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ABSTRACT 

Emergency Medical Services (EMS) are a vital component of pre-hospital medical care. These services 

are paramount to save lives as they focus on providing quality care and minimizing response times to 

ensure patient survivability.  

The Portuguese EMS system, SIEM, is responsible for providing prompt and adequate medical care for 

mainland Portugal. This complex system is managed by the National Emergency Medical Institute 

(INEM), a public entity designated to coordinate SIEM’s operations. INEM balances multiple objectives, 

budget constraints, and uncertainty. Complex planning decisions must be made, which require accurate 

demand estimates to serve as inputs to make informed decisions.  

The method currently adopted by INEM is based on simple averaging techniques, which may lead to 

inefficient allocation of scarce resources. Recognizing this, this work aims to identify forecasting models 

exploring spatial-temporal datasets and contextual data to provide reliable information for decision-

makers to support their decisions about resource allocation, and to meet the volume of calls answered 

at dispatch centres and the need for multiple emergency vehicles. 

The time-varying Gaussian mixture model is distinguished as one of the methods with good performance 

for obtaining accurate demand estimates on the operational level. Together with other Machine Learning 

models, unexplored in the literature for EMS demand forecasting, these predictive models are 

developed, optimized, and validated. Validation with INEM’s data shows that the Gradient Boosting 

model achieves, on average, 1.14% higher accuracy than the Gaussian mixture model. Furthermore, 

having surpassed all other models, boosting algorithms prove to be the most promising for similar 

applications.  

 

Keywords: Emergency medical services; Operational planning; EMS demand forecasting; Ambulance 

service demand; Gaussian mixture models; Machine learning. 
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RESUMO 

Os serviços de emergência médica (EMS) são uma componente essencial dos cuidados médicos pré-

hospitalares. Estes serviços são fulcrais para salvar vidas e focam-se em minimizar tempos de resposta 

para garantir a sobrevivência do paciente.  

O Sistema Integrado de Emergência Médica (SIEM) é responsável por fornecer cuidados médicos para 

Portugal continental. Este sistema complexo é gerido pelo Instituto Nacional de Emergência Médica 

(INEM), uma entidade pública designada a coordenar as operações do SIEM. O INEM tem em conta 

múltiplos objetivos, restrições orçamentais, e fontes de incerteza, sendo necessário tomar decisões de 

planeamento complexas, que requerem estimativas precisas de procura.  

O método atual adotado pelo INEM é baseado em médias simples, podendo levar a alocações 

ineficientes dos seus recursos limitados. Tendo isto em conta, o objetivo deste trabalho é identificar 

modelos de previsão explorando dados espácio-temporais para fornecer informações fiáveis para os 

decisores apoiarem decisões de alocação de recursos, garantir o atendimento do volume de chamadas 

nos centros de despacho, e planear a necessidade de veículos de emergência médica.  

O modelo de mistura Gaussiano apresenta bom desempenho, obtendo estimativas precisas de procura 

a nível operacional. Juntamente com outros algoritmos de Aprendizado de Máquina, pouco explorados 

para previsões de EMS, estes modelos de previsão são desenvolvidos, otimizados, e validados. A 

validação com dados do INEM mostra que o modelo Gradient Boosting obtém, em média, 1,14% maior 

precisão do que o modelo de mistura Gaussiano. Além disso, tendo superado os outros modelos, os 

algoritmos boosting provaram ser os mais promissores para aplicações similares.  

 

Palavras-chave: Serviços de emergência médica; Planeamento operacional; Previsão da procura de 

EMS; Procura de serviços ambulatórios; Modelo de mistura Gaussiano; Aprendizado de máquina. 
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1. Introduction 

This chapter aims to introduce the dissertation, motivating the problem and identifying the goals of this 

research, as well as presenting the research methodology and the structure of the document. Section 

1.1 provides the context regarding the problem under study, Section 1.2 presents the objectives of this 

dissertation, Section 1.3 characterizes the research methodology, and Section 1.4 outlines the structure 

of the dissertation. 

1.1. Problem Context 

Emergency medical services (EMS) are complex systems that are designed to provide medical 

assistance to patients with serious injuries or illnesses and are a vital component of pre-hospital medical 

care. Such systems play a key role preserving lives, as patients benefit from these services from the 

moment they make a call to 112, until the moment they receive pre-hospital medical care and are 

transported to the hospital where they will receive the appropriate treatment according to their needs 

(Bélanger et al. 2019).  

The Portuguese Integrated Emergency Medical System, Sistema Integrado de Emergência Médica 

(SIEM), is managed by the National Emergency Medical Institute, Instituto Nacional de Emergência 

Médica (INEM). Their primary goal is to provide adequate and prompt medical care to patients in 

mainland Portugal.  

INEM is responsible for allocating scarce resources, which implies planning decisions that affect 

different planning levels. These decisions are, however, supported by intuition or simple averages at 

INEM due to the lack of decision support tools based on the state-of-the-art (Santos et al. 2019). 

Nevertheless, these decisions have an impact on the quality of the care that is provided, justifying the 

use of models addressed in the state-of-the-art to support decision-making. 

These decision support tools usually require the volume of call arrivals and transportation needs as input 

variables. Based on that, improvement in the forecasting process is a basis to ensure efficient planning, 

and hence contribute to reducing response times.  

1.2. Dissertation Goals 

The contextualization presented in the previous section is what motivates this study, whose main goal  

is to apply forecasting techniques to improve the planning of physical and human resources at INEM. In 

addition, this work contributes to the production of inputs for EMS planning problems that are explored 

in a collaborative project between the Centre for Management Studies of Instituto Superior Técnico  

(CEG-IST) and INEM. These problems include Staff Scheduling Problem, Ambulance Location Problem, 

and Base Location Problem. 

The developed forecasting models should provide useful information for INEM to improve the 

management of its resources, as well as be easily integrated with the optimization models that are under 

development in the collaborative project. The accuracy of these models contributes to matching demand 

and supply so that resources can be efficiently allocated both in time and location, and consequently 

response times can be reduced. Secondary goals include characterizing the system and analysing 



2 
 

historical data to provide managerial insights to INEM. Once the importance of accurate and reliable 

predictive models is recognized, the techniques that have been already applied in the literature are 

reviewed to identify potential gaps and improvement opportunities. In this context, forecasting models 

are developed and validated with the Portuguese case study, while comparing the performance of 

different techniques.  

1.3. Research Methodology 

A research methodology based on five steps is proposed and shown in Figure 1, in order to achieve the 

objectives defined in the previous section.  

 

Figure 1 – Steps of the proposed methodology 

Step 1 – Problem Definition 

The first step consists of characterizing the problem and understanding how it can be solved. Moreover, 

it includes identifying the objectives of the dissertation and defining the problem that is to be solved. To 

characterize the problem under analysis, EMS systems are introduced along with their main objectives 

and features, as well as the related planning problems. The inputs required for decision-making at 

different planning levels are analysed to identify the need for accurate demand forecasts. These 

forecasts guarantee efficient planning and quality service, which are monitored by key performance 

indicators such as response times. This step also includes the introduction of the Portuguese EMS 

system SIEM, managed by INEM, which shared the data explored in the case study. A description of its 

features and processes is provided to obtain an overview of the main challenges of demand forecasting 

and the problem statement.  

Step 2 – Literature Review 

This step consists of exploring methods to solve the problem defined, and so the state-of-the-art of EMS 

demand forecasting models is presented. A theoretical context is provided, and the sort of forecasting 

models already explored in the literature are presented, as well as the attributes that each model 

considers to explain demand fluctuations. An understanding of how the problem is approached in the 

literature and what has been done so far allows to recognize improvement possibilities and identify what 

there is still to do in EMS forecasting. Additionally, methods that have not yet been applied to EMS 

demand forecasting are presented along with the processes of how to adequately obtain and evaluate 

the results.  

Step 3 – Data Analysis 

In this step, the historical data provided by INEM is analysed, and managerial insights are obtained from 

this analysis. These insights are expected to provide INEM with relevant information to assist in planning 

and managing operations, as well as obtain further understandings of demand patterns. Additionally, 
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these insights can be eventually useful to the literature in situations where they can be generalized to 

other EMS systems.   

Step 4 – Predictive Models 

In this step, different approaches are explored to deal with the problem at hand, and forecasting models 

are developed and validated using the Portuguese case study. The forecasting process currently in use 

by INEM uses methods based on simple calculations such as basic averaging techniques. Possible 

improvement opportunities are identified to reduce response times by developing more accurate 

forecasting models to assist with EMS planning decisions on the operational level. 

Step 5 – Results Analysis 

This step consists of analysing the results obtained from the previous step to understand the impact of 

forecasting errors and the benefit of using the proposed models to support INEM’s operations. The 

proposed models are evaluated in terms of accuracy and efficiency, and a comparative study is 

conducted to identify the advantages and disadvantages of each method, and produce 

recommendations.   

1.4. Structure of the Dissertation 

The remainder of this dissertation is organized into the following chapters: 

Chapter 2 – Problem Description 

Chapter 2 provides an overview of EMS systems. Decisions on different planning levels are introduced, 

and the need for accurate EMS demand forecasts is highlighted. The case study addressed in this 

dissertation is also introduced to understand the organization and identify improvement opportunities. 

The resources available to INEM are presented, and the call answering and dispatching processes are 

detailed. Finally, the problem addressed in the dissertation is presented. 

Chapter 3 – Literature Review 

In Chapter 3, the literature on EMS demand is reviewed, and an overview is given of the prediction 

methods already applied to the problem at hand. This overview provides sufficient detail to identify the 

most appropriate method for this application, as well as potential further developments. Other algorithms 

applied to similar problems are identified and briefly explained to justify their application for predicting 

the volume of EMS calls and dispatches of emergency vehicles. The procedure that must be followed 

to apply these algorithms is also characterized to define the computational methodology of this work.  

Chapter 4 – Exploratory Data Analysis 

Chapter 4 covers an analysis of the data shared by the EMS provider. This data is introduced along with 

the available variables, which are studied to detect relationships with demand. This is done through the 

use of data visualization, which is explored to detect patterns and understand demand behaviour. The 

relationship between predictor variables and defined target variables is further studied through an 

analysis of correlation.  
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Chapter 5 – Experimental Results 

The data is subjected to attribute selection methods to reduce its dimension by eliminating attributes 

that provide repeated information to the model, and consequently lead to it becoming biased. The re-

dimensioned dataset is used to train and validate predictive models, while their respective 

hyperparameters are tuned. The performance of the obtained models is evaluated through different 

performance measures, and their results are compared to identify the best model.  

Chapter 6 – Decision Support Framework 

Chapter 6 presents a decision support framework based on predictive analytics and applicable to EMS 

demand forecasting. The knowledge gathered from this work is systematized into concrete 

recommendations to facilitate future applications for similar problems.  

Chapter 7 – Conclusions and Future Work 

The final chapter presents the conclusions of the dissertation and recommendations for future work. The 

contribution of this dissertation is summarized along with its associated limitations and future 

recommendations, including suggestions to overcome these issues.  
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2. Problem Description 

The aim of this chapter is to define the problem and describe the case study addressed in the 

dissertation. Section 2.1 introduces the purpose of EMS systems and describes relevant features and 

issues. Section 2.2 presents the Portuguese EMS system, describing its structure and operations. 

Section 2.3 describes the research problem, and Section 2.4 presents the chapter’s conclusions.  

2.1. Problem Setting 

EMS systems are complex structures built to provide medical assistance as fast as possible to patients 

with serious injuries or illnesses. The benefit provided is a unique and vital component of the health care 

system, as it provides primary care and serves as a bridge to hospital care. These services are crucial 

in preserving human lives, reducing mortality rate, and improving social welfare (Aringhieri et al. 2017).  

Demand for EMS, which includes both pre-hospital medical care and transportation to a medical facility, 

is increasing largely due to the ageing and growing population (Reuter-Oppermann et al. 2017). 

Changes in population health, health system practices, public expectations, and accessibility of 

ambulance services are other factors contributing to rising demand (Lowthian et al. 2011).  

2.1.1. EMS Performance Measures 

EMS are constrained by tight budgets, yet their goal is to provide maximum benefit to citizens. 

Performance measures are paramount to evaluate the benefit provided, and ensure that budgets and 

resources are efficiently allocated (Reuter-Oppermann et al. 2017).  

To identify common performance indicators for European EMS systems, the European Community 

funded the European Emergency Data (EED) Project. This project identifies five indicators to enable 

monitoring, evaluation, and comparison of pre-hospital emergency care throughout the European Union: 

availability, reliable access, demand and workload, rate of critical conditions, and level of care. These 

indicators also serve as benchmarks for EMS across Europe and beyond (Krafft et al. 2003).  

Although a set of indicators is defined, other performance measures are recurrent to evaluate the 

system’s performance, such as time-related measures since the data is relatively easy to collect, 

understand, and enables the measuring of response times. Response times correspond to the time from 

when the call is received at dispatch centres until medical assistance arrives at the incident’s location 

(Ingolfsson 2013). Thus, response times are directly related to the measure of coverage, as well as the 

fraction of calls that can be reached within a target response time (Van Den Berg 2016). However, there 

is no consensus on the proportion of incidents that must be reached within a given response time target. 

For instance, for urgent urban calls, the UK has a target of 95% of calls to be reached within 19 minutes, 

while North America has a target of 90% to be reached within 9 minutes (Ingolfsson 2013).  

The objectives of minimizing response times and maximizing overall coverage are conflicting with the 

issue of cost-effectiveness. In order to guarantee a high level of coverage for an area, a large number 

of costly resources need to be available to offer a proper and fast response to any emergency. Time is 

a critical factor when it comes to the survivability of the victim, making the balance of cost and coverage 
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challenging, since the value of human life is not estimable and higher costs may be accepted in return 

for higher protection against losing lives.  

Ensuring that all lives are valued equally and providing equal service to all citizens is also a major 

objective of EMS, and a large concern of the healthcare sector. However, the cost of saving a life in 

rural areas is much higher than in urban areas. This leads to lives being valued differently depending 

on the location of the citizen (Aringhieri et al. 2017). 

There are two perceptions of equity, horizontal and vertical. Horizontal equity suggests that all demand 

nodes are to be considered equal and urban areas treated with no discrimination. On the other hand, 

vertical equity considers different distribution approaches for different areas (Aringhieri et al. 2017). 

Evaluating satisfaction is also an important aspect when it comes to measuring fairness. Often 

customers may receive services above a given standard, but feel dissatisfied if they feel that it was 

worse than that of another customer (Bélanger et al. 2019). These issues are of great concern to the 

planning and management of EMS systems as they affect how resources are allocated to patients in 

different areas.  

2.1.2. EMS Planning Problems 

To minimize response times and ensure fair service and efficient use of resources, EMS require 

thorough planning. Planning is, however, complex and challenging due to the variability in terms of 

volume, location, and priority of calls (Ingolfsson 2013). 

There are three different planning levels defined, each referring to different planning horizons: strategic, 

tactical, and operational. On the strategic level decisions are made for several years, on the tactical 

level decisions refer to periods of one month to one year, and on the operation level decisions are made 

on a daily basis or in real time (Reuter-Oppermann et al. 2017). At each planning level different planning 

decisions are made, such as the following (Bélanger et al. 2019): 

- Strategic level: location of ambulance stations, fleet dimensioning, staff hiring;  

- Tactical level: location of ambulances’ standby sites, staff scheduling and crew pairing, fleet 

management strategies; 

- Operational level: ambulance location and relocation, ambulance dispatching, assignment of 

calls to resources. 

Planning decisions on the operational level are particularly significant when aiming to reach given 

performance levels. Errors at this level, however small, can have severe consequences especially when 

considering that they may have a direct impact on whether or not a life is saved. These planning 

decisions require accurate inputs, such as correct demand estimations, to ensure that there are 

sufficient resources available at the right time and place, so the patient does not need to wait longer 

than necessary.  
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2.1.3. Forecasting 

Planning problems on all three levels require forecasting as an input. Forecasting can also be divided 

into the same three levels depending on which decision level it supports (Reuter-Oppermann et al. 

2017): 

- Strategic forecasting: assists workforce planning and strategic planning of ambulances and 

stations; 

- Tactical forecasts: used for shift scheduling and tactical ambulance planning;  

- Operational forecasts: serve as inputs for operational ambulance planning and transport 

planning.  

Operational forecasts must be accurate as they are the input for critical operational planning decisions 

that if not optimized, may have a direct impact on the survivability of the victim. Simple average-based 

models may provide satisfactory information for long time horizon decisions, but cannot make sufficiently 

detailed predictions to support operational planning decisions (Aringhieri et al. 2017). These decisions 

require accurate estimates of emergency demand and transportation demand, to plan and manage both 

human and transport resources. Failure in accurately estimating demand can result in inefficient 

resource allocation, and preventable time inefficiencies. The costs associated with failure in responding 

to life-threatening incidents in a timely manner are not estimable.  

Two areas are distinguished in forecasting: demand forecasting and workload or service time 

forecasting. While EMS demand prediction has been given more attention, fewer models have been 

developed that consider how response times and workload are expected to fluctuate over time (Reuter-

Oppermann et al. 2017). Service time forecasting is mainly important for strategic planning, as it helps 

determine the workload on the EMS system. Estimating travel time, which is the largest component of 

service time, is particularly relevant on the strategic and tactical levels for decisions regarding 

ambulation location (Reuter-Oppermann et al. 2017).  

Accurate predictions of emergency and transportation demand per time period are essential to develop 

effective EMS strategies. The time period for which the demand is predicted can be hourly or at a certain 

set granularity. Short-term forecasts provide real time decision support for dynamic ambulance 

deployment and hourly operational deployment plans, while large time period forecasting is useful for 

strategic planning and budgeting (Reuter-Oppermann et al. 2017). 

2.2. Case Study 

The following section presents the case study that is addressed in the dissertation. Section 2.2.1 

introduces INEM and its operations, and Section 2.2.2 presents the structure of the organization. Section 

2.2.3 presents the four types of resources managed by INEM. Section 2.2.4 describes INEM’s 

dispatching centres and their integration with other services, and, lastly, the call prioritization system is 

presented in Section 2.2.5. 

2.2.1. SIEM 

SIEM serves as an extension of the Emergency Departments of National Health Service hospitals in 

mainland Portugal. It is responsible for the intervention process from the moment a call is placed until 
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the patient is transferred to an appropriate health unit. Their activities are heavily coordinated and 

organized in order to maximize the survivability of the victim.  

In the literature, these emergency medical activities are distinguished based on two models of EMS 

systems, the Anglo-American and the Franco-German systems (Reuter-Oppermann et al. 2017). SIEM 

follows, for the most part, a Franco-German model, where life-threatening emergencies are treated on 

scene and during transportation by specialized paramedics and physicians. The goal of this model is to 

provide an initial diagnostic and early treatment to enable the stabilization of the victim. Pre-hospital 

diagnosis also allows the selection of the most appropriate health unit for the patient. Contrary, in the 

Anglo-American system, the goal is to respond as fast as possible to calls, and paramedics provide 

minimal intervention at the scene, mainly transporting victims to a medical facility. While both models 

share the same general goals of preserving human lives, they have different advantages and 

drawbacks, resulting in most EMS systems being hybrids that explore both models (Dick 2003).  

Driven by the goal of preserving human lives, the operations of SIEM are coordinated by an organism 

within the Health Ministry, INEM. Founded in 1981, INEM’s mission is to define, organize, coordinate, 

participate in, and evaluate the activities and operations of SIEM, and to provide prompt and error-free 

health care services in safety and with quality (INEM 2018). 

INEM’s vision is to be an innovative, sustainable, and motivated organization with a culture of permanent 

improvement, development of new ideas, processes, competences, and capabilities of professionals, 

and constant evaluation of results (INEM 2018). Regarding INEM’s values, in addition to rigour and 

responsibility, the following have been set (INEM 2017): 

- Quality: assume a compromise with the necessities and expectations of citizens; 

- Competence: possess deep and extensive knowledge in the area of medical emergency and its 

several domains; 

- Ethics: act with integrity, patience, and generosity; 

- Credibility: receive trust and recognition from society; 

- Efficiency: achieve the best possible results with the available resources. 

This work aims to contribute in the scope of the values of quality and efficiency, as it aims to assist in 

improving response times and efficient use of available resources, so that INEM is able to provide quality 

health care and fulfil its duties suitably. The main responsibilities of INEM include (INEM 2017): 

- Ensuring the reception of calls, triage, counselling, and appropriate vehicle dispatching; 

- Providing pre-hospital emergency medical care, both medicalized and non-medicalized, and 

transportation to the adequate health unit; 

- Coordinating intervening entities to offer an integrated response; 

- Patient transportation, referral, reception, and treatment at the hospital; 

- Defining, planning, providing, and certifying emergency medical training of SIEM members; 

- Civil planning and awareness-raising actions towards medical emergency; 

- Maintaining an emergency medical telecommunication network. 
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INEM’s responsibilities include the coordination and management of SIEM, which is responsible for the 

intervention process that consists of six stages (INEM 2013): 

- Detection: emergency situation detected by civilian and 112 call; 

- Alert: screening, triage, priority level assignment, and vehicle dispatch by a Pre-hospital 

Emergency Technician (TEPH); 

- Pre-aid: guidance and assistance to the caller, to perform first-aid basic care if necessary; 

- Initial aid in the accident’s location: after vehicle arrival, stabilization of the victim and initial 

treatment; 

- Transport and care during transit: transportation to the appropriate health unit and in-transit 

treatment; 

- Transfer and treatment in health unit: transfer of the victim to receiving health unit to finalize 

treatment. 

It is important to note that the last two stages are optional since there may be no need to transport a 

patient to a health unit. The precedence of the six stages of SIEM is presented in Figure 2, as well as 

the typical EMS response process. In case no patient transportation is needed, the ambulance becomes 

idle after departing the scene and traveling to its base.   

 

Figure 2 – Response process adapted from Reuter-Oppermann et al. (2017) (blue), and SIEM's six stage 
intervention (green) 

A delay in any of these stages has a direct impact on the overall response time, and consequently on 

the overall performance of the system. Therefore, these activities must be heavily coordinated as there 

are different entities involved in delivering emergency medical care. In addition to INEM workers, other 

entities contribute to the same goal, including firefighters (mostly in rural areas), the Portuguese Red 

Cross, police officers, doctors and nurses, and hospitals.  

2.2.2. Organic Structure 

Within INEM’s organization, there are three decentralized units, the North, Centre, and South Regional 

Delegation, as shown in Figure 3. Each of these units is responsible for the operational management of 

their respective geographical areas, while staying coordinated with the remaining units. These remaining 

units are again divided into three, the Operational Unit, the Logistics Support Unit, and the Management 

Support Unit, which all provide services for the entire territory. Each of these units is divided into several 

departments, each with a different individual focus (INEM 2018).  



10 
 

The Planning and Management Control Office (GPCG), a department inside the Management Support 

Unit, is responsible for the strategic and operational planning of INEM’s activities. This includes studying 

INEM’s activities, and making decisions to optimize processes and improve effectiveness and efficiency 

(INEM 2018). Demand forecasting is used in numerous planning problems, most of which fall under the 

GPCG. All the units report to the Executive Board, where the final decisions are made, balancing the 

multiple objectives of the organization.  

 

Figure 3 – Organic Structure of INEM 

2.2.3. Resources 

To achieve the objectives of the organization, INEM has financial, technological, logistic, and human 

resources (INEM 2018). The largest source of INEM’s financial resources is the currently 2.5% applied 

premiums and contributions relative to health insurance contracts. Other sources include capital 

provided by European funds, income from financial investments, and training courses (INEM 2017). 

Regarding technological resources, four main information systems support INEM’s operational activities. 

The Call Management System registers all the information from received calls, and the Telephonic 

Triage and Counselling System (TETRICOSY) triage system allows for systematic call evaluation. The 

electronic registration system iCARE (Integrated Clinical Ambulance Record) improves articulation 

between the various health care entities, and the Integrated Answering and Dispatching System of 

Medical Emergency (SIADEM) system classifies and identifies the geographic location of calls (INEM 

2017). 

Dealing with the unavailability of crew and vehicles, and the management of these resources on a daily 

basis are some of the main EMS planning problems on the operational planning level (Reuter-

Oppermann et al. 2017). Hence, logistics and human resources are the most impacted resources by 

operational forecasting.  

The logistic resources include all emergency medical vehicles at INEM’s disposal. In 2018, the INEM 

fleet was made up of 658 emergency medical vehicles distributed throughout mainland Portugal, and 

an additional 62 seasonal reinforcement vehicles (INEM 2018).  

INEM manages multiple types of emergency medical vehicles, including Medical Emergency 

Ambulances (AEM), Medical Emergency Motorcycles (MEM), Medical Emergency Station Ambulances 

(PEM), and Reserve Station Ambulances (RES), which are considered basic life support ambulances 

that respond to non-critical situations. PEM and RES ambulances are based in and maintained by a civil 

protection entity that is a partner of SIEM. The PEM ambulances are owned and equipped by INEM, 

while RES vehicles are owned by the partner and simply financed by INEM (INEM 2019).  
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Medical Emergency Helicopter Services (SHEM) and Vehicles of Medical Emergency and Reanimation 

(VMER) are considered advanced life support ambulances as they are staffed by trained doctors and 

nurses, and have advanced medical equipment (INEM 2019). 

Immediate Life Support Vehicles (SIV), Mobile Units of Psychological Emergency Intervention (UMIPE), 

and Inter-Hospital Paediatric Transport Ambulances (TIP) are essential in special situations that require 

a differentiated vehicle. SIV ambulances have immediate life support equipment and provide 

differentiated care like defibrillation. UMIPE intervenes in psychological and psychiatric emergencies, 

and TIP ambulances provide care to premature and newly born babies in grave condition, and also to 

underage children (INEM 2019). 

Finally, Non-INEM Ambulances (NINEM) are firefighter vehicles or Red Cross ambulances that can be 

serviced to INEM in case of no other available vehicles, or if these vehicles are significantly closer to 

the incident’s location (INEM 2019).  

The human resources of INEM are mainly Pre-hospital Emergency Technicians (TEPHs), nurses, and 

doctors. In addition to performing duties in their designated emergency medical vehicles, they also have 

an essential role in the Urgent Patient Dispatching Centres (CODUs) (INEM 2018).  

2.2.4. Dispatching Centres 

CODUs ensure, for mainland Portugal, daily and continuous emergency medical call reception 

forwarded through the European Emergency Number 112. The calls are answered by TEPHs, who are 

supported by a team of medical doctors and psychologists. They evaluate, through a system of triage 

algorithms and in the shortest possible time, the received aid requests to determine the necessary and 

adequate resources for each case (INEM 2018).  

