
Stepwise Migration of a Monolith to a Microservices
Architecture - Performance and Migration Effort Evaluation

Diogo Alexandre dos Reis Faustino

Thesis to obtain the Master of Science Degree in

Computer Science and Engineering

Supervisor: Prof. António Manuel Ferreira Rito da Silva

Examination Committee

Chairperson: Prof. Pedro Miguel dos Santos Alves Madeira Adão
Supervisor: Prof. António Manuel Ferreira Rito da Silva

Member of the Committee: Prof. Filipe João Boavida Mendonça Machado Araújo

October 2021

Acknowledgments

I would like to thank my parents for their friendship, encouragement and caring over all these years,

for always being there for me through thick and thin and without whom this project would not be possible.

I would also like to thank my grandparents, aunts, uncles and cousins for their understanding and support

throughout all these years.

I would also like to acknowledge my dissertation supervisors Prof. António Rito Silva for their insight,

support and sharing of knowledge that has made this Thesis possible.

Last but not least, to all my friends and colleagues that helped me grow as a person and were always

there for me during the good and bad times in my life. Thank you.

To each and every one of you – Thank you.

i

Abstract

The agility inherent to today’s business promotes the definition of software architectures where the busi-

ness entities are decoupled into modules or services. However, there are advantages to having a rich

domain model, where domain entities are tightly connected because it fosters reuse. On the other hand,

the split of the business logic into modules or services, encapsulated through well-defined interfaces,

and the introduction of inter-service communication foster an agile development but introduce a cost in

terms of performance.

In this thesis, we analyze the impact of migrating a rich domain monolith into a modular architecture

and sequentially into microservice architecture, both in terms of the development cost associated with

the refactoring, and the performance cost associated with the execution. The current state of the art

analyses the migration of monolith systems into a microservice architecture, but we observed that mi-

gration effort and performance issues are already relevant in the migration to a modular monolith and

concluded the impact of establishing a microservice architecture with a rich domain model and inter-

service communication on the performance. Additionally, we also addressed challenges exclusive to

the microservice architecture such as eventual consistency of the databases and the deployment of the

services.

Keywords

Domain-driven design, Modular architecture, Refactoring Cost, Performance evaluation, Microservices,

Eventual consistency.

iii

Resumo

A agilidade inerente dos negócios de hoje promove a definição de arquiteturas de software onde

as entidades de negócio são dissociadas em módulos ou serviços. No entanto, existem vantagens em

ter um modelo de domı́nio rico, onde as entidades de domı́nio estão fortemente conectadas, porque

promove a reutilização. Por outro lado, a divisão da lógica de negócios em módulos ou serviços, encap-

sulados por meio de interfaces bem definidas e a introdução de comunicação entre-serviços promove

um desenvolvimento ágil mas apresenta um custo em termos de desempenho.

Nesta tese, analisamos o impacto de migrar um monolı́tico de domı́nio rico para uma arquitetura

modular e sequencialmente para uma arquitetura de microserviços, tanto em termos do custo de desen-

volvimento associado à refatoração, como ao custo do desempenho associado à execução. O estado

atual da arte analisa a migração de sistemas monolı́ticos para uma arquitetura de microserviços, mas

observámos que o esforço de migração e os problemas de desempenho já são relevantes na migração

para um monólito modular e concluiu-se o impacto de estabelecer uma arquitetura de microserviços

com um modelo de domı́nio rico e uma comunicação entre-serviços no desempenho. Além disso,

também abordamos desafios exclusivos da arquitetura de microserviços, como a consistência eventual

das bases de dados e a instalação dos serviços.

Palavras Chave

Design orientado a Domı́nio, Architetura Modular, Custo de refactorização, Avaliação de desempenho,

Microserviços, Consistência Eventual

v

Contents

1 Introduction 1

2 Related Work 5

2.1 Monolith to Microservice . 7

2.2 Microservice Performance Evaluation . 8

2.2.1 Monolith and Microservice Comparison . 8

2.2.2 Inter-service communication . 9

2.3 Data consistency . 9

3 LdoD Background 11

3.1 Modular Decomposition . 13

3.2 LdoD Modular Architecture . 15

3.3 Refactoring to Modular Monolith . 17

3.4 Performance Evaluation . 19

3.4.1 Specifications . 19

3.4.2 Optimizations . 20

3.4.3 Performance Results . 21

4 LdoD Microservice Architecture & Implementation 23

4.1 Microservice Architecture . 25

4.1.1 Inter-service communication . 26

4.2 LdoD Microservice Refactoring . 27

4.2.1 Additional Modular Refactoring . 27

4.2.2 Inter-service communication . 28

4.2.2.A Synchronous Communication . 28

4.2.2.B Event driven Asynchronous Communication 31

4.2.3 Microservice Deployment . 32

4.2.4 Refactoring Cost . 34

4.3 LdoD Microservice Architecture . 36

vii

5 Evaluation 39

5.1 Performance Evaluation - Local . 41

5.2 Microservice Optimization . 43

5.2.1 Refactoring . 43

5.2.2 Optimization Results . 44

5.3 Performance Evaluation - Cloud . 45

5.3.1 Specifications . 46

5.3.2 Performance Results . 46

5.4 Data consistency . 48

5.4.1 Eventual Consistency . 49

5.4.2 Functionalities . 50

5.4.3 Caches . 51

5.5 Discussion . 53

5.5.1 Threats to Validity . 54

6 Conclusion 57

6.1 Conclusions . 59

6.2 Future Work . 59

Bibliography 61

A Code and Schemas 65

viii

List of Figures

3.1 Example of an entity obtaining a dto of a domain entity in another module 14

3.2 Modular architecture overview with the uses and notification interactions 16

3.3 Domain model refactoring (partial) . 18

4.1 Architectural structure of a service . 25

4.2 Refactoring from the Citation domain model . 27

4.3 Event-driven communication example with an ActiveMQ message broker 31

4.4 LdoD Microservice Architecture Component and Connector View 36

A.1 LdoD monolith domain model . 67

ix

x

List of Tables

3.1 Impact of the refactoring in the domain model . 17

3.2 Performance results for sequentially executing 50 times each functionality for 100 and 720

fragments in the database while running inside Docker containers before optimizing the

microservice architecture. Results are separated by / in each cell, for instance, by se-

quentially executing 50 times the Source Listing functionality in the monolith we observed

an average latency of respectively 25, and 151, milliseconds, where there are respectively

100, and 720, fragments in the database (25/151). 21

4.1 Impact of the refactoring in the provides interfaces (P) and requires interface (R) and dtos

from each of the services in terms of refactored methods and dtos 34

5.1 Coverage of the domain entities by each of the functionalities 41

5.2 Performance results for sequentially executing 50 times each functionality for 100 and

720 fragments in the database while running inside Docker containers. Results are sep-

arated by / in each cell, for instance, by sequentially executing 50 times the Source List-

ing functionality in the modular we observed an average latency of respectively 22, and

629, milliseconds, where there are respectively 100, and 720, fragments in the database

(22/629). 42

5.3 Performance results and number of remote invocations for sequentially executing 50 times

each functionality for 100 and 720 fragments in the database while running inside Docker

containers before and after optimizing the microservice architecture. Results are sepa-

rated by / in each cell, for instance, by sequentially executing 50 times the Source Listing

functionality in the microservice before the optimization, we observed an average latency

of respectively 982, and 8384, milliseconds, where there are respectively 100, and 720,

fragments in the database (982/8384). 44

xi

5.4 Performance results for sequentially executing 50 times each functionality and for 50 users

concurrently executing each functionality for 100 and 720 fragments in the database while

deployed in Google Kubernetes Engine cluster. Results are separated by / in each cell,

for instance, by sequentially executing 50 times the Source Listing functionality we ob-

served an average latency of respectively 1768, and 26259, milliseconds, where there

are respectively 100, and 720, fragments in the database (1768/26259). 47

5.5 Different event types with the corresponding publisher/subscriber services, impacted in-

formation, frequency of occurrence and the impact on the overall information 49

5.6 Different event types with the corresponding subscriber and publisher services and the

domain entities that are modified from it . 52

xii

Listings

4.1 Example GET and POST methods of the provides interface from Text service 29

4.3 Text Deployment example file . 32

4.4 Text Service example file . 33

A.1 ScholarInterDto after the optimization . 65

xiii

xiv

1
Introduction

1

2

Domain-driven design [1] advocates the division of a large domain model into several independent

bounded contexts to split a large development team into several small, and business-focused, teams

to foster an agile software development. Additionally, these bounded contexts can be implemented as

modules, each one of them with a well-defined interface, to further decouple the teams by reducing the

number of required interactions between them. This modularization is also suggested as an intermediate

step of the migration of a monolith to a microservices architecture [2].

The correct identification of what should be the responsibilities associated with each module is not

trivial and has to be done through several refactoring steps [1, 3, 4]. These refactoring operations can

be more easily performed in a strongly connected domain model where the business logic is scattered

among the domain entities, a rich domain model, and in the absence of interfaces between the do-

main entities [5]. So, it is common that projects start with a single domain model because in the first

development phases the domain model is not completely understood. Premature modularization adds

a development cost, because of the need to refactor modules’ interfaces, since its initial design does

not capture the correct abstractions. Also, the use of interfaces between modules requires the trans-

formation of data between them to encapsulate their domain models, anticorruption layers [1], which

implies significant changes do the domain model and have an impact on the performance of the sys-

tem. Therefore, the process of modularizing a monolith system, or further migrating it to a microservices

architecture [6], has to address these problems.

The migration into a microservice architecture further encapsulates the bounded contexts into in-

dependent processes that become cohesive services, capable of being individually deployed and are

isolated through an API that encapsulates its implementation and provides the anticorruption layers.

Therefore, the modules can provide the groundwork for achieving the services without costly ramifi-

cations to implement them and allow to focus the refactoring efforts in more intricate aspects of the

architecture such as inter-process communication and decentralized data management.

A key aspect when migrating into a microservice architecture from a modular context is the com-

munication mechanism between the services that has to replace the inter-module invocations, which

implies significant changes to the interfaces and impact on the performance to adopt the appropriate

communication. Research has been done on the comparison of the performance quality between a

monolith system and its correspondent implementation using a microservices architecture, but these

results are sometimes contradictory, e.g. [7, 8], addresses different characteristics of a microservices

system, e.g. [9, 10], or are evaluated using simple systems, e.g. [11], where the monolith functionalities

do not need to be redesigned to be migrated into the microservices architecture.

One of the main goals of this thesis is to describe the refactoring process of a step-wise migration

of a monolith with a large domain into a microservice architecture using the modular monolith as an

intermediary step. Through the modular monolith, most of the refactoring focuses on decomposing the

3

modules into independent services with well-defined API and provides insight on the type of refactoring

to achieve several aspects of the microservice architecture, such as inter-service communication. This

thesis also measured the impact of the refactoring process on the cost to implement the microservice

architecture by evaluating the refactoring effort and the advantages of a step-wise migration.

In this thesis, we evaluated several aspects of the microservice architecture to understand the im-

pact of the migration on performance and data consistency. We also described optimization tactics to

improve these architectural aspects and compared them to the performance and optimizations applied

to the modular monolith. The results showed a negative impact on the performance in each step of the

migration. In the modular monolith, data transformation of the anti-corruption layers affected the per-

formance, even in the absence of remote invocations. On the other hand, remote communication also

had a severe impact on the performance of the microservice architecture due to network overheads and

fine-grained interactions between the services.

