning curves 
demonstrate ill-fitting models, however, they are 
corrected through small adjustments of 
hyperparameter values to fix underfitting and 
overfitting problems. 

ROC curves give a visual understanding of each 
model’s capability to distinguish class 1 from class 0, 
as they plot the true positive rate (Recall) versus the 
false positive rate for all possible cut-off values. The 
same logic is applied for the Precision-Recall curves, 
although they provide a view directed towards 
understanding each model’s ability to predict the 
minority class (class 1). Overall, both ROC curves and 
Precision-Recall curves are significantly worse for the 
two GMM models when compared to the two ML 
boosting models, which is especially true for P1 and 
P3 models.  

Computational Complexity 

Although previous studies in the literature show 
that ML algorithms typically follow a O(log n) curve 
(Hafeez et al. 2021), this analysis aims to understand 
the complexity of the models when combined with 
additional particularities such as attribute selection. 
The analysis is performed by evaluating the time 
required to train models Gradient Boosting and 
AdaBoost with RS tuning performed for 10 iterations, 
and with a 5-fold stratified cross-validation. A 
performance comparison is shown between using 
attribute selection methods CA and GA. Figure 1 
shows the computational complexity for vehicle 
models.  

   

        

Figure 1 – Computational complexity of 
emergency vehicle models. 

While the vehicle dataset consists of 43,800 
observations, the call dataset is significantly larger, 
with 315,360 observations. Despite the differences in 
data sizes, the computational complexity of the call 
models is similar, as is shown in Figure 2. 
 

 

     

Figure 2 – Computational complexity of 
emergency call models. 
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The models with GA attributes have longer run 
times than CA due to the additional cost that this 
selection process represents. Although not all curves 
represent the expected O(log n), the results do not 
show high model complexity. Compared to CA, the 
curves of GA models are further from the expected, 
which suggests that the algorithm follows a different 
complexity behaviour. Overall run time is superior for 
AdaBoost, which represents a significant advantage 
for Gradient Boosting models in comparison. 

Model Limitations 

The GA used for attribute selection converged 
within 5 generations since the individuals in the final 
population were identical. This same number of 
generations was used for the hyperparameter tuning 
processes, although convergence is not obtained for 
all of the models. The best course of action to avoid 
local optimal solutions is to increase the considerably 
low number of generations. This is limited by the 
computational time of the process, as well as the need 
to run multiple models for each algorithm explored in 
this work. RS proved to be a good alternative. The GA 
with 5 generations took on average 2.3x longer than 
the RS with 10 iterations. Adding this to the fact that 
superior results were obtained for both Gradient 
Boosting and AdaBoost models, the RS is 
recommended as an overall better hyperparameter 
tuning process. 

Despite the overall high accuracy of the models, 
issues related to data imbalance present a great 
challenge. Recall is poor (lower than 0.5) for P1 
models regardless of the algorithm, meaning that the 
majority of positives (class 1) are predicted incorrectly. 
Low Recall is especially bad considering the nature of 
the service, where incorrect low demand predictions 
can lead to unpreparedness and failure of EMS 
resources. Since Precision-Recall is a trade-off, the 
nature of the service may favour sacrificing Precision 
to obtain higher Recall values. However, Recall is bad 
regardless of the algorithm that is used, suggesting 
that this problem is related to the imbalance of the 
data. The fundamental structure of the data implies a 
lack of representation due to a large number of 
observations in the original data with 0 demand. This 
deficit is related to the set granularity levels which, if 
reduced, would help overcome data sparsity.  

Final Remarks 

The final results of the two boosting models, 
summarized in Table 1, show that Gradient Boosting 
presents higher values for most evaluation metrics. 
Furthermore, based on all of the analyses that were 
performed, Gradient Boosting has the overall best 
performance out of the evaluated models, including 
lower computational complexity. For this reason, the 
recommended model is Gradient Boosting trained with 
attributes selected via GA and with hyperparameters 
tuned through RS. Although the recommended GA 
Gradient Boosting model is appropriate for operational 
planning, CA models may be preferred if the main 
priority goal is computational cost minimization. 
Nonetheless, RS is identified as a better option for 
hyperparameter tuning when compared to GA in 
regard to both model performance and computational 
efficiency. 