Although CODU is physically decentralized in four cities, Lisbon, Porto, Coimbra, and Faro, the call 

handling is centralized. Regardless of the location of the caller, the call is answered by the TEPH that 

has been idle the longest. With the goal of guaranteeing an integrated response, the CODUs provide 

the following services (INEM 2018):  

- Performance of medical counselling in urgent emergencies and, if necessary, guiding the caller 

in performing basic emergency manoeuvres; 

- Transfer of non-urgent calls to other National Health System entities, namely the call centre of 

the National Health Service (Linha Saúde 24); 

- Selection and triggering of the appropriate emergency medical means; 

- Counselling of in-field teams when necessary, and validation of performance protocols to non-

medic personnel; 

- Contact with health units to prepare hospital reception and urgent treatment, based on clinical, 

geographical, and resource criteria of the destination health unit.  

In addition to 112 calls, CODUs also answer forwarded calls from the National Health Service line (Linha 

Saúde 24) and inter-hospital emergency transportation requests.  



12 
 

There has been a significant increase in emergency calls placed throughout the years. In 2018, 

1,393,594 emergency calls were answered by CODU, representing an increase of 16% since 2013 and 

1.9% from 2017. This demand increase is reflected in CODU’s activity levels and on other emergency 

medical resources, as their activity proportionally increases with the calls. This rise in demand has been 

justified by the ageing population and increase in chronic diseases, in addition to the increased incidence 

of flu-like activity (INEM 2018).  

2.2.5. TETRICOSY Call Triage System 

Once a call is answered by CODU, a TEPH begins a triage process which determines the severity of 

the incident and the appropriate vehicles required to dispatch. Since 2012, this triage process has been 

done through the use of the technology TETRICOSY, which allows for standardization of procedures 

and greater efficiency. The model follows an algorithm that allows for more straightforward call 

answering, less randomness and treatment errors, and a systematic and thorough evaluation of every 

situation. This resulted in reduced dispatch time through early prioritization of events, and overall shorter 

response times (INEM 2017). 

The software, developed by INEM, offers a set of questions for the TEPH to ask the caller, records the 

answers given, and employs different triage algorithms according to the type of emergency, suggesting 

new questions. Based on the information registered by the TEPH in the software, TETRICOSY assigns 

a priority level for the incident according to the information provided by the call operator (INEM 2018). 

Although there is a total of nine priority levels (P1-P9), an emphasis is placed on those with the most 

frequency:  

- Priority 1 (P1): critical life-threatening incidents, originating the dispatch of several advanced life 

support emergency medical vehicles; 

- Priority 3 (P3): urgent situation and dispatching of basic life support emergency medical 

vehicles; 

- Priority 5 (P5): non-urgent situation where the triage results in no vehicle dispatching and the 

call is transferred to the appropriate health support line; 

- Other priorities: other situations that require differentiated assistance.  

Throughout the years, the percentage of P3 calls has been increasing significantly, and they hold a large 

majority of the total number of emergency calls (around 70-75%). The second most common medical 

emergencies are of P1 priority (around 10-15%), followed by P5 calls (around 7-12%) (Santos et al. 

2019). The remaining priorities represent less than 13% of the total volume of calls. Further detail 

regarding these priorities is unavailable due to the lack of information from public sources, and the 

inability to meet with INEM representatives on account of the SARS-CoV-2 pandemic.   

Depending on the priority level assigned to the incident, different vehicles are selected to respond to the 

call. Table 1 presents the commonly dispatched emergency medical vehicle combinations for priority 

levels P1 and P3 (Santos et al. 2019).  
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Table 1 – Vehicle types dispatched based on call priority  

 

The most commonly dispatched vehicles are AEM, PEM, RES, NINEM, VMER, and SIV. Even so, of 

these six, only three (AEM, VMER, and SIV) are owned and managed by INEM, while the rest belong 

to partners or are managed by them.  

2.3. Problem Definition 

The goal of INEM is to improve their operational planning, which can be done through the use of an 

effective forecasting tool to provide accurate volumes of emergency calls and transportation needs for 

multiple periods. Therefore, this dissertation aims to contribute through the development of a forecasting 

model to provide input for operational problems and support operational planning decisions.  

The forecasting model is expected to provide reliable and accurate estimates to assist the Portuguese 

EMS provider in the planning of resources on the operational level. The resources entailed by this study 

are TEPHs, the human resources trained and managed by INEM, and three life support vehicles: VMER, 

AEM, and SIV. These three vehicle types correspond to the most commonly dispatched vehicles owned 

and managed by INEM, representing 87% of the vehicles maintained by INEM (INEM 2018).  

Regarding the forecasting of transportation demand, the predictive model is to be developed considering 

just the Lisbon area. It is expected that improvements for this densely populated area represent 

significant performance gains for INEM.  

The Call Management System in place by INEM provides call data which includes information on the 

priority level of the call, the time, location and type of incident, and the type of vehicle that was dispatched 

and the associated station. The ratio of dispatching relative to the number of answered emergency 

medical calls is, on average, 93% (INEM 2017).   

For the volume of emergency calls, the forecasting focus is on mainland Portugal, given that call 

screening is centralized. Moreover, the calls considered for this study are those of priority levels P1 and 

P3, as they represent around 80-90% of the total volume of calls placed (INEM 2018). 

In order to tackle the problem of estimating call volumes and emergency vehicle demand, addressed in 

the literature as Forecasting of EMS Demand and Ambulance Service Demand, this work aims to 

present a forecasting model validated with real data shared by INEM. Both types of forecasting are 

directly related to INEM’s operational planning problems, which include those mentioned in Section 

2.1.2. Currently, their demand forecasts are based on averages from the historical ratio of calls. An 

updated decision support tool based on state-of-the-art methodologies will certainly contribute to more 

effective and efficient planning. 

Priority level Dispatched vehicles – possible combinations 

Priority 1 – Emergency situations 
AEM / PEM / RES / NINEM + VMER / SIV 
VMER + SIV 
SHEM (in exceptional situations) 

Priority 3 – Urgent situations 
AEM / PEM / RES / NINEM / SIV 
MEM (to determine if the call is valid) 
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2.4. Chapter conclusions 

EMS play a vital role in people’s lives as they contribute to reducing mortality and morbidity, and overall 

improve the population’s well-being. In order to obtain efficient and effective EMS management, and 

achieve a given set of performance levels, a good forecasting model is needed since planning problems 

use it as input to support planning decisions.  

Historical data from 2017-2018 shared by the Portuguese EMS provider is to be used to develop and 

validate an effective forecasting tool. INEM operates a complex system that requires medical 

intervention on multiple stages, coordination with numerous entities, and efficient management of 

resources. The goal is to provide a helpful tool that can be relied on for decision-making on an 

operational planning level.  
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3. Literature Review 

This chapter provides a review of the forecasting models already explored to predict EMS demand and 

characterizes unexplored predictive models that can be used for this problem. Section 3.1 presents a 

general overview of EMS planning decisions, and their assortment into planning levels is presented in 

Section 3.2, as well as the corresponding forecasting levels. Section 3.3 provides a chronological review 

of the forecasting models developed for predicting EMS demand. Forecasting methods not yet explored 

for EMS demand forecasting are presented in Section 3.4, as well as the general procedure for their 

application. Section 3.5 summarizes the various attributes explored in the literature to explain demand 

fluctuations in forecasting models. Finally, Section 3.6 presents the chapter’s conclusions. 

3.1. EMS Planning 

EMS are an essential part of health care as they provide quick and efficient medical treatment and 

transportation of patients (Steins et al. 2019). The primary goal of EMS is to minimise response times 

and deliver an early response to emergency calls, while managing operational costs. Several evaluation 

metrics serve to determine whether or not an EMS system is delivering high quality health care in terms 

of efficiency, effectiveness, and fairness. The most commonly used are metrics in terms of coverage 

and response times (Aringhieri et al. 2017).  

Major planning problems are associated with the management and allocation of EMS resources that 

require planning decisions at every stage of the emergency response (Aringhieri et al. 2017; Steins et 

al. 2019). These resources consist mainly of emergency vehicles and crew (TEPH, nurses, and medical 

doctors).  

To optimize resource management, three main planning problems are defined in the literature: the 

ambulance location problem, ambulance relocation models, and dispatching and routing policies 

(Aringhieri et al. 2017). The ambulance location problem is a static strategic problem that requires long-

term and mid-term decisions such as the establishment of stations, assignment of EMS vehicles to those 

stations, and determination of fleet size. Due to the uncertainty of demand and in order to deal with its 

variations, some ambulance location models also consider the relocation of EMS vehicles (Degel et al. 

2015; Nair & Miller-Hooks 2009). In fact, redeployment is a real time decision-making process that 

consists in repositioning an idle EMS vehicle to support busy vehicles and maximize overall coverage. 

It captures the dynamic fluctuations in the system, which is also the case of dispatching and routing, two 

important real time operational problems. Dispatching consists in assigning appropriate and available 

vehicles to emergencies, while routing concerns with the route that should be followed by the vehicle 

assigned to reach the patient (Aringhieri et al. 2017).  

Nevertheless, decision problems at different levels are also connected to each other, meaning that 

decisions made on one level affect subsequent levels and their decisions (Aringhieri et al. 2017). These 

levels are separated according to the time horizon for which decisions are made. Recognizing that, three 

levels are addressed: strategic, tactical, and operational.  
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3.2. Planning Levels 

The three hierarchical planning decisions depend greatly on one another since the outcome of the 

decisions and activities of one level are the input for the following one (Guerriero & Guido 2011). The 

main decision problems for each planning level are summarized in Table 2, along with the time horizon 

for which the decisions are made.  

Table 2 – Planning problems at different levels, adapted from Reuter-Oppermann et al. (2017) 

 

These planning decisions can be supported by mathematical models that require data inputs such as 

estimates of demand, response time, and workload (Ingolfsson 2013). Thus, these inputs must be 

accurate to ensure efficient planning.  

Problems addressed at the strategic level are mainly static long-term resource allocation problems, for 

several years or decades. Strategic planning is based on historical data and forecasts typically in the 

planning horizon of one or more years (Guerriero & Guido 2011; Reuter-Oppermann et al. 2017).  

The tactical level concerns decisions such as scheduling and dimensioning for periods of one month 

and up to one year. The ambulance location problem is typically solved simultaneously for the strategic 

and tactical levels (Reuter-Oppermann et al. 2017). Both historical data and forecasted demand are 

used as input. Given that these decisions are made for a few months, they must be systematically 

revised and re-optimized by considering several aspects such as the availability of ambulances and 

crew, and seasonal events. At this level, some decisions such as hiring and training staff or purchasing 

more equipment can be occasionally made. These decisions belong to the strategic level, but since they 

are made for long periods of time, corrections must occasionally be made (Guerriero & Guido 2011).  

In addition to responding to emergencies, EMS vehicles also occasionally perform patient transports, 

typically from one health unit to another. These transports can be scheduled and planned, meaning that 

the uncertainty inherent to this service is significantly less, and the planning decisions can be made at 

the tactical level. 

On the other hand, operational level concerns with short-term scheduling and detailed planning on a 

daily, hourly, or real time basis. Decisions on this level include dynamic relocation of ambulances 

throughout the day, assignment of crew to ambulances, and assignment and deployment of ambulances 

to calls (Reuter-Oppermann et al. 2017). Recent research has focused on real time decision-making 

Planning level Time horizon Planning problems 

Strategic Yearly or longer 
Locating stations 
Fleet dimensioning 
Staff hiring 

Tactical Monthly or weekly 
Locating ambulances 
Staff scheduling and crew pairing 

Operational Daily or in real time 

Relocating ambulances 
Assigning resources to calls 
Ambulance dispatching 
Patient transport scheduling 
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and on the development of dynamic models to address relocation and dispatching decisions (Bélanger 

et al. 2019).  

Accurate demand forecasts are important for EMS planning on all three levels since they serve as inputs 

for planning models used for decision-making. Forecasting models that explain demand fluctuations for 

large areas over long periods are useful for planning on the strategic level. On the other hand, real time 

decision support for dynamic ambulance deployment and operational planning requires short-term 

forecasts (Reuter-Oppermann et al. 2017).  

The accuracy of these forecasts affects all planning decisions since overestimated predictions lead to 

over-staffing and unnecessarily high costs, while underestimated predictions lead to under-staffing and 

high response times (Matteson et al. 2011). The consequences associated with miscalculations and 

non-optimal decisions are not equal for the different levels. Due to the available time, models that 

develop forecasts to support strategic level decisions can have large computation times and be made 

to obtain optimal solutions. On the other hand, for operational level problems, non-optimal solutions can 

be accepted since efficiency is an important factor. The dimension of the problem and the short time 

interval available to plan and manage resources make the search for efficient solutions the main goal 

for this level, justifying the recent attention addressed to short-term forecasting (Reuter-Oppermann et 

al. 2017). 

Short-term demand forecasting provides estimates of hourly emergency call volumes for a given area, 

which represents an important input for operational planning. These estimates are not useful for long-

term planning where managers require aggregate forecasts for a long period of time in a given area 

(Setzler et al. 2009). The territory is typically divided into areas so that coordinates are translated into a 

given area of a grid, and arrival times are grouped into slots (Nicoletta et al. 2017). The concepts of time 

and space granularity refer to the time interval and grid area for which the forecasts are produced. 

Different granularities are useful for different planning horizons, with short-term decisions requiring fine 

estimates and long-term decisions needing less detailed forecasts for longer periods of time, often using 

basic averaging estimates at this level. There are, however, areas where data might be too sparse for 

a given granularity to describe the spatial structures accurately. EMS data can also be sparse for a 

desired temporal granularity, making it difficult to estimate accurate spatial structures for each time 

period. Meaningful levels of both temporal and spatial aggregation must be determined to adequately 

represent forecasts for each planning decision level (Setzler et al. 2009; Zhou et al. 2015). 

Accurate forecasts in fine time and space granularity provide information for EMS managers to make 

supported decisions at the operational level and to assist with critical time-dependent decisions (Chen 

et al. 2016). In order to obtain these forecasts, data collected from EMS systems are used. These data 

usually consist of a timestamp, occurrence location, priority level, vehicle(s) dispatched, etc. (Aringhieri 

et al. 2017). Patterns are identified based on the data, since call volumes vary throughout the months, 

days of the week, and hours of the day. Even so, several attributes have been explored to explain the 

demand fluctuations in forecasting models, such as weather conditions, special-events, and 

celebrations. Detecting demand patterns is an essential aspect of developing accurate forecasts 

(Ingolfsson 2013). The initial forecasting models developed were very simplistic and had many short-
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comings. Basic statistics and simple regression models allowed to estimate daily demand but failed to 

account for trend data or other causal factors (Vile et al. 2012). A common assumption in planning 

models, still currently in use, is that call volumes follow a Poisson process, stationary or time-varying 

(Ingolfsson 2013).  

3.3. Explored Forecasting Methods 

The literature presents three types of forecasting models to explain EMS demand, regression models, 

time series, and spatial-temporal models, however, each model is explored with a variety of forecasting 

techniques (Steins et al. 2019). A review of these models is presented in the following subsections.  

3.3.1. Regression Models 

Regression models are the first models addressed to forecast EMS demand, however, these models 

have some drawbacks such as multicollinearity and difficulty in selecting relevant predictors (Steins et 

al. 2019). Despite this, these models are still explored nowadays due to their simplicity and ease of 

application. The models presented in this section refer to multiple regression, where a single dependent 

variable is predicted using multiple independent variables. Nonetheless, multivariate regression 

presents an interesting approach that pertains to multiple dependent variables. This method is often 

used with time series, which is the case of Ho Ting Wong & Lin (2020), as presented in the next section.  

The first least squares regression forecasting model applied to EMS was developed by Aldrich et al. 

(1971) using 32 independent variables, 25 of which reflected sociodemographic characteristics. The 

study indicates that aged people and single men generate more calls than the rest of the population, 

and the relationship between the dependent and the independent variables is assumed to be linear. 

Siler (1975) on the other hand, adopts a nonlinear relationship to construct a multiple regression model 

considering four socioeconomic variables. 

Both Kvalseth & Deems (1979) and Kamenetzky et al. (1982) present first-order and second-order 

regression models to predict ambulance demand. Contrary to Kvalseth & Deems (1979), Kamenetzky 

et al. (1982) consider employment in the area as an independent variable, since Siler (1975) previously 

proved it to be an important variable in predicting demand. 

The effect of population aging on pre-hospital EMS demand is considered in the regression model 

developed by McConnel & Wilson (1998). Their research estimates age-associated rates of utilization 

and examines the differences that underlie age groups (McConnel & Wilson 1998). Svenson (2000) also 

identifies a dependency of EMS use rates with age, by adopting a Poisson multiple regression analysis. 

They also identify a correlation between the use of EMS and increasing levels of poverty (Svenson 

2000). Wong & Lai (2010) also use a multiple regression model to examine the weather effects on daily 

demand, by assessing the dependency of selected variables against weather factors. Their model 

predicts daily ambulance calls regressed on weather factors and by target groups, and concludes that 

weather factors can reasonably predict demand for older people, more severe patients, hospital 

admitted cases, and lower-income groups (Wong & Lai 2010). The impact of age on EMS demand rates 

is also identified by Lowthian et al. (2011). In a study to measure the impact of population growth and 

ageing in emergency ambulance services, they use log-linear regression to model the effects of gender 
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and age on demand, and compare the performance with a linear regression model. The study identifies 

increasing and accelerating demand rates in patients over 85 years of age (Lowthian et al. 2011). 

Recent regression models have aimed to incorporate the geographical area of EMS calls, in addition to 

factors such as time. This is the case of Cramer et al. (2012) who use spatial analysis methods to 

determine areas of high call volume and understand the factors that contribute to these high volumes. 

They use stepwise regression to determine significant independent variables, and a geographically 

weighted regression model to develop a spatial analysis (Cramer et al. 2012). Recently, Steins et al. 

(2019) used a Zero Inflated Poisson regression model to forecast EMS calls. In contrast to previous 

regression models, time is considered an independent factor, as well as socioeconomic and geographic 

factors. The model is capable of providing estimates for geographical areas with low call frequency 

significantly better than previous models (Steins et al. 2019).  

3.3.2. Time Series Models 

Since the 1980s, time series models such as autoregressive integrated moving average (ARIMA) and 

Holt-Winters methods have been explored to forecast call volumes, and have been specifically applied 

to ambulance demand (Vile et al. 2016). Both methods are successful in overcoming many issues in 

regression techniques such as multicollinearity, autocorrelation, and the difficulty of selecting covariates 

(Vile et al. 2016).  

To predict daily emergency and non-emergency demand, Baker & Fitzpatrick (1986) adopt Winters’ 

exponential smoothing model. They use a multistep approach to determine the optimal parameters of 

the exponential smoothing model, and goal programming to combine emergency call and routine call 

forecasts. The model weighs demand by severity and provides a reliable estimate of overall demand. 

The results show that a multiple-objective approach provides more accurate forecasts than single-

objective models (Baker & Fitzpatrick 1986). For short-term planning, however, EMS planners consider 

it impractical to disaggregate demand by emergency status, meaning that total demand is typically used 

as a basis for forecasting, and the distinction of forecasts by severity is unnecessary. Therefore, future 

time series models do not consider this disaggregation. 

This is the case of Channouf et al. (2007), who develop time series models to estimate daily and hourly 

call volumes. They recognize that EMS demand is influenced by when people work, commute, sleep, 

and celebrate, and attempt to capture these influences in their models. For daily volumes, they model 

the arrival rates as Gaussian distributions and develop two models, (1) an autoregressive model of data 

obtained after eliminating trend, seasonality, and special-day effects, and (2) a doubly-season ARIMA 

model with special-day effects. Their results show that the first model’s performance (1) is superior and 

the doubly-seasonal ARIMA model (2) performs poorly when forecasting more than one week into the 

future. For hourly call volume rates, another two approaches are considered: (3) a multinomial 

distribution for calls in each hour, conditional on the total daily call volume, and (4) fitting a time series 

to the data at the hourly level. Their results show that the conditional distribution approach (3) generally 

worked better. The results also demonstrate that forecast accuracy can be improved considerably by 

updating hourly forecasts using call volumes from earlier that day (Channouf et al. 2007). 
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Similar to the models proposed by Channouf et al. (2007), most models are based on Gaussian linear 

time series. This approach is often inaccurate when call-arrival rates are low, which is the case of EMS 

calls at the hourly level. It also conflicts with the standard industry assumption used in operations 

research methods that call-arrival volumes follow a Poisson distribution (Ingolfsson 2013). Contrary to 

Channouf et al. (2007), Matteson et al. (2011) assume that the hourly EMS call-arrival volume has a 

Poisson distribution. Matteson et al. (2011) develop a call-arrival forecasting method by combining 

integer-valued time series models with a dynamic latent factor structure for the hourly call-arrival rate. 

The day-of-week and week-of-year effects are included through constraints on the factor loadings, 

significantly reducing the number of model parameters. In order to capture fine-scale dependencies, an 

approach at the hourly level rather than at the daily level is used. Their results show a reduced error in 

hourly call-arrival volume forecasting (Matteson et al. 2011).  

There has been a growing interest in applying a non-parametric technique for time series analysis known 

as the Singular Spectrum Analysis (SSA), due to the promising prediction performance in various fields 

(Kalantari 2021; Malamiri et al. 2018). A great advantage of SSA is its flexibility since it is not dependent 

on parametric assumptions like linearity, stationarity, and normality (Al-Azzani et al. 2020). Vile et al. 

(2012) apply this technique to EMS demand and show that SSA produces superior long-term forecasts 

and comparable short-term forecasts to well-established methods.  

Similar to Channouf et al. (2007), Ho Ting Wong & Lai (2014) also use ARIMA models to forecast daily 

demand. They successfully develop a 7-day demand forecast system using weather forecast data as a 

predictor. Comparing the performance of four ARIMA models, they show that by integrating weather 

factors such as temperature, the accuracy of daily EMS demand forecasts can be improved (Ho Ting 

Wong & Lai 2014). ARIMA models have been, more recently, modelled to incorporate seasonality, giving 

rise to SARIMA models. Gijo & Balakrishna (2016) use SARIMA to model the evolution of hourly and 

daily call volume data to assist manpower and resource planning at dispatch centres. 

Recently, Ho Ting Wong & Lin (2020) focus on understanding the effects of weather to help EMS 

management, like Ho Ting Wong & Lai (2014) and Wong & Lai (2010) had previously done, and examine 

the relationship between weather and emergency ambulance service demand. They aggregate records 

in time series data according to patients’ characteristics, and then regress on meteorological data 

through multivariate forward regression. They observe that elderly and critical patients are more 

sensitive to weather than other patients, and that non-trauma cases are related to weather (Ho Ting 

Wong & Lin 2020). Also recently, Al-Azzani et al. (2020) compare the performance of four forecasting 

approaches, ARIMA, Holt-Winters, multiple regression, and SSA, on a selection of planning horizons, 

weekly, monthly, and 3-monthly. Their results show that ARIMA provides the most accurate forecasts 

for weekly and monthly predictions, and that long-term demand is best predicted by SSA.  

3.3.3. Spatial-temporal Models 

Contrary to time series and regression models, spatial-temporal models are capable of exploring both 

time and location. In addition to staffing and fleet size management, spatial-temporal demand estimates 

are critical to decisions such as the selection of station locations and for dynamic deployment planning 

(Zhou et al. 2015). Dynamic deployment decisions, as well as ambulance dispatching and relocating 
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decisions, are made at the operational level and require short-term forecasts and fine estimates. The 

spatial-temporal models developed in the literature predict demand volumes at fine spatial and temporal 

granularity using different methods. This is the case of Setzler et al. (2009), who use Artificial Neural 

Networks (ANN) to develop accurate emergency call forecasts based on both time and location. The 

model considers four temporal attributes, hour of the day, day of the week, month, and season. 

Compared to the practice adopted by the local EMS provider (moving average model), the results show 

that ANN outperform it at low spatial granularity, although with marginal gains, and that both methods 

produce noisy results for high spatial resolutions. Although ANN is suitable for estimations on very fine 

scales in time and space, the volume of data necessary to train ANN models can be seen as the main 

limitation for the emergence of new publications. Additionally, the results showed in Setzler et al. (2009) 

suggest that the accuracy improvements obtained from ANN models are not sufficient to justify the 

computational effort and costs associated with the application of this method. Although they have not 

been applied to EMS demand forecasting, other adaptations of ANN models are worth mentioning as 

they are considered state-of-the-art forecasting approaches in a wide variety of problems (Kapoor et al. 

2020; McDermott & Wikle 2019). Recurrent Neural Networks deal with ordered data and are commonly 

used in problems involving time sequences of events. The Graph Neural Network proposed by Scarselli 

et al. (2009) also presents an interesting opportunity for further exploration of ANN models in the EMS 

domain.  

Contrasting Setzler et al. (2009), where the accuracy improvement over industry practice is marginal, 

the three models presented in Zhou (2016) show significant accuracy improvements over the industry 

practice. In addition to this, the computational effort associated with these models is significantly lower, 

allowing them to be used in operational planning. The methods addressed in Zhou (2016) are a time-

varying Gaussian Mixture Model (GMM), a spatial-temporal Kernel Density Estimation, and a Kernel 

Warping method. They each assume that the set of spatial locations in each time period independently 

follows a non-homogeneous Poisson process, and all three models consider spatial and temporal 

patterns such as location-specific seasonality and daily and weekly seasonality. For each method 4-8 

weeks of historical data is used, and predictions are made for 4 weeks into the future.  

For the same set of data, Zhou et al. (2015) and Zhou & Matteson (2015) each present a model to 

develop spatial and temporal ambulance call forecasts to estimate Toronto’s demand at fine time and 

location scales. Zhou et al. (2015) apply a time-varying GMM and consider weekly seasonality by 

constraining time periods with the same week position to have the same mixture weights. Location-

specific temporal patterns such as short-terms serial dependence and daily seasonality are considered 

with varying strengths at different locations. Zhou & Matteson (2015) on the other hand, apply a spatial-

temporal Kernel Density Estimation model and use spatial-temporal weight functions to incorporate 

several temporal and spatial patterns such as location-specific seasonality and short-term serial 

dependence. In this model, the spatial-temporal weight functions score how helpful each historical 

demand is to a given predictive task. Both methods show higher statistical predictive accuracy than the 

current industry practice, with a comparable computational expense. While the Kernel Density 

Estimation model proves to be fast, accurate, and easy to interpret and use by non-experts, the 
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proposed GMM produces smoother estimates for Toronto data and proves to be a more accurate 

method for predicting ambulance demand at fine time and location scales. 

Although the results of Zhou (2016) showed that the Kernel Density Estimation model was outperformed 

by GMM, it is still a powerful tool for non-parametric density estimation that has been widely applied to 

forecast spatial-temporal data (Nakaya & Yano 2010; Z. Zhang et al. 2011). This popular non-parametric 

procedure is capable of estimating the probability density function of random occurrences from minor 

assumptions. Harvey & Oryshchenko (2012) generalize this model to estimate time dependent 

probability density functions or cumulative distribution functions, and propose the Time Depended 

Kernel Density Estimation. This model assists in capturing the temporal progress of real-life 

phenomenon, and has been used to estimate probability distributions in a wide variety of applications 

(Pérez 2012; Wang et al. 2018; Zambom & Dias 2012). 