This thesis is organized as follows: chapter 1 contextualizes the modularization procedure and the

migration into a microservice architecture with the goals of this thesis, chapter 2 provides a literature re-

view of related works of the migration from a monolith into a microservice architecture and the different

aspects of the architecture, chapter 3 provides the background on the different architectures of the LdoD

Archive, monolith and modular monolith, with an evaluation of the refactoring and performance costs,

chapter 4 provides the overview of the migration of a modular monolith into a microservice architecture,

the overview of the LdoD microservice architecture and the evaluation of the refactoring costs, chapter 5

provides the performance evaluation of the microservice architecture, the evaluation of the data consis-

tency and the discussion of the observed migration and, finally, in chapter 6 we draw the conclusions of

the migration into a microservice architecture and the future considerations.

4

2
Related Work

Contents

2.1 Monolith to Microservice . 7

2.2 Microservice Performance Evaluation . 8

2.3 Data consistency . 9

5

6

2.1 Monolith to Microservice

In order to migrate from a monolith system into a microservice architecture, there are several chal-

lenges [12–14], that the developers need to face, such as the effort to redesign the monolith and the

performance impacts. There are in the literature the description of the migration of some large mono-

liths [15–17] which provide reports of the migration process into a microservice architecture.

The migration described by Gouigoux and Tamzalit [15] discusses the aspects of service migration,

deployability and orchestration, however it does not discuss how to achieve the desired service granu-

larity in detail. Instead, the migration focuses on the strong link between the service and the container

technology used for the running environment and the architectural choices for a deployment that fitted

the application under study. A surprising improvement of the performance in terms of latency was ob-

served as the main benefit from the migration, but it was not discussed the refactoring and optimizations

applied to the architecture in order to achieve it.

Bucchiarone et al [16] discusses the experience of the migration from a real world monolith scenario

of a banking domain into a microservice architecture, focusing on the lessons learned, benefits and

faced challenges. It provides an overview from the migration into a microservice architecture but it does

not address the refactoring effort required or the impact of the performance, focusing on aspects like the

scalability, automation, monitoring and other aspects related to the deployment. Barbosa and Maia [17]

discuss the migration of a large monolith to a microservice architecture, where the monolith business

logic is implemented through stored procedures and they focus on the identification of the services.

Megargel et al [18] provided a practice-based view and a methodology to transition from a monolith

application into a cloud-based microservice architecture. However, despite addressing the different tech-

nology aspects and describing the migration process, the refactoring effort was not addressed, but they

did observe benefits from the migration including on the performance. On the other hand, an opposite

point of view was presented by Mendonça [19] that discussed the decision to revert the microservice

architecture back into a monolith, focusing on the burdens from the microservice architecture and the

lessons learned. The main burden of the microservice architecture came from the inability to indepen-

dently manage and deploy the services, which consequently resulted in the developers facing a more

complex architecture to develop without any benefits. Additionally, the researchers also addressed the

cost of different aspects from the microservice architecture such as the scalability, security isolation and

deployment, but even in this case, refactoring effort and performance were not addressed.

Therefore, it is necessary to have more research to describe the migration efforts and performance

impact of the migration of a monolith to a microservice architecture.

7

2.2 Microservice Performance Evaluation

In what concerns the performance of a microservice architecture, there are several research studies

on this topic that cover different subjects relevant to this study, such as the impact from migrating a

monolith into a microservice on the performance, and the impact of the chosen technologies, like the

running environment and inter-service communication protocols.

2.2.1 Monolith and Microservice Comparison

Ueda et al [8] compare the performance of microservices with the monolith architecture to conclude that

the throughput gap increases with the granularity of the microservices, in which the monolith performed

significantly better and suggests that improving the communication between the services is a key factor

to improve the performance under a microservice model. Villamizar et al [7] shows different results,

concluding that in some situations the latency of the microservice architecture is better and reduces the

infrastructures costs, despite the increase of hosts including a gateway application.

Al-Debagy and Martinek [10] conclude that they have similar performance values for average load,

and the monoliths performs better for a small load. In a second scenario the monolith has better through-

put, but similar latency, when the system was stressed in terms of simultaneous requests. Guamán et

al [20] designed and implemented a step-wise architectural migration into a microservice architecture by

identifying and decomposing the functionalities, defining REST API for the functionalities in the mono-

lith and converting them into independent services. Despite not addressing the migration effort, the

researchers compared the performance of the monolith and the intermediary stages to the microservice

architecture and concluded a worse performance in terms of latency from the microservice architecture

compared to the monolith stages.

Bjørndal et al [21] benchmark a library system, that has 4 use cases and considers synchronous and

asynchronous relations between microservices. They observe that monolith performs better except for

scalability. Therefore, they identify the need to carefully design the microservices, in order to reduce the

communication between them to a minimum, and conclude that it would be interesting to apply these

measures in systems that are closer to the kind of systems used by companies. Flygare et al [22] found

that in their case study the monolith performed better in terms of latency and throughput while consuming

less resources than the microservice architecture. In addition, it also observed some throughput benefits

in running the microservice in a cluster instead of running in a single computer.

Some other perspectives compare the performance of monolith and microservices systems in terms

of the distributed architecture of the solution, such as master-slave [23], the characteristics of the running

environment, whether it uses containers or virtual machines [9], the particular technology used, such as

different service discovery technologies [10], or other microservices deployment aspects [11,24].

8

2.2.2 Inter-service communication

A major aspect from the microservice architecture is how the services exchange information between

them, how it affects the performance and does the technology affect the results. Hong et al [25] evalu-

ated the performance from different communication methods, REST API and RabbitMQ, under different

circumstances and concluded that RabbitMQ offered a more stable performance overall but with a lower

response request performance. Fernandes et al [26] also compared the REST API performance to Rab-

bitMQ as the Advanced Message Queuing Protocol asynchronous communication and obtained similar

conclusions where the RabbitMQ far outperformed the REST API in performance and data loss preven-

tion for intensive amounts of information. Shafabakhsh et al [27] performed an experimental research to

compare the popular forms of IPC between the services to build upon Fernandes et al [26] research and

concluded that REST API performs well under low loads while asynchronous approaches scale better

under higher loads.

These results show that an asynchronous communication tends to be more suitable to a microservice

architecture, however a behaviour suited synchronous communication like the REST API is more acces-

sible to the migration from a modular monolith and reduces the complexity of redesigning the services

into an asynchronous behaviour. On the other hand, there are different technologies that have an im-

pact on the performance of the application. Johansson [28] compared the REST API and GraphQL API

and also showed that the serialization technology can have an impact on the performance of the com-

munication. In this study, the REST API with JSON performed consistently better than the addressed

alternatives but it was also mentioned that the performance from REST API would improve if a binary

serialization protocol were to be utilized instead of the JSON structure.

Jayasinghe et al [29] analysed the impact of decomposing the services in terms of performance

and observed that the services performance correlates to different factors, such as service demand,

concurrency, decomposition strategy and the number of remote calls. Therefore, we can observe a

relation to the performance of the inter-service communication and the technology like REST that will be

further discussed in the thesis.

2.3 Data consistency

An additional concept introduced with the migration from a monolith into a microservice architecture is

the decentralization from the data management since each service can be responsible for managing

a dedicated database and maintaining the data consistent between them. However, there are several

challenges in order to address the data management and consistency of the information in the microser-

vice architecture. Furda et al [30] provided a description of the data consistency challenge and how the

eventual consistency pattern can be applied, while Laigner et al [31] determines the short comings from

9

state of the art data management systems and evaluates the challenges associated with methodologies

such as the eventual consistency.

In what concerns the eventual consistency, Rudrabhatla [32] evaluated different aspects of eventual

consistency techniques, such as performance and complexity, in the context of a microservice with NO-

SQL databases, but did not discussed the refactoring and complexities addressed to implement these

techniques. In another research, Laigner et al [33] design the migration from a big data system monolith

into an event-driven microservice architecture that utilize events to communicate between the services

but did not address the eventual data consistency techniques directly and mentioned that complex data

flow proved to be difficult to troubleshoot.

Kookarinrat and Temtanapat [34] described a very in depth decentralized microservice approach

where it described types of communication similar to the implemented notification interaction in the

LdoD Archive, however it did not address the consistency of information between the services in the

architecture. Lesniak [35] provided a few real examples from a microservice architecture where eventual

states proved to have a significant impact on the integrity of the information and how it affected the

functionalities. However, despite addressing these challenges, the researches did not mention the effort

to resolve them.

Therefore, through the work applied in this thesis, we intend to offer an additional case study from a

mostly synchronous architecture that utilizes an event driven approach to achieve eventual consistency

and measure the impact of eventual states in the application.

10

3
LdoD Background

Contents

3.1 Modular Decomposition . 13

3.2 LdoD Modular Architecture . 15

3.3 Refactoring to Modular Monolith . 17

3.4 Performance Evaluation . 19

11

12

The LdoD Archive web application is a digital archive for digital humanities focused on ”The Book of

Disquiet” by Fernando Pessoa that offers different features, like searching, browsing, and viewing the

original text fragments, different variations of the text fragments, as well as different editions of a book.

In addition, the users can create and manage their own virtual editions and taxonomies of the book,

capable of adding or removing fragments as they wish, and perform different features that measure the

proximity distance from each fragment according to a set of available criteria like tf-idf. Other relevant

features can also be observed such as a game feature, which implements a serious game, a reading

feature, which implements reading sequences from text fragments of the book, and a visual feature,

which provides a graphical visualization between different text fragments.

The initial development of the LdoD application resulted in a monolith architecture with a strongly

coupled rich domain model A.1 composed by 71 domain entities with 81 bidirectional associations be-

tween them. The monolith architecture promoted high reusability due to how the business logic was

appropriately divided into domain entities and how efficient it was to navigate in the domain model

through the bidirectional relations. In more practical terms, the LdoD Archive was implemented using a

Domain-driven design in the Java language with the Spring-Boot framework, responsible for creating a

web-based application. In addition, the Fenix-Framework project was utilized as the Object-Relational

Mapper that manages the domain model by handling all the transactional behaviour, database manage-

ment, and domain specifications. This specification is implemented through a custom Domain Modelling

Language file (DML) that specifies all the domain entities with the respective associations between them.

However, the monolith, when faced with new requirements to support digital archives from additional

books, it was necessary to separate certain features that were common between the different digital

archives, like the management of texts, from LdoD specific features that could not be applied to other

digital archives. This motivated the decision to decompose the LdoD Archive into a set of modules

responsible for the different features of the application.

3.1 Modular Decomposition

Through the work of a previous thesis [36], the monolith domain model was decomposed into several

non-interrelated subdomains that resulted into a set of modules, which are encapsulated through inter-

faces. The modular monolith defines two different types of interactions between the modules: the uses

interaction that represent the dependencies from a module subdomain, where a module uses another

to obtain the necessary information exclusively through their interfaces, and a notification interaction,

where the module notifies any subscribed modules from any relevant changes. The correct applica-

tion of these two types of inter-module interactions allows to define a modular architecture without any

circular dependencies between the modules. The uses interaction defines a dependence in which the

13

module that uses requires the used module to be present. However, the notification interaction does

not define any dependencies, since the behaviour of the module that notifies does not depend on the

correct implementation of the module that subscribes to the events.

The decomposition process distinguishes two different types of modules: back-end modules, with

well-established interfaces that contain a part of the domain model and are responsible for providing

the application features, and front-end modules, responsible for providing the end-user interface while

interacting with the back-end modules. In addition, the interfaces are defined accordingly to the uses

interaction where a module that is used implements a provides interface that matches the requires inter-

face from a dependent module. The interface is responsible to transfer information from the subdomain

entities in a shared format through data transfer objects (dtos), to enforce a good encapsulation of the

modules with an anti-corruption layer, which allows for a better development process with smaller teams

independently working on each of the modules.