 

Table 1 – Results from stratified 5-fold cross-
validation of the boosting models. 

  Gradient 
Boosting 

AdaBoost 

SIV 
AUC 0.9923 0.9846 

Accuracy 0.9834 0.9774 

VMER 
AUC 0.9910 0.9913 

Accuracy 0.9673 0.9672 

AEM 
AUC 0.9737 0.9569 

Accuracy 0.9151 0.8933 

P1 
AUC 0.8607 0.8595 

Accuracy 0.8436 0.8425 

P3 
AUC 0.9837 0.9827 

Accuracy 0.9616 0.9599 

 
Overall, the boosting models explored in this work 

outperformed other ML models for this set of highly 
sparse data. This includes the GMM, which performed 
similarly to other ML models and was ultimately 
surpassed.  

7. Decision Support Framework 

Data analytics is commonly split into four sections: 
descriptive, diagnostic, predictive, and prescriptive 
analytics (Mustafee et al. 2018). The aim of descriptive 
analytics is to identify and summarize what happened 
using data visualization and key performance 
indicators, to assess performance and compare it 
against targets. Sequentially, diagnostic analytics 
follows the information obtained and intends to identify 
why something happened. Then, the predictive 
analytics level focuses on identifying what is likely to 
happen by developing estimates of outcomes based 
on planned inputs. While descriptive, diagnostic, and 
predictive analytics are information focused, 
prescriptive is decision focused. The aim is to obtain 
prescriptions of specific actions that lead to the desired 
outcome, with an emphasis on the concrete decision 
problem. A solution path is suggested by prescribing 
one or more courses of action and informing on the 
likely outcome of each one. The success of 
prescriptive analytics is mainly dependent on the 
assessment of the alternatives generated from the 
prediction phase and the impact they have on 
performance (Mustafee et al. 2018).  

Considering prescriptive analytics in the context of 
EMS planning, each of the identified decision 
problems requires a concrete plan to determine the 
most suitable actions.  

Predictive Analytics 

Predictors such as time interval, date, and location 
are common throughout any model. Other attributes 
can be added, although they should be carefully 
selected as they could add useless information and 
increase computational time. Available attributes 
should be submitted to an attribute selection process 
to determine the most relevant ones. This study 
explores the contrasts between CA and GA, and the 
conclusions obtained from this comparison can be 
extended to other methods. Similar to what has been 
observed in the literature, wrapper methods typically 
provide better results while the computational burden 
of filter methods is insignificant with small accuracy 
deterioration (Venkatesh & Anuradha 2019).   

Different parameter values should be explored to 
achieve the most accurate model, and RS proved to 
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be a superior method to GA in this work. The selection 
of the number of iterations for a RS is dependent on 
the number of hyperparameters and values to test, as 
well as the available time to search for an efficient 
combination. If run time is not an important factor, for 
instance in strategic planning, RS with a large number 
of iterations should be run. While RS is appropriate for 
large search spaces due to the trade-off between run 
time and quality of solution, Grid Search can be used 
for small search spaces since it explores all possible 
combinations.  

Regarding forecasting methods, time series 
models have mostly surpassed regression models due 
to their superior performance and ease of use. The 
literature has explored ARIMA and Holt-Winters 
methods to predict EMS demand, as well as a non-
parametric technique, SSA. While ARIMA models 
provide accurate forecasts for tactical level planning, 
SSA has been successful in producing accurate long-
term forecasts (Al-Azzani et al. 2020; Vile et al. 2012). 
Also, seasonality has been recently incorporated in 
ARIMA models, making SARIMA models an improved 
option for tactical forecasting (Gijo & Balakrishna 
2016). 