The time-varying GMM presented by Zhou et al. (2015) is compared with a Kernel Warping method 

applied in Zhou & Matteson (2016) for Melbourne data, which is highly sparse and has complex spatial-

temporal patterns. Zhou et al. (2015) fix the mixture component distributions across time to overcome 

data sparsity within each time period and accurately describe the spatial structure of the data. The 

complex spatial-temporal dynamics are represented through time-varying mixture weights, which 

change over time to capture the dynamics in population movements and actions at different locations 

and times. On the other hand, due to the high sparsity of Melbourne demand, Zhou & Matteson (2016) 

focus on data sparsity at high resolutions and modelling complex urban spatial domains. The complexity 

of this model lies in overcoming sparsity through smoothing, while capturing complex spatial-temporal 

patterns that require fine-resolution modelling. Spatial-temporal characteristics are difficult to detect 

accurately at high granularities due to data sparsity. The results for Melbourne data show that the time-

varying GMM is slightly less adequate than the Kernel Warping approach for modelling highly complex 

spatial domains and incorporating spatial boundaries. However, the accuracy improvement of the Kernel 

Warping model is not considered sufficient to justify the increased complexity of this model.  

A different approach addressed to spatial-temporal models is the Bayesian approach, which had 

previously been successfully applied in health care, although Nicoletta et al. (2017) were the first to 

consider it in predicting future EMS demand. This method allows the combination of available data with 

prior information, and then have those results be used as prior information once new data is available. 

This capability is an important feature for health care applications. The model considers the impact of 

population, area, and type of area on EMS call demand, in addition to the time slot of the day. Nicoletta 

et al. (2017) show results that validate this model, producing low prediction errors and demonstrating 

the applicability of the model. The model and the parameters considered are, however, not sufficient to 

capture the complexity inherent to EMS demand. Large-scale datasets typically exhibit complex spatial-

temporal dynamics and sparsity at high resolutions. The methods addressed in Zhou (2016) are 

significantly more complex and represent a more accurate model of the data. The methods overcome 

data sparsity and represent complex spatial and temporal patterns through priors and weights. They 

capture dynamics in the spatial density, and consider weekly and daily seasonality, as well as location-
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specific serial dependence. In addition to this, the parameters and variables adopted are superior in 

complexity and relevance.  

Important considerations when developing a model are accuracy, computational times, robustness, and 

accessibility for EMS managers (Zhou 2016). Ambulance demand data in large cities is usually large-

scale which can present computation challenges, especially when trying to develop fine-scale 

predictions. The time-varying GMM proposed by Zhou et al. (2015) provides the best trade-off of 

accuracy and complexity for modelling EMS demand, and provides fast estimates for operational 

planning. The model explains ambulance demand continuously on the spatial domain and over 

discretized 2-hour intervals. The model is flexible, straightforward to implement, and computationally 

feasible for large-scale datasets. It predicts the operational performance accurately, and is perfectly 

suitable for estimations on very fine scales in time and space. The results obtained in Zhou et al. (2015) 

show that the model reduces prediction error in measuring EMS operational performance by two-thirds 

compared to the industry practice.  

3.4. Unexplored Forecasting Methods 

In addition to the ANN explored by Setzler et al. (2009) and the GMM explored by Zhou et al. (2015), 

other ML algorithms can be applied to the problem under analysis. ML algorithms have been used in 

the literature for diverse applications (Erickson et al. 2017; Yildiz et al. 2017), yet have not been directly 

applied to the problem of predicting EMS demand. The goal of this section is to present several ML 

algorithms and identify their strengths. Such algorithms include those that explore ensemble methods 

due to their capability to achieve good results for a variety of problems, that can be modelled using the 

concepts of regression or classification (Maxwell et al. 2018; Thanh Noi & Kappas 2017; Voyant et al. 

2017; Were et al. 2015).  

3.4.1. Machine Learning Algorithms 

Depending on the type of data available and the problem to be addressed, ML algorithms are selected 

according to four learning approaches: 1) supervised learning; 2) unsupervised learning; 3) semi-

unsupervised learning; and 4) reinforcement learning, as shown in Figure 4.  

 

Figure 4 – Taxonomy of ML models adapted from Praveena & Jaiganesh (2017) and Stetco et al. (2019) 
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The goal of supervised learning is to build a concise model capable of making predictions about future 

instances that can be either a continuous value (e.g., -1.5, 0.6, 1.2, … , n) or a class (e.g., 0-10 calls, 0-

5 dispatches, …, n). To do so, this type of learning requires a training set with both inputs and outputs 

for each observation of the historical data. While supervised learning aims to capture the relations 

between the inputs and outputs, unsupervised learning aims to identify patterns in the data and is 

frequently used for clustering and labelling data. This is particularly useful in situations where the goal 

is to identify patterns such as consumption profiles (Laspidou et al., 2015; Tureczek et al., 2018). A 

combined approach is that of semi-supervised learning, which deals with a training set consisting of only 

some labelled data and mostly unlabelled instances. Often times the data is clustered similarly to 

unsupervised learning, after which the labels are extended to all observations in the same cluster, 

completing the dataset and making it suitable for applying supervised algorithms (Ashfaq et al. 2017). 

On the other hand, reinforcement learning focuses on defining which action should be taken at each 

given point by identifying which one results in the greatest reward. In order to develop this strategy, the 

learning system interacts with its environment and receives feedback on the performed actions, meaning 

that the environment must reward each action either positively or negatively.   

Within the supervised learning approach, problems can be modelled as regression or classification. In 

regression problems the model predicts a continuous value, while in classification problems a label or 

class is predicted. Typically, regression is used when the output of the problem is in the form of 

continuous data and classification when the output is in the form of categorical data, however, this is not 

always the case. Continuous outputs can be easily transformed into classes, though the opposite 

transformation is not so straightforward  (Torgo & Gama 1996). Some ML algorithms are directed either 

towards regression or classification, though many regression algorithms can be used for classification 

and vice-versa. This is the case of Logistic Regression, frequently used as a classifier providing a value 

that indicates the probability of an instance belonging to a given class (Caruana et al. 2015). Additionally, 

the same algorithm can be explored for both classification and regression in different applications, which 

is the case of the Random Forest algorithm (Chen et al. 2017; Were et al. 2015).  

The following algorithms are mainly used in the context of supervised learning and can be applied for 

both regression and classification problems. The first two presented algorithms, Naïve Bayes and K-

Nearest-Neighbour (KNN), have an explicit underlying probability model that gives a numerical 

probability as an output. When using these algorithms for classification problems, the model considers 

the probability of an instance belonging to each class, given the inputs. For example, if a model aims to 

predict the weather forecast and three classes exist such as rainy, cloudy, and sunny, the model will 

obtain the respective probabilities of each one occurring and return as output the one with the highest 

probability.  

Naïve Bayes 

The Naïve Bayes algorithm is most frequently used as a classifier, where it independently applies the 

Bayes’ theorem for each attribute and a decision rule such as a majority vote is used to attribute a class 

to an unknown instance. The algorithm assumes that, within a given class, each attribute is independent 

of any other attribute, i.e., it considers each attribute to contribute independently to the probability of an 
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instance belonging to a class, regardless of any possible correlations between the attributes. For 

example, given a class winter and attributes temperature, rain, and sunlight, each attribute contributes 

separately and equally to the probability of it being winter. The algorithm is easy to implement with high 

efficiency, it is robust to missing values, and requires a short computational time during the training 

stage. However, the conditional independence assumption is frequently wrong in real-world situations, 

making Naïve Bayes less accurate than more sophisticated learning algorithms (Bokulich et al. 2018; 

Clark & Niblett 1989). 

K-Nearest-Neighbour 

The logic behind the KNN algorithm is that the class or value of an unknown instance is assigned based 

on its nearest neighbours. As illustrated in Figure 5, the goal is to classify the instance represented by 

the black point. To do so, the algorithm first calculates the distance between the black point and all the 

other points, and selects the K shortest distances. For instance, if K=3 the algorithm identifies points p1, 

p2, and p3 as those with the shortest distances, and assigns to the black point the same class of these 

three points. If these points do not belong in the same class, the predominant class is selected which in 

this example is class A (green). Although Figure 5 represents an example for a classification problem, 

the same logic is applied for regression problems, assigning a continuous value to the black point based 

on the values of its closest points in the training set. Despite its ease of implementation and good 

performance in many situations, the algorithm has a large computational cost, and the selection of K 

has a high influence on the quality of the results (Arunkumar et al. 2017; Cover & Hart 1967).  

 

Figure 5 – Visual representation of the KNN algorithm with K=3 and two classes, class A (green) and class B 
(blue) 

Support Vector Machine 

The Support Vector Machine (SVM) algorithm focuses on finding the optimal boundary between the 

training data. The Support Vectors are the coordinates of each training instance, and they are plot in n-

dimensional space in order to separate them, where n is the number of features. As a classifier, the 

algorithm is capable of separating two classes with a single linear boundary, known as a hyperplane, 

which is placed with the goal of maximizing the distance between the two classes. However, Figure 6 

(left) shows a case where a linear hyperplane is not capable of isolating the classes. In these situations, 

the data is transformed to a higher dimensional space, represented in Figure 6 (centre), aiming to 

separate the data there. The projection of the feature space to a higher dimensionality is known as the 

Kernel trick, and the transformed feature space in which the training set is classified is defined by a 
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Kernel function. The Kernel trick allows separating two classes with a single linear hyperplane when this 

isn’t possible in the original dimensionality of the data. The result is demonstrated in Figure 6 (right). 

Although the algorithm can only separate two classes, in multi-class problems this issue is resolved by 

repeatedly applying the classifier to each combination of classes, making the computational time 

exponentially greater with the increase in the number of classes. For regression problems the algorithm 

considers a decision boundary that is set at a given distance from the hyperplane, so that the data points 

closest to the hyperplane are included in the decision boundary. Despite being computationally 

expensive, the SVM algorithm usually offers high accuracy (Boser et al. 1992; Thanh Noi & Kappas 

2017).  

 

Figure 6 – Visual representation of the SVM Kernel trick 

Random Forest 

The Random Forest algorithm is an ensemble method that builds multiple decision trees to diversify the 

use of the training data and build a generalized model. Note that the generalization of a model represents 

its ability to adapt to unknown data and obtain high predictive accuracy. The logic behind the ensemble 

method is to build several models and combine those that perform best, resulting in an ensemble that 

performs better than the best individual model. Two of the most popular ensemble methods are boosting 

and bagging (bootstrap aggregating). Boosting refers to any ensemble method that combines multiple 

weak learners into a single strong learner. Unlike strong learners that achieve high accuracy, weak 

learners perform only slightly better than random guessing. The logic behind boosting is to sequentially 

train predictors so that each one attempts to correct the previous one. Contrasting boosting where the 

models are sequentially built, bagging trains the models in parallel on different random subsets of the 

training dataset. Once the training stage is complete, the prediction for a new instance is made by 

aggregating the predictions of all the learners in the ensemble. In the case of classification, this 

aggregation is done by selecting the most frequent prediction, while in the case of regression an average 

of the predictions is made. 

Models based on the Random Forest algorithm are trained via bagging method, meaning that they are 

repeatedly applied on different random subsets of training data. While the classical Decision Tree 

algorithm selects the order of the attributes in the tree based on all attributes, Random Forest randomly 

selects two attributes and decides which is best to continue the tree, and repeats this process until the 

decision tree is complete. The model then repeats the process on a different subset of data thus creating 

a different decision tree, as shown in Figure 7. Once all decision trees are completed, the predictions 



27 
 

are made by a majority rule in the case of classification and by averaging in the case of regression 

problems. The algorithm aims to increase generalization accuracy without trading accuracy on training 

data, and has shown to be computationally faster than other bagging and boosting algorithms. 

Additionally, it is relatively robust to outliers and noise. The main challenge of this algorithm is selecting 

the number of decision trees, as insufficient decision trees may result in a low generalization of the 

model and a large number of decision trees significantly increases the computational time of the 

algorithm (Breiman 2001; Ho 1995; Ma et al. 2017). 

 

Figure 7 – Visual representation of the Random Forest prediction method with N decision trees 

Extremely Randomized Trees 

The Extremely Randomized Trees (Extra Trees) algorithm is an ensemble method similar to Random 

Forest, though it adds additional randomization to each decision tree. There are two main differences 

compared with the Random Forest algorithm: 1) It does not use a bagging technique to train the model, 

meaning that the entire training data is used for each decision tree; 2) The selection of the next attribute 

in the decision tree is done randomly. This allows the algorithm to produce weaker decision trees, 

making more generalizable models. Other advantages of Extra Trees include its computational 

efficiency as well as its improved accuracy. However, due to the random selection of attributes, if 

redundant attributes are present in the dataset they can be included in the model, resulting in a biased 

model (Geurts et al. 2006; Li et al. 2018).  

Gradient Boosting 

The Gradient Boosting algorithm is an ensemble method composed of decision trees. It is a boosting 

method, which means that each predictor is built sequentially based on the previous one, and it uses a 

gradient descent procedure to minimize loss when adding decision trees. The general purpose of the 

gradient descent procedure is to minimize a function, so it is used in Gradient Boosting as a way to 

minimize the loss function. The algorithm starts with prediction 1 (P1) as the average of the target 

variable for regression problems. It then calculates the loss function for each observation, for example, 

the mean squared error loss function, and creates a decision tree to predict those errors. At the end of 

that tree, the second prediction (P2) is the sum of P1 with the error that resulted from the decision tree, 
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although this error is multiplied by a learning rate before being added to P1. The purpose of the learning 

rate is to reduce the contribution of each decision tree and improve the models' generalization ability. 

From P2, the algorithm then creates a second decision tree to predict the error of this second prediction 

and it repeats this process until a stopping criterion is reached. The difference with classification 

problems is that it uses the probability value of a class occurring as prediction. Gradient Boosting has 

been shown to provide high predictive accuracy and be robust, making it easily applicable to imperfect 

data. Additionally, it has the advantage of being flexible as different loss functions can be used. The 

main limitation of this method is its computational expense since it often requires a large number of 

trees, making it also memory exhaustive (Breiman 1997; Friedman 1999; Weng et al. 2017).  

Adaptive Boosting 

Similar to Gradient Boosting, Adaptive Boosting (AdaBoost) is a boosting method that sequentially builds 

predictors based on decision trees. However, instead of working with full decision trees, it uses decision 

stumps which only have one node and two leaves, meaning that each decision stump makes predictions 

based on a single attribute. The algorithm assigns weights to each training observation, representing 

their importance of being correctly predicted, which is initially equal. A decision stump is created for 

each attribute, and their predictive accuracy influences the alterations to the observations’ weights. High 

weights are attributed to observations that are incorrectly classified to increase their importance of being 

correctly classified. The same logic is valid for regression, where a higher prediction error implies a high 

weight. Additionally, a weight is assigned to each decision stump based on its accuracy, so that once 

the stopping criterion is reached, the final prediction takes these weights into account. Similar to 

Gradient Boosting, AdaBoost also uses a learning rate on the weights of the decision stumps to ensure 

that the model is not overly specific to the training data. In addition to dramatically decreasing 

generalization error when compared to single tress, AdaBoost is highly accurate when compared with 

other ensemble methods. Another advantage of this method is that it can be easily used with any base 

learner. The main disadvantage of AdaBoost is its sensitivity to noisy data and outliers (Freund & 

Schapire 1997; Hong et al. 2018).  

Bootstrap Aggregating 

The Bootstrap Aggregating (Bagging) algorithm is an ensemble method that builds decision trees using 

different subsets from a dataset. Random subsets of data are split to train multiple models, and the 

multiple versions of the same predictor are used to generate a final prediction. In the case of regression, 

this procedure is performed by averaging all predictions, while a majority vote is used for classification. 

The main advantage of Bagging is its ability to build highly generalizable models, however, a critical 

factor in whether Bagging will improve predictive accuracy when compared to other methods is the 

instability of the prediction method. If the predictor is sensitive to perturbations in the learning set then 

Bagging can largely improve accuracy, while in the case of stable procedures it can slightly degrade the 

performance of the model. Nonetheless, some limitations include its lack of interpretability and relatively 

high computational expense (Breiman 1996; Rastegari et al. 2019). 
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3.4.2. Training and Validation in ML 

Training and validation are common processes in ML algorithms, in which each one plays an important 

role in ensuring the construction of a reliable and accurate model. The first process, training, consists 

of identifying patterns between the inputs and outputs from historical data, where improvements are 

measured by scoring methods. Although this process is common for all ML algorithms, the way that the 

model learns depends on the algorithm, since each one follows a different approach or a combination 

of them, as presented in the previous subsection. The second process, validation, aims to ensure that 

the developed model is generalizable, i.e., a test set is used to compare the predictions with the real 

values to check if the model keeps the same efficiency observed during the training process. 

Additionally, the validation process can be performed using cross-validation, which increases the 

reliability of the measured efficiency since it is based on resampling procedures (Raschka 2018). 

Two problems can arise in the training process, known as overfitting and underfitting, both representing 

situations where the model is incapable of correctly obtaining the underlying information within the data. 

Overfitting occurs when the model is not generalizable, meaning that it performs well on the training 

dataset but not on other sets of data, which is often either because the training set is too noisy or too 

small. This results in the model detecting patterns that are too specific to the training data or that simply 

correspond to noise. Contrarily, underfitting occurs when the model is not able to identify the patterns 

and underlying structure of the data. This may be either due to the model being too simple to learn the 

structure of the data, or because the data does not provide enough information to capture the patterns 

related to predictions that are intended (Géron 2019).  

Learning curves are used to identify whether the training model is overfitting or underfitting the data. 

Indeed, the learning curves plot is a useful tool to analyse the model’s performance during the training 

and validation processes. Two curves are plotted, a learning curve representing the training and another 

representing the validation, indicating how accurate the model is and if this accuracy can be expected 

with a different dataset. As explained, there are two main reasons for which underfitting occurs, the first 

being that the model is too simple to grasp the complexity of the dataset, and the second that the training 

data is insufficient and further training is necessary. Each of these occurrences results in a different 

learning plot, with the first being depicted in Figure 8 (a), and the second in Figure 8 (b). In the first, both 

the training and the validation curves reach a point where they remain flat, meaning that increasing more 

instances to the training set does not reduce or increase the error, and a larger training set or additional 

attributes are required. In Figure 8 (b), the training and validation curves continue to decrease until the 

end of the plot, indicating that the model is capable of further learning and additional improvements 

could be obtained if the training set were larger. Contrastingly, when overfitting occurs, the training curve 

continues to decrease until the end of the plot, as shown in Figure 8 (c), while the validation curve 

decreases until a certain point after which it begins to increase. Additionally, there is typically a large 

gap between the two curves, meaning that the model performs considerably better on the training data 

than on the validation set. Finally, a good fitting learning curve is presented in Figure 8 (d), where both 

training and validation curves decrease to a point of stability and the gap between the two curves is 

insignificant (Géron 2019; Xie et al. 2018). 
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Figure 8 – Reference for performance diagnosis based on learning curves 

The validation process measures the generalization error of a model, which refers to the error rate of a 

model’s predictions when it is applied to new data. Two measures commonly used to evaluate this error 

are bias and variance. Bias is due to incorrect assumptions about the form of the target function and 

can result in a model underfitting the training data, while variance represents the sensitivity of the model 

to small variations in the training data. A model with high variance is strongly influenced by the specifics 

of the training data and is therefore overfitting the training data. There is typically a trade-off between 

these two errors, known as the bias-variance trade-off: by increasing the complexity of the model the 

variance increases and the bias decreases, while by reducing the model’s complexity the opposite 

occurs. Additionally, it is important to note that the generalization error of a model is composed of three 

errors: bias, variance, and irreducible error. This last error represents noise and is difficult to reduce 

since it cannot be easily identified (Voyant et al. 2017). 

To obtain an accurate estimate of the generalization error, the model is repeatedly trained and tested 

on different sets of data. This process is called cross-validation: the dataset is repeatedly split into 

different training and validation sets and an accurate performance error is obtained by averaging the 

evaluations. The main disadvantage of this method is the computational time since it increases with the 

number of validation sets (Raschka 2018).  

3.4.3. Improving the Performance of ML Models 

Instead of selecting a ML algorithm and immediately start building a model with the dataset, a series of 

steps are followed to ensure that a well performing model with the best accuracy is obtained. In this 

context, the dataset is analysed and prepared by selecting the most relevant attributes. The aim is to 

remove those which feed redundant information to the model, i.e., highly correlated attributes. This 

selection also reduces the number of inputs given to the model, which in turn reduces its computation 

effort. Once a relevant dataset is obtained, models are built exploring different algorithms, and each 

model is trained and validated with their respective default hyperparameter values. These default values 

are those that empirically result in a good fit for various datasets. Finally, the model whose algorithm 

resulted in the best precision is selected and its hyperparameter values are fine tuned to check if there 

is a possibility of obtaining any improvement in terms of accuracy.  

Attribute Selection 

The attribute selection process, as mentioned earlier, aims to select the most relevant attributes and 

remove those that are redundant or irrelevant to the problem. This process can be done through multiple 

methods. The goal is to increase the model’s performance by eliminating noise in the data, leading to 



31 
 

improved model interpretation as well as reducing the risk of overfitting. Additionally, with a reduced 

subset of attributes, the training and prediction speed is increased, and the models become more 

practical for planners since fewer inputs are required to obtain predictions. Attribute selection is often 

used to reduce the effects of the curse of dimensionality, which refers to various problems that arise 

when applying a model to high dimensional data. By reducing dimensionality, computational effort 

decreases, and models become simpler and more generalizable. Attribute selection methods for 

supervised learning can be separated into four groups: 1) filter methods; 2) wrapper methods; 3) 

embedded methods; and 4) hybrid methods (Jain & Singh 2018; Venkatesh & Anuradha 2019). 

The filter methods select attributes regardless of the learning algorithm by exploring statistical measures. 

Some of the most common filter method techniques include Fisher’s score, Pearson’s correlation 

coefficient, and Chi-Square test (Guerra-Manzanares et al. 2019; Verma & Kusiak 2012). Filter methods 

are computationally fast and are particularly recommended when dealing with high dimensional data. 

On the other hand, wrapper methods use a heuristic approach to consider possible subsets of attributes, 

evaluating the performance of the predetermined learning algorithm to determine the most relevant 

attribute subset. The most common are Sequential Forward Feature Selection, Sequential Backward 

Feature Elimination, Recursive Feature Elimination, and Genetic Algorithms (GA) (Gauthama Raman et 

al. 2017; Guerra-Manzanares et al. 2019; Yan & Zhang 2015). Wrapper methods have been shown to 

achieve higher predictive accuracy than filter methods (Zhang et al. 2014). The main reason for this gain 

in terms of accuracy is because the wrapper methods use the performance of the learning algorithm to 

evaluate and determine which attributes to select, and therefore find the features that are best suited to 

be considered in the model. However, wrapper methods are computationally more expensive than filter 

methods due to the learning process and cross-validation. Another disadvantage of this method is that 

it must be re-executed if another learning algorithm is to be used. Additionally, due to its complexity, it 

is susceptible to lead to an overfitting model when applied to small training datasets.  

In embedded methods, the attribute selection process is incorporated in the training of the learning 

algorithm. For each iteration of the training process, the attributes that contribute the most to the training 

are extracted, meaning that the search is guided by the learning process. The method typically uses 

ensemble learning and hybrid learning methods to select the attributes. Some of the most popular 

algorithms are Least Absolute Shrinkage and Selection Operator (LASSO), and Random Forest (Janet 

& Kulik 2017). Since this method does not require splitting the dataset into training and validation sets, 

it makes better usage of the available data and also provides a faster solution. Additionally, due to 

collective decision-making, its performance is frequently better than both filter and wrapper methods. 

Compared to wrapper methods, embedded methods are computationally less expensive, and less prone 

to overfitting. Nonetheless, they are computationally more expensive than filter methods. The main 

drawback of this method is its complexity as well as the fact that it makes decisions depending on the 

learning algorithm, making it specific to the learning model. Taking advantage of the benefits of each 

attribute selection method, hybrid methods combine several approaches. They are mainly used to 

combine filter and wrapper algorithms to achieve great performance with a low computational expense. 

Commonly, the first stage consists of applying a filter selection algorithm to remove irrelevant and 
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redundant features, reducing the number of features so that a wrapper method can be applied in the 

second stage with low computational cost (Bins & Draper 2001; Sinayobye et al. 2019). Hybrid methods 

tend to achieve higher accuracy when compared to wrapper methods, and similar computational 

efficiency compared to filter methods, and are particularly advantageous when dealing with high 

dimensional data.  

Although each attribute selection method has its benefits and drawbacks, there is no single method nor 

algorithm within a given method that performs well for any problem. Therefore, the selection of the best 

method and algorithm is highly dependent upon the available data and problem under analysis.   

Hyperparameter Tuning 

The hyperparameter tuning is paramount to ensure that the algorithm is running with the best 

combination of hyperparameter values which, in turn, produces better accuracy. A model’s 

hyperparameters typically remain constant during training, and directly impact the performance and 

predictive accuracy. The three most popular methods for hyperparameter tuning are Grid Search, 

Random Search (RS), and Genetic Algorithm (GA) (Liashchynskyi & Liashchynskyi 2019). 

The most traditional method is Grid Search, which makes a complete search based on a set of values 

for each hyperparameter, i.e., it tests every possible combination of hyperparameter values in a pre-

defined set. Thus, the number of trials increases exponentially with the number of values defined for 

each hyperparameter, making this method suffer from the curse of dimensionality. Additionally, Grid 

Search results in lower model predictive performance when compared to other methods. Nonetheless, 

Grid Search is a reliable method in low dimensional search spaces and is fairly simple to implement. A 

more efficient method is RS that tests random combinations of the hyperparameters to find the best 

solution. It can be applied to discrete, continuous, or mixed search spaces, and typically outperforms 

Grid Search by finding equal performing models in less computational time. Some researchers have 

shown that RS has the same practical advantages as Grid Search, such as conceptual simplicity and 

ease of implementation, and that it trades a small efficiency reduction in low dimensional search spaces 

for a large efficiency improvement in high dimensional spaces (Bergstra & Bengio 2012). However, the 

main drawback of this method is its high variance during computing.  