Focusing on the notification interaction, the modules can notify subscribed modules of relevant

changes through an event-based communication that shares events with minimal but relevant infor-

mation to inform the necessary modules without creating a dependency between them. This is also

achieved through interfaces, more specifically a publish interface, for the module that notifies, and a

subscribe interface, for the modules subscribed to notifications, that establish an inverse flow of control

with no dependencies, where they only need to agree on the event structure.

Figure 3.1: Example of an entity obtaining a dto of a domain entity in another module

Figure 3.1 illustrates an example from a uses relationship between two separate modules, A and B,

and two domain entities, E1 and E2, that used to have a unidirectional association before the decompo-

sition. The left side from the Figure 3.1 shows the unidirectional association that needs to be removed

and refactored into a dependency from module A to module B, so that the former is aware of entities of

the latter, while the latter is independent and can notify the module A from any relevant changes. Note

that, while module A can be dependent on the domain information of E2, the E2 domain entity is never

transferred between the modules, and instead a E2Dto data transfer object is defined and transferred.

In addition, the right side of the figure defines the sequence of actions from the uses interaction

14

between module A and module B, where module A obtains an instance of e2Dto:E2Dto. This interaction

initiates from the execution of the method m that interacts with the domain entity e1:E1 and requires

information from the domain entity e2:E2. To obtain the e2Dto:E2Dto, module A requires interface (MARI)

requests the information through the function getE2byId(), that matches a function provided by the

module B provides interface (MBPI), and a unique identifier for the entity e2:E2 obtained from the e1:E1

that represents an indirect association to it. Upon receiving the request, module B provides interface

(MBPI) queries module B singleton query class (MBQC), to obtain the E2 instance through the unique

identifier sent by module A, creates a e2Dto:E2Dto from the queried e2:E2 domain entity and returns it to

MARI.

3.2 LdoD Modular Architecture

In what concerns the LdoD application, the domain model was decomposed into several different mod-

ules, each associated to the main features of the archive, that established uses and notification interac-

tion between them to maintain the dependencies from these features:

• Text: represents the base functionality of this application and focuses on the information of the text

fragments, their interpretations and the expert editions;

• User: represents the base user functionalities of the archive, such as registration, authentication

and access authorization;

• Virtual: represents the features related to the virtual editions, such as their creation, tagging,

categorization and managing. To maintain the dependencies between the virtual editions, it uses

the Text and User module to access the text fragments and users information associated with the

respective editions;

• Recommendation: contains the functionalities that calculate the similarity distances, given a set of

criteria like the tf-idf (Term Frequency Inverse Document Frequency), between the fragments and

uses the Virtual and Text module information;

• Game: contains some features that assist a serious tagging game offered by the archive that

classifies the fragments from a virtual edition and uses the Virtual module;

• Search: represents the search feature that allows to search the archive for all types of interpreta-

tions and editions in the Text and Virtual modules;

• Reading: uses Text and Recommendation modules to provide the reading recommendation func-

tionalities;

15

• Visual: offers a graphical interaction with the archive, using the Recommendation, Virtual and Text

modules;

In addition, the modular monolith has a server-side front-end module that provides the user interface

and is implemented using a server-side technology, Java-Server Pages (JSP). Additionally, there are two

client-side front-end modules responsible for providing the Visual and Game modules user interface.

Besides the described uses interactions, the modules also interact through notifications to guarantee

that the state is kept in a consistent state. An example from this interaction occurs in the Text module

upon the removal of a text fragment, where this module publishes an event that is subscribed by the

Virtual module that removes the fragment from all the virtual editions that refer to it.

Figure 3.2: Modular architecture overview with the uses and notification interactions

Figure 3.2 presents an overview of the LdoD modular monolith architecture with the different types

of modules and their respective uses and notification interactions. Note that, the core modules Text and

User only implement a provides interface since they do not rely on any module, while the remaining back-

end modules implement a provides and requires interface to respectively provide their functionalities and

request services from other modules. The Front-End module, on the other hand, provides the entry-way

for the user requests through the web controllers and implements a requires interface that connects

to the different back-end modules to provide the functionalities. An aspect of this architecture is how

decomposing a rich domain into several different modules can result in a larger number of interactions

between the modules that, consequently, affects the performance as the application grows larger and

16

new modules are introduced. On the other hand, achieving this architecture benefits the development

process by allowing smaller teams to work on different modules independently and offers the groundwork

to further migrate the architecture into a microservices architecture.

3.3 Refactoring to Modular Monolith

To decompose the LdoD domain model, the refactoring effort focused on the associations between

domain entities that belonged to different subdomains, in a way that these relations are replaced by

either an uses or notification interaction and avoid any circular dependencies between the modules.

This associations also require the implementation of dtos and events to implement the interactions in the

modular context. Therefore, the cost from this refactoring is associated with the number of relationships

between the domain entities of different modules. Note that, indirect relations are also an issue that

needs to be dealt with since, despite not existing relation between two entities belonging to different

modules. It may be possible that information of the entities to be exchanged between the modules as a

parameter of the invocation. This is a dependence problem addressed by the Demeter Law [37].

Another important aspect that needed to be addressed was the presence of god classes that cen-

tralized the intelligence of the system. In the LdoD domain model, this behaviour was found in the form

of a superclass named LdoD, implemented as a singleton that connected to all the domain entities from

different subdomains and needed to be separated into different modules. This refactoring was not com-

plex and involved the identification of which methods belong to a subdomain and moved them into a new

singleton inside a module. The only exception is when the LdoD class has methods with multiple inter-

modules accesses. A similar situation occurred in the presence of inheritance associations between

modules, where a parent class had subclasses present in different modules. The solution, in this case,

was to duplicate the code in the superclass in each one of the subclasses.

For the identified aspects, the general refactoring solution was removing the associations between

the modules by keeping a unique identifier of the domain entity used in the different module that uses

it. This unique identifier is used to obtain the dto with the information which was, previously, accessed

through the removed association. It is also used in the events, to inform about the occurrences in the

domain entities.

Text User Virtual Recommendation Reading Game Visual
Modified Entities/Total Entities 23/42 (55%) 2/5 (40%) 14/17 (82%) 1/2 (50%) 0 3/5 (60%) 0

Defined Dtos/Total Entities 10/42 (24%) 1/5 (20%) 7/17 (41%) 0/2 (0%) 0 0/5 (0%) 0
Modified Relations/Total Relations 6/38 (15%) 4/7 (57%) 7/26 (27%) 0/2 (0%) 0 0/6 (0%) 0
Removed Relations/Total Relations 2/38 (5%) 0/7 (0%) 3/26 (12%) 2/2 (100%) 0 5/6 (83%) 0

Table 3.1: Impact of the refactoring in the domain model

In what concerns the effort to migrate from the monolith into the modular monolith, a considerable

17

refactoring effort occurred when decomposing the LdoD monolith rich domain model into the different

modules. Table 3.1 presents the impact on the domain model of the LdoD Archive, in terms of modified

entities and their relations in the different modules. It can be observed a significant amount of modified

entities and defined dtos from the different modules, where more than 50% of the domain entities had

to be modified, even reaching 82% in the Virtual module. These two aspects reflect a considerable

refactoring effort applied in the domain to separate it into subdomains and adapt the behaviour of the

application to access the information through the interfaces and the defined dtos. However, while the

refactoring values in the Text module might seem elevated for a core module with no dependencies,

these changes were fairly simple to implement and were mainly focused on the removal of circular

dependencies through the use of events.

Figure 3.3: Domain model refactoring (partial)

In what concerns the different associations between the domain entities, it is important to address

two different refactoring situations that were observed: associations between domain entities that belong

to different modules, that had to be modified into invocations through the respective module requires in-

terface, and the appropriate dtos while maintaining the purpose and behaviour from the association, and

removed associations, which correspond to associations that became represented by unique identifiers

in the domain entities and the notification interaction between the modules.

A main example of these two refactorings is presented in how the fragment interpretations were

modified into separate modules, since originally an abstract class FragInter represented all the differ-

ent types of interpretations, SourceInter, ExpertEditionInter, and VirtualEditionInter, from the

application that had to be refactored in order to be separated into the Text and Virtual module. Figure 3.3

illustrates the refactoring applied, where the FragInter entity is removed, its association to the Fragment

is modified into an association from the ScholarInter and another association from the Fragment to

the VirtualEditionInter is removed. Since in this latter association, the VirtualEditionInter still

depends on the Fragment, it will use the interface and an appropriate unique identifier to access the

information through inter-module invocations.

18

3.4 Performance Evaluation

To assess if the migration into the modular architecture was a viable alternative for the LdoD application

in terms of performance, a load testing scenario was designed that evaluated the behaviour and perfor-

mance of the application under a significant usage and compared it to a similar scenario in the monolith

architecture. Therefore, allowing to compare the impact on the functionalities from the perspective of an

end user.

3.4.1 Specifications

The load testing analysis focused on different functionalities that were chosen accordingly to the number

of domain entities they interact with, the number of modules that are interacted with and the amount of

processing required. The functionalities chosen were the following:

• Source Listing: Presents the listing of the archive sources, where a source corresponds to a

physical source document, from the text fragments. When using this functionality, the end user

obtains all the information about each one of the 754 sources, such as date, dimensions, and type

of ink used in the document. This functionality is done through interactions between the Front-End

and Text modules.

• Fragment Listing: Presents the listing of all text fragments present in archive with additional infor-

mation of its several interpretations. This functionality is implemented through multiple interactions

between the Front-End and Text modules.

• Interpretation View: Presents an interpretation of a chosen text fragment, displaying any existing

tags, annotations and categories and any related editions. This functionality interacts with the

Front-End, Virtual, User and Text module in order to obtain information of the different domain en-

tities related to this interpretation. It is relevant to chose an interpretation that includes a significant

number of domain entities to have multiple inter-module invocations.

• Assisted Ordering: Orders the fragments accordingly to a set of criteria, such as date and text

similarity (tf-idf) and was due to the number of interacted modules, Front-End, Text, Virtual, Rec-

ommendation and User, and the amount of processing required. This functionality requires more

than 250 000 fragment comparisons, and each comparison requires a significant amount fragment

information.

Therefore, for each functionality a load testing test case was designed to simulate 50 sequential

user requests to each of the functionalities under two different loads of information in the database,

for 100 and 720 fragments respectively. This testing allows to evaluate the latency and throughput of

19

the different functionalities of the architecture and was done with the application running inside Docker

containers on a dedicated machine with an Intel I7 6 cores, 16 GB of RAM and a 1TB of SSD and using

JMeter as the load testing tool responsible for this performance scenario.

3.4.2 Optimizations

Before discussing the performance results, it is important to address different optimization strategies

used in the different functionalities to improve the performance of the modular application. Throughout

the work of the thesis [36], it could be observed some performance deterioration was caused by a sig-

nificant number of interface calls being used to obtain the information from the evaluated functionalities.

The performance could be optimized by reducing the interface usage and increasing the granularity of

the functionalities.

To decrease the number of invocations from the interfaces, an optimization was implemented that

increased the amount of information stored in the dto. This was due to how frequent information from

the used domain entities was not being included in their respective dtos and so, required another access

through the interfaces, which resulted in additional queries to the database for the same domain entities.

This initial implementation of the dtos resulted in a high penalty on the performance of the Fragment

Listing and Source Listing functionalities.

An additional optimization was also applied to specific functionalities, Fragment Listing and Source

Listing, that further increased the granularity from the functionalities. The optimization consisted of

implementing a composed dto object to be utilized by these functionalities containing a list of all Frag-

mentDtos, where each FragmentDto contains all the information required by the functionalities. This

effectively allows to reduce the inter-module invocations and database queries and, therefore increasing

the performance of these functionalities.