Spatial-temporal models are improvements on 
time series since they can model both time and 
location. ANN achieves high accuracy, but it is most 
appropriate for tactical and strategic level forecasts 
due to the associated computational cost and large 
volumes of data required (Setzler et al. 2009). The 
results of Zhou (2016) show that Kernel Warping is 
highly accurate, closely followed by GMM. The 
complexity of the Kernel Warping is its main limitation, 
while GMM is easily applicable with only a slight 
decrease in accuracy. ML models present a promising 
opportunity since they have achieved great results in 
other fields. From the experiments made in this work, 
boosting models demonstrate great performance, and 
are recommended for similar applications.  

Prescriptive Analytics 

After relevant descriptive and diagnostic analyses, 
predictive analytics should be applied following the 
presented guidelines. These predictions are fed to 
prescriptive analytics tools such as simulation, 
resulting in a clear solution path. This process 
represents the framework that should be followed to 
solve a decision problem, and is represented in Figure 
2. The input data is used at all stages of this framework 
and the ultimate results, actionable recommendations, 
are used to assist the original decision problem.   

 

Figure 2 – Guideline for descriptive, diagnostic, 
predictive, and prescriptive analytics. 

The value of the predictions obtained in the 
predictive analytics stage derives from its utility in 

decision-making. Depending on the decision problem, 
forecasts referent to different time horizons are 
constructed and obtained in different run times.  

8. Conclusions and Future Work 

EMS systems are complex structures vital to 
preserving human lives and delivering fast and 
effective health care to the population. Demand for 
EMS has been increasing largely due to population 
ageing and growth, resulting in a need to evaluate and 
study these systems. Reliable forecasting tools 
capable of supporting planning decisions are required 
to optimize resource allocation and improve 
effectiveness. Short-term demand forecasts are a vital 
input for operational planning, and accurate estimates 
obtained in low computational times are needed for 
detailed planning on a daily, hourly, and real time 
basis. Currently, INEM uses simple averaging 
techniques to obtain future demand provisions, which 
does not meet with the forecasting techniques 
addressed in the state-of-the-art. 

For the problem of operational planning, an 
extensive search of models applied in the literature for 
EMS demand forecasting allowed the identification of 
the time-varying GMM as the most promising option. 
Further research showed that common ML algorithms, 
frequently applied for predictive modelling in a variety 
of other problems, had not yet been directly applied to 
predict EMS demand. Recognizing this, a wide 
selection of ML models is chosen to train and validate 
on real data shared by INEM, and allow a comparison 
with the selected GMM. The models are explored to 
incorporate additional attributes in order to explain 
demand fluctuations. In addition to training and testing 
predictive models on INEM’s data, optimization 
methods such as attribute selection and 
hyperparameter tuning processes are explored. 

An in-depth analysis of INEM’s historical data from 
2017-2018 identifies demand patterns similar to those 
already recognized in the literature. These include 
relationships between demand and times when people 
sleep and go to work, as well as the month of the year 
likely related to vacation periods. The provided 
datasets are used to train and validate the models and 
experiment multiple improvement opportunities. The 
attribute selection processes identify both CA and GA 
as appropriate methods, the former having 
significantly lower computational time. Alternative 
hyperparameter tuning procedures are investigated 
and the highest improvements are obtained with the 
RS method in low computational times. The results 
obtained from a stratified 5-fold cross-validation 
recognize Gradient Boosting as the best model out of 
those that were explored in this work, closely followed 
by AdaBoost. The GMM model achieved results 
similar to those of other ML models, although it was 
surpassed by both of the explored boosting models. 

The limitations of this work include the limited utility 
of the predictions due to the use of unsupervised 
learning for class definition. The exploration of other 
methods is recommended, validated by the decision-
maker, in order to produce more relevant and overall 
better predictions.  

Future work should attempt to further explore 
boosting ML algorithms considering the problem as 
regression. Although not incorporated in this work, 
location-specific and temporal seasonality represent 
an interesting addition for future applications of ML.  
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