Whilst it has many applications, GA is also explored to find an efficient combination of hyperparameter 

values. GA is an evolutionary search algorithm that sequentially selects, combines, and varies 

hyperparameters in a manner that simulates the process of natural selection. It begins by generating a 

random population of individuals, where each individual represents a possible solution in the search 

space, consisting of values for each hyperparameter. The selection process is based on the 

performance of each individual, and individuals are repeatedly combined and altered to produce the 

next generation. This process is iterated until a stopping criterion is reached. Although this method is 

computationally expensive due to the need to repeat the process for each ML algorithm, the computation 

time can be reduced by controlling the number of generations and length of the population. Compared 

to other methods, GA is expected to yield better performing models, and it executes faster in cases 

where there is a large number of hyperparameters (Liashchynskyi & Liashchynskyi 2019). 
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Although it is fairly hard to determine which method is most suitable for a given problem, Grid Search is 

an adequate option for low dimensional search spaces since it tests all the possible combinations, while 

RS is more suitable for high dimensional spaces due to its efficiency. Despite its computational 

complexity, GA is also a good option when searching for an efficient combination of a large number of 

hyperparameters.  

Finally, despite each problem having its specificities, the workflow presented in Figure 9 is identified as 

a pattern in the development of predictive models based on ML algorithms (Al-Janabi et al. 2017; 

Rastegari et al. 2019; Stetco et al. 2019; Were et al. 2015). This workflow represents the computational 

methodology that is to be followed in the remainder of this dissertation.   

 

Figure 9 – Flowchart describing workflow of building predictive ML models 

3.5. Explored Attributes 

The attributes mentioned in the previous subsections are explored in the literature without a consensus 

since each author explores different types of attributes. These attributes are explored to contextualize 

occurrences, and to enhance the performance of models by capturing their dependencies, which in turn 

help explain the fluctuations in demand. Table 3 presents a summary of the most frequently explored 
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attributes that explain demand fluctuations, along with the studies that identify and incorporate those 

attributes. 

Table 3 – Attributes considered to explain demand in forecasting models 

Attributes References 

Weather 
H. T. Wong & Lai (2010) 
Ho Ting Wong & Lai (2014) 
Ho Ting Wong & Lin (2020) 

Special-event 
Channouf et al. (2007) 
Ingolfsson (2013) 

Resident population 
Kamenetzky et al. (1982) 
Nicoletta et al. (2017) 

Age 
McConnel & Wilson (1998) 
Svenson (2000) 
Lowthian et al. (2011) 

Gender 
Aldrich et al. (1971) 
Lowthian et al. (2011) 

Employment 
Aldrich et al. (1971) 
Siler (1975) 
Kamenetzky et al. (1982) 

Seasonal patterns 
Setzler et al. (2009) 
Matteson et al. (2011) 
Gijo & Balakrishna (2016) 

 

The seven attributes presented in Table 3 represent external factors as well as demographic variables 

that impact EMS demand. Their incorporation in forecasting models results in estimates capable of 

explaining demand fluctuations throughout time and location, contributing to the production of reliable 

predictions. It is important, however, not to over-specify the model by including a large number of 

variables, as it may lead to a computationally complex model. Additionally, some variables may provide 

redundant information to the model making it biased, or they may not make sense for another system 

as each system is subject to different conditions. Thus, the selection of these attributes must be explored 

carefully, which is not observed in the literature since the authors do not justify their choices.  

3.6. Chapter conclusions 

Research in the area of demand forecasting is vital to develop new methods and decision-making tools 

that allow improved prediction accuracy and optimized planning decisions. The main planning problems 

require demand estimates as inputs. Although there are many approaches that produce reasonable 

predictions, old and inaccurate practices such as simple averaging techniques that produce noisy 

estimates are still in use by some EMS providers (Setzler et al. 2009; Zhou & Matteson 2015). 

Forecasting models are classified into three methods, regression, time series, and spatial-temporal. Few 

spatial-temporal approaches have been applied thus far, and not many papers have been published 

that address the spatial component of demand. There is a need, therefore, for future works to focus on 

these methods and explore further applications of spatial-temporal models on EMS demand forecasting. 

From the models employed in the literature, GMM is identified as the best trade-off in terms of accuracy, 
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model complexity, and computational speed. Other ML algorithms are presented due to their ease of 

implementation and high predictive accuracy in similar applications. Their implementation approach is 

standardized to ensure the obtainment of accurate and generalizable models, including processes such 

as attribute selection and hyperparameter tuning. Due to their successful implementations in other fields, 

ML models are expected to achieve high accuracy in predicting EMS demand, and they represent an 

interesting comparison to models already explored in the literature.  
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4. Exploratory Data Analysis 

This chapter provides an exploratory data analysis of historical data regarding processed call volumes 

and vehicle dispatches during the temporal interval of 2017-2018. Section 4.1 introduces the datasets 

that are to be used for the development of predictive models, focusing on the available attributes, while 

Section 4.2 analyses the target variables with the goal of obtaining insights useful for managerial 

decisions. Finally, Section 4.3 presents the chapter conclusions.  

4.1. Attributes 

Historical data shared by INEM referent to years 2017 and 2018, as well as attributes obtained through 

multiple sources, are presented in two datasets. The data is aggregated in discrete time and spatial 

intervals. The first dataset contains hourly volumes of calls of priorities P1 and P3 answered per each 

of the eighteen districts in mainland Portugal. The second dataset has the number of dispatches of 

vehicles SIV, VMER, and AEM per 8-hour shift from each of the twenty bases in the municipality of 

Lisbon. Other than the differences in time intervals and spatial origin of demand, the remaining attributes 

are equal for both datasets. The data has been pre-processed and treated for outliers before this 

dissertation, so these procedures are not performed. 

Since the attributes in the vehicle dataset only have values for the municipality of Lisbon, and the call 

dataset contains data regarding all districts in mainland Portugal, this second dataset is used for the 

initial analysis of the attributes. Table 4 presents the attributes available in the datasets grouped by the 

categories found in the literature and defined in Chapter 3.5, as well as two additional categories: one 

containing other provided attributes that do not fit into any other category, and another containing 

historical information obtained from INEM. This information concerns the thirty-seven types of medical 

occurrences registered by INEM in each given time interval and location. Table 4 also includes the 

information source of each attribute and the form in which the data is presented. It is important to note 

that values for attribute average salary are only available for 2017, so this attribute is excluded from 

both datasets on account of half of the information being missing. 

Table 4 – Attributes available in datasets 

Category Data type Source Attributes 

Weather Continuous World Weather Online 

Maximum temperature (ºC) 

Minimum temperature (ºC) 

Average temperature (ºC) 

Humidity 

Wind speed (Km/h) 

Special-event Binary 

-  National holiday 

Footystats 

Primeira Liga (NOS) 

Taça de Portugal 

UEFA European Championship 

UEFA Champions League 
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Table 4 – continuation 

Category Data type Source Attributes 

Resident 

population 
Continuous 

National Institute of 

Statistics 

Total deaths 

Total live births 

Total resident population 

Medical doctors per 1000 inhabitants 

Migratory balance 

National Tourism Online Total tourism guests 

Age Continuous 
National Institute of 

Statistics 
Ageing index 

Gender Continuous 
National Institute of 

Statistics 

Total female resident population 

Total male resident population 

Total female unemployed 

Total male unemployed 

Employment Continuous 
National Institute of 

Statistics 

Average salary 

Average pension value 

Total employed 

Total unemployed 

Seasonal 

patterns 
Binary -  

Time interval 

Spatial interval 

Day of the week 

Month 

Season 

Accident/crime Continuous 

National Road Safety 

Authority 
Road traffic accident victims 

National Institute of 

Statistics 

Total reported crimes 

Total crimes against people 

Total homicide crimes 

Occurrence 

type 
Continuous 

Portuguese EMS 

provider (INEM) 

Aviation accident 

Drowning or Diving accident 

Aggression 

Allergies 

Altered state of consciousness 

Psychological support 

Headaches 

Fake call 

Aboard vessels 

Convulsions 

Sick child 

Non-emergency medical transportation 

Sensorimotor deficit 

Diabetes 

Dyspnoea 

Abdominal pain or Bladder weakness 

Back pain 

Chest pain 

General 
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Table 4 – continuation 

Category Data type Source Attributes 

Occurrence 

type 
Continuous 

Portuguese EMS 

provider (INEM) 

Gynaecology or Pregnancy 

Helicopter transportation 

Bleeding 

Intoxication 

Non-occurrence 

Negligence or Domestic violence or Ill-

treatment 

Airway obstruction 

Exceptional occurrences or Nuclear 

biological chemical 

Eyes or Ears or Nose or Throat 

Other problems 

Cardiac arrest 

Childbirth 

Differentiated support 

Psychiatric problems or Suicide 

Burn injuries or Electrocution 

New-born or Advanced paediatric life 

support 

Secondary transport 

Trauma 

 

Unlike the majority of the presented attributes where a numerical value is provided, categorical data 

returns a label, which is the case of attributes such as day of the week or season. For these situations, 

instead of a single column representing the attribute and returning a label, each possible label is 

converted into a column in the dataset. This results in the creation of dummy variables for each label, 

where the value of 1 is attributed to the column for which the label is true. Dummy variables are used 

for attributes time interval and district in the call dataset, as well as shift and nearest base in the case of 

the vehicle dataset. Additionally, dummy variables are created for attributes day of the week, month, 

and season. It is also important to note that attributes of the category special-event have binary values 

depending on whether or not that type of special-event occurred.  

An initial analysis of the statistical dispersion of each attribute is used to measure the spread of the data 

distribution. The goal is to remove features with zero or near-zero deviation, which represents those that 

are practically constant and do not add information to the model nor improve its performance. For this 

purpose, the standard deviation of the numerical valued attributes is measured, and attribute new-born 

or advanced paediatric life support is identified as the one having the lowest standard deviation, with a 

value of 0.0123. However, this value is not considered sufficiently low to justify its removal, and this 

analysis does not result in the exclusion of any attributes.   

The relationship between attributes, whether causal or not, is measured through a coefficient of 

correlation, which indicates the strength of the statistical association between two attributes. Despite the 
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existence of several correlation coefficients, Pearson’s correlation coefficient is selected to evaluate 

linear relationships due to its wide application in the literature (Liu et al. 2020; Rastegari et al. 2019). A 

positive correlation indicates that both attributes move in the same direction, where the increase of one 

is matched by the increase of the other and vice-versa. Contrarily, when negatively correlated, the 

attributes move in opposite directions. A null correlation represents a lack of relationship between the 

two attributes. A correlation matrix is used to easily visualize the degree of correlation between any two 

attributes, and it is shown in Figure 10. As mentioned, the call dataset is used for this analysis because 

it has the complete information for mainland Portugal, and is a more reliable source for gaining insights 

due to the higher volume of observations.  

 

Figure 10 – Correlation matrix of numerical attributes from call dataset 

Correlation between attributes within the categories defined in Table 4 is expected to be high as they 

refer to similar measures. However, this is not always the case, and their relationships are the following:  

- Weather: temperature attributes are positively correlated with each other, humidity is negatively 

correlated with temperature, and wind speed has little to no correlation with the others; 

- Special-event: little to no correlation is identified between the attributes in this category; 
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- Resident population: positive correlation is identified between the attributes in this category, 

although attribute total tourism guests has lower positive correlation with the others, 

comparatively; 

- Gender: the male and female attributes are positively correlated with each other, although 

unemployment and resident population do not present correlation; 

- Employment: total employment and total unemployment are positively correlated, although no 

correlation is found between this set and attribute average pension value; 

- Accident/crime: road traffic accident has low positive correlation with the three crime attributes, 

which are positively correlated with each other.  

Regarding the correlation between categories, categories accidents/crime, age, resident population and 

attribute pension value from category employment are highly positively correlated with each other. It is 

important to note that attributes in category gender have a high positive correlation with their respective 

attribute that is not distinguished by gender. For example, attributes female resident population and 

male resident population are highly correlated with total resident population, meaning that any attribute 

with a high correlation with total resident population consequently has a similar correlation with the 

gender equivalents.  

The previous correlation depiction does not include category occurrence type. This category contains 

data shared by the Portuguese EMS provider regarding the occurrences that led to call or vehicle needs, 

justifying the need for a separate and more in-depth analysis. The call dataset, specifically, informs on 

the number and type of occurrences per hour and per district. Out of the thirty-seven attributes of 

category occurrence type, presented in Table 5, six of them can be considered as rare since they have 

a daily average rate of lower than 1 occurrence in the entire country: onboard vessels, helicopter 

transportation, non-occurrence, exceptional occurrences or nuclear biological chemical, new-born or 

advanced paediatric life support, and secondary transport. In addition to these, four other occurrence 

types have low incidence rates: fake call, non-emergency medical transportation, general, and drowning 

or diving accident. These ten occurrence types have significantly lower daily rates than the remaining 

ones, which results in a lack of correlation with other attributes due to their sporadic behaviour. The 

remaining occurrence types all show similar correlation patterns with the other attributes in the dataset: 

negative correlation with age, no correlation with special-event, weather, nor employment, and positive 

correlation with accident/crime and resident population. Additionally, the occurrence types demonstrate 

positive correlation with each other. Motivated by the goal of understanding the growth or decline rate 

of each type of occurrence without considering their patterns throughout the year, the relative change 

value is calculated and presented in Table 5. The relative change refers to the percentage difference 

from 2017 to 2018 of the mean daily values in the entire country. The majority of the occurrence types 

suffered a small growth in 2018. The greatest increases were those of psychological support, sick child, 

general, gynaecology or pregnancy, non-occurrence, negligence or domestic violence or ill-treatment, 

and differentiated support, which had increase rates between 10% and 16%. The highest growth, 

however, was that of exceptional occurrences or nuclear biological chemical, which doubled its 

occurrences in 2018, although its extremely low incidence rate is noteworthy. Only eight out of the thirty-
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seven types of occurrences suffered a decline in 2018, the highest being fake call, aboard vessels, non-

emergency medical transportation, and secondary transport.  

Table 5 – Occurrence type yearly change analysis in mean daily values 

 

Occurrence type 2017 2018 
Absolute 
change 

Relative 
change 

Aviation accident 2647.04 2675.31 28.27 +1.07% 

Drowning or Diving accident 32.09 32.55 0.46 +1.43% 

Aggression 972.56 1010.37 37.81 +3.89% 

Allergies 320.35 343.17 22.82 +7.12% 

Altered state of consciousness 10828.67 11436.36 607.69 +5.61% 

Psychological support 115.53 131.05 15.52 +13.43% 

Headaches 1077.50 1165.41 87.91 +8.16% 

Fake call 2.56 2.10 -0.46 -17.95% 

Aboard vessels 0.13 0.07 -0.07 -50.00% 

Convulsions 1325.13 1339.40 14.27 +1.08% 

Sick child 1605.90 1803.22 197.33 +12.29% 

Non-emergency medical transportation 8.02 5.52 -2.50 -31.15% 

Sensorimotor deficit 2035.33 2148.36 113.03 +5.55% 

Diabetes 891.09 848.81 -42.28 -4.74% 

Dyspnoea 8505.27 9130.59 625.32 +7.35% 

Abdominal pain or Bladder weakness 4662.90 4786.78 123.88 +2.66% 

Back pain 1812.43 1901.85 89.42 +4.93% 

Chest pain 3930.15 4216.96 286.82 +7.30% 

General 15.52 17.69 2.17 +13.98% 

Gynaecology or Pregnancy 411.22 467.90 56.68 +13.78% 

Helicopter transportation 0.13 0.13 0.00 0.00% 

Bleeding 1972.27 2021.39 49.12 +2.49% 

Intoxication 2023.30 2017.84 -5.46 -0.27% 

Non-occurrence 0.85 0.99 0.13 +15.38% 

Negligence or Domestic violence or Ill-

treatment 
116.78 131.44 14.66 +12.56% 

Airway obstruction 217.97 226.32 8.35 +3.83% 

Exceptional occurrences or Nuclear 

biological chemical 
0.07 0.13 0.07 +100.00% 

Eyes or Ears or Nose or Throat 146.83 158.01 11.18 +7.61% 

Other problems 8920.04 9325.28 405.24 +4.54% 

Cardiac arrest 1187.38 1279.56 92.19 +7.76% 

Childbirth 324.76 301.41 -23.34 -7.19% 

Differentiated support 1563.81 1787.18 223.36 +14.28% 
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Table 5 – continuation  

 

Regarding the concentration of occurrences in different districts, Lisbon and Porto have the highest 

number of occurrences for the majority of the cases, typically followed by Setúbal. However, the values 

of the occurrences are deeply related to the resident population size, as is visible by the high correlation 

between them in the correlation matrix of Figure 10. In order to identify behavioural differences in the 

various districts, values per resident population are used. The hourly mean values of each district show 

that for most occurrence types, Faro, Beja, and Portalegre are the districts with the highest number of 

occurrences per resident population. This general conclusion has several exceptions including the 

previously mentioned rare types of occurrences which do not follow any trend pattern.  

4.2. Target Variables 

Once the individual attributes have been studied, it is then important to identify the target variables and 

analyse their relationship with the presented predictive variables. For the problem at hand, there are a 

total of five target variables: P1 and P3 call volumes which are available in the call dataset; and SIV, 

VMER, and AEM vehicle dispatches from the vehicle dataset.  

Calls of priority P1 are those of emergency life-threatening incidents, while priority P3 is assigned for 

urgent situations. Different combinations of advanced life support emergency medical vehicles are 

dispatched for P1 calls depending on the incident, although they typically result in the dispatch of two 

out of the three vehicles under analysis. On the other hand, P3 calls usually only result in the dispatch 

of one life support emergency medical vehicle, for example, a AEM or a SIV vehicle. Despite the 

existence of other priorities, only P1 and P3 calls result in the dispatch of the vehicles SIV, VMER, and 

AEM. Calls of priority P3 are significantly more frequent than P1, and this gap increased in 2018. 

Nonetheless, both priority calls had a significant demand growth from 2017 to 2018, with 3.9% and 

5.43% increases for P1 and P3 calls, respectively.  

Figure 11 shows the number of calls per hour for each district in mainland Portugal, highlighting the 

differences in demand volumes for each district. The comparison of the graphs also shows the contrast 

of P3 calls comparatively to P1, with P3 having on average 5.24x higher demand.  

Occurrence type 2017 2018 
Absolute 

change 

Relative 

change 

Psychiatric problems or Suicide 1583.61 1731.29 147.68 +9.33% 

Burn injuries or Electrocution 133.61 128.94 -4.67 -3.49% 

New-born or Advanced paediatric life 

support 
0.07 0.07 0.00 0.00% 

Secondary transport 0.20 0.13 -0.07 -33.33% 

Trauma 11785.18 12200.22 415.04 +3.52% 
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Figure 11 – Hourly priority P1 and P3 call volumes per district 

Similar to attributes of occurrence type, the values of the call target variables are deeply related to 

resident population size, with the most populated districts (Lisboa, Porto, and Setúbal) having the 

highest demand volumes. On the other hand, Faro, Beja, and Portalegre present the greatest volumes 

when analysing demand per resident population, as shown in Figure 12. Nonetheless, extreme 

variations between districts are not observed in mean values, although some districts present 

significantly larger standard deviation, as is the case of Portalegre.  

 

Figure 12 – Hourly priority P1 and P3 call volumes per district and per resident population 

The three types of vehicles that are target variables in this study represent the three most commonly 

dispatched vehicles owned and managed by INEM. Each vehicle serves a different purpose: AEM 

vehicles are basic life support emergency vehicles that require a crew of two TEPH; VMER vehicles are 

advanced life support vehicles with advanced medical equipment, that require a doctor and a nurse; and 

SIV vehicles are differentiated ambulances with immediate life support equipment, that require a nurse 

and a TEPH. AEM vehicles are significantly more issued. In 2017, the proportion of dispatches was the 
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following: 4.77% SIV, 16.54% VMER, and 78.69% AEM. The next year, SIV and VMER vehicles 

represented a slightly bigger portion of dispatches, leaving AEM vehicles with 77.29% of dispatches. 

Although it is not significant, this could indicate a trend towards a more balanced distribution.  

Dispatches of vehicles SIV, VMER, and AEM in the municipality of Lisbon are spatially aggregated 

according to the base from which the vehicle left. The location of the twenty origin bases is shown in 

Figure 13. Additional information including the name of these bases and the ratio of vehicles per base 

is available in Appendix A. 

 

Figure 13 – Location of the twenty vehicle dispatch bases in the municipality of Lisbon 

Although call volumes increased from 2017 to 2018, the same is not true for emergency vehicles. Out 

of the three types of vehicles in analysis, demand only increased for SIV vehicles at 5.72%, while VMER 

and AEM demand decreased by 0.59% and 7.07%, respectively. Since only three types of vehicles are 

being analysed, it is possible that other emergency vehicles are being used to answer the increasing 

number of calls, limiting the ability to make conclusions about these values.  

Table 6 shows the average number of dispatches per shift and per type of vehicle for each base. 

Although it shows that a large number of bases have little to no dispatches, it is important to note that 

there is a total of ten types of vehicles available to INEM, out of which only three are under analysis. 

This means that these bases are not purposeless since other vehicles may be stationed and dispatched 

from them. Additionally, the concentration of certain vehicles in a given set of bases may be related to 

the management strategy of the EMS provider in the selection of the number and type of vehicles 

available in each base. In the two years under analysis, the majority of SIV dispatches originated from 

two bases: b0 (77.79%) and b4 (15.58%). Similarly, the majority of dispatches involving VMER vehicles 

were concentrated from three bases: b9 (29.06%), b10 (35.68%), and b11 (34.09%). AEM dispatches 

are the most varied, although ten out of twenty bases issued less than 1.10% of all AEM vehicles. Note 

the vast number of 0 vehicle dispatches per shift, evidenced by the median measure of Table 6. Out of 

the 43,800 observations from the two years under analysis, SIV, VMER, and AEM vehicles have no 

dispatches in 94.07%, 85.63%, and 61.45% of cases, respectively. 
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Table 6 – Vehicle dispatches per shift for each base in the municipality of Lisbon 

 SIV vehicles VMER vehicles AEM vehicles 

Base Mean Median 
Standard 
deviation 

Min Max Mean Median 
Standard 
deviation 

Min Max Mean Median 
Standard 
deviation 

Min Max 

b0 1.87 2.00 1.30 0.00 8.00 0.01 0.00 0.12 0.00 2.00 3.25 4.00 2.08 0.00 8.00 

b1 0.00 0.00 0.04 0.00 1.00 0.00 0.00 0.02 0.00 1.00 4.16 4.00 2.71 0.00 13.00 

b2 0.01 0.00 0.07 0.00 1.00 0.02 0.00 0.14 0.00 2.00 2.55 3.00 1.98 0.00 8.00 

b3 0.01 0.00 0.12 0.00 2.00 0.00 0.00 0.06 0.00 1.00 6.41 7.00 2.86 0.00 18.00 

b4 0.37 0.00 0.87 0.00 5.00 0.02 0.00 0.15 0.00 2.00 4.41 4.00 2.24 0.00 15.00 

b5 0.01 0.00 0.11 0.00 2.00 0.00 0.00 0.06 0.00 1.00 1.68 0.00 2.39 0.00 17.00 

b6 0.00 0.00 0.05 0.00 1.00 0.00 0.00 0.05 0.00 1.00 0.98 0.00 1.58 0.00 8.00 

b7 0.00 0.00 0.06 0.00 1.00 0.00 0.00 0.02 0.00 1.00 3.65 4.00 1.36 0.00 9.00 

b8 0.00 0.00 0.04 0.00 1.00 0.01 0.00 0.08 0.00 1.00 0.58 0.00 1.60 0.00 11.00 

b9 0.00 0.00 0.00 0.00 0.00 2.34 2.00 1.54 0.00 9.00 0.00 0.00 0.06 0.00 1.00 

b10 0.02 0.00 0.15 0.00 2.00 2.88 3.00 1.68 0.00 9.00 0.09 0.00 0.31 0.00 2.00 

b11 0.02 0.00 0.14 0.00 1.00 2.75 3.00 1.51 0.00 8.00 0.09 0.00 0.31 0.00 4.00 

b12 0.02 0.00 0.14 0.00 2.00 0.01 0.00 0.10 0.00 1.00 9.01 9.00 3.88 1.00 27.00 

b13 0.01 0.00 0.07 0.00 1.00 0.00 0.00 0.02 0.00 1.00 0.03 0.00 0.16 0.00 1.00 

b14 0.00 0.00 0.06 0.00 1.00 0.00 0.00 0.03 0.00 1.00 0.02 0.00 0.16 0.00 2.00 

b15 0.01 0.00 0.10 0.00 1.00 0.00 0.00 0.06 0.00 1.00 0.03 0.00 0.16 0.00 1.00 

b16 0.01 0.00 0.09 0.00 1.00 0.00 0.00 0.06 0.00 1.00 0.04 0.00 0.19 0.00 2.00 

b17 0.01 0.00 0.12 0.00 1.00 0.00 0.00 0.05 0.00 1.00 0.05 0.00 0.23 0.00 3.00 

b18 0.01 0.00 0.08 0.00 2.00 0.00 0.00 0.03 0.00 1.00 0.04 0.00 0.22 0.00 2.00 

b19 0.01 0.00 0.11 0.00 1.00 0.00 0.00 0.06 0.00 1.00 0.02 0.00 0.15 0.00 1.00 
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The attribute category seasonal patterns identified in Table 4 has been of little focus so far since the 

impact of these attributes is evaluated on the target variables, justifying the need to introduce and 

analyse them beforehand. Both call and vehicle demand are dependent on time of day, day of week, 

month, and season. Regarding time of day, a distinct pattern is identified by observing the hourly 

demand of call volumes, as shown in Figure 14. For both P1 and P3, the lowest number of calls is during 

the night, it peaks in the morning, after which it slowly decreases throughout the day. Additionally, the 

standard deviation is also lower during the night for both priority calls, yet these behaviours are slightly 

more pronounced for P3 calls.  

 

Figure 14 – Call volumes per time interval 

Similarly, the three types of vehicles follow an equivalent pattern, despite having values aggregated in 

larger time intervals. The values of mean, standard deviation, minimum, and maximum dispatches per 

shift are available in Table 7. The first shift (00h-08h) has the lowest demand on average, followed by 

the last shift (16h-00h), and the highest demand is observed in the second shift (08h-16h). 

Table 7 – Vehicle dispatches per time interval 

 

As mentioned, different demand volumes are observed depending on the day of the week. Although it 

not extremely pronounced, weekdays have a slightly higher demand for both calls and vehicles 

comparatively to weekends. Additionally, Monday is the day of the week with the highest demand and 

Sunday typically has the lowest. Nonetheless, these variations are relatively low, which can be observed 

in Figure 15. For example, the difference between the hourly mean of P3 calls between Monday and 

 SIV vehicles VMER vehicles AEM vehicles 

Shift mean std min max mean std min max mean std min max 

00h-08h 0.08 0.38 0.00 8.00 0.23 0.67 0.00 5.00 1.11 1.83 0.00 27.00 

08h-16h 0.15 0.66 0.00 6.00 0.53 1.38 0.00 9.00 2.54 3.75 0.00 20.00 

16h-00h 0.13 0.56 0.00 6.00 0.45 1.19 0.00 8.00 1.91 2.97 0.00 17.00 
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Sunday is approximately 0.62 calls, and it is 0.06 for P1 calls. The same pattern is identified for SIV, 

VMER, and AEM vehicles, although with higher standard deviation during the weekends.  