Concerning the Assisted Ordering, this functionality performed considerably worse under the mod-

ular architecture, providing an unusable experience to the end-users. This was due to a consequence

from refactoring the previously described 3.3 associations regarding the VirtualEditionInter and

ScholarInter into inter-module invocations, which proved to be extremely problematic to the perfor-

mance of this functionality due to a significant number of inter-module invocation. As previously stated,

the Assisted Ordering requires a significant number of comparisons in their behaviour, where each of

the interpretations needs to access this information from the Text module multiple times in each compar-

ison. This resulted in over 370 million inter-module invocations for the ScholarInter information, which

shows a severe consequence of the refactoring from an association. To address this bottleneck, an

optimization was made to the VirtualEditionInterDto that consisted of caching the information from

the associated ScholarInter entities, which effectively reduced the number of inter-module invocations

and increased the performance of the functionality to acceptable values.

20

3.4.3 Performance Results

Functionality Source Listing Fragment Listing
Samples 1x50 1x50

Monolith Modular Variation Monolith Modular Variation
Avg Time (ms) 17/61 22/629 29.4%/931% 103/350 61/1095 -41%/213%
Min Time (ms) 15/57 20/586 33.3%/928% 84/335 57/1026 -32%/206%
Max Time (ms) 27/74 33/680 22.2%/819% 143/405 94/1172 -34%/190%

Std. Dev. 3.22/2.88 2.90/23.32 - 12.87/13.88 6.08/36.93 -
Throughput (/sec) 55.1/16.2 43.7/1.6 -20.7%/-90.1% 9.6/2.9 16.1/0.91 68%/-69%

Functionality Interpretation View Assisted Ordering
Samples 1x50 1x50

Monolith Modular Variation Monolith Modular Variation
Avg Time (ms) 29/25 24/37 -17%/48% 137/3801 165/12295 20%/224%
Min Time (ms) 26/21 21/34 -19%/62% 124/3738 149/11326 20%/203%
Max Time (ms) 41/39 34/52 -17%/33% 164/3880 195/13355 19%/244%

Std. Dev. 3.14/2.77 2.57/3.91 - 9.47/40.67 10.2/575.84 -
Throughput (/sec) 33.3/38.3 40.9/26.4 23%/-31% 2.3/0.24 2.2/0.08 -4%/-67%

Table 3.2: Performance results for sequentially executing 50 times each functionality for 100 and 720 fragments
in the database while running inside Docker containers before optimizing the microservice architecture.
Results are separated by / in each cell, for instance, by sequentially executing 50 times the Source Listing
functionality in the monolith we observed an average latency of respectively 25, and 151, milliseconds,
where there are respectively 100, and 720, fragments in the database (25/151).

Table 3.2 presents a side-by-side comparison from the performance results of the monolith archi-

tecture and the optimized modular architecture for respectively 100 and 720 fragments in the database.

It can be observed that the performance of the modular architecture remained similar to the monolith

under 100 fragments in the database, with a slight performance decrease in the Source Listing and As-

sisted Ordering functionalities in terms of latency and throughput. But, on the other hand, the modular

monolith was able to obtain slightly outperform the monolith in the Fragment Listing and Interpretation

View under low information. This is due to a faster retrieval of the domain entities using their unique

identifiers received from the dtos because of fewer round trips to the database.

However, a significant performance degradation occurs in three different functionalities, Fragment

Listing, Source Listing, and Assisted Ordering, under 720 fragments in the database, increasing the

latency by at least 200% and reaching in the case of the Source Listing over 900%. This is due to

how increasing the information from the functionalities, increased the number of generated dtos for 720

fragments. Therefore, it shows a significant impact of the modularization aspect under huge amounts

of information. Note that, the Interpretation View functionality barely was affected by increasing the

information in the database, since it does not depend on the number of fragments.

Regarding the Assisted Ordering, the described optimization proved to be effective since the func-

tionality had a similar performance variation compared to the listing functionalities, despite being the

most computationally demanding functionality and having the worst performance impact before the op-

timization. Additionally, the monolith architecture implemented different caches that stored the vectors

21

used for the computation to improve the performance, which also proved to be beneficial in the modular

context to reduce the inter-module invocations. However, even after the optimization, the drawbacks of

inter-module invocations were still noticeable in the performance of the functionality.

In general, the modular monolith architecture provides a beneficial development environment for

smaller and business-focused teams that fosters an agile development approach. However, the run-

time application of a modular monolith executes inside a single process that is unable to independently

scale each of the modules and does not provide failure isolation between them. On the other hand,

the microservice architecture addresses both concerns and offers more flexibility to the development

environment. In the context of a step-wise migration, the modular monolith presents an impact on the

performance and migration cost of the application even before migrating to the microservice. But, at the

same time, it provides the groundwork for the microservices, which should be beneficial to the migration.

Therefore, evaluating the migration into the microservice architecture is fundamental in understanding

the benefits and consequences of a step-wise migration.

22

4
LdoD Microservice Architecture &

Implementation

Contents

4.1 Microservice Architecture . 25

4.2 LdoD Microservice Refactoring . 27

4.3 LdoD Microservice Architecture . 36

23

24

One of the core objectives of this dissertation is to implement the LdoD Archive as a microservice

application from the described modular architecture and evaluate the migration process from a modular

monolith as an intermediary stage. To accomplish this goal, the modular monolith architecture had to be

further decomposed and refactored to migrate the modules into services and the modules’ interactions

into remote invocations. Additionally, it was also necessary to address new challenges introduced with

the microservice architecture, like eventual consistency and deployment of the services.

4.1 Microservice Architecture

The microservice architecture shares similar fundamental requirements for modularization as the mod-

ular monolith. In the microservice architecture, the services are independent processes with well-

established boundaries that focus on specific subdomains and functionalities of the application, meaning

that the modules provide the foundation to implement the services. Therefore, by developing a modular

monolith, the developers only have to focus on further decomposing the modules into services and on

adapting the defined module interactions into appropriate inter-service communication.

Figure 4.1: Architectural structure of a service

Figure 4.1 presents the architectural structure of the services decomposed from the defined modules.

This services are implemented by applying an layer architecture style that is composed of three different

layers:

• Application Layer: responsible for the service API, which in this case corresponds to the implemen-

tation of the provides, requires, publish and subscribe interface using a distributed communication

technology.

• Domain Layer: responsible for the business logic from that subdomain that uses the persistence

layer to access the database information.

25

• Persistence Layer: responsible for the database access, in case of persistent information being

required for the service.

Overall, implementing modules as services is a straightforward process since the modules represent

the bounded context required by microservices and provide the layered structure without rewriting any

code. A decomposition also occurs in the interfaces to replace the module interactions with inter-service

communication to maintain the behavior of the features in a distributed context.

4.1.1 Inter-service communication

Inter-service communication is a fundamental feature of the microservice architecture that allows the

services to exchange information and provide functionalities. The microservice architecture defines two

types of inter-process communication: synchronous communication, where the service requests the

information and awaits its response, and asynchronous communication, which can undergo different

variants depending on the requirements of the architecture but, in general, allows the service to share

information without any dependencies. Therefore, a beneficial aspect from the modular monolith is

how the uses and notification interaction are an initial fit to, respectively, introduce synchronous and

asynchronous communication.

To replace the uses interaction, the proposed solution defined synchronous request/response com-

munication style between the services, since it provides a similar behaviour through the network with-

out requiring a redesign from the behaviour of the application. This communication performs a typical

request/response interaction using a technology built around the HTTP protocol, like REST, where a

service sends an HTTP request to an API of another service. However, this type of communication is

expected to affect performance due to network overheads and the blocking nature of the communication.

On the other hand, asynchronous communication allows adapting the notification interaction by main-

taining the communication between the services without creating circular dependencies. This commu-

nication implements an event-driven asynchronous communication with a publish-subscribe messaging

pattern where the publisher service sends events to a message broker and then the message broker

publishes the event to subscribed services. The message broker plays an important role in the architec-

ture by allowing the services to communicate without requiring the components to explicitly be aware of

each other while also managing the events and the services.

26

4.2 LdoD Microservice Refactoring

4.2.1 Additional Modular Refactoring

In the previous chapter, we described the decomposition and refactoring process in detail to develop

the LdoD modular architecture and evaluated the impact on the refactoring cost and performance. This

allowed us to provide a background on the modular architecture and connect it to the microservice

architecture. However, some additional refactoring was required due to non-refactored associations

between different subdomain entities and a lack of encapsulation from the modules.

Figure 4.2: Refactoring from the Citation domain model

In the first scenario, it was found associations between the Text and Virtual subdomains entities that

went undetected during the refactoring procedure which needed to be appropriately addressed. Fig-

ure 4.2 illustrates the refactoring applied to the associations between the domain entities: AwareAnnotation,

TwitterCitation, and HumanAnnotation, that belong to the Virtual subdomain and the Citation and

SimpleText domain entities that belong to the Text subdomain. These inter-domain associations cor-

responded to an inheritance and three one-to-many associations that needed to be effectively removed

and replaced by indirect associations.

Before removing the inheritance association, we could observe that the AwareAnnotation was only

associated with the subclass TwitterCitation, which allowed to remove the association to the Citation

domain entity without creating an indirect association. On the other hand, the removal of the inheritance

association proved to be slightly more difficult due to an association inherited by the TwitterCitation

27

to the InfoRange, which also had to be removed. In this case, the refactoring maintained the asso-

ciation of the InfoRange to the Citation domain entity and established an indirect association from

the TwitterCitation to the Citation domain entity. This allows TwitterCitation to access the info

ranges through unique identifiers with inter-module invocations.

The remaining non-refactored associations were found between the Annotation and SimpleText

domain entities, where the subclass HumanAnnotation not only used the information from the latter but

was also directly accessed from the Text module in order to be removed, creating a circular dependency.

This refactoring was also achieved through the removal of the association and the implementation of

unique identifiers to replace it with a uses interaction. But, in addition, the removal method from the

SimpleText was also adapted into a notification interaction with a newly defined event that effectively

removed the circular dependency.

The second problem was more frequently detected but had a much lesser refactoring effort to cor-

rect. It consisted of multiple situations where modules would bypass the interfaces and directly access

the information of the service, which compromised the encapsulation of the modules. The lack of en-

capsulation can be problematic in the development of the modular architecture and on the migration into

microservice architecture, since the parallel development by focused teams is affected and introduces

additional refactoring effort to the migration. The refactoring solution consisted of simple changes to the

module’s interfaces by creating new methods in interfaces that accessed the required information and

enforcing the uses interaction between the modules.

4.2.2 Inter-service communication

Most of the refactoring effort to achieve a microservice architecture from the modular monolith focuses

on the interfaces since the uses and notification interaction were implemented through interfaces and

have to be adapted into implementing the appropriate type of communication. Therefore, it requires

a redesign of the provides and requires interface to implement synchronous communication and the

publisher and subscriber interface to introduce the message broker and implement an event-driven

communication.

4.2.2.A Synchronous Communication

To achieve synchronous communication, the provides interface of each service was implemented as a

REST API, that offers public endpoints for fetching the information of the service, which then can be

accessed by the requires interface through HTTP requests. In more practical terms, the necessary

changes made to a provides interface involved the mapping of every publicly available method of the

interface to an unique URI, capable of being remotely accessed, and providing a serializable response.