 

Figure 15 – Hourly call volumes per day of the week 

Regarding yearly patterns, the beginning and end of the year are the periods with the highest demand, 

and demand decreases sequentially throughout the middle of the year, as shown in Figure 16. There is 

a slight increase in call volumes in August, although it is not replicated in vehicle demand. Additionally, 

the standard deviation of August is significantly higher than the remaining months. This is a probable 

consequence of the intense heat that frequently impacts Portugal during this month, which may result 

in occasional higher EMS demand. These yearly patterns may also be related to the effects of the 

season. During seasons autumn and winter, higher call and vehicle demand volumes are observed, with 

summer being the season with the lowest demand and winter with the highest.  

 

Figure 16 – Hourly call volumes per month 

Having understood the effects of seasonal patterns on the target variables, the correlation with the 

numerical attributes can be analysed to identify potential relationships. Both priority calls P1 and P3 
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share similar relationships with the majority of the attributes as is visible by comparing the histograms 

of Figure 17 and Figure 18. These histograms allow the visualization of pronounced relationships with 

the target variable of the following: attributes from categories age, resident population, accidents/crime, 

and attribute average value pension from category employment. All of these relationships are positive 

with the exception of age. Regarding the relationship with the type of occurrence, low correlation is 

detected with the ten occurrence types that have significantly low occurrence rates, and different 

degrees of positive correlation are observed with the remaining. Additionally, the correlation between 

the two types of calls is highly positive, with a value of 0.66.  

 

Figure 17 – Correlation between calls of priority P1 and numerical attributes 

Although P3 calls generally present higher correlation with the attributes than P1 calls, the demand of 

both calls is similarly impacted by changes in attribute values. 

 

Figure 18 – Correlation between calls of priority P3 and numerical attributes 

The relationship between the numerical attributes and dispatches of vehicles SIV, VMER, and AEM is 

characterized by correlation values lower than 0.05. Additionally, the attributes present different 

relationships with each one, mimicking random behaviour. No conclusions can be made from this 
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analysis since little to no correlation is observed. The lack of correlation is mainly due to the reduced 

size of entries in the vehicle dataset and sparse data. 

The correlation histograms in Appendix B show that SIV vehicles present the lowest correlation with the 

available attributes, followed by VMER and AEM. This further confirms the idea that low correlation is 

due to low demand volumes and insufficient data representation since higher correlation is observed in 

target variables with greater demand. Regarding relationships between the target variables, the 

following correlation values are observed: -0.06 between SIV and VMER, 0.17 between SIV and AEM, 

and -0.21 between VMER and AEM.  

4.3. Chapter conclusions 

Historical data from 2017-2018 is available in two datasets, one regarding hourly call volumes and the 

other concerning vehicle dispatches per 8-hour shift. While the first includes information for continental 

Portugal, vehicle demand is only studied for the municipality of Lisbon. Both datasets include sixty-five 

attributes collected through multiple sources, that are valuable to explain demand variations.  

Prior to using these datasets to develop predictive models, this chapter serves to introduce the available 

data and showcase its particularities. The attributes are presented, and demand patterns are evaluated 

with the goal of obtaining insights about the behaviour of EMS demand. Many of the observations 

gathered through this analysis align with the realizations previously identified in the literature regarding 

EMS demand.   
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5. Experimental Results 

This chapter provides an in-depth description of the process leading to the obtainment of the results 

from the case study application. The implementation process of the applied algorithms is characterized, 

including attribute selection and hyperparameter tuning processes. The data preparation process is 

demonstrated in Section 5.1, followed by the application of the GMM algorithm in Section 5.2 and the 

multiple ML algorithms in Section 5.3. Finally, the obtained results are analysed in Section 5.4, and 

chapter conclusions are presented in Section 5.5.  

5.1. Data Preparation 

The goal of this dissertation is the elaboration of a reliable forecasting tool applied to the case study of 

INEM, to predict call volumes and vehicle dispatch demand. This tool is directed toward operational 

planning and the elaboration of predictions considering short-term forecasting horizons. For this 

purpose, the GMM and eight other ML algorithms are trained and tested, to identify and select the best 

performing model. These eight ML algorithms are the following: Naïve Bayes, KNN, SVM, Random 

Forest, Extra Trees, Gradient Boosting, AdaBoost, and Bagging. The workflow identified for the 

development of predictive models based on ML algorithms in Section 3.4.3 is adopted as the 

computational methodology. The developed model is expected to be an improvement on the existing 

prediction methods currently in use by INEM. However, this improvement is not measurable because 

the planning decisions are currently guided by intuition. Although the performance of the current method 

is not available for comparison, classical techniques such as time series models are common in the 

industry, making them a good baseline option. However, due to the particularities of each method and 

the difference in evaluation metrics, a direct comparison is unachievable. Therefore, due to the 

unavailable calculations currently in use and the difficulty in establishing a comparison with popular time 

series models, the results obtained in this work are simply compared with one another to identify the 

best model without defining any baseline. The experiments are conducted on a laptop with a 2.90GHz 

Intel Core i7-7500U processor and 8.00GB of RAM, with two cores, running on Windows 10. 

A separate model is developed for each target demand volume that is predicted, i.e., for each type of 

vehicle (SIV, VMER, and AEM) and each priority level call (P1 and P3). Although Zhou et al. (2015) 

used a temporal granularity of 2-hour intervals, this application considers the highest granularity level 

available since the forecasts are directed towards short-term operational planning. This means that call 

demand is predicted on an hourly level and vehicle demand for 8-hour shifts. These intervals are 

expected to be appropriate for the planning decisions for which they are intended. While the temporal 

granularity is fine for call volumes and low for vehicle dispatches, the opposite is true for spatial 

granularity. The twenty bases in Lisbon represent the spatial location of the vehicle demand, and call 

demand is grouped by the eighteen districts in mainland Portugal. 

The two datasets introduced in Chapter 4 are subjected to a normalization procedure to obtain uniform 

data due to the extreme differences in the range of values of the attributes. The range of values of the 

non-binary attributes presented in Section 4.1 is shown in Table 8. The homogenization of the data 

facilitates the training process by ensuring a lower computational cost and increasing the ability of the 

model to rapidly converge. The normalization process is done via a min-max scaling method that 
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rescales the dataset so that all attribute values are in the same range. The values of each attribute are 

transformed into a [0,1] range whilst preserving the form of their original distribution. The min-max 

scaling method normalizes the attributes by subtracting their minimum value and dividing it by the range.  

Table 8 – Range of values of non-binary attributes 

Attributes Minimum Maximum Range 

Ageing index 135.8 203.1 67.3 

Road traffic accident victims 427 9,919 9,492 

Maximum temperature (ºC)  3 46 43 

Minimum temperature (ºC) -6 30 36 

Average temperature (ºC) -1 38 39 

Humidity 14 99 85 

Wind speed (Km/h) 2 48 46 

Average pension value 4,654 7,014 2,360 

Total reported crimes 20,238 111,225 90,987 

Total crimes against people 4,721 26,989 22,268 

Total homicide crimes 5 39 34 

Total deaths 122 2,571 2,449 

Total live births 42 2,174 2,132 

Total employed 4,569,000 4,853,300 284,300 

Medical doctors per 1000 inhabitants 2.9 6.5 3.6 

Migratory balance -2,371 11,640 14,011 

Total resident population 105,479 2,271,772 2,166,293 

Total male resident population 50,064 1,063,052 1,012,988 

Total female resident population 55,415 1,208,720 1,153,305 

Total tourism guests 52,843 777,079 724,236 

Total unemployed 339,035 403,771 64,736 

Total male unemployed 150,357 184,051 33,694 

Total female unemployed 188,678 219,720 31,042 

Aviation accident 0 64 64 

Drowning or Diving accident 0 5 5 

Aggression 0 35 35 

Allergies 0 11 11 

Altered state of consciousness (ASC) 0 224 224 

Psychological support 0 7 7 

Headaches 0 22 22 

Fake call 0 3 3 

Aboard vessels 0 1 1 

Convulsions 0 26 26 

Sick child 0 48 48 

Non-emergency medical transportation 0 3 3 

Sensorimotor deficit 0 37 37 

Diabetes 0 18 18 

Dyspnoea 0 155 155 

Abdominal pain or Bladder weakness 0 67 67 

Back pain 0 34 34 

Chest pain 0 64 64 

General 0 4 4 

Gynaecology or Pregnancy 0 19 19 

Helicopter transportation 0 1 1 

Bleeding 0 37 37 

Intoxication 0 122 122 

Non-occurrence 0 2 2 

Negligence or Domestic violence or Ill-treatment 0 7 7 

Airway obstruction 0 10 10 

Exceptional occurrences or Nuclear biological chemical 0 1 1 
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Table 8 – continuation 

 

As seen in the literature review, ML algorithms can be applied to regression and classification problems. 

For the problem at hand, a classification prediction approach is adopted since it allows the use of 

evaluation metrics such as ROC (Receiver Operating Characteristics) curves and confusion matrices, 

which are relevant measures in the nature of the demand that is predicted. These metrics not only 

evaluate the severity of a model’s error, but also evaluate a model’s capability to recognize each class.  

The target variable in a classification problem has labels or classes instead of continuous numerical 

values. Therefore, the continuous outputs of the five target variables are transformed into classes 

through a clustering procedure. The K-means clustering algorithm is selected due to its vast application 

in similar problems, computational speed, and ease of convergence. The main limitation of this algorithm 

is that it requires a specification for the value of the K number of clusters to create, which has a great 

impact on the results. For this reason, the elbow method is used to determine the optimal number of 

clusters. This method runs K-means clustering for a range of values of K, and then computes a distortion 

score for each value of K, which corresponds to the sum of the square distances from each point to its 

assigned centre. K values from 1 to 5 are tested to identify the elbow point, which indicates the optimal 

number of clusters. Figure 19 shows the graphs where a clear elbow point can be observed visually for 

each target variable. Nonetheless, this point is identified using an elbow locator function.  

 

 

Figure 19 – Elbow method for target variables 

Attributes Minimum Maximum Range 

Eyes or Ears or Nose or Throat 0 6 6 

Other problems 0 148 148 

Cardiac arrest 0 54 54 

Childbirth 0 15 15 

Differentiated support 0 28 28 

Psychiatric problems or Suicide 0 34 34 

Burn injuries or Electrocution 0 14 14 

New-born or Advanced paediatric life support 0 1 1 

Secondary transport 0 1 1 

Trauma 0 164 164 
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For all target variables, an optimal number of two clusters is obtained, and the ranges of each are 

presented in Table 9. It is important to note that the obtained classes demonstrate imbalance in terms 

of the number of observations in each class. For all the target variables, the number of instances in the 

cluster with the lowest values is significantly higher (>75%) than the one with the highest values.  

Table 9 – K-means clustering of target variables 

Target 
variable 

Range of 
values 

Optimal K Clusters 
Range of 
clusters 

Observations 
per cluster 

Ratio per 
cluster 

P1 calls 0 - 15 2 
Cluster 0 [0,1] 247,224 78.39% 

Cluster 1 [2,15] 68,136 21.61% 

P3 calls 0 - 68 2 
Cluster 0 [0,13] 280,271 88.87% 

Cluster 1 [14,68] 35,089 11.13% 

SIV 
vehicles 

0 - 8 2 
Cluster 0 [0,1] 42,268 96.50% 

Cluster 1 [2,8] 1,532 3.50% 

VMER 
vehicles 

0 - 9 2 
Cluster 0 [0,1] 38,907 88.83% 

Cluster 1 [2,9] 4,893 11.17% 

AEM 
vehicles 

0 - 27 2 
Cluster 0 [0,3] 33,081 75.53% 

Cluster 1 [4,27] 10,719 24.47% 

 

The most common evaluation metric of predictive models is accuracy, which measures the percentage 

of correct predictions. However, this metric alone is often not sufficient to obtain a clear view on the 

execution of the model. The case of SIV vehicles is an example of highly imbalanced data where 

accuracy can wrongly measure the performance of a model, since an accuracy of 96.50% is achieved 

if the algorithm predicts cluster 0 for all of the samples.  

Four metrics are selected for the evaluation of the classification models developed in this work in order 

to obtain a broad and in-depth understanding of each model’s performance. Furthermore, it helps to 

overcome the difficulty in identifying a single measure capable of measuring the overall conduct of a 

model. These metrics include the ROC Area Under the Curve (AUC), accuracy, Precision, and Recall. 

ROC curves are commonly used to measure the performance of classification models since they 

measure a model’s ability to distinguish between two classes. The ROC curve plots two parameters: 

true positive rate and false positive rate, presented in Equation (1) and Equation (2), respectively. These 

equations use the concepts of true positive and true negative which represent the number of samples 

that were correctly classified as 1 and 0, respectively, as well as the concepts of false positive and false 

negative which are errors where a 0 is predicted as a 1, and a 1 predicted as a 0, respectively.  

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 𝑜𝑟 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

(1) 

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =  
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

(2) 

The area under a ROC curve is known as the AUC, and it provides an overall summary of the ROC 

curve’s performance. An AUC that is close to 1 indicates that the model has good class separation 
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capabilities, while an AUC under 0.5 performs worse than random. The AUC metric is frequently used 

as an overall measure of the performance of classification models. Since the classes are treated as 

equal, ROC curves are mainly useful when dealing with roughly equal numbers of observations in each 

class, while Precision-Recall curves are suitable when handling class imbalance. The reason for this is 

that the calculations of both Precision and Recall do not use the true negatives and are only concerned 

with correctly predicting class 1. Therefore, when the number of observations in class 1 is significantly 

lower than class 0, the Precision-Recall curve is useful to recognize how well the minority class is being 

predicted. Precision describes a model’s ability to correctly predict the positive class since it measures 

the proportion of correct positive identifications. On the other hand, Recall measures the proportion of 

positives that is correctly predicted. The equation for Precision is presented in Equation (3), and Recall 

is the same ratio as the true positive rate shown in Equation (1). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

(3) 

Since the use of multiple metrics allows a thorough evaluation of a classification model’s performance, 

metrics accuracy, AUC, Precision, and Recall are selected to evaluate the models developed in the 

following sections. 

5.2. GMM Application 

The choice for the exploration of the GMM algorithm is motivated by the results found by Zhou et al. 

(2015), briefly summarized in Section 3.3.3, and their recommendations to further explore attributes to 

obtain accuracy improvements. Despite it being mostly used for clustering purposes, GMM is a learning 

algorithm that can be used to model the data and obtain predictions about future instances. The model 

assumes that all datapoints are generated from a mixture of Gaussian distributions with unknown 

parameters. Note that Zhou et al. (2015) model the spatial distribution of demand by the K components 

of the Gaussian mixture, which differs from this application. Here, the spatial and temporal aspects of 

demand are considered as attributes and the GMM is modelled over the entire set of attributes.  

Two different estimation strategies can be used to fit the Gaussian distributions, where the first uses an 

expectation-maximization algorithm to fit the mixture of normal distributions, and the other uses 

variational inference algorithms. The variational inference algorithm is an extension of expectation-

maximization that uses information from prior distributions to add regularization and avoid singularities. 

The variational algorithm needs more hyperparameters due to its Bayesian nature, and the inference is 

significantly slower because of the need for extra parametrization. However, due to the fact that Zhou 

et al. (2015) use a Bayesian estimation approach in their work, this same approach is selected for this 

application.  

The selection of the most relevant subset of attributes to train and test the GMM algorithm is an important 

step before the application. Two methods are explored for this purpose, a filter method and a wrapper 

method, and the results obtained from each are the subject of comparison. The selected filter method, 

Pearson’s correlation coefficient, is used for a correlation analysis (CA). This analysis involves first 

selecting the attributes that have the highest correlation with the target variable, and then removing the 

attributes that are highly correlated with each other and therefore provide redundant information to the 
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model. Note that out of a group of attributes that are highly correlated with each other, the one with the 

highest correlation with the target variable is maintained. Attributes with a correlation higher than 0.4 or 

lower than -0.4 with the target variable are selected, representing a moderate level of correlation. After 

this, attributes with very high correlation, of values higher than 0.8 or lower than -0.8 with each other are 

removed, and only the most relevant one remains (Guerra-Manzanares et al. 2019; Pallonetto et al. 

2019; Rastegari et al. 2019).  

GA is selected as the wrapper to identify the best subset of attributes. The algorithm is applied over 5 

generations with a crossover probability of 0.5 and mutation of 0.2, and with a population size of 15. The 

high search space means that a low crossover probability should be avoided to ensure that the search 

space is sufficiently explored, yet it should not be too high to ensure the convergence of the algorithm. 

The low population size suggests that convergence is likely, so a high mutation probability is used to 

balance this and avoid being trapped in a local optimum. The measure of accuracy is used as a fitness 

score to identify the group of attributes that maximizes this metric. The algorithm is shown to converge 

within the 5 generations, since all the individuals in the final population present the same solution. It is 

important to note that the attributes subjected to these selection processes do not include those from 

category seasonal patterns due to their impact on the target variables as presented in Section 4.2. 

These attributes are considered indispensable and are used as a set of base attributes that are always 

present in all models.  

The selected Bayesian GMM algorithm has a large number of hyperparameters, which are subjected to 

a tuning process in the following stage. However, the prior on the Gaussian distribution, known as the 

mean prior, and the prior on the Wishart distribution, known as the empirical covariance prior, are not 

tuned. Both parameters represent priors that are altered throughout the learning process. Therefore, the 

ideal prior values are the mean of the attributes in the dataset for the mean prior and the covariance of 

the dataset for the covariance prior. These optimal values are the default for both parameters, 

eliminating the need for their tuning. The hyperparameters subjected to tuning are shown in Table 10, 

along with the empirical values that are tested for each. The selection of these values is based on the 

general values that typically result in well-performing models. The random seed given to the method to 

initialize the parameters is set to 0 for all applications to control randomness and obtain reproducible 

outputs. Additionally, the maximum number of iterations is set to 200 to guarantee the convergence of 

the algorithm, and 10 initializations are performed to ensure its convergence to an optimal configuration.  

Table 10 – Empirical values selected for hyperparameter tuning of GMM 

Hyperparameter Tuning values 

Number of mixture components [15, 20, 25, 30, 35, 40, 45, 50] 

Type of covariance ['full', 'tied', 'diag', 'spherical'] 

Convergence threshold [1e-5, 1e-4, 1e-3] 

Regularization of covariance  [1e-6, 1e-5, 1e-4] 

Initialization method ['kmeans', 'random'] 
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Table 10 – continuation  

Hyperparameter Tuning values 

Type of weight concentration prior ['dirichlet_process', 'dirichlet_distribution'] 

Dirichlet concentration prior [0.07, 0.05, 0.03, 0.02, 0.01] 

Precision prior on the mean distribution [1, 5, 10, 15] 

Prior on the number of degrees of freedom 

Different for each dataset: 6 values with intervals of 
2 degrees between each, starting at the lowest 
acceptable value, the number of attributes, which 
corresponds to the default value 

 

The range of the number of mixture components is based on Zhou et al. (2015), where 15 components 

were found capable of capturing the wide complexity of the data, yet small enough for computation ease. 

Additionally, they identified that a large number of mixture components can lead to overfitting, and 

therefore set the a priori maximum number of components to 50. The four covariance type options of 

Table 10 define constraints on the general covariance matrices: ‘full’ allows each component to have its 

covariance matrix, ‘tied’ restricts all components to share the same covariance matrix, ‘diag’ allows 

different diagonal covariance matrices, and ‘spherical’ allows each component to have its single 

variance. Although ‘full’ covariance is expected to perform best in general, it is prone to overfitting.  

Two other adjustments are made on covariance, the first being of hyperparameter covariance threshold 

which serves as a stopping criterion since the iterations stop when the average gain on the likelihood of 

the training data is below this threshold. The second is the regularization of the covariance which is 

performed by adding a non-negative value to the diagonal of the covariance to ensure that the matrices 

are positive. This regularization has an impact on the model and should, therefore, be attributed a low 

value. However, this is not always possible and models with a large number of mixture components 

occasionally require higher regularization.  

Options ‘kmeans’ and ‘random’ refer to the initialization processes of the weights, the means, and the 

covariances of the model. Furthermore, the type of prior on the distribution of the weights given to each 

component relates to the way that the number of components is defined, leading to two distinct models: 

a finite mixture model with Dirichlet distribution and an infinite mixture model with Dirichlet Process. The 

first uses the value given as a prior for a finite number of mixture components, while the second assumes 

an infinite number of components and uses the prior value as a maximum, assigning a weight of 0 to 

components it does not use. The advantage of the second is that there is no need to accurately calculate 

the number of components since the algorithm is capable of computing it. In practice, the Dirichlet 

Process is approximated and a distribution with a high fixed maximum number of components is used, 

called the Stick-breaking representation.  

Additional regularization of the weights is done through the prior weight concentrations, known as 𝛾 in 

the literature, which defines the concentration of each component on the Dirichlet weight distribution. A 

low concentration prior results in the model putting most of the weight on few components and giving 

weights close to 0 to the remaining, while a high concentration prior allows a larger number of 
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components to be active in the mixture. Another prior is that of the precision prior on the mean Gaussian 

distribution which controls the range of the mean values, where larger priors concentrate the means 

around the values of the aforementioned mean priors. Finally, a prior is given for the number of degrees 

of freedom on the Wishart covariance distributions.  

The described hyperparameters are tuned via two methods, and their results are used to draw 

comparisons: RS and GA. The RS tuning process is applied with a scoring strategy of maximizing 

accuracy, and the parameters of the estimator are optimized by a stratified cross-validated search with 

5 folds to preserve the percentage of samples in each class. The parameters are sampled uniformly 

although not all parameter values are tried out, but rather 10 parameter settings are sampled from the 

specified listed values. Since the values of the hyperparameters are presented as lists, sampling without 

replacement is performed, meaning that each sample unit of the population is only selected once. Similar 

to the previous application, the GA is run through 5 generations with a population size of 15, and the 

fitness score is set to maximize accuracy. A higher crossover probability of 0.9 is used for this application 

of the GA because the search space is smaller, reducing the risk of not converging. This also reduces 

the need for a high mutation value as a sufficient exploration of the search space is conducted. 

Nonetheless, to ensure the diversity of the population, a mutation probability of 0.03 is selected. The 

convergence plots of the GA tuning procedures are available in Appendix C. 

Four GMM models are obtained at this stage: two are built on the CA dataset, having the 

hyperparameters of one been tuned with a RS and the other with GA; the other two models are 

constructed on the GA dataset, with the same distinction in tuning processes. The four GMM are built 

for each target variable, resulting in a total of twenty models. Results obtained from cross-validation are 

presented in Table 11. The cross-validation is performed using a stratified K-fold method to have a good 

representation of each class in each fold. The cross-validator uses 5 splits of the dataset to train and 

validate, and returns the mean and standard deviation of the results for each evaluation metric.  

Table 11 – Cross-validation results from GMM application 

  AUC Accuracy 

  RS GA RS GA 

SIV 
CA 0.9835 0.9160 0.9733 0.9768 

GA 0.9315 0.9699 0.9733 0.9745 

VMER 
CA 0.9856 0.9842 0.9615 0.9613 

GA 0.9269 0.9241 0.9622 0.9657 

AEM 
CA 0.9463 0.9330 0.8867 0.8888 

GA 0.7572 0.7339 0.8870 0.8877 

P1 
CA 0.5589 0.5129 0.8370 0.8384 

GA 0.2931 0.3260 0.8376 0.8375 

P3 
CA 0.7663 0.8070 0.9502 0.9536 

GA 0.6912 0.1269 0.9412 0.9378 

 

Regarding attribute selection, Table 11 shows that, with one exception, the CA dataset provides better 

results than GA. Additionally, the CA method is significantly faster computationally, further supporting 
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the choice to use this practice. Table 11 also shows different preferences in regard to hyperparameter 

tuning methods depending on the evaluation metric that is assessed, where AUC recommends RS and 

accuracy shows GA to be the best method. Therefore, the choice of tuning process is dependent on 

which evaluation metric is prioritized. The full results for all evaluation metrics including standard 

deviation values of the cross-validation are included in Appendix D. 

5.3. ML Application 

Similar to the GMM application, both CA and GA are used as attribute selection methods for the ML 

algorithms. The CA results in exactly the same selection of attributes since it is independent of the 

learning algorithm. This is not the case for the GA method which must be repeated for each of the eight 

algorithms, which is a significantly lengthier procedure. The GA is applied in the same way for each ML 

algorithm as for GMM, with accuracy as the fitness score. 

Following the flowchart of Section 3.4.3 (Figure 9), the hyperparameter tuning process is only conducted 

after all performances are evaluated. This is because only the best performing ML algorithms follow 

through to the tuning procedure. The eight ML algorithms are applied with default hyperparameters to 

identify the ones that best model the data. Preliminary results of accuracy and AUC obtained from a 

stratified 5-fold cross-validation identify algorithms Gradient Boosting and AdaBoost as the ones that 

result in the best performing models, as shown in Table 12. These algorithms are similar, as described 

in Chapter 3.4.1, and both follow a boosting approach. The third best performing algorithm is SVM, 

however, the lengthy computational time of this algorithm does not justify its further exploration for 

operation planning. The complete results are available in Appendix E. 

Table 12 – Best performing ML algorithms for each dataset 

   CA dataset GA dataset 

SIV 
AUC Gradient Boosting Extra Trees 

Accuracy Gradient Boosting Gradient Boosting 

VMER 
AUC AdaBoost AdaBoost 

Accuracy AdaBoost AdaBoost 

AEM 
AUC Gradient Boosting Random Forest 

Accuracy SVM SVM 

P1 
AUC AdaBoost Gradient Boosting 

Accuracy AdaBoost Gradient Boosting 

P3 
AUC AdaBoost AdaBoost 

Accuracy SVM SVM 

 

Table 13 compares the results obtained through the CA dataset and GA dataset for both Gradient 

Boosting and AdaBoost. Default hyperparameters are employed and metrics AUC and accuracy are 

used to draw comparisons. For all cases, Gradient Boosting performs best with the attributes selected 

through GA, and with a few exceptions, AdaBoost performs best with the CA dataset. The main 

difference between these two datasets is the number of attributes that are selected for each. The CA 

method selects significantly fewer attributes, 44.8 on average, while the GA method selects on average 

83.3 attributes. This is mainly due to the low correlation between the available attributes and the target 
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variables. Therefore, for this data, Gradient Boosting performs best with additional attributes while 

AdaBoost tends to perform better with fewer attributes. Due to this, hyperparameter tuning is performed 

for the Gradient Boosting model trained on the GA dataset and the AdaBoost model with the CA dataset. 

Table 13 – Comparison between CA and GA datasets for Gradient Boosting and AdaBoost 

  Gradient Boosting AdaBoost 

   CA dataset GA dataset CA dataset GA dataset 

SIV 
AUC 0.9873 0.9908 0.9845 0.9845 

Accuracy 0.9775 0.9826 0.9752 0.9745 

VMER 
AUC 0.9905 0.9906 0.9912 0.9911 

Accuracy 0.9656 0.9661 0.9667 0.9667 

AEM 
AUC 0.9596 0.9658 0.9567 0.9575 

Accuracy 0.8964 0.9106 0.8933 0.8940 

P1 
AUC 0.8567 0.8577 0.8588 0.8566 

Accuracy 0.8415 0.8428 0.8421 0.8415 

P3 
AUC 0.9788 0.9797 0.9819 0.9819 

Accuracy 0.9587 0.9596 0.9594 0.9592 

 

To identify the best method, hyperparameter tuning is performed both via RS and GA, identically to the 

GMM application. The tuning plots for the GA method are available in Appendix C for both Gradient 

Boosting and AdaBoost. The hyperparameters tuned for the Gradient Boosting models are shown in 

Table 14. These values are chosen based on the best performing ones in other applications, and 

adjustments were made considering the selected values, i.e., further values were added if the highest 

or lowest value was always picked.  

Table 14 – Empirical values selected for hyperparameter tuning of Gradient Boosting 

Hyperparameter Tuning values 

Learning rate [0.05, 0.1, 0.15, 0.2, 0.25, 0.3] 

Number of estimators [50, 150, 250, 350, 450] 

Subsample [0.6, 0.7, 0.8, 0.9, 1] 

Minimum samples split [2, 5, 50, 100, 500, 1000] 

Minimum samples leaf [1, 5, 10, 50, 100, 500] 

Maximum depth [1, 2, 3, 4, 5] 

Maximum features [√number of features, 15, 25, 35, 45, 55] 

 

The logistic regression loss function is selected to be minimized in each split and mean squared error 

with improvement score by Friedman is chosen as the criterion function to measure the quality of each 

split. Additionally, no pruning is performed in this initial stage since a learning curve analysis is needed 

to give input on whether a model is underfitting or overfitting the data. Pruning not only increases the 
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generalizing ability of a model and reduces overfitting, but also increases inference speed. However, it 

often affects accuracy, meaning that it should be carefully added in situations where either 

computational time is excessive or in cases of overfitting.  

Hyperparameters learning rate, number of estimators, and subsample manage the boosting operation 

of the model. Learning rate determines the impact of each tree in the final outcome. Lower values shrink 

the contribution of each tree and result in more generalizable models. However, there is a trade-off 

between the learning rate and the number of estimators since low learning rates require more trees, 

which is computationally more expensive. The number of trees that are modelled represent the number 

of boosting stages that are performed. Although too many stages lead to overfitting, the Gradient 

Boosting algorithm is sufficiently robust, and a large number of estimators generally results in better 

performance. The fraction of observations selected to fit each tree is given by subsample. Robust 

models are obtained when this value is less than 1 due to variance reduction.  

The remaining hyperparameters are used to define the individual trees of a model. Minimum samples 

split expresses the minimum number of observations required in a node for it to be considered for 

splitting. On the other hand, minimum samples leaf defines the minimum observations required in a leaf 

node. A split point is only considered if it leaves at least the minimum training observations in each of 

the two branches. Small values are preferred in imbalanced class problems for both hyperparameters. 

Additionally, both are used to control overfitting, where high values prevent models from learning overly 

specific relations of a particular observation, although values too high lead to underfitting. Maximum 

depth and maximum features are also used to control overfitting. The maximum depth of individual 

estimators limits the number of nodes in a tree, and the maximum number of features restricts the 

number of randomly selected attributes that are considered when searching for the best split. Overly 

high values for either of these two hyperparameters lead to overfitting.  

The AUC and accuracy performance comparisons obtained from stratified 5-fold cross-validation for 

both tuning processes are presented in Table 15. Improvements are most significant for RS, meaning 

that the hyperparameter values selected through this method are used for the final Gradient Boosting 

model.  

Table 15 – Cross-validation results of Gradient Boosting with GA dataset before and after hyperparameter tuning 

  SIV VMER AEM P1 P3 

AUC 

Default 0.9908 0.9906 0.9658 0.8577 0.9797 

RS 0.9923 0.9910 0.9737 0.8607 0.9837 

GA 0.9918 0.9909 0.9724 0.8602 0.9838 

Accuracy 

Default 0.9826 0.9661 0.9106 0.8428 0.9596 

RS 0.9834 0.9673 0.9151 0.8436 0.9616 

GA 0.9833 0.9667 0.9129 0.8433 0.9613 

 

AdaBoost has a significantly lower number of hyperparameters that require tuning. Parameters learning 

rate and number of estimators are identical to Gradient Boosting, and the trade-off between them is 

equivalent. These are the only two hyperparameters subjected to tuning for this algorithm, as the others 
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are hand-picked. The choice of two options is given for the hyperparameter named algorithm. The 

algorithms are adaptations of the main AdaBoost idea with extended multiclass capabilities. One of them 

uses class probability estimates while the other is discrete-valued, using classification outputs. The first 

one is selected since it converges faster and achieves a lower test error with fewer boosting iterations. 

The performance improvements over the default values are presented in Table 16. 

Table 16 – Cross-validation results of AdaBoost with CA dataset before and after hyperparameter tuning 

  SIV VMER AEM P1 P3 

AUC 

Default 0.9845 0.9912 0.9567 0.8588 0.9819 

RS 0.9846 0.9913 0.9569 0.8595 0.9827 

GA 0.9844 0.9913 0.9569 0.8594 0.9826 

Accuracy 

Default 0.9752 0.9667 0.8933 0.8421 0.9594 

RS 0.9774 0.9672 0.8933 0.8425 0.9599 

GA 0.9774 0.9667 0.8933 0.8422 0.9598 

 

The improvements obtained for the AdaBoost algorithm are significantly inferior to those obtained for 

Gradient Boosting. This is mainly due to the lower number of hyperparameters that are tuned for 

AdaBoost, so the improvements that can be achieved are limited. It is important to note that in some 

cases evaluation metrics such as Precision and Recall, available in Appendix F, prove to be better with 

default hyperparameters, which is due to the maximization goal of the tuning processes being set to 

accuracy. Although only by a small margin, Table 16 shows that the best results for both accuracy and 

AUC are obtained with the hyperparameter values selected by RS, justifying the use of these values for 

the final AdaBoost model.  

5.4. Results Analysis 

The application processes presented in the previous sections allow the initial identification of the best 

performing models from each application through metrics of accuracy and AUC. These models are 

further analysed in this section to recognize the best one and provide a recommendation. The results of 

the final models obtained from stratified 5-fold cross-validation are available in Appendix G. These 

models are the following: 

- GMM application: models trained with the CA dataset surpass those trained with attributes 

selected via GA, and tuning results are similar for both RS and GA methods, meaning that both 

models are examined; 

- Gradient Boosting application: the GA dataset outperforms the CA dataset, and RS proves to 

be a better tuning method than GA; 

- AdaBoost application: the CA dataset provides better results than GA, and RS tuning produces 

better models than GA. 

These models are studied through analyses of learning curves, ROC curves, Precision-Recall curves, 

and confusion matrices. The purpose of these measures is to obtain a deeper understanding of the 

performance of each model. Although accuracy is the most commonly used metric, it does not provide 

a full understanding of how models perform with different sets of data and the kind of errors that are 
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made, along with the reasons for these errors. No model is capable of 100% accuracy due to the always 

existing irreducible error, yet this analysis is expected to give the decision-maker sufficient tools to select 

the most appropriate model to assist in EMS planning.   

5.4.1. Performance Evaluation 

The analysis of individual evaluation metrics provides concrete and valuable information to easily 

compare the performance of the developed models. So far, an emphasis has been placed on AUC and 

accuracy metrics to select the best models and identify the best methods for their development. This 

section focuses on other metrics to obtain an overall view of each model’s behaviour and predictive 

capabilities. 

The learning curves for the selected models are presented in Appendix H. These curves measure the 

quality of the model’s fit to the data and provide a view of its generalization ability. In general, the majority 

of the models have an adequate behaviour, reaching a point of stability with a small gap between the 

two curves. However, there are two situations where the learning curves demonstrate ill-fitting models. 

The first is of the GMM VMER models, where the validation curves surpass the training curves in the 

initial stages, demonstrating slight underfitting as shown in Table 17 (left). As stated before, the use of 

covariance type ‘full’ tends to result in overfitting models. After initial experiments, this option was 

removed due to the frequent errors that occurred when attempting to train the model with it. Problems 

emerged because the components presented ill-defined empirical covariance, resulting in an inability to 

fit the model. Nonetheless, due to the underfitting identified for models VMER, the covariance type is 

changed to ‘full’ while maintaining the remaining hyperparameters. By allowing each component to have 

its covariance matrix, the variance of the model increases and the bias decreases, overall reducing 

underfitting as represented by the learning curves of Table 17 (right). However, careful observation of 

the GMM GA with covariance type ‘full’ shows slight overfitting, with the training curve separating itself 

from the validation curve after a given point. Nonetheless, fluctuations in evaluation metrics show slight 

improvements in accuracy and Precision, yet a considerable decrease in Recall. The choice of whether 

or not these changes are acceptable is determined by the decision-maker’s preferences.   

Table 17 – Results of adjustments to GMM VMER model to fix underfitting 

 

VMER 

 Other covariance type Covariance type ‘full’ 

GMM 
RS 

  

AUC = 0.9856 
Accuracy = 0.9615 
Precision = 0.7452 
Recall = 0.9965 

AUC = 0.9835 
Accuracy = 0.9632 
Precision = 0.7715 
Recall = 0.9597 
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Table 17 – continuation  

 

The second situation identifies overfitting in model Gradient Boosting AEM, where a small gap between 

the two curves is not obtained and the accuracy of the training set is superior to the validation set. As 

stated in Section 5.3, large values of hyperparameters maximum depth and maximum features lead to 

overfitting, as well as low values of minimum samples leaf and minimum samples split. Therefore, to 

decrease the overfitting of the model, the following changes are made to these hyperparameters: 

maximum depth decrease from 3 to 2; maximum features decrease from 55 to 35; minimum samples 

leaf increase from 50 to 100; and minimum samples split increase from 5 to 50. These changes result 

in a learning curve plot with a significantly smaller gap between the curves. However, as shown in Table 

18, the evaluation metrics obtained through 5-fold stratified cross-validation represent a decrease in 

performance with these changes. For this reason, these adjustments are not included in the final version 

of this model.  

Table 18 – Results of adjustments to Gradient Boosting AEM model to fix overfitting 

 

VMER 

 Other covariance type Covariance type ‘full’ 

GMM 
GA 

  

AUC = 0.9842 
Accuracy = 0.9613 
Precision = 0.7451 
Recall = 0.9939 

AUC = 0.9884 
Accuracy = 0.9619 
Precision = 0.7558 
Recall = 0.9765 

AEM 

Without adjustments With adjustments 

  

AUC = 0.9737 
Accuracy = 0.9151 
Precision = 0.8181 
Recall = 0.8399 

AUC = 0.9710 
Accuracy = 0.9124 
Precision = 0.8156 
Recall = 0.8299 
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ROC curves give a visual understanding of each model’s capability to distinguish class 1 from class 0. 

The curves presented in Appendix I represent the empirical ROC curves obtained from plotting the true 

positive rate (Recall) versus the false positive rate for all possible cut-off values. Each point represents 

a different cut-off value and is connected to form the final curve. The same logic is applied for the 

Precision-Recall curves of Appendix J, where Precision is plot versus Recall and each cut-off value is 

connected to form the empirical curve. Although they share a parameter with ROC curves, Precision-

Recall curves provide a different view, directed towards understanding each model’s ability to predict 

the minority class, which corresponds to class 1.  

Random chance represents a straight diagonal line across the graph from point (0,0) to (1,1) in the case 

of ROC curves. Any curve that is drawn above this diagonal represents a model that is capable of 

distinguishing between the two classes better than random. The ideal curve is one that encompasses 

the entirety of the graph with an AUC of 1. The same is valid for Precision-Recall curves, although they 

are mirrored. The random chance diagonal travels from point (0,1) to (1,0) and the ideal curve is one 

that passes through point (1,1).  

Both ROC curves and Precision-Recall curves are significantly worse for the two GMM models when 

compared to the two ML models, which is especially true for P1 and P3 models. Additionally, the results 

of the individual evaluation metrics for the four models, available in Appendix G, show that GMM models 

obtain lower results for the majority of the evaluation metrics. The standard deviation obtained from the 

stratified 5-fold cross-validation is lower than 0.1 for all cases, further solidifying the results. Overall, 

both Gradient Boosting and AdaBoost perform better than the GMM models for this data. However, the 

results from the GMM application are comparable to those of common ML models. GMM performs better 

than some ML algorithms currently in use in other applications and is a reasonable contender alongside 

them. Nonetheless, the selected evaluation measures show that it is outperformed by the boosting 

algorithms explored in this work. 

5.4.2. Computational Complexity Evaluation 

The big O notation is commonly used to study the performance of algorithms based on the size of the 

input data they are trained on, i.e., it is used to determine how an algorithm scales in complexity with 

increased data. For this purpose, the time behaviour of the algorithm is studied by analysing different 

training times depending on the input dataset size. This behaviour is represented by plotting the 

execution values of the algorithm by the number of observations in the dataset. The shape of this curve 

determines the computational complexity of the algorithm and whether it is easily adaptable to large 

volumes of data. From previous studies of the literature for other applications, ML algorithms typically 

follow a logarithmic curve, which in big O notation is represented by O(log n) (Hafeez et al. 2021). 

Although complexity analyses of ML algorithms are available in other works, this evaluation contributes 

by comparing the performance of the algorithms in combination with attribute selection methods. Further 

analyses of the GMM models are excluded since the previous performance analysis proved that they 

are surpassed by the boosting models.  

The analysis is performed by evaluating the time required to train models Gradient Boosting and 

AdaBoost with RS hyperparameter tuning performed for 10 iterations, and with a 5-fold stratified cross-
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validation. A performance comparison is shown between using attribute selection methods CA and GA. 

Figure 20 shows the computational complexity for both vehicle and call models, which show similar 

results despite the differences in data sizes. The models with GA attributes have longer run times than 

CA due to the additional cost that this selection process represents. The big O notation is attributed to 

each model based on the shape of the curve. Although not all curves represent the expected O(log n), 

the results do not show high model complexity. Compared to CA, the curves of GA models are further 

from the expected, which suggests that the algorithm follows a different complexity behaviour. Overall 

run time is superior for AdaBoost, which represents a significant advantage for Gradient Boosting 

models in comparison. Other than the average run time, significant differences between the models 

concerning computational complexity are not observed.  

 

 

Figure 20 – Big O computational complexity 

It is important to note that only four experiments of different dataset sizes were made, limiting the 

variations of the curves. Additionally, more complex models capable of proving a point of comparison 

are not incorporated. Overall, all models perform well and most of them prove to behave adequately 

with high volumes of data.  

The values of the execution times obtained for each model are presented in Table 19. The CA results 

do not include the attribute selection process since it is almost immediate and does not increase the run 

time. These results show that although the AdaBoost models have longer run times for RS 

hyperparameter tuning, the GA attribute selection process is faster than for Gradient Boosting. The 

reason for this is unclear since both procedures require repeated training of the model. A noteworthy 

situation is the larger RS tuning times with the GA dataset compared to CA, which is mainly due to the 
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larger number of attributes that are selected. CA selects 42 and 70 columns for vehicles and calls 

respectively, contrasting the average 76.58 and 96.75 columns selected by GA. The unexpected 

complexity behaviour of the GA is also observed in this table, where significant time increases are 

observed as well as inconsistencies such as occasional time decreases with additional data.  

Table 19 – Run times in minutes with increasing dataset size 

Emergency vehicles 

   
10,860 

observations 
21,900 

observations 
32,760 

observations 
43,800 

observations 
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 CA 

SIV 1.98** 4.63** 6.33** 8.50** 

VMER 2.13** 4.68** 8.47** 9.95**  

AEM 1.78** 3.63** 6.95** 10.13** 

GA 

SIV 0.85* + 2.80** 1.50* + 5.70** 2.97* + 9.33** 8.28* + 14.58** 

VMER 0.48* + 3.10** 3.48* + 6.37** 5.20* + 10.82** 6.78* + 14.22** 

AEM 0.45* + 2.63** 1.65* + 5.57** 5.20* + 8.40** 4.48* + 12.20** 

A
d

a
B

o
o

s
t CA 

SIV 2.92** 5.52** 8.73** 11.32** 

VMER 2.92** 6.30** 9.72** 13.63**  

AEM 2.65** 4.92** 8.00** 12.70** 

GA 

SIV 0.42* + 5.32** 1.12* + 12.67** 0.98* + 18.73** 1.90* + 20.37** 

VMER 0.35* + 4.85** 0.82* + 10.12** 1.12* + 20.80** 1.55* + 25.15** 

AEM 0.30* + 4.87** 0.90* + 10.87** 1.13* + 17.67** 2.15* + 28.17** 

Emergency calls 

   
78,192 

observations 
157,680 

observations 
235,872 

observations 
315,360 

observations 
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CA 
P1 8.65** 20.00** 32.58** 57.75** 

P3 14.73** 32.95** 38.93** 66.90**  

GA 
P1 4.95* + 10.32** 11.22* + 23.82** 15.87* + 40.53** 34.88* + 57.53** 

P3 7.35* + 16.20** 17.07* + 33.95** 29.03* + 44.43** 44.45* + 63.28** 

A
d

a
B

o
o

s
t 

CA 
P1 14.83** 32.02** 49.73** 70.48** 

P3 22.40** 43.08** 65.87** 84.38**  

GA 
P1 1.15* + 25.85** 4.73* + 52.35** 6.15* + 101.58** 3.88* + 126.87** 

P3 1.42* + 36.90** 5.43* + 71.58** 9.42* + 112.92** 9.67* + 198.77** 

Time in minutes 
*  GA attribute selection 
**  RS tuning process 

 

Despite the faster GA attribute selection process of the AdaBoost models, the overall running time of 

the Gradient Boosting models is inferior, deeming them the least computationally complex models out 

of the two. Regarding attribute selection methods, the GA presents significantly higher complexity when 

directly compared with CA, since the CA process is practically immediate.  

5.4.3. Model Limitations 

The limitations of the developed models are discussed in this section. These limitations are presented 

to the decision-maker, who takes them into consideration when determining whether or not to adopt the 

proposed models.  
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The GA used for the selection of the best subset of attributes converged within 5 generations since the 

individuals in the final population were identical. This same number of generations was used for the 

hyperparameter tuning processes, although not with the same results. The graphs available in Appendix 

C show the converging process of the algorithm for each generation. Although convergence is obtained 

for the majority of the models, this is not the case for all.  

Despite the high crossover probability of this application which reduces the likelihood of convergence, 

the best course of action to avoid local optimal solutions is to increase the considerably low number of 

generations. The population size used is also low, which should facilitate convergence, further 

suggesting that decreasing crossover probability could result in a local optimum. However, increasing 

the number of generations is limited by the computational time of the process, as well as the need to 

run multiple models for each algorithm explored in this work. An added factor is that the computational 

time of an additional generation does not increase linearly, further complicating the identification of an 

appropriate number of generations. RS proved to be a strong alternative capable of achieving better 

results in less time. Having run the models on a personal computer, the GA with 5 generation took on 

average 2.3x longer than the RS with 10 iterations. This method has the advantage of not requiring 

convergence since it simply tests 10 combinations and returns the best one. Adding this to the fact that 

superior results were obtained for both Gradient Boosting and AdaBoost models, the RS is 

recommended as an overall better hyperparameter tuning process. 

Despite the overall high accuracy of the models, issues related to data imbalance present a great 

challenge. The evaluation metrics of Appendix G show that Recall is especially poor for P1 models. 

Recall is lower than 0.5 regardless of the applied algorithm, meaning that the majority of positives (class 

1) are predicted incorrectly. This is visible in the confusion matrices of Table 20, where in around 12.5% 

of cases class 0 is being predicted incorrectly for class 1 situations. The confusion matrices allow to 

quantify the disparity between the actual class of each observation and the class attributed by the 

predictor. Many classification metrics, such as Precision, Recall, and AUC derive from the confusion 

matrix and are calculated from the information that it provides. Positions [Class 0, Class 0] and [Class 

1, Class 1] indicate correctly predicted occurrences, representing true negative and true positive 

situations, respectively. On the other hand, [Class 0, Class 1] and [Class 1, Class 0] represent false 

positive and false negative predictions, respectively. The final column shows the real total number of 

observations for each class, while the final line does the same for predictions. The accuracy of the model 

is observed in [Sum, Sum]. The remaining confusion matrices are available in Appendix K, and although 

the case of P1 is significantly problematic, high percentages of false negatives are also observed in 

other models. Low Recall is especially bad considering the nature of the service, where incorrect low 

demand predictions can lead to unpreparedness and failure of EMS resources. Since Precision-Recall 

is a trade-off, the nature of the service may favour sacrificing Precision to obtain higher Recall values, 

mainly because it would be better to incorrectly predict higher demand volumes than lower ones.  
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Table 20 – Confusion matrices of P1 models 

 

An approach to fixing this problem is to run attribute selection and hyperparameter tuning processes 

with the goal strategy of maximizing Recall. Although accuracy is likely to decrease, it may be beneficial 

since the likelihood of obtaining a class 0 prediction and having the true occurrence be class 1 will 

decrease. Another option is the selection of the ML algorithm based on this metric alone, which results 

in the exploration of the Naïve Bayes algorithm. However, it should be considered that accuracy and 

AUC results from this algorithm are significantly worse.  

Note that Recall is bad regardless of the algorithm that is used, which suggests that this problem is 

related to the data used to train the models. Specifically, the low Recall values are likely to be related 

with the imbalance of the data. As mentioned previously, the percentage of class 0 occurrences is 

significantly higher than class 1. This leads to difficulties in the models’ ability to correctly recognize and 

categorize the minority class. It is important to point out that the appropriate precautions were made 

when developing the models, such as the use of stratified cross-validation procedures to ensure that 

each class is represented. Nonetheless, the fundamental structure of the data implies a lack of 

representation due to a large number of observations in the original data with 0 demand. This deficit is 

related to the set granularity levels which, if reduced, would help overcome data sparsity. The 

exploration of larger time and/or spatial intervals is expected to increase the demand values of each 

observation and result in clusters with higher representation. This would overall contribute to reduce 

data imbalance and increase the model’s capacity to recognize each class.  

The final limitation of this work is the inability to quantify the improvements that INEM would obtain by 

changing their current predictive method to the proposed one. Although the advantages of the proposed 

models are objectively quantifiable, direct improvements are not estimable since no comparison is 

made. Nonetheless, since it is known that simple techniques are currently in use, it is presumed that 

these models will greatly improve the operations of the EMS system. 

5.4.4. Final Remarks 

The final results of the two boosting models, summarized in Table 21, show that Gradient Boosting 

presents higher values for the majority of the evaluation metrics than AdaBoost. Furthermore, based on 

all of the analyses that were performed, Gradient Boosting has the overall best performance out of the 

P1 

Class 0: [0,1] dispatches 
Class 1: [2,15] dispatches 

Gradient Boosting AdaBoost 

  Predicted Class 

  Class 0 Class 1 Sum 

A
c
tu

a
l 
C

la
s
s
 Class 0 

71155 3057 74212 

75.21% 3.23% 78.44% 

Class 1 
11778 8618 20396 

12.45% 9.11% 21.56% 

Sum 
82933 11675 94608 

87.66% 12.34% 84.32% 
 

  Predicted Class 

  Class 0 Class 1 Sum 

A
c
tu

a
l 
C

la
s
s
 Class 0 

70945 3267 74212 

74.99% 3.45% 78.44% 

Class 1 
11676 8720 20396 

12.34% 9.22% 21.56% 

Sum 
82621 11987 94608 

87.33% 12.67% 84.21% 
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evaluated models, including lower computational complexity. For this reason, the recommended model 

is Gradient Boosting trained with attributes selected via GA and with hyperparameters tuned through 

RS. The selected attributes for this final model, as well as the hyperparameter values, are available in 

Appendix L.  

Table 21 – Cross-validation results of the boosting models 

 

Despite the low computational time of the recommended model, models trained with the CA dataset are 

capable of achieving higher efficiency, as shown in Section 5.4.2. Although the recommended GA 

Gradient Boosting model is appropriate for operational planning, CA models may be preferred if the 

main priority goal is computational cost minimization. Additionally, the CA selected less attributes in this 

application, which is an advantage to planners due to the practicality of needing fewer inputs to obtain 

predictions. Whether the small increase in model performance obtained from GA is worth the trade-off 

in terms of computational time is dependent on the decision-maker.  

RS is identified as a better option for hyperparameter tuning when compared to GA in regard to both 

model performance and computational efficiency. Also, fewer obstacles are encountered by using RS 

since there is no need to ensure convergence.  

Overall, the boosting models explored in this work outperformed other ML models for this set of highly 

sparse data. This includes the GMM, which performed similarly to other ML models and was ultimately 

surpassed.  

  Gradient Boosting AdaBoost 

SIV 

AUC 0.9923 0.9846 

Accuracy 0.9834 0.9774 

Precision 0.7721 0.6860 

Recall 0.7454 0.6534 

VMER 

AUC 0.9910 0.9913 

Accuracy 0.9673 0.9672 

Precision 0.8259 0.8264 

Recall 0.8960 0.8943 

AEM 

AUC 0.9737 0.9569 

Accuracy 0.9151 0.8933 

Precision 0.8181 0.7750 

Recall 0.8399 0.7949 

P1 

AUC 0.8607 0.8595 

Accuracy 0.8436 0.8425 

Precision 0.7468 0.7353 

Recall 0.4180 0.4232 

P3 

AUC 0.9837 0.9827 

Accuracy 0.9616 0.9599 

Precision 0.8972 0.8881 

Recall 0.7396 0.7314 
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The models developed in this work are directed towards operational planning on account of the fine 

granularity levels. Nonetheless, these models can be used for tactical and even strategic planning by 

grouping time buckets and/or spatial areas. This utilization requires, however, the availability of the 

attributes selected for the model. For example, the Gradient Boosting model requires a value for the 

expected average temperature as an input to obtain forecasts of P3 calls. If this model is used to predict 

demand concerning a period of time far in the future, the information regarding the anticipated average 

temperature is likely to be inaccurate. For this reason, the models directed towards tactical and strategic 

planning levels should only incorporate attributes with correct future information. This includes the main 

set of base attributes previously mentioned. These attributes concern time and spatial variables, and 

are indispensable to all models. Therefore, the models developed in this work are easily adaptable to 

other planning levels through the removal of attributes with unattainable or inaccurate projections.   