28

In general, this is a simple procedure to implement but, there are factors that can affect the imple-

mentation like the method parameters, the response object, and the type of effect on the data from the

service. These factors are important to consider when choosing the type of mapping to apply since the

different types of requests provided by REST, GET, POST, PUT and DELETE, have specific actions (CRE-

ATE, READ, UPDATE, DELETE) which have to be compatible with the method. For instance, we can ob-

serve in 4.1 a real example of the mapping applied to two different methods of the Text service provides

interface which resulted in two separate types of mapping, GET and POST respectively. This is due to how

each of the methods affects the information in the database, where the getFragmentByXmlId() performs

a read transaction that retrieves the information from a text fragment given its unique identifier, which

corresponds to a READ action provided by the GET request. On the other hand, the createFragment()

method performs a write transaction that creates a new domain instance, corresponding to a CREATE

action that is best suited for a POST request.

An additional aspect related to the provides interface is the compatibility of the dtos with the se-

rialization requirement. In this type of communication, the serialization procedure is very important

to exchange the information between the services and requires serializable response objects to suc-

cessfully exchange information throughout the network. Therefore, when migrating into a microservice

architecture from a modular monolith, a requirement for serializable dtos is introduced into the architec-

ture. Generally, this is a trivial process since the dtos mostly carry essential information about a domain

entity, however, some situations may require more refactoring effort due to non-serializable information

being referred in the dto that needs to be refactored. An example of this refactoring could be found in

the dtos that utilized map data structures using other dtos as mapping keys which by default could not

be serialized. This introduced a slight refactoring effort to custom serialize the data structure in a way

that the behaviour of the functionalities was respected.

Listing 4.1: Example GET and POST methods of the provides interface from Text service

1 @GetMapping("/fragment/xmlId/{xmlId}")

2 @Atomic(mode = Atomic.TxMode.READ)

3 public FragmentDto getFragmentByXmlId(@PathVariable(name = "xmlId")

4 String xmlId) {

5 logger.debug("getFragmentByXmlId: " + xmlId);

6 return getFragmentByFragmentXmlId(xmlId).map(FragmentDto::new)

7 .orElse(null);

8 }

9

10 @PostMapping("/createFragment")

11 @Atomic(mode = Atomic.TxMode.WRITE)

29

12 public FragmentDto createFragment(@RequestParam(name = "title") String title,

13 @RequestParam(name = "xmlId") String xmlId) {

14 return new FragmentDto(new Fragment(TextModule.getInstance(),

15 title, xmlId));

16 }

Listing 4.2: Example GET and POST methods of the requires interface from Front-End service

17 public FragmentDto getFragmentByXmlId(String xmlId) {

18 return webClient.build()

19 .get()

20 .uri("/fragment/xmlId/" + xmlId)

21 .retrieve()

22 .bodyToMono(FragmentDto.class)

23 .blockOptional().orElse(null);

24 }

25

26 public FragmentDto createFragment(String title, String xmlId) {

27 return webClient.build()

28 .post()

29 .uri(uriBuilder -> uriBuilder

30 .path("/createFragment")

31 .queryParam("title", title)

32 .queryParam("xmlId", xmlId)

33 .build())

34 .retrieve()

35 .bodyToMono(FragmentDto.class)

36 .block();

37 }

From the perspective of the service, the requires interfaces need to remotely access the URL of a

method from a service provides interface to request the information. This was achieved through a frame-

work responsible for executing HTTP calls to match URLs of the provides interface method that used to

be locally called. In this case study, the services utilize the Spring WebClient framework to provide syn-

chronous blocking HTTP communication between the services. Listing 4.2 presents two methods from

the Front-End service requires interface that matches the REST provides interface example methods

of the Text service. From these methods, we can observe an example on how the Front-End service

30

requests the information or creates a new text fragment through an HTTP request with the appropriate

type, URI and parameters that matches the provided methods in the Text service. Note that, the be-

haviour of the uses interaction is respected through a blocking call that guarantees that the information

is available upon the request, before continuing the execution.

4.2.2.B Event driven Asynchronous Communication

The notification interaction is implemented as an event-driven asynchronous communication in the LdoD

microservice architecture, focusing the refactoring effort on introducing a message broker. The message

broker is responsible for managing the events and establishing a publish-subscribe type of communica-

tion between the services seamlessly, without creating circular dependencies. To introduce a message

broker, the publish and subscribe interfaces of the services need to implement a publish and listener

method that respectively publishes and listens to events from the message broker.

Figure 4.3: Event-driven communication example with an ActiveMQ message broker

Figure 4.3 illustrates how the event-driven asynchronous communication operates between the dif-

ferent services and the message broker in the case of an User Remove event. Upon the removal of a

user, the publish interface of the User service is responsible for sending the appropriate event through

the network into the message broker using the publish method, where the event is stored in a topic to

be eventually published to all subscribed services. The message broker is then responsible for publish-

ing the event to every subscribed service, which has an appropriate subscriber interface that listens to

the events and processes them accordingly.

Therefore, in the context of the microservice architecture, the event-driven asynchronous commu-

nication becomes responsible for maintaining the data consistency between the databases, since each

subdomain has an independent database that needs to be kept consistent in write transactions that span

through multiple services. The removal of an user is an example of eventual consistency between the

31

User and Virtual services that was introduced with the migration.

Note that, the notification interaction of the modular architecture allows to detect some occurrences

that affect the consistency of the information before decentralizing the data into multiple databases. This

can be done by analysing the impact on data consistency, once in a distributed context, of the events

that are sent in the modular notification interfaces.

4.2.3 Microservice Deployment

The microservice architecture introduces several challenges when addressing the deployment of the

services to take full advantage of its decentralized architectural structure, such as service discovery,

networking, and, service and resource management that offer a more scalable architecture. In this case

study, the Kubernetes technology implements the deployment configuration of the LdoD microservice

architecture, allowing to automate the deployment, management, and scaling of the services. In addition,

the microservices execute inside Docker containers to facilitate their deployment and improve resource

usage.

The deployment of the architecture addresses two different aspects: containerization of the services

and the deployment configuration. In what concerns the containerization, this process consists of build-

ing a Docker image containing the service’s executable JAR and correct version of the JDK through a

Dockerfile, capable of running the application inside the container. Then it allows for a fast build and

startup of the services, allowing the Kubernetes to easily deploy and shut down the services for efficient

management.

On the other hand, the deployment configuration depends heavily on the architecture to deploy, but,

in general, it has to configure the deployment of each component, such as the services, databases, and

message broker. Kubernetes implements the deployment through configuration files that describe the

run-time properties of the components in terms of active replicas, volumes, and network configurations.

Listing 4.3 shows an example of a configuration file to deploy the Text service, where we can observe

how to set the number of replicas, network ports, and volumes to persist information.

Listing 4.3: Text Deployment example file

1 apiVersion: apps/v1

2 kind: Deployment

3 metadata:

4 name: docker-text

5 spec:

6 selector:

7 matchLabels:

32

8 app: docker-text

9 replicas: 1

10 template:

11 metadata:

12 labels:

13 app: docker-text

14 spec:

15 containers:

16 - name: docker-text

17 image: docker-text:v1

18 imagePullPolicy: Never

19 ports:

20 - containerPort: 8081

21 .

22 .

23 .

24 volumeMounts:

25 - name: corpus

26 mountPath: "/opt/ldod/corpus/"

Through the previous deployment configuration file, the different services are now capable of being

deployed. However, it is still necessary to configure the internal networking of the cluster to allow inter-

service communication. This is achieved through a service configuration file for each component that

configures the settings required from the Kubernetes cluster to provide the service discovery and route

the requests to the respective services using a service local DNS name. Listing 4.4 presents an example

service deployment file of the Text service, which configures the internal ports for the node and the

internal DNS name to use for the routing of requests.

Listing 4.4: Text Service example file

1 kind: Service

2 apiVersion: v1

3 metadata:

4 name: docker-text

5 labels:

6 name: docker-text

7 spec:

8 ports:

33

9 - nodePort: 30163

10 port: 8081

11 targetPort: 8081

12 protocol: TCP

13 selector:

14 app: docker-text

15 type: NodePort

In terms of effort, the deployment of the LdoD microservice architecture required the configuration

of service and deployment configuration files for each of the deployable components, which in this case

study corresponds to the services, message broker, and databases. Note that Kubernetes manages

the dynamic aspects of a run-time microservice architecture in an autonomous way and reduces the

implementation cost to individually address those concerns, thus proving beneficial to the architecture.

4.2.4 Refactoring Cost

Text User Virtual Recomm
P R P R P R P R

Modified/Total Methods 91/109 (83%) - 43/47 (91%) - 152/155 (98%) 6/6 (100%) 6/6 (100%) 7/7 (100%)
New Methods 16 - 2 - 2 18 1 0

Modified/Total Dtos 6/15 (40%) 2/3 (67%) 9/14 (64%) 3/11 (27%)

Game Search Visual Front-End
P R P R P R P R

Modified/Total Methods 14/14 (100%) 9/9 (100%) 2/2 (100%) 14/14 (100%) - 9/9 (100%) - 145/153 (95%)
New Methods 0 2 0 0 - 1 - 42

Modified/Total Dtos 2/6 (33%) 5/17 (29%) 1/4 (25%) 64/74 (86%)

Table 4.1: Impact of the refactoring in the provides interfaces (P) and requires interface (R) and dtos from each of
the services in terms of refactored methods and dtos

From the perspective of the refactoring effort, most changes were focused on two different aspects

of the modular architecture: the provides and requires interface and the dtos of each service. Table 4.1

presents the impact of refactoring the uses interaction into synchronous communication in terms of

modified methods in the interfaces of each service. It can be observed significantly high percentages of

modified methods where at least 83% of the methods had to be mapped. This may look like a signifi-

cant refactoring effort, but most of these changes were small changes, consisting of repetitive mapping

procedures as the ones described in 4.2 and 4.1. Thus, making it a simple process to implement.

However, a few incompatibilities were detected that directly affected the refactoring cost, which

should be taken into consideration when implementing the interfaces in the modular monolith. An incom-

patibility was found in methods of the provides interface that utilized multiple complex objects as different

parameters, which was not supported by the HTTP protocol. This is due to the body of a HTTP request

only being parsed once. To address the incompatibility, the solution defined additional serializable dtos,

34

which function as a wrapper for the parameters and allow the parsing of all the parameters at once. In

terms of effort, this is a simple solution to implement with low refactoring effort.

A second incompatibility was the transference of non-serializable information between inter-module

invocations, which cannot be sent in remote communication. This behavior had a more serious conse-

quence since it could affect areas outside of the scope of the API and increase the refactoring effort. For

instance, the Recommendation service utilized non-serializable in the response objects of the methods

and introduced additional refactoring in the Front-End service to process the changes. A way to address

this problem is by implementing a custom serialization for that type of information that allows writing the

object into a JSON format. The proposed solution allows the serialization of that type of information in

remote communications and maintains the refactoring in the scope of the API. However, the refactoring

effort highly depends on the object and its capability to be serializable.

On the other hand, if serialization cannot be achieved, it is necessary to individually address their

usages and adapt how the information is transferred while maintaining the behavior of the functionality.

Therefore, note that the quality of the interfaces in the modular monolith affects the refactoring effort

and, in addition, it is important to keep the information transferred between the modules serializable to

reduce the migration cost.

Additionally, it could also be observed in Table 4.1, the number of modified dtos from the back-

end and front-end services to, respectively, serializable and deserializable formats. A surprisingly high

number of dtos from the back-end services were modified into serializable formats, despite their sim-

ple structure. This was due to an optimization tactic applied in the modular monolith that implemented

the dtos as an entry point into obtaining additional domain information related to it, for easier access.

However, this is not suited for remote communication due to the JSON serialization requirements not

being met. By default, the JSON serialization requires the invocation of every getter method available

in order to be serialized, but this resulted in the creation of larger dtos that contained all the information

they referred to, without it being requested. This introduces redundant information to the dtos and in-

creases the network overheads of the remote invocations. Therefore, to avoid performance degradation,

a refactoring was applied that removed this information.