5.5. Chapter conclusions 

After data preparation and establishment of evaluation metrics, the GMM as well as eight ML algorithms 

are implemented. A filter and a wrapper method are used to identify the most relevant subset from the 

numerical attributes, and two tuning processes are used to designate values to the hyperparameters in 

order to maximize accuracy. 

Through the study of evaluation metrics and other performance measures, existing issues in the 

obtained models are identified and solution proposals are provided. The computational complexity of 

the models is also evaluated, and their limitations are delineated. Finally, the best model to predict the 

call volumes and vehicle dispatch demand is pinpointed as the Gradient Boosting model trained with 

attributes selected through GA and with tuned hyperparameters via RS.   
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6. Decision Support Framework 

This chapter aims to present a decision support framework based on prescriptive analytics that can be 

applied to EMS planning and be used at any planning level. Section 6.1 introduces data analytics and 

its components, Section 6.2 presents the proposed decision support framework, and Section 6.3 

concludes the chapter. 

6.1. Analytics 

Data analytics, summarized in Figure 21, is commonly split into four sections, descriptive, diagnostic, 

predictive, and prescriptive analytics, although diagnostic is sometimes considered as the second part 

of descriptive analytics. The input required is historical knowledge in the form of data, and a sequence 

of proposed actions is generated as an output (Brandt et al. 2021). 

 

Figure 21 – Data analytics components 

The aim of descriptive analytics is to identify and summarize what happened. Techniques such as data 

visualization and the use of key performance indicators allow decision-makers to assess performance 

and compare it against targets. The aim is to convert raw data into meaningful information by presenting 

data in summarized ways. This analysis mainly provides different views on collected data, and finds 

patterns and trends in this data. The output of descriptive analytics is commonly in the form of data 

visualization to summarize and report trends (Mustafee et al. 2018). Sequentially, diagnostic analytics 

follows the information obtained from data and intends to identify why something happened. The aim is 

to identify causes leading to the obtained performance, which includes understanding the impact of input 

factors and policies on performance measures. While diagnostic analytics transforms the gathered 

information from descriptive analytics into insights to aid managerial decisions, further insights are 

obtained in the form of foresight with predictive analytics. This level focuses on identifying what is likely 

to happen by developing estimates of outcomes based on planned inputs. Methods capable of 

supporting predictions such as data mining, forecasting, and mathematical approaches are used. The 

most common, forecasting, refers to methods used to predict events based on prior knowledge from 

historical data and other sources of information (Mustafee et al. 2018).  

While descriptive, diagnostic, and predictive analytics are information focused, prescriptive analytics is 

directed towards decision-making. The focus of prescriptive analytics is obtaining prescriptions of 

specific actions that lead to the desired outcome, with an emphasis on the concrete decision problem. 

A solution path is suggested by prescribing one or more courses of action and informing on the likely 

outcome of each one. This is done by building what-if scenarios to determine cause-effect relationships 

leading to the best possible performance. Each of the generated alternatives is evaluated based on goal 

attainment in the search for a suitable course of action.  
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Prescriptive analytics has three core units that represent the methods by which data is translated into 

actions: simulation, optimization, and evaluation. The simulation unit is used to anticipate the 

consequences of unforeseen actions and determine the best course of action. The predicted scenarios 

obtained from predictive analytics are fed to the simulator that generates future conceivable scenarios 

according to the data, and creates a list of possible actions. Based on predefined goals, the evaluation 

unit then measures the simulated results, which are kept in storage. Lastly, the optimization unit 

improves the simulated scenarios based on well-defined objectives and existing possibilities. The final 

validation by the evaluation unit compares the first retrieved scenario with the optimized one and returns 

a sequence of actions as the final result. These actionable recommendations can be of various forms 

such as simple decision suggestions, proposed values for certain variables, or even complete 

constructed plans (Soltanpoor & Sellis 2016).  

The success of prescriptive analytics is mainly dependent on the assessment of the alternatives 

generated based on the results from the prediction phase, and the impact they have on performance. 

Nonetheless, the entire process is a cycle, meaning that after the proactive decision and action 

implementation, events occur and descriptive analysis once again analyses what happened as well as 

why. New forecasts are then required to incorporate recent developments and utilize new data to 

improve estimates.  

Although each level of analytics can be used individually, a full understanding of demand behaviour and 

informative insights to support decision-making are best obtained when the four levels of analytics are 

explored together. As previously stated, the purpose of this work is the development of reliable 

forecasting tools capable of assisting the EMS provider in resource planning. This goal in itself simply 

fulfils the predictive part of the analytics. This element, although a fundamental input for planning 

problems, is most useful when combined with the remaining analytics, giving rise to a definitive decision 

oriented support tool. Considering prescriptive analytics in the context of EMS planning, each decision 

problem requires a concrete plan to determine the most suitable actions.  

6.2. Framework Proposal 

The decision support framework presented in this section is applied to the development of predictive 

models oriented to EMS demand, corresponding to the predictive analytics module. The studies 

available in the literature, presented in Chapter 3.3, propose various predictive models for different 

situations. However, no objective framework has been presented capable of directing and identifying 

which models are best suited for which problems. The approach presented in this framework is based 

on the fact that the success and utility of a model depends on the planning level for which it is used. 

Therefore, the first step is identifying the required level of forecasting for what is intended.   

A summary of the decisions made at each planning level has been previously presented in Table 2, and 

this topic has been discussed in Chapter 3.2. This table demonstrates the different needs of each level 

in terms of forecasts, which are also dependent on the time horizon of decision-making.  

Aspects such as data volume, data aggregation level, and model running time are defining to a predictive 

model’s success in any given planning level. The quantity of available data limits the level of planning 
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for which forecasts can be obtained. This means that an important step when establishing the 

forecasting level is identifying the available data volume. If data is only available for a few months, then 

strategic and tactical level forecasting cannot be achieved. This is because sufficient representation of 

demand behaviour is not available for the corresponding planning horizon. The level of data aggregation 

is also an important factor regarding forecasting levels. If the available data is grouped in large time 

intervals, then it does not provide sufficient detail for forecasting at low planning horizons. Weekly 

forecasts, although valuable for tactical planning, do not provide value for planning on the operational 

level. The same is true for yearly forecasts that are only suitable for strategic planning. Finally, the 

computational efficiency of predictive models is of paramount importance. This is related to the 

frequency of data updates and the periodicity that new models are trained. If recent data is repeatedly 

incorporated and new models are consistently trained, computational efficiency is of great value. On the 

other hand, if a single model is trained for a long period of time, it is feasible to consider a more accurate 

yet lengthier training process. This is typically the case for higher planning levels where, for example, if 

monthly forecasts are employed, model updates are only required once a month, while daily updates 

prioritize computational speed.  

The proposed framework is intended to generate EMS demand predictions capable of assisting 

managerial planning decisions and be used in descriptive analytics. It is important to note that although 

this framework is directed towards demand forecasting, it is also applicable to service time forecasting. 

These types of forecasts are mainly pertinent for strategic and tactical planning, to estimate travel times 

for ambulance location decisions. Additionally, the literature on predictive demand models mostly 

focuses on predicting calls, however, there is an important need to develop predictions for vehicle 

forecasting. The model building procedure, however, is similar, and this framework is valid for both types 

of estimates.  

6.2.1. Predictive Analytics 

The purpose of predictive analytics is determining the number of calls or vehicles that will be received 

by the EMS provider in a given time interval and for a given location. There are multiple ways these 

predictions can be obtained, and a review of the available works in the literature has been presented in 

Chapter 3.3. The purpose of this section is to structure and systematise the options and recognize the 

applicability of each one.  

Regardless of the prediction task, which can be classification or regression, predictors such as time 

interval, date, and location are common throughout any model. Other attributes can be added, although 

they should be carefully selected as they could add useless information and increase computational 

time. There is no consensus on which attributes should be included in EMS predictive models, as each 

study uses different ones (Lowthian et al. 2011; Ho Ting Wong & Lin 2020). Factors such as weather, 

age, gender, etc., have been proven to impact EMS demand, and this issue has been discussed in 

Chapter 3. Nonetheless, available attributes should be submitted to an attribute selection process to 

determine the most relevant ones. The relationship between target variables and predictive attributes 

can be studied in multiple ways, however, this study explores the contrasts between CA and GA. CA is 

significantly faster regarding computational time, although it can result in inferior performance. On the 
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other hand, if different algorithms are applied, the GA must be repeatedly trained for each one. If 

computational time is a valuable aspect in the training of the model, as is the case in operational 

planning, CA is recommended. On the other hand, if the aim is to maximize performance with little regard 

to computational efficiency, GA is a valid option. These recommendations consider only the methods 

that were explored in this work. However, this same logic applies to other methods: wrapper methods 

typically provide better results, while the computational burden of filter methods is insignificant with small 

accuracy deterioration (Venkatesh & Anuradha 2019). Also, although it is not the case for this 

application, filter methods may tend to select larger subsets of attributes (Y. Zhang et al. 2014). The use 

of hybrid methods is advantageous in these cases since the execution time of the wrapper applied on 

the reduced dataset is faster. Unlike filter methods, hybrid methods also suffer from lack of generality, 

same as wrapper and embedded methods (Guerra-Manzanares et al. 2019). On the other hand, 

embedded methods typically select a subset of attributes intrinsically while training the model, resulting 

in faster execution times that wrapper and hybrid methods (Yan & Zhang 2015). It represents a good 

option if available and feasible for the chosen algorithm since it is computationally inexpensive and less 

prone to overfitting than wrapper methods (Jain & Singh 2018).  

The second aspect explored in this work is hyperparameter tuning. Regardless of the selected algorithm, 

different parameter values should be explored to achieve the highest-performing model. RS and GA are 

compared in this work, and RS proved to be a superior method due to it resulting in better performing 

models and having inferior computational time. The selection of the number of iterations for a RS is 

dependent on the number of hyperparameters and values to test, as well as the available time to search 

for an efficient combination. If run time is not an important factor, for instance in strategic planning, RS 

with a large number of iterations should be run. However, while RS is most appropriate for large search 

spaces due to the trade-off between run time and quality of the solution, Grid Search should be used 

for small search spaces since it explores all possible combinations. Similar conclusions are reached by 

Liashchynskyi & Liashchynskyi (2019), who compare the three classic hyperparameter tuning methods 

(Grid Search, RS, and GA) for convolutional neural networks. They do not recommend Grid Search for 

large search spaces, and observe that RS achieves good results faster. Their results show similar 

accuracy for the GA compared to RS, though with longer run times. Additionally, Bergstra & Bengio 

(2012) show that RS has the same practical advantages of Grid Search, trading small efficiency 

reduction in low dimensional search spaces for large improvements in high dimensional spaces. On the 

other hand, Wainer & Fonseca (2021) compare eighteen search algorithms for SVM and do not identify 

significant differences among the procedures to select the best set of hyperparameters. They conclude 

that it is not worth using very precise and computationally expensive searching algorithms since it likely 

does not result in significant performance improvements.  

Regarding potential forecasting methods, the multiple regression models explored in the literature are 

fast, accurate, and easily applicable. Recent regression models incorporate both time and spatial factors 

(Cramer et al. 2012; Steins et al. 2019), and can easily include factors such as age, gender, and weather 

(Lowthian et al. 2011; Wong & Lai 2010). The contribution of these models is substantial in identifying 

variables that influence demand and that should be incorporated in forecasting models. However, the 
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precision of regression models is often low, and errors are common. Although these models have been 

addressed in the literature recently, they are frequently not adopted in practice due to the availability of 

superior alternatives. Despite their inability to capture complex data structures, they may be appropriate 

for estimates at large scales where detailed forecasts are not required. In practice, time series models 

have mostly surpassed regression models due to their superior performance and ease of use. The 

literature has explored ARIMA and Holt-Winters methods to predict EMS demand, as well as a non-

parametric technique, SSA. The results of Al-Azzani et al. (2020) show that ARIMA models provide the 

most accurate forecasts for tactical level planning horizons, while SSA is best for long-term strategic 

planning horizons. Additionally, they show that both these methods perform better than Holt-Winters. 

The success of SSA in producing accurate long-term forecasts is also recognized by Vile et al. (2012). 

Seasonality has been recently incorporated in ARIMA models, making SARIMA models an improved 

option for tactical forecasting (Gijo & Balakrishna 2016).  

The modelling of both time and location is possible with spatial-temporal models. Setzler et al. (2009) 

obtain accuracy improvements at fine time scale and low spatial granularity by applying ANN, however, 

this method is most appropriate for tactical and strategic level forecasts due to the associated 

computational cost. Additionally, large volumes of data are required, making this method unsuitable for 

operational planning. Zhou (2016) explores GMM, Kernel Density Estimation, and Kernel Warping for 

operational forecasting. Only 4-8 weeks of historical data are used, and the estimates are obtained at 

fine time and location scales. Out of the three methods, Kernel Warping proves to be the most accurate 

method, although closely followed by GMM. The GMM is easily applicable with only a slight decrease 

in accuracy and is identified as the most promising spatial-temporal model for operational forecasting. 

For this reason, this dissertation implements the GMM with the goal of obtaining reliable and accurate 

operational forecasts. Nonetheless, a large data volume of two years is used, making these forecasts 

suitable for other planning levels. Additionally, eight ML algorithms are implemented, and their results 

compared with the aim of identifying other potential algorithms capable of providing accurate estimates. 

The computational efficiency of the tested models, with the exception of SVM, is sufficient to justify their 

application for operational planning. The explored boosting models (Gradient Boosting and AdaBoost) 

prove to be the most accurate and provide superior results to GMM. Additionally, a selection of 

evaluation methods identifies the Gradient Boosting model as the overall superior model out of the ones 

tested in this work, making it the recommended model for spatial-temporal operational forecasting. 

Nonetheless, AdaBoost demonstrates great performance and should be considered if multiple models 

are explored. Overall, boosting algorithms show great potential and are recommended for similar 

applications.   

6.2.2. Prescriptive Analytics 

After relevant descriptive and diagnostic analyses through the use of visualization tools, predictive 

analytics should be applied following the guidelines presented in the previous section, which are 

dependent on the planning level of the decision problem. The predictions are fed to prescriptive analytics 

tools such as simulation, resulting in a clear solution path. This process represents the framework that 

should be followed to solve a decision problem, and is represented in Figure 22. The input data is used 
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at all stages of this framework and the ultimate results, actionable recommendations, are used to assist 

the original decision problem.   

 

Figure 22 – A guideline for descriptive, diagnostic, predictive, and prescriptive analytics 

A prescriptive analytics framework directed to support decision problems includes a full data analytics 

study. The decisions towards which the analyses are directed have an impact on how the analyses are 

conducted. While descriptive analytics aims to understand demand behaviour, data collected by EMS 

providers is vast and can be examined from multiple perspectives. The content of a descriptive analysis 

is dependent on its purpose, which is also the case for diagnostic analytics. This second analysis is 

crucial to fully understand and find explanations as to why demand is behaving a certain way. 

Correlations between variables must be interpreted to discover ways of improving operations and 

optimizing resources. This interpretation involves recognizing relationships and dependencies between 

occurrences, and identifying their relevance and impact on the subject under analysis. 

Predictive analytics is used to produce predictions of future demand. The value of this type of information 

derives from its utility in decision-making. Depending on the decision problem, forecasts referent to 

different time horizons are constructed, and obtained in different run times. There must be a clear 

understanding of the purpose of the estimates to maximize their benefit. The previous section provides 

guidelines to produce accurate forecasting models. Nonetheless, it is not possible to identify and 

recommend a single method that is superior to all others and successful for all cases. Each forecasting 

model has unique characteristics making different models appropriate for different situations. While 

complex models tend to achieve higher results, simple models typically have the advantage of speed, 

ease of application, and fewer inputs, making them useful for situations where information is scarce. 

Nonetheless, if a forecasting model is surpassed in all measures by another, it is replaced and ultimately 

falls into disuse. From reviewing the methods applied in the literature, the most promising for EMS 

forecasting are identified as SSA, SARIMA, and ANN (Al-Azzani et al. 2020; Gijo & Balakrishna 2016; 
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Setzler et al. 2009). While ANN is appropriate for both tactical and strategic forecasts, Al-Azzani et al. 

(2020) recommend ARIMA and SSA models for tactical and strategic planning levels, respectively. For 

operational planning, the results of this work suggest ML boosting algorithms over GMM for highly 

imbalanced data.  

Through prescriptive analytics, the insights obtained from the various stages of data analytics are 

translated into concrete and actionable recommendations to be used for management purposes. The 

guidelines represented in Figure 22 apply to any EMS decision problem to obtain proposals for decision 

problems. 

6.3. Chapter conclusions 

Data analytics receives collected data and produces recommendations of actions to follow based on the 

decision problem. The first step, descriptive analytics, conducts a thorough analysis of the available 

data and gains insights on demand behaviour through data visualization tools. The second step, 

diagnostic analytics, aims to find reasoning behind the identified data behaviour. The third, predictive 

analytics, produces estimates of future demand, which are fed to the fourth and final step, prescriptive 

analytics. Here, potential scenarios are considered, and the best ones are returned as suggestions to 

the decision-maker.  

This chapter presents a decision support framework for predictive analytics, consisting of directions 

leading to accurate models appropriate for different situations. Additionally, a prescriptive analytics 

guideline is proposed, incorporating and summarizing the predictive recommendations.  
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7. Conclusions and Future Work 

EMS systems are complex structures vital to preserving human lives and delivering fast and effective 

health care to the population. Demand for EMS has been increasing largely due to population ageing 

and growth, resulting in a need to evaluate and study these systems. Reliable forecasting tools capable 

of supporting planning decisions are required to optimize resource allocation and improve effectiveness.  

Short-term demand forecasts are a vital input for operational planning, and accurate estimates obtained 

in low computational times are needed for detailed planning on daily, hourly, and real time basis. 

Currently, INEM uses simple averaging techniques to obtain future demand provisions, which does not 

meet with the forecasting techniques addressed in the state-of-the-art. This dissertation focuses not only 

on the development of a highly accurate forecasting model, but on the comparison of different models 

to find the highest performing one for the data. For the problem of operational planning, an extensive 

search of models applied in the literature for EMS demand forecasting allowed the identification of the 

time-varying GMM as the most promising option. This model’s accuracy and computational efficiency 

are appropriate for short-term planning, and it presents low complexity considering its high performance. 

Further research showed that common ML algorithms, frequently applied for predictive modelling in a 

variety of other problems, have not yet been directly applied to predicting EMS demand. Recognizing 

this, a wide selection of ML models is chosen to train and validate on real data shared by INEM, and 

allow a comparison with the selected GMM. The models are explored to incorporate additional attributes 

in order to explain demand fluctuations. The standardized implementation process of ML algorithms is 

adopted as the computational methodology of this work. In addition to training and testing predictive 

models on INEM’s data, optimization methods such as attribute selection and hyperparameter tuning 

processes are explored. This research aims at identifying the best improvement techniques and 

achieving high performance within reasonable computational time. Unlike the previous application of 

GMM in the literature, this work considers the problem as classification, allowing extensive evaluation 

of the obtained models. Additionally, while the literature mainly focuses on the prediction of call volumes, 

this work tackles the issue of estimating both call volumes and emergency vehicle demand.  

The dataset referent to call volumes is grouped by hourly time intervals and districts in mainland 

Portugal. On the other hand, the dataset referent to vehicle dispatches is separated by 8-hour shifts and 

origin bases of the vehicles in the municipality of Lisbon. These are the defined granularity levels, which 

are the highest available levels since operational forecasts on fine time and spatial scales are required. 

An in-depth analysis of the historical data from 2017-2018 identifies demand patterns similar to those 

already recognized in the literature. These include relationships between demand and times when 

people sleep and go to work, as well as the month of the year likely related to vacation periods. The 

provided datasets are used to train and validate the models and experiment multiple improvement 

opportunities. The attribute selection processes identified both CA and GA as appropriate methods, the 

former having significantly lower computational time. Alternative hyperparameter tuning procedures 

were investigated and the highest improvements were obtained with the RS method. This method 

surpasses the explored alternatives both in results and computational burden, as well as ease of 

utilization. The results obtained from a stratified 5-fold cross-validation recognized Gradient Boosting as 
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the best model out of those that were explored in this dissertation, closely followed by AdaBoost. The 

GMM model achieved results similar to those of other ML models, although it was surpassed by both of 

the explored boosting models. A noteworthy remark is that while Gradient Boosting performed best with 

a large subset of attributes, the opposite is true for AdaBoost, having achieved greater results with fewer 

attributes.   

This dissertation set out to improve the forecast demand process for EMS using the case study of INEM 

to analyse EMS demand behaviour and develop a forecasting tool capable of accurately modelling this 

behaviour. Although no baseline was considered in this work due to the unavailable averaging 

techniques currently in use by INEM, the dynamic behaviour of EMS call and vehicle demand is 

highlighted. This behaviour suggests poor performance of simple averaging measures and inaccurate 

estimates obtained through the use of these techniques. Although improvements cannot be explicitly 

proven, models capable of capturing both spatial and temporal aspects of demand are necessary to 

adequately contribute to the system’s effective operations. This work focused not only on the 

comparison of potential forecasting models, but also on the delimitation of the best optimization 

procedures to obtain accurate and fast forecasts. This was achieved by identifying the Gradient Boosting 

model as the one with highest performance, with a subset of attributes selected via GA and having tuned 

its hyperparameters through a RS procedure. Nonetheless, several limitations are associated with this 

model. The target variables were clustered via K-means into two classes, giving rise to a binary 

classification problem. Two limitations arise from this clustering process, concerning the small number 

of classes and the range of each class. Although the selection of the number of classes was performed 

according to a legitimate method, it resulted in a binary problem which limits the amount of information 

provided by the model. Similarly, the range of values in each class was defined through a renowned 

clustering algorithm. Nonetheless, these classes may be of little use to the decision-maker, who may 

prefer to delimit these intervals autonomously. Although the models developed in this dissertation were 

directed towards operational planning at the highest granularity level, data sparsity presented a great 

challenge that led to the obtainment of imbalanced data and class representation issues. These 

problems resulted in some models with low Recall due to difficulties in distinguishing the class with 

higher demand. This issue can greatly impact the quality of the service since it results in the prediction 

of frequently incorrect low demand volumes. Finally, the proposed and recommended model is directed 

towards assisting decision-makers with planning operations. This means that the ultimate judgement of 

whether the model is appropriate for this task is determined by the decision-maker. Although the model 

was the subject of multiple evaluation procedures, having clearly outlined its perks and limitations, the 

choice of whether or not to use this model is up to the decision-maker. Nonetheless, the suggestions 

and conclusions presented in this work are based on the studies that were here conducted, as well as 

previous literature findings, with clear delineation of the steps and reasoning that were considered.   

To overcome the limitations identified in this work, future classification problems should explore the 

delimitation of the number of classes and their ranges according to the choice of the decision-maker 

rather than using unsupervised learning techniques. Although the chosen method demonstrates good 

results, the exploration of other methods for class definition is recommended to produce better 
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performing models, whilst validated by the decision-maker. Nonetheless, future work should attempt to 

further explore boosting ML algorithms considering the problem as regression instead of classification. 

The values used for the application of the various methods applied in this work as well as the values 

selected for the tuning of the hyperparameters of the models were chosen in an empirical manner. On 

the other hand, a more methodical approach could prove to be a superior alternative capable of easily 

identifying the best values. Future work should also focus on identifying improved ways to delineate 

granularity levels. The degree of data sparsity should be closely studied to help define the most 

appropriate temporal and spatial granularity for the desired planning level. Lower granularity levels may 

be preferred if sufficient demand representation is not present, though their utility should be approved 

by the planner. To further combat data sparsity, the distinction of calls by severity can be removed by 

aggregating total call demand as is commonly done in the literature. Once again, this option must be 

approved by the decision-maker to understand whether this distinction is required for planning. 

Furthermore, location-specific and temporal seasonality were not incorporated in this application and 

represent an interesting addition for future applications of ML. Once a model is approved by the decision-

maker for utilization in the context of operational forecasting, the creation of an interface to facilitate the 

insertion of data and the obtainment of predictions may be of great value to the EMS provider. Finally, 

the elaboration of a simulation model as an extension of this work could help evaluate the impact of the 

model’s errors and identify improvement opportunities.  

In summary, the main recommendation from this work is the exploration of ML boosting models 

incorporating location-specific and temporal seasonality. Overall, closer collaboration with planners 

regarding the definition and validation of relevant aspects, such as the range of call volumes in each 

cluster, is surely advantageous to ensure that the obtained predictions are appropriate for the planning 

decisions to which they are directed. Nonetheless, the contributions of this work include the application 

of state-of-the-art methods to develop accurate predictions of EMS demand. This includes the 

application of ML algorithms not yet considered in the literature for the problem of EMS demand 

forecasting. Furthermore, this work contributes by comparing various optimization methods and their 

performance exploring real data, and presenting the associated computational complexity of the applied 

models.  
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Appendix A – Additional information on Lisbon bases 

This appendix presents additional information to complement the analysis of the vehicle dataset of 

Chapter 4.2. Table 22 shows the distribution of each type of vehicle dispatches for each base, as well 

as the location of each base. 

Table 22 – Location of Lisbon bases and vehicle type ratio per base 

 

  

Base SIV ratio VMER ratio AEM ratio Base location 

b0 36.39% 0.25% 63.36% INEM Sede 

b1 0.03% 0.01% 99.96% GNR Reg. Cavalaria - Ajuda 

b2 0.19% 0.71% 99.10% Esquadra PSP - Bº Boavista - Benfica 

b3 0.18% 0.05% 99.77% Centro Saúde Lóios - Olivais 

b4 7.78% 0.43% 91.79% Hosp. Curry Cabral 

b5 0.70% 0.24% 99.06% Escola S.D. Benfica 

b6 0.23% 0.23% 99.53% GNR Brigada Fiscal - Beato 

b7 0.11% 0.01% 99.88% GNR Brigada Trânsito - Alcântara 

b8 0.31% 0.01% 98.68% Hosp. Egas Moniz 

b9 0.00% 99.84% 0.16% Hosp. São Francisco Xavier 

b10 0.72% 96.23% 3.06% Hosp. São José 

b11 0.66% 96.27% 3.07% Hosp. Santa Maria 

b12 0.21% 0.12% 99.67% INEM - R. Infante D. Pedro 

b13 16.44% 1.37% 82.19% Reg. Sapadores Bomb. - Av D. Carlos I 

b14 12.70% 3.17% 84.13% BV Ajuda 

b15 25.00% 9.52% 65.48% BV Beato 

b16 17.31% 7.69% 75.00% BV Campo de Ourique 

b17 22.70% 3.55% 73.76% BV Cabo Ruívo 

b18 11.01% 1.83% 87.16% BV Lisboa 

b19 30.23% 9.30% 60.47% BV Lisbonenses 
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Appendix B – Correlation with vehicle target variables 

This appendix presents the remaining histograms representing the correlation between the numerical 

attributes and the target variables from the vehicle dataset: SIV, VMER, and AEM. These graphs are 

parallel to those presented in Chapter 4.2. 

 

Figure 23 – Correlation between vehicles of type SIV and numerical attributes 

 

Figure 24 – Correlation between vehicles of type VMER and numerical attributes 

 

Figure 25 – Correlation between vehicles of type AEM and numerical attributes 
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Appendix C – GA algorithm convergence 

This appendix includes all the graphs obtained from applying GA hyperparameter tuning with 5 

generations to GMM, Gradient Boosting, and AdaBoost models.  

Table 23 – Hyperparameter tuning via GA plots for GMM models 

SIV 

CA database GA database 

  

VMER 

CA database GA database 

  

AEM 

CA database GA database 

  

P1 

CA database GA database 
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Table 23 – continuation 

 

Table 24 – Hyperparameter tuning via GA plots for Gradient Boosting model with GA dataset 

 

 

 

P3 

CA database GA database 

  

SIV VMER 

  
AEM P1 

  

P3  
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Table 25 – Hyperparameter tuning via GA plots for AdaBoost model with CA dataset 

 

  

SIV VMER 

  
AEM P1 

  
P3  
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Appendix D – GMM Results 

This appendix presents the results obtained from stratified 5-fold cross-validation from the multiple GMM 

models.  

Table 26 – Cross-validation results of GMM models 

   AUC Accuracy Precision Recall 

   RS GA RS GA RS GA RS GA 

SIV 

CA 
μ 0.9835 0.9160 0.9733 0.9768 0.5827 0.6700 0.8329 0.6919 

σ 0.0016 0.0144 0.0008 0.0020 0.0084 0.0475 0.0258 0.0860 

GA 
μ 0.9315 0.9699 0.9733 0.9745 0.5827 0.7464 0.8329 0.4107 

σ 0.0132 0.0062 0.0008 0.0075 0.0084 0.1583 0.0258 0.3265 

VMER 

CA 
μ 0.9856 0.9842 0.9615 0.9613 0.7452 0.7451 0.9965 0.9939 

σ 0.0014 0.0013 0.0015 0.0011 0.0090 0.0074 0.0040 0.0055 

GA 
μ 0.9269 0.9241 0.9623 0.9592 0.7515 0.7513 0.9906 0.9542 

σ 0.0251 0.0271 0.0018 0.0033 0.0147 0.0206 0.0147 0.0874 

AEM 

CA 
μ 0.9463 0.9330 0.8867 0.8888 0.7557 0.7955 0.7935 0.7358 

σ 0.0022 0.0138 0.0020 0.0046 0.0061 0.0199 0.0044 0.0141 

GA 
μ 0.7572 0.7339 0.8870 0.8877 0.7561 0.7600 0.7947 0.7908 

σ 0.0051 0.0126 0.0017 0.0049 0.0050 0.0062 0.0057 0.0280 

P1 

CA 
μ 0.5589 0.5129 0.8370 0.8384 0.7334 0.7579 0.3856 0.3718 

σ 0.0045 0.0571 0.0007 0.0016 0.0030 0.0219 0.0030 0.0112 

GA 
μ 0.2931 0.3260 0.8376 0.8375 0.7396 0.7365 0.3837 0.3861 

σ 0.0084 0.0064 0.0008 0.0008 0.0080 0.0025 0.0053 0.0033 

P3 

CA 
μ 0.7663 0.8070 0.9502 0.9536 0.8177 0.8590 0.7118 0.6983 

σ 0.0430 0.0654 0.0041 0.0014 0.0273 0.0211 0.0221 0.0196 

GA 
μ 0.6912 0.1269 0.9412 0.9378 0.7572 0.7217 0.7033 0.7170 

σ 0.0439 0.0062 0.0053 0.0011 0.0523 0.0055 0.0197 0.0063 
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Appendix E – ML Results 

This appendix presents the results from stratified 5-fold cross-validation of the eight ML algorithms with 

default hyperparameters. 

Table 27 – Cross-validation results of ML algorithms on CA dataset with default hyperparameters 

  AUC Accuracy Precision Recall 

SIV 

Naive Bayes 0.9647 0.9347 0.3483 0.9954 

KNN 0.9565 0.9743 0.6401 0.5875 

SVM 0.9456 0.9774 0.7116 0.5979 

Extra Trees 0.9664 0.9746 0.6671 0.5542 

Random Forest 0.9669 0.9745 0.6440 0.5953 

Gradient Boosting 0.9873 0.9775 0.6973 0.6312 

AdaBoost 0.9845 0.9752 0.6436 0.6547 

Bagging 0.9678 0.9742 0.6406 0.5986 

VMER 

Naive Bayes 0.9775 0.9613 0.7437 0.9984 

KNN 0.9815 0.9629 0.8138 0.8659 

SVM 0.9811 0.9658 0.8276 0.8698 

Extra Trees 0.9858 0.9629 0.8280 0.8510 

Random Forest 0.9872 0.9634 0.8132 0.8655 

Gradient Boosting 0.9905 0.9656 0.8246 0.8923 

AdaBoost 0.9912 0.9667 0.8154 0.9117 

Bagging 0.9861 0.9633 0.8164 0.8694 

AEM 

Naive Bayes 0.8309 0.7447 0.4894 0.9999 

KNN 0.9444 0.8899 0.7758 0.7824 

SVM 0.9533 0.9042 0.8013 0.8075 

Extra Trees 0.9507 0.8914 0.7925 0.7530 

Random Forest 0.9533 0.8901 0.7739 0.7843 

Gradient Boosting 0.9596 0.8964 0.8165 0.7391 

AdaBoost 0.9567 0.8933 0.7748 0.7953 

Bagging 0.9505 0.8901 0.7731 0.7848 

P1 

Naive Bayes 0.8515 0.7587 0.4667 0.8142 

KNN 0.7924 0.8223 0.6188 0.4635 

SVM 0.8023 0.8418 0.7647 0.3864 

Extra Trees 0.8325 0.8294 0.6562 0.4428 

Random Forest 0.8432 0.8374 0.7080 0.4206 

Gradient Boosting 0.8567 0.8415 0.7800 0.3715 

AdaBoost 0.8588 0.8421 0.7370 0.4175 

Bagging 0.8078 0.8246 0.6424 0.4251 

P3 

Naive Bayes 0.8781 0.7098 0.2768 0.9954 

KNN 0.9408 0.9563 0.8491 0.7420 

SVM 0.9731 0.9607 0.9149 0.7127 

Extra Trees 0.9783 0.9591 0.8867 0.7278 

Random Forest 0.9793 0.9599 0.9029 0.7181 

Gradient Boosting 0.9788 0.9587 0.8977 0.7095 

AdaBoost 0.9819 0.9594 0.8894 0.7193 

Bagging 0.9590 0.9563 0.8634 0.7222 
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Table 28 – Cross-validation results of ML algorithms on GA dataset with default hyperparameters 

  AUC Accuracy Precision Recall 

SIV 

Naive Bayes 0.9646 0.9346 0.3482 0.9954 

KNN 0.9098 0.9721 0.7828 0.2813 

SVM 0.9744 0.9822 0.7992 0.6579 

Extra Trees 0.9913 0.9817 0.7412 0.7317 

Random Forest 0.9905 0.9807 0.7557 0.6691 

Gradient Boosting 0.9908 0.9826 0.7709 0.7173 

AdaBoost 0.9845 0.9745 0.6335 0.6397 

Bagging 0.9778 0.9809 0.7436 0.7154 

VMER 

Naive Bayes 0.9775 0.9612 0.7433 0.9967 

KNN 0.9304 0.9319 0.8553 0.4701 

SVM 0.9860 0.9666 0.8439 0.8604 

Extra Trees 0.9898 0.9650 0.8266 0.8753 

Random Forest 0.9900 0.9655 0.8261 0.8766 

Gradient Boosting 0.9906 0.9661 0.8218 0.8903 

AdaBoost 0.9911 0.9667 0.8176 0.9037 

Bagging 0.9874 0.9608 0.8313 0.8138 

AEM 

Naive Bayes 0.8309 0.7447 0.4894 0.9995 

KNN 0.8928 0.8652 0.7977 0.5983 

SVM 0.9652 0.9143 0.8153 0.8419 

Extra Trees 0.9721 0.9131 0.8216 0.8240 

Random Forest 0.9722 0.9123 0.8256 0.8101 

Gradient Boosting 0.9658 0.9106 0.8413 0.7824 

AdaBoost 0.9575 0.8940 0.7805 0.7942 

Bagging 0.9640 0.9034 0.8123 0.7875 

P1 

Naive Bayes 0.8452 0.8086 0.5501 0.6296 

KNN 0.7882 0.8197 0.6097 0.4604 

SVM 0.7979 0.8422 0.7806 0.3753 

Extra Trees 0.8451 0.8386 0.7177 0.4162 

Random Forest 0.8427 0.8386 0.7257 0.4070 

Gradient Boosting 0.8577 0.8428 0.7637 0.3945 

AdaBoost 0.8566 0.8415 0.7433 0.4073 

Bagging 0.8094 0.8283 0.6618 0.4200 

P3 

Naive Bayes 0.9148 0.8044 0.3602 0.9762 

KNN 0.9311 0.9451 0.7781 0.7092 

SVM 0.9743 0.9609 0.9164 0.7134 

Extra Trees 0.9793 0.9606 0.9014 0.7242 

Random Forest 0.9776 0.9603 0.9139 0.7105 

Gradient Boosting 0.9797 0.9596 0.8971 0.7197 

AdaBoost 0.9819 0.9592 0.8846 0.7280 

Bagging 0.9602 0.9575 0.8723 0.7228 
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Appendix F – Results of ML hyperparameter tuning 

This appendix shows the results of stratified 5-fold cross-validation for Gradient Boosting and AdaBoost 

with default hyperparameters, after tuning with RS and after tuning with GA. 

Table 29 – Cross-validation results of hyperparameter tuning of Gradient Boosting with GA dataset 

  SIV VMER AEM P1 P3 

AUC 

Default 0.9908 0.9906 0.9658 0.8577 0.9797 

RS 0.9923 0.9910 0.9737 0.8607 0.9837 

GA 0.9918 0.9909 0.9724 0.8602 0.9838 

Accuracy 

Default 0.9826 0.9661 0.9106 0.8428 0.9596 

RS 0.9834 0.9673 0.9151 0.8436 0.9616 

GA 0.9833 0.9667 0.9129 0.8433 0.9613 

Precision 

Default 0.7709 0.8218 0.8413 0.7637 0.8971 

RS 0.7721 0.8259 0.8181 0.7468 0.8972 

GA 0.7648 0.8102 0.8152 0.7448 0.8923 

Recall 

Default 0.7173 0.8903 0.7824 0.3945 0.7197 

RS 0.7454 0.8960 0.8399 0.4108 0.7396 

GA 0.7572 0.9172 0.8326 0.4178 0.7412 

 

Table 30 – Cross-validation results of hyperparameter tuning of AdaBoost with CA dataset 

  SIV VMER AEM P1 P3 

AUC 

Default 0.9845 0.9912 0.9567 0.8588 0.9819 

RS 0.9846 0.9913 0.9569 0.8595 0.9827 

GA 0.9844 0.9913 0.9569 0.8594 0.9826 

Accuracy 

Default 0.9752 0.9667 0.8933 0.8421 0.9594 

RS 0.9774 0.9672 0.8933 0.8425 0.9599 

GA 0.9774 0.9667 0.8933 0.8422 0.9598 

Precision 

Default 0.6436 0.8154 0.7748 0.7370 0.8894 

RS 0.6860 0.8264 0.7750 0.7353 0.8881 

GA 0.6860 0.8161 0.7751 0.7370 0.8906 

Recall 

Default 0.6547 0.9117 0.7953 0.4175 0.7193 

RS 0.6534 0.8943 0.7949 0.4232 0.7314 

GA 0.6534 0.9060 0.7947 0.4195 0.7277 
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Appendix G – Results of final models 

This appendix presents the results from stratified 5-fold cross-validation of the four final models. 

Table 31 – Cross-validation results of final models 

 
  

GMM RS GMM GA 
Gradient 
Boosting 

AdaBoost 

SIV 

AUC 
μ 0.9835 0.9160 0.9923 0.9846 

σ 0.0016 0.0144 0.0009 0.0014 

Accuracy 
μ 0.9733 0.9768 0.9834 0.9774 

σ 0.0008 0.0020 0.0009 0.0011 

Precision 
μ 0.5827 0.6700 0.7721 0.6860 

σ 0.0084 0.0475 0.0093 0.0183 

Recall 
μ 0.8329 0.6919 0.7454 0.6534 

σ 0.0258 0.0860 0.0270 0.0206 

VMER 

AUC 
μ 0.9856 0.9842 0.9910 0.9913 

σ 0.0014 0.0013 0.0009 0.0006 

Accuracy 
μ 0.9615 0.9613 0.9673 0.9672 

σ 0.0015 0.0011 0.0012 0.0021 

Precision 
μ 0.7452 0.7451 0.8259 0.8264 

σ 0.0090 0.0074 0.0075 0.0122 

Recall 
μ 0.9965 0.9939 0.8960 0.8943 

σ 0.0040 0.0055 0.0106 0.0096 

AEM 

AUC 
μ 0.9463 0.9330 0.9737 0.9569 

σ 0.0022 0.0138 0.0016 0.0016 

Accuracy 
μ 0.8867 0.8888 0.9151 0.8933 

σ 0.0020 0.0046 0.0041 0.0009 

Precision 
μ 0.7557 0.7955 0.8181 0.7750 

σ 0.0061 0.0200 0.0082 0.0017 

Recall 
μ 0.7935 0.7358 0.8399 0.7949 

σ 0.0044 0.0141 0.0102 0.0036 

P1 

AUC 
μ 0.5589 0.5129 0.8607 0.8595 

σ 0.0045 0.0571 0.0012 0.0012 

Accuracy 
μ 0.8370 0.8384 0.8436 0.8425 

σ 0.0007 0.0016 0.0006 0.0008 

Precision 
μ 0.7334 0.7579 0.7468 0.7353 

σ 0.0030 0.0219 0.0028 0.0037 

Recall 
μ 0.3856 0.3718 0.4180 0.4232 

σ 0.0030 0.0112 0.0044 0.0041 

P3 

AUC 
μ 0.7663 0.8070 0.9837 0.9827 

σ 0.0429 0.0654 0.0007 0.0007 

Accuracy 
μ 0.9502 0.9536 0.9616 0.9599 

σ 0.0041 0.0014 0.0006 0.0007 

Precision 
μ 0.8177 0.8590 0.8972 0.8881 

σ 0.0273 0.0211 0.0046 0.0032 

Recall 
μ 0.7118 0.6983 0.7396 0.7314 

σ 0.0221 0.0196 0.0084 0.0075 
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Appendix H – Learning curves 

This appendix shows the obtained learning curves for the final models.  

Table 32 – Learning curves of final models 

S
IV

 

GMM RS GMM GA Gradient Boosting AdaBoost 

    

V
M

E
R

 

GMM RS GMM GA Gradient Boosting AdaBoost 

    

A
E

M
 

GMM RS GMM GA Gradient Boosting AdaBoost 
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Table 32 – continuation  
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Appendix I – ROC curves 

This appendix shows the obtained ROC curves for the final models.  

Table 33 – ROC curves of final models 

 

S
IV

 

GMM RS GMM GA Gradient Boosting AdaBoost 
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GMM RS GMM GA Gradient Boosting AdaBoost 
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Table 33 – continuation 
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Appendix J – Precision-Recall curves 

This appendix shows the obtained Precision-Recall curves for the final models.  

Table 34 – Precision-Recall curves of final models 

 

S
IV

 

GMM RS GMM GA Gradient Boosting AdaBoost 
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Table 34 – continuation 
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Appendix K – Confusion matrices 

This appendix contains the confusion matrices of the final models.  

Table 35 – Confusion matrices of final models 

 

SIV 

Class 0: [0,1] dispatches 
Class 1: [2,8] dispatches 

GMM RS GMM GA 

  Predicted Class 

  Class 0 Class 1 Sum 

A
c
tu

a
l 
C

la
s
s
 

Class 0 
12407 273 12680 

94.42% 2.08% 96.50% 

Class 1 
80 380 460 

0.61% 2.89% 3.50% 

Sum 
12487 653 13140 

95.03% 4.97% 97.31% 
 

  Predicted Class 

  Class 0 Class 1 Sum 

A
c
tu

a
l 
C

la
s
s
 

Class 0 
12533 147 12680 

95.38% 1.12% 96.50% 

Class 1 
150 310 460 

1.14% 2.36% 3.50% 

Sum 
12683 457 13140 

96.52% 3.48% 97.74% 
 

Gradient Boosting AdaBoost 

  Predicted Class 

  Class 0 Class 1 Sum 

A
c
tu

a
l 
C

la
s
s
 

Class 0 
12593 96 12689 

95.84% 0.73% 96.57% 

Class 1 
114 337 451 

0.87% 2.56% 3.43% 

Sum 
12707 433 13140 

96.70% 3.30% 98.40% 
 

  Predicted Class 

  Class 0 Class 1 Sum 

A
c
tu

a
l 
C

la
s
s
 

Class 0 
12560 129 12689 

95.59% 0.98% 96.57% 

Class 1 
147 304 451 

1.12% 2.31% 3.43% 

Sum 
12707 433 13140 

96.70% 3.30% 97.90% 
 

VMER 

Class 0: [0,1] dispatches 
Class 1: [2,9] dispatches 

GMM RS GMM GA 

  Predicted Class 

  Class 0 Class 1 Sum 

A
c
tu

a
l 
C

la
s
s
 

Class 0 
11141 531 11672 

84.79% 4.04% 88.83% 

Class 1 
3 1465 1468 

0.02% 11.15% 11.17% 

Sum 
11144 1996 13140 

84.81% 15.19% 95.94% 
 

  Predicted Class 

  Class 0 Class 1 Sum 

A
c
tu

a
l 
C

la
s
s
 

Class 0 
11209 463 11672 

85.30% 3.52% 88.83% 

Class 1 
32 1436 1468 

0.24% 10.93% 11.17% 

Sum 
11241 1899 13140 

85.55% 14.45% 96.23% 
 

Gradient Boosting AdaBoost 

  Predicted Class 

  Class 0 Class 1 Sum 

A
c
tu

a
l 
C

la
s
s
 

Class 0 
11429 267 11696 

86.98% 2.03% 89.01% 

Class 1 
146 1298 1444 

1.11% 9.88% 10.99% 

Sum 
11575 1565 13140 

88.09% 11.91% 96.86% 
 

  Predicted Class 

  Class 0 Class 1 Sum 

A
c
tu

a
l 
C

la
s
s
 

Class 0 
11430 266 11696 

86.99% 2.02% 89.01% 

Class 1 
161 1283 1444 

1.23% 9.76% 10.99% 

Sum 
11591 1549 13140 

88.21% 11.79% 96.75% 
 

AEM 

Class 0: [0,3] dispatches 
Class 1: [4,27] dispatches 

GMM RS GMM GA 

  Predicted Class 

  Class 0 Class 1 Sum 

A
c
tu

a
l 
C

la
s
s
 

Class 0 
9106 818 9924 

69.30% 6.23% 75.53% 

Class 1 
675 2541 3216 

5.14% 19.34% 24.47% 

Sum 
9781 3359 13140 

74.44% 25.56% 88.64% 
 

  Predicted Class 

  Class 0 Class 1 Sum 

A
c
tu

a
l 
C

la
s
s
 

Class 0 
9322 602 9924 

70.94% 4.58% 75.53% 

Class 1 
863 2353 3216 

6.57% 17.91% 24.47% 

Sum 
10185 2955 13140 

77.51% 22.49% 88.85% 
 

Gradient Boosting AdaBoost 

  Predicted Class 

  Class 0 Class 1 Sum 

A
c
tu

a
l 
C

la
s
s
 

Class 0 
9336 628 9964 

71.05% 4.78% 75.83% 

Class 1 
526 2650 3176 

4.00% 20.17% 24.17% 

Sum 
9862 3278 13140 

75.05% 24.95% 91.22% 
 

  Predicted Class 

  Class 0 Class 1 Sum 

A
c
tu

a
l 
C

la
s
s
 

Class 0 
9252 712 9964 

70.41% 5.42% 75.83% 

Class 1 
664 2512 3176 

5.05% 19.12% 24.17% 

Sum 
9916 3224 13140 

75.46% 24.54% 89.53% 
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Table 35 – continuation  

 

 

  

P1 

Class 0: [0,1] dispatches 
Class 1: [2,15] dispatches 

GMM RS GMM GA 

  Predicted Class 

  Class 0 Class 1 Sum 
A

c
tu

a
l 
C

la
s
s
 

Class 0 
71465 2702 74167 

75.54% 2.86% 78.39% 

Class 1 
12502 7939 20441 

13.21% 8.39% 21.61% 

Sum 
83967 10641 94608 

88.75% 11.25% 83.93% 
 

  Predicted Class 

  Class 0 Class 1 Sum 

A
c
tu

a
l 
C

la
s
s
 

Class 0 
71351 2816 74167 

75.42% 2.98% 78.39% 

Class 1 
12466 7975 20441 

13.18% 8.43% 21.61% 

Sum 
83817 10791 94608 

88.59% 11.41% 83.85% 
 

Gradient Boosting AdaBoost 

  Predicted Class 

  Class 0 Class 1 Sum 

A
c
tu

a
l 
C

la
s
s
 

Class 0 
71155 3057 74212 

75.21% 3.23% 78.44% 

Class 1 
11778 8618 20396 

12.45% 9.11% 21.56% 

Sum 
82933 11675 94608 

87.66% 12.34% 84.32% 
 

  Predicted Class 

  Class 0 Class 1 Sum 

A
c
tu

a
l 
C

la
s
s
 

Class 0 
70945 3267 74212 

74.99% 3.45% 78.44% 

Class 1 
11676 8720 20396 

12.34% 9.22% 21.56% 

Sum 
82621 11987 94608 

87.33% 12.67% 84.21% 
 

P3 

Class 0: [0,13] dispatches 
Class 1: [14,68] dispatches 

GMM RS GMM GA 

  Predicted Class 

  Class 0 Class 1 Sum 

A
c
tu

a
l 
C

la
s
s
 

Class 0 
83099 982 84081 

87.84% 1.04% 88.87% 

Class 1 
3324 7203 10527 

3.51% 7.61% 11.13% 

Sum 
86423 8185 94608 

91.35% 8.65% 95.45% 
 

  Predicted Class 

  Class 0 Class 1 Sum 
A

c
tu

a
l 
C

la
s
s
 

Class 0 
83474 607 84081 

88.23% 0.64% 88.87% 

Class 1 
3390 7137 10527 

3.58% 7.54% 11.13% 

Sum 
86864 7744 94608 

91.81% 8.19% 95.78% 
 

Gradient Boosting AdaBoost 

  Predicted Class 

  Class 0 Class 1 Sum 

A
c
tu

a
l 
C

la
s
s
 

Class 0 
83217 824 84041 

87.96% 0.87% 88.83% 

Class 1 
2770 7797 10567 

2.93% 8.24% 11.17% 

Sum 
85987 8621 94608 

90.89% 9.11% 96.20% 
 

  Predicted Class 

  Class 0 Class 1 Sum 

A
c
tu

a
l 
C

la
s
s
 

Class 0 
83114 927 84041 

87.85% 0.98% 88.83% 

Class 1 
2802 7765 10567 

2.96% 8.21% 11.17% 

Sum 
85916 8692 94608 

90.81% 9.19% 96.06% 
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Appendix L – Gradient Boosting final model 

This appendix presents the final attributes selected for the Gradient Boosting model, in addition to the 

base set of attributes, as well as the values of the hyperparameters.  

Table 36 – Attributes selected for Gradient Boosting model 

Attributes SIV VMER AEM P1 P3 

Ageing index     X 

National holiday X X X X X 

Road traffic accident victims X X X   

Maximum temperature (ºC)     X  

Minimum temperature (ºC)  X X   

Average temperature (ºC)     X 

Humidity X    X 

Wind speed (Km/h)  X  X X 

Average pension value     X 

Total reported crimes X     

Total crimes against people X X X X  

Total homicide crimes X   X X 

Total deaths  X X X X 

Total live births X X X X  

Total employed X  X X X 

Football match NOS  X    

Football match Taça X     

Football match Euro  X X X X 

Football match Champions X   X X 

Medical doctors per 1000 inhabitants  X X X X 

Migratory balance   X   

Total resident population X   X X 

Total male resident population  X X X  

Total female resident population    X  

Total tourism guests X X X X X 

Total unemployed X   X X 

Total male unemployed X X   X 

Total female unemployed X X  X  

Aviation accident X  X   

Drowning or Diving accident    X  

Aggression X  X X  

Allergies      

Altered state of consciousness (ASC)      

Psychological support   X X  

Headaches X     

Fake call  X   X 

Onboard vessels X X X  X 

Convulsions X  X   

Sick child X X X X X 

Non-emergency medical transportation     X 

Sensorimotor deficit X X    

Diabetes  X   X 

Dyspnoea  X  X  

Abdominal pain or Bladder weakness   X X X 

Back pain   X X X 

Chest pain X   X  

General X X   X 

Gynaecology or Pregnancy  X X X X 

Helicopter transportation X X X X X 
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Table 36 – continuation  

 

Table 37 – Hyperparameter values used for Gradient Boosting model 

Hyperparameter SIV VMER AEM P1 P3 

Learning rate 0.05 0.2 0.15 0.05 0.05 

Number of 
estimators 

50 450 350 350 350 

Subsample 0.8 0.9 1 0.9 0.9 

Minimum samples 
split 

100 500 5 50 50 

Minimum samples 
leaf 

50 5 50 100 100 

Maximum depth 5 1 3 5 5 

Maximum features 55 35 55 45 45 

Loss function ‘deviance’ ‘deviance’ ‘deviance’ ‘deviance’ ‘deviance’ 

Criterion function ‘friedman_mse’ ‘friedman_mse’ ‘friedman_mse’ ‘friedman_mse’ ‘friedman_mse’ 

 

Attributes SIV VMER AEM P1 P3 

Bleeding   X X  

Intoxication  X    

Non-occurrence X     

Negligence or Domestic violence or Ill-treatment X    X 

Airway obstruction   X X X 

Exceptional occurrences or Nuclear biological 
chemical 

  X X  

Eyes or Ears or Nose or Throat X   X X 

Other problems X   X X 

Cardiac arrest X X X X X 

Childbirth X   X  

Differentiated support X X   X 

Psychiatric problems or Suicide  X X   

Burn injuries or Electrocution X X X X X 

New-born or Advanced paediatric life support  X   X 

Secondary transport X X  X X 

Trauma X X X  X 