Note that, this problem was more significant in the Front-End service, because it is responsible for

most of the deserialization process of the dtos and had to match the refactoring applied to the dtos from

the serialization changes. In addition, the deserializable dtos remained responsible for providing the

entry point to fetch the additional information and had to be refactored into remote invocations similarly

to a requires interface. Therefore, despite the high percentages, the changes were simple to implement.

35

4.3 LdoD Microservice Architecture

In this case study, the LdoD Archive was implemented as a microservice architecture composed by

seven different types of back-end services: Text, User, Virtual, Recommendation, Game, Search and

Visual, that provide the same features as the corresponding modules with well defined REST API end-

points. In addition, the LdoD microservice architecture also presents two client-side front-end services

responsible for the visual and game interpretations and a server-side front-end service responsible for

the user interface. Note that, the Front-End service implements a similar behaviour to an API gateway

that processes the user requests and routes them into the back-end services.

Figure 4.4: LdoD Microservice Architecture Component and Connector View

Figure 4.4 presents a component and connector overview of the LdoD microservice architecture

with the respective services, interfaces and inter-service communication. These services apply the syn-

chronous request/responses communication through the REST API and HTTP protocol to exchange

the information and maintain the dependencies between the services. An important aspect of the mi-

croservice architecture is the deployment of the services for an efficient scalability of the resources into

features that are regularly accessed from several services, like the core services Text and User, for

36

better performance. To achieve scalability, the LdoD microservice architecture is capable of managing

and deploying several instances of the services through the Kubernetes deployment technology. Docker

containers containerize the services and allow them to be independently deployed. Note that, the Kuber-

netes technology is beneficial to this architecture since it manages the dynamic aspects of the services

like service discovery, networking, resources management and load balancing in a transparent manner.

Focusing on the asynchronous communication, the event-driven asynchronous communication is

implemented using an ActiveMQ message topic that manages the publisher services, Text, User and

Virtual, the subscriber services, Virtual, Recommendation, Game and Front-End, and the respective

events in order to maintain the data consistent between them. As we can observe in 4.4, the LdoD

microservice architecture implements a decentralized data approach where the information from the

subdomains of the Text, User, Game, Virtual, Recommendation and Front-End are stored in separate

databases. Additionally, events are used to maintain the consistency between the decoupled databases.

37

38

5
Evaluation

Contents

5.1 Performance Evaluation - Local . 41

5.2 Microservice Optimization . 43

5.3 Performance Evaluation - Cloud . 45

5.4 Data consistency . 48

5.5 Discussion . 53

39

40

The results presented in this section evaluate different aspects and consequences of migrating the

LdoD modular monolith into microservice architecture, as described in section 4. In this context, it is

important to analyse the performance of the application since introducing inter-process communication

is expected to have a cost on the performance of the application, measure how increasing the service’s

resources affects the performance and evaluate the impact of eventual consistency on the application.

5.1 Performance Evaluation - Local

In terms of performance, it is important to evaluate the performance of the microservice architecture and

compare it to the modular and monolith architecture values discussed in section 3.4 to understand the

benefits and drawbacks from the migration. The performance of the monolith and modular architecture

was measured through load testings that evaluate the user experience and its performance in terms of

latency and throughput. Therefore, a similar evaluation was done in the microservice architecture.

Text User Virtual Recommendation Reading Game Visual
Source Listing 8/42 (19%) 0/5 (0%) 0/17 (0%) 0/2 (0%) 0 0/5 (0%) 0

Fragment Listing 9/42 (21%) 0/5 (0%) 0/17 (0%) 0/2 (0%) 0 0/5 (0%) 0
Interpretation View 22/42 (52%) 1/5 (20%) 6/17 (35%) 0/2 (0%) 0 0/5 (0%) 0
Assisted Ordering 21/42 (50%) 1/5 (20%) 3/17 (18%) 1/2 (50%) 0 0/5 (0%) 0

Table 5.1: Coverage of the domain entities by each of the functionalities

A load testing was designed for the microservice architecture that evaluated the previously described

functionalities: Source Listing, Fragment Listing, Interpretation View and Assisted Ordering. These

functionalities were initially selected due to how they interacted with a significant number of domain

entities and services, as presented in Table 5.1, and the amount of processing required. For each

functionality, a load test case was implemented that simulated 50 sequential requests to the functionality

under two different loads of information in the database, 100 fragments and 720 fragments respectively.

The testing was done using JMeter as the load testing tool with a run-time architecture composed of a

single service instance per microservice running inside a Docker container on a dedicated machine with

an Intel I7 6 cores, 16 GB of RAM and 1TB SSD.

Table 5.2 presents the performance results of the microservice architecture compared with the mod-

ular architecture results. As can be observed in Table 5.2, the microservice architecture had a severe

negative impact on the performance, both, in terms of latency and throughput, independently of the

functionality and amount of information in the database. The Fragment Listing functionality presented

an extremely negative experience to the user reaching an average of 32767 ms latency for 720 fragments

in the database with a variation of 2893%. In addition, it also experienced latency variation values of

7843% for 100 fragments in the database. Similar differences in performance were observed on the

Source Listing functionality. These performance values are a consequence of the number of remote

41

Functionality Source Listing Fragment Listing
Samples 1x50 1x50

Modular Microservice Variation Modular Microservice Variation
Avg Time (ms) 22/629 982/8384 4364%/1233% 61/1095 4845/32767 7843%/2893%
Min Time (ms) 20/586 896/7876 4380%/1244% 57/1026 4258/30331 7370%/2856%
Max Time (ms) 33/680 1147/9487 3376%/1295% 94/1172 6131/35414 6422%/2922%

Std. Dev. 2.90/23.32 71.17/345.25 - 6.08/36.93 440.74/1455.47 -
Throughput (/sec) 43.7/1.6 1.0/0.12 -98%/-92.5% 16.1/0.91 0.20/0.03 -99%/97%

Functionality Interpretation View Assisted Ordering
Samples 1x50 1x50

Modular Microservice Variation Modular Microservice Variation
Avg Time (ms) 24/37 200/202 733%/446% 165/12295 859/11013 421%/-10%
Min Time (ms) 21/34 177/188 743%/453% 149/11326 799/10748 436%/-5%
Max Time (ms) 34/52 246/273 624%/425% 195/13355 994/11457 410%/-14%

Std. Dev. 2.57/3.91 13.85/14.71 - 10.2/575.84 44.93/118.44 -
Throughput (/sec) 40.9/26.4 5.0/4.9 -88%/81% 2.2/0.08 0.87/0.09 -61%/12.5%

Table 5.2: Performance results for sequentially executing 50 times each functionality for 100 and 720 fragments
in the database while running inside Docker containers. Results are separated by / in each cell, for
instance, by sequentially executing 50 times the Source Listing functionality in the modular we observed
an average latency of respectively 22, and 629, milliseconds, where there are respectively 100, and 720,
fragments in the database (22/629).

invocations necessary to implement the functionality. In each request from a service, the latency value

increases due to the network overheads involved in remote communication that affect the performance

as the information and number of invocation increases. Therefore, the results show a severe drawback

of remote invocations on the performance.

To supplement the performance results, we executed a network analysis that traced an execution

from each functionality to measure the number of remote invocations between the services. From

these results, we could observe that the Fragment Listing and Source Listing functionalities executed

4283/28540 and 854/5966 remote invocations, respectively, for 100 and 720 fragments in the database.

These results represent a very high network usage for a single use of the functionalities that correlates to

the performance degradation experienced in the microservice application. Since, in each invocation, the

network overhead time accumulates additional latency that the previous architectures do not experience.

The Interpretation View functionality presented a similar negative impact of the inter-service com-

munication on the performance as the previously described functionalities. On the other hand, the

variation values were significantly lower and, the functionality was still capable of providing a reasonable

experience to the end-user. This is due to, not only a significant difference in the number of remote invo-

cations, but also the amount of information sent in each invocation that reduced the network overhead

times. Through the network analysis, we were able to observe that the execution of the functionality only

requires 137 invocations between the services. However, the variation values were still considerably

high when compared to the previous architectures, meaning that even with a small number of invoca-

tions, and transferred information, the functionalities in the microservice architecture perform severely

worse.

42

Surprisingly, the microservice architecture did not impact the performance of the Assisted Ordering

functionality. This is mainly due to two reasons. First, the use of caches proved to be effective in opti-

mizing the performance of the functionality. In the modular monolith, a cache was already implemented

that stored the computational results used in each request, but additionally, two more caches were

implemented during the development of the Recommendation service that stores domain information

related to the fragments. Because the functionality repeatedly interacts through the same set of data,

these caches reduced the number of remote invocations necessary to perform the functionality. Second,

the functionality is computationally demanding, which reduces the impact of the non-cached distributed

communication on the overall performance.

Note that, before the optimization, the Assisted Ordering functionality presented an unusable expe-

rience to the user with latency values per request over an hour and millions of inter-service invocations

for 720 fragments in the database. This demonstrates the serious impact of migrating a computation-

ally demanding functionality with fine-grained interactions to a microservice architecture. With the use

of caches, we were able to match the performance of the modular monolith and reduce the number

of remote invocations to 524/4388 for, respectively, 100 and 720 fragments in the database, consist-

ing of lightweight information. Thus, proving to be an effective optimization tactic in the microservice

architecture.

5.2 Microservice Optimization

5.2.1 Refactoring

In the previous analysis, we observed a significant impact from the migration on the performance, where

the functionalities provide a bad end-user experience. In addition, we observed a correlation between

the performance degradation and the number of remote communication from the functionalities. There-

fore, an optimization of the architecture was required to improve the performance and end-user experi-

ence. The main goal of the optimization is to reduce the inter-service communication without any major

redesign of the functionalities.

From the analysis of the microservice implementation, we could observe that most of the perfor-

mance penalties were due to a high number of remote fine-grained invocations where the services

would request additional domain information related to a dto. This implementation resulted in individual

requests to obtain the information, increasing the inter-service communication. Therefore, to estab-

lish a coarse-grained invocation, the optimization strategy increased the amount of domain information

preemptively sent in certain dtos that are frequently used together, which allows replacing the remote

invocations for local invocations. This allows to reduce the network overheads and improve the perfor-

mance. The code in A.1 presents an example of the optimization applied to the ScholarInterDto where

43

it can be observed the different methods introduced. By adding these methods, we cached the infor-

mation and supported the composition of several dtos in a single response object. Note that, with this

simple change to the dtos, the information is now accessible through a single remote invocation where

in the previous implementation would require several different requests.

In terms of cost, the optimization required a small refactoring effort in six different dtos, FragmentDto,

SourceDto, ScholarInterDto, VirtualEditionDto, VirtualEditionInterDto and UserDto. It con-

sisted on the introduction of additional getter fields that access the information through the interfaces.

However, it is necessary to consider some trade-offs to avoid sending unsolicited information. Therefore,

it is crucial to analyse whether the data is frequently used together by the functionalities.

5.2.2 Optimization Results

Functionality Source Listing Fragment Listing
Optimization Before After Variation Before After Variation

Avg Time (ms) 982/8384 438/4317 -55%/-49% 4845/32767 725/5715 -85%/-83%
Min Time (ms) 896/7876 420/4161 -53%/-47% 4258/30331 701/5621 -84%/-81%
Max Time (ms) 1147/9487 486/4431 -58%/-53% 6131/35414 781/6074 -87%/-83%

Std. Dev. 71.17/345.25 14.16/67.7 - 440.74/1455.47 16.4/66.8 -
Throughput (/sec) 1.0/0.12 2.3/0.23 130%/92% 0.20/0.03 1.4/0.18 600%/500%

Invocations 854/5966 1/1 -99.9%/-99.98% 4283/28540 5/5 -99.9%/-99.98%
Functionality Interpretation View Assisted Ordering
Optimization Before After Variation Before After Variation

Avg Time (ms) 200/202 155/140 -23%/-31% 859/11013 886/11444 3%/4%
Min Time (ms) 177/188 138/129 -22%/-31% 799/10748 766/10780 -4%/0.3%
Max Time (ms) 246/273 184/176 -25%/-36% 994/11457 1434/13049 44%/14%

Std. Dev. 13.85/14.71 10.2/8.7 - 44.93/118.44 114.39/576.47 -
Throughput (/sec) 5/4.9 6.4/7.1 28%/45% 0.87/0.09 0.85/0.085 -2%/-6%

Invocations 137/137 48/48 -65%/-65% 524/4388 509/3622 -3%/-18%

Table 5.3: Performance results and number of remote invocations for sequentially executing 50 times each function-
ality for 100 and 720 fragments in the database while running inside Docker containers before and after
optimizing the microservice architecture. Results are separated by / in each cell, for instance, by sequen-
tially executing 50 times the Source Listing functionality in the microservice before the optimization, we
observed an average latency of respectively 982, and 8384, milliseconds, where there are respectively
100, and 720, fragments in the database (982/8384).

Table 5.3 presents the results of the optimization of the microservice architecture in terms of both

performance and network usage. In terms of network usage, the optimization was successful in reducing

the remote invocation required for each functionality, while simultaneously improving the performance

of the functionality. It can be observed a drastic decrease in the number of remote invocations from the

Source Listing and Fragment Listing functionalities into a minimum value of 1 and 5 remote invocation

respectively, independently of the number of fragments in the database. The performance results of both

of these functionalities confirmed that a major factor of the performance degradation observed in this

migration resulted from the high number of inter-service communication. The Source Listing function-

ality, through a single remote invocation, obtained a performance improvement of 55%/49% for latency

44

and consequently a 130%/92% throughput increase, while the Fragment Listing performed significantly

better with a latency increase of 85%/83% and a throughput increase of 600%/500%. Therefore, these

results show that despite the increased amount of information sent in each of these requests, the per-

formance of a functionality benefits from coarse-grained interactions between the services.

In the Interpretation View, it could also be observed a slight improvement between 22% to 28% of

the performance with a slight reduction from the network usage from 137 to 48 remote invocations.

Before the optimization, this functionality already had a low latency and network usage compared to the

other functionalities, however the optimization still proved to be beneficial to reduce the overheads in a

functionality with low information. On the other hand, the Assisted Ordering functionality remained with

similar performance values despite the 18% reduction of the remote invocations number, but this is easily

explained due to the low impact of the remote invocations on the extensive computational requirements

of the functionality.

However, while the different optimizations proved beneficial to the performance, the final results are

still considerably worse than in the previous architectures, independently of the amount of information

and number of remote invocations. This is the consequence of additional network overheads that are

introduced with remote invocations. Note that, a major performance bottleneck of the remote invocations

came from the need to serialize and deserialize the dtos on each invocation, due to how it introduces

additional latency that becomes more noticeable as the information increases. For instance, we mea-

sured and observed that even in a coarse-grained communication, the serialization and deserialization

time of the Source Listing functionality corresponded to 82% of the average latency of the functionality,

reaching a serialization time over 3000 ms and a deserialization time over 500 ms. This is a consider-

able impact on the performance of the functionality, which by itself is already superior to the latency of

the functionality in the modular monolith.

5.3 Performance Evaluation - Cloud

A key aspect of the microservice architecture that motivates the migration is the scaling benefits of the

application, which can be hard for the monolith application to provide as the user base and complexity of

the application grows. As previously stated, the LdoD microservice application is composed by indepen-

dent services responsible for specific features, that allows to achieve a more scalable approach of the

application. This is due to how the services can be horizontally scaled by focusing the resources and

increasing the number of replicas of the services responsible for the demanding functionalities for better

performance. Therefore, it is important to evaluate how beneficial it is to scale the different services in

terms of performance.

In this section, the performance of different features of the LdoD microservice architecture are eval-

45

uated in terms of latency and throughput, by running different run-time deployments in a cloud environ-

ment under different network workloads.

5.3.1 Specifications

The main goal is to compare the performance between two different run-time deployments with a dif-

ferent number of instances deployed, to understand how services use resources and how they perform

under a heavy load. In addition, the results also provide an insight on the scalabity of the architecture.

For the evaluation, it is necessary to choose which functionalities are going to be tested to decide

which services to replicate. In this scenario, three functionalities from the previous performance testing

were chosen to be evaluated: Source Listing, Fragment Listing and Interpretation View, due to their

domain coverage and suitability for a heavy load scenario. Note that the Assisted Ordering is a compu-

tationally demanding functionality that requires a high amount of available resources to be scalable and

would not be adequate for this performance scenario due to a lack of available resources.

The two run-time versions of the architecture are:

• Single-Instance: The single instance deployment version of the architecture is composed of a

single instance from each type of service in order to provide the performance values for a basic

deployment that will be used as the reference base values of the application running in a cloud

environment.

• Multi-Instance: The multi-instance deployment version of the architecture is composed of 5 in-

stances from each of the following services, Text, Virtual and Front-End services, and a single

instance of the remaining services. This allows us to evaluate how increasing the resources of

specific services affected the performance of the application.

Therefore, for this performance evaluation scenario, two load testing scenarios were designed to

measure the performance under different network workloads: a sequential workload and a concurrent

workload. The sequential workload simulates a normal usage by a user, implemented with the same load

test settings already described in the local environment. On the other hand, the concurrent workload

is responsible for a heavier usage of the application, which simulates 50 different users simultaneously

invoking the functionalities and allows to evaluate how the different run-time versions perform under this

scenario. This testing was done with the services being deployed into a Google Kubernetes Engine

cluster with 8 nodes, 16 vCPU and 32 GB of memory.

5.3.2 Performance Results

Table 5.4 presents the results of the test cases. It can be observed some benefits and drawbacks of the

different run-time versions of the architecture under different usages of the application. In the concurrent

46

Functionality Source Listing
Samples 1x50 50x1

Single Multi Variation Single Multi Variation
Avg Time (ms) 1768/21806 2075/20329 17.4%/-7% 71791/1021199 24232/297820 -66.2%/-70.8%
Min Time (ms) 1531/18004 1944/17839 27%/-1% 67074/1007652 17745/219864 -73.5%/-78.2%
Max Time (ms) 2452/28400 3256/33605 32.8%/18% 73926/1028616 27893/400253 -62.3%/-61.1%

Std. Dev. 124.0/3061.41 179/2946.77 - 1909.2/6687 2975/64587 -
Throughput (/sec) 0.6/0.046 0.48/0.05 -20%/9% 0.68/0.05 1.8/0.125 164.71%/150%

Functionality Fragment Listing
Samples 1x50 50x1

Single Multi Variation Single Multi Variation
Avg Time (ms) 2848/24830 3573/26210 26%/6% 122648/1654885 40912/441837 -66.6%/-73.3%
Min Time (ms) 2660/22586 3202/23616 20%/5% 99085/1627447 33263/346403 -66.4%/-78.7%
Max Time (ms) 3182/26388 3893/40782 22%/55% 127078/1661867 46205/574864 -63.6%/-65.4%

Std. Dev. 97.18/843.5 175.6/2390.2 - 5044/9183 3815/83013 -
Throughput (/sec) 0.35/0.04 0.28/0.038 -20%/-5% 0.4/0.03 1.1/0.09 175%/200%

Functionality Interpretation View
Samples 1x50 50x1

Single Multi Variation Single Multi Variation
Avg Time (ms) 313/313 372/399 18.9%/27.5% 5425/6829 2673/3693 -50.7%/-45.9%
Min Time (ms) 273/272 321/325 17.6%/19.5% 2501/3723 1048/2597 -58.1%/-30.2%
Max Time (ms) 397/701 491/682 23.7%/-2.7% 7291/8116 3852/4343 -47.2%/-46.5%

Std. Dev. 29.18/62 38.08/51.5 - 1607/1340 846.5/453 -
Throughput (/sec) 3.2/3.2 2.7/2.5 -15.6%/21.9% 6.8/6.2 12.9/11.5 89.7%/85.5%

Table 5.4: Performance results for sequentially executing 50 times each functionality and for 50 users concurrently
executing each functionality for 100 and 720 fragments in the database while deployed in Google Kuber-
netes Engine cluster. Results are separated by / in each cell, for instance, by sequentially executing 50
times the Source Listing functionality we observed an average latency of respectively 1768, and 26259,
milliseconds, where there are respectively 100, and 720, fragments in the database (1768/26259).

workload, there was a significant throughput increase of running multiple instances of specific services

for all three functionalities. The Source Listing and Fragment Listing functionality, which under normal

usage already has significantly high latency values, especially with 720 text fragments in the database,

had a throughput increase between 150% to 200%, which is a significant improvement of the scalability.

This is due to how deploying more instances increases the use of resources and supports parallel

processing of the requests.

Similar performance benefits could also be observed in the Interpretation View functionality from the

parallel processing, with an 89% throughput increase. But, note that this functionality has significantly

less information and latency which allowed both versions to provide a reasonable end-user experience

for such a heavy workload. However, we can also observe how poorly the single instance version of the

architecture performed under a concurrent workload for functionalities with large amounts of information

like the Source and Fragment Listing, and with fine-grained invocations like the Interpretation View.

Focusing on the sequential workload, the measured results were very similar to the ones obtained

in the previous performance evaluation section but with much more latency due to its deployment into

the remote cluster and the cluster server location. Note that, there is a slight latency increase in all

three functionalities under the multi-instance version when compared to the single version. This can

be explained by the necessary internal load balancing that occurs between the services in the multi-

47

instance version, which introduces a slight latency that becomes more noticeable as the latency of a

normal request decreases.

Overall, we could observe a scaling benefit of a microservice architecture, however, there was a sig-

nificant performance degradation of running the microservice application in a cloud environment com-

pared to our local deployment. Despite the throughput increase of the multi-instance version, the latency

values were significantly high especially for functionalities with large amounts of information like the

Fragment and Source Listing, resulting in a general bad user experience. This is due to the additional

network overheads that are introduced with remote invocation through a real network, which is not fit for

large payloads of information or fine-grained invocations.

In the LdoD microservice architecture, two improvements can still be implemented that should benefit

the performance, specially in a cloud deployment. First, a redesign of functionalities that require large

amounts of information like the Fragment and Source Listing functionalities to implement a pagination

pattern, which reduces the information to manageable data sets while maintaining a coarse-grained

behaviour. This allows to reduce the network overheads and improve the performance independently of

the information in the database. Second, the introduction of additional caches to reduce the number of

remote invocations and improve the overall performance of the functionalities.

5.4 Data consistency

The decentralization of the application data introduces challenges to the architecture concerning its data

consistency, due to the transactional behaviour between the different databases, since transactions that

span across multiple services cannot implement ACID properties between them. In a distributed context,

there are four different types of possible transactions between the services: (1) multiple read transac-

tions; (2) single write transaction that ends the sequence of transactions; (3) multiple write transactions

that span multiple services or a single write transaction in a service but it is not the last in the sequence;

(4) write transactions that require notification to other services of the changes.

The LdoD microservice application implemented a simple transactional behaviour between the ser-

vices that does not require the implementation of a distributed transaction to preserve the ACID proper-

ties on most functionalities. This is due to how most of the transactional behaviour between the services

is composed of read transactions and, in some cases, a single write transaction to end the sequence,

which causes no harm to the consistency of the information. Note that there were a few exceptional

cases of multiple write transactions between the services but, by structuring the write transactions, the

consistency of the information is respected even in case of failures.

An example of this behaviour occurs when removing the ClassificationGame in the Game service,

which requires the removal of related tags in the Virtual service. In case of failures, this could result

48

in inconsistent information between the services since a tag would be removed in Virtual, while the

game would persist due to a later failure in the transaction. By removing the tags at the end, the write

transaction in the Virtual service must be successful for the transaction in Game to finish, thus preserving

the consistency even in case of failures.

In general, read transactions do not affect the consistency since most of the information in a ser-

vice does not depend on other services and, the local transactions can provide the ACID properties

to the database. However, when reading the information of a domain entity related to events, these

transactions are affected by eventual inconsistencies. As previously stated, the LdoD microservice ar-

chitecture implements an event-driven asynchronous communication that, due to the decentralized data

management, introduces eventual consistency to the architecture. This communication addresses the

write transactions between the services that require notification to be kept consistent, but, at the same

time, it does not offer the usual ACID properties to the databases. Therefore, eventual consistency is an

important aspect introduced into the LdoD Archive that needs to be evaluated in terms of the effects on

the information and its impact on the functionalities.

5.4.1 Eventual Consistency

With the introduction of the decentralized data approach and the asynchronous event-based communi-

cation, the application depends on the use of the different types of events to achieve data consistency

between the services. Most of the events are related to the removal of a domain entity. For instance,

upon removing a text fragment from the Text service, the Virtual service needs to receive the appro-

priate event to delete any reference to this text fragment from the database. Therefore, it is important

to understand the types of events sent between the services, how they affect the data consistency and

how eventual states affect the different functionalities.

Event Type Publisher Subscriber Impacted Domain Entities Frequency Event Trigger Impact
Fragment-Remove Text Virtual VirtualEditionInter Low VEInter-Remove, Tag-Remove High

ScholarInter-Remove Text Virtual VirtualEditionInter Low VEInter-Remove, Tag-Remove High
SimpleText-Remove Text Virtual Annotation Low Tag-Remove High

User-Remove User
Virtual Member, SelectedBy, Tag and Annotation Low Tag-Remove High
Game ClassificationGame Low - High

Recommendation RecommendationWeights Low - High

VirtualEdition-Remove Virtual Game ClassificationGame Medium - Low
Front-End - Medium - Low

VirtualEdition-Update Virtual Front-End - Medium - Low
VirtualEditionInter-Remove Virtual Game ClassificationGame Medium - Low

Tag-Remove Virtual Game ClassificationGame Medium - Low
Virtual-Export Virtual Game - Medium - Low

Table 5.5: Different event types with the corresponding publisher/subscriber services, impacted information, fre-
quency of occurrence and the impact on the overall information

Table 5.5 presents an overview of the different type of events of the LdoD application with the respec-

tive publisher/subscriber services and impact on data consistency. There are nine types of events that

affect different services and domain entities. Each event has different degrees of frequency and impact

49

on the consistency of the impacted domain entities. Most events relate to the removal of domain entities

that require write transactions that span across the publisher and subscriber services. Therefore, having

an impact on the consistency. Additionally, the events can trigger a chain of events that further spans

the write transactions throughout the services.

Concerning the impact of the events, the domain entities Fragment and ScholarInter from the Text

service and User from the User service have the highest impact on the consistency of the information,

affecting three different databases and multiple domain entities from the Virtual, Game and Recommen-

dation services. In addition, they are also responsible for a chain of events in the Virtual service by

triggering three different types of events, VirtualEditionInter-Remove, VirtualEdition-Remove, and

Tag-Remove, that further increase the inconsistency in the services.

Therefore, the events have a higher impact if they trigger a large number of changes, like the removal

events of the Text and User services which, fortunately, are the ones that have a lower frequency. On

one hand, the archive has a predefined set of fragments that do not change, which means they are

almost like immutable entities. On the other hand, it is very uncommon to delete the archive users. So,

the Text and User service information remains static throughout the execution of the application, only

removed under exceptional contexts with administrator privileges. Thus, making the occurrence of these

events rare, which reduces the complexity of managing the consistency.

Under a regular context, most of the inconsistencies result from the Virtual service subdomain and

their associations to the ClassficationGame. The Virtual service has a significant number of events that

are frequently published because an end-user can interact with its virtual edition, removing some of their

entities. On a positive note, the impact of the inconsistency focuses on the Game service, having a low

effect on the overall application. Note that the Front-End is also affected by the VirtualEdition-Remove

but, the impact focuses on the session information, which may only fail in the execution of a functionality.

Since it may happen that the target of the functionality does not exist anymore.

5.4.2 Functionalities

In another perspective, it is also important to analyse how eventual consistency affects the application

from the perspective of an end-user. By evaluating the behaviour of the functionalities, we can determine

how they performed under inconsistent states. Three functionalities were chosen for this evaluation,

considering the domain entities the functionalities interact with and the dependencies on different events

and databases:

• Interpretation View: It requires the interaction between the Text, User and Virtual services to

retrieve and display the information of an interpretation. This functionality presents the categories

used by a user, which can be inconsistent due to an occurrence of the User Remove event.

50

• Virtual Edition Listing: presents the interpretations of a virtual edition with their categories and

provides a descriptive information of the edition. The information accessed by the functionality

may be inconsistent due to the occurrence of events related to the domain entities, Fragment,

ScholarInter and User.

• Game Listing: presents the active games of a virtual edition and the virtual interpretation used in

the game, the game participants and the creator. The information accessed by this functionality

may be inconsistent due to the occurrence of events related to Virtual, Text and User services.

The data inconsistencies may have different types of impact, depending on the specific functionality

and the type of events. In the Interpretation View, the functionality performs as expected despite any

inconsistent information between the User and Virtual service, displaying the presence of tags and

categories of the removed user until the databases are eventually consistent. This is a behaviour that

results from no direct communication between the Virtual and User services since the basic information

of the user is duplicated in the Virtual database. Therefore, having a low impact on the behaviour of the

functionality.

On the other hand, the Virtual Edition Listing and Game Listing functionalities present serious con-

sequences of the inconsistent information in the architecture, where the functionalities cannot perform

under inconsistent states. This occurs because when the functionalities try to obtain the data from the

services, it is not present, resulting in a failed request.

In general, the eventual consistency from the described asynchronous communication was an ef-

ficient alternative to distributed transactions in the microservice architecture. Since, at the end of the

migration, most functionalities were not affected by inconsistent states and preserved the consistency

of the information. Therefore, the eventual consistency had an overall low impact on the architecture.

On the other hand, it is mainly due to the simple transactional behaviour of the architecture that does

not span across different services and can apply ACID properties through local transactions in most

situations. In addition, the immutability of the information had a significant role in reducing the impact of

inconsistencies. So, it is relevant to note that the results can vary accordingly to the architecture and the

mutability.

5.4.3 Caches

To improve the performance of the application, several caches were implemented in the monolith and

microservice architecture. However, these caches might become inconsistent throughout the use of the

application and affect the consistency of the functionalities. Therefore, it is important to evaluate the

consequences of inconsistencies in the caches and their impact on the application.

Table 5.6 presents the different implemented caches in the LdoD microservice application with the

51

Cache Service Cached Information Impact Purpose
ScholarInter Text Database Access Index Low Faster access speed

Fragment Text Database Access Index Low Faster access speed
VirtualEdition Virtual Database Access Index Low Faster access speed

VirtualEditionInter Virtual Database Access Index Low Faster access speed
ScholarInterDto Virtual Domain Information Low Reduce network overhead

FragmentDto Recommendation Domain Information Low Reduce network overhead
Category Recommendation Domain Information Medium Reduce network overhead
TF-IDF Recommendation TF-IDF values Low Reduce network overhead

CommonTF-IDF Recommendation TF-IDF Common Terms Low Reduce network overhead
FragmentVectors Recommendation Vectors Medium Reduce computation

StoredVector Recommendation Vectors Medium Reduce computation

Table 5.6: Different event types with the corresponding subscriber and publisher services and the domain entities
that are modified from it

respective service and stored information. It can be observed three types of caches with different im-

pacts on the consistency and purposes of the application: caches that implement database access

indexes for faster access retrieval of information from the databases, caches that save frequently re-

quested information from a service to reduce the communication between services and, caches that

save the computed vectors utilized in the functionalities provided by the Recommendation service, like

the Assisted Ordering, that allow to reduce the computationally demanding operations of each execution.

The impact of the caches inconsistency depends on the type of cached information and its mutability.

We observed that the database access index caches and caches that store domain information of the

Text service, FragmentDto and ScholarInterDto, were not affected by inconsistent information, thus

resulting in a low impact. This was due to the immutability of those caches since the database access

indexes and domain entities cached, Fragment and ScholarInter, are mainly immutable, as already

discussed. So there are no inconsistencies in them.

On the other hand, inconsistent information in some of the caches from the Recommendation ser-

vice presented a larger impact on the functionalities. There were two types of caches in this service

with different purposes. In the first type, the caches stored domain information to reduce the network

overheads of the computationally demanding functionalities, such as the Assisted Ordering. The impact

of this type of cache also correlates to the mutability of the stored information. We observed that the

Category cache was the only cache that could become inconsistent due to its mutability and affect the

functionalities. As for the second type, these caches store computed information to reduce the com-

putations required for the functionality. However, these caches can also become inconsistent as the

information changes, affecting the final results of the functionalities.

Under a regular context, the overall impact of inconsistency in the caches is low, focusing on the

Category and StoredVectors caches since they cache mutable information that affects the functional-

ities. Therefore, we can conclude that the impact of the caches also correlates to the mutability of the

information. However, it can also be stated that as the mutability of the information increases, the worse

52

the effects on the application. Therefore, it is important to consider which information can be cached

and how the inconsistent information can affect the application.

5.5 Discussion

The process of modularizing a monolith and migrating it to a microservice architecture requires extensive

refactoring of the application and has a significant impact on the performance. The modular monolith and

microservice architecture share the modularization requirements to address the decomposition of the

domain into the modules/services, while also addressing the granularity of the interaction between the

domain entities for performance reasons. Therefore, the modular monolith offers a beneficial groundwork

for achieving a microservice architecture that massively reduces the refactoring effort by accomplishing

the modularization process through well-encapsulated modules that serve as the foundation of services

and reduce the development effort.

Through the evaluation, we addressed some concerns that are often neglected in the literature that

focus more on technical aspects like communication technology, running environments, and perfor-

mance benchmarks. In what concerns the refactoring effort, the inter-service communication requires

changes in the interfaces of each service, and the cost is directly related to the size and quality of the

API. Even though the refactoring is composed of small changes, a poor quality interface can increase the

refactoring cost and propagate the changes to the service features. Therefore, if these constraints are

considered when designing the modular interfaces, it will help in the introduction of remote invocations.

On the other hand, we could also observe a consequence of migrating a modular monolith with a sig-

nificant number of uses relationships like the LdoD Archive in terms of coupling between the services.

As previously stated, the behaviour of the uses interaction corresponds to a synchronous request/re-

sponse style of communication between the services in order to maintain the dependencies. However,

the synchronous communication results in the coupling of the services being too tight due to the fine-

grained behaviour, which becomes problematic due to the weight of remote invocation and results in

serious performance degradation.

Therefore, in the context of a stepwise migration of a monolith into a microservice architecture, the

intermediate step of a modular monolith is advantageous, because it highlights complexities that might

have to be addressed before implementing a microservice architecture and helps on the decision on how

to migrate. Note that with the modular monolith, the developers can predict the coupling of the services,

the expected performance degradation of the communication and decide the type of communication

between the services to detect functionalities that can be affected by the lack of ACID transactional

behaviour.

In what concerns the performance, the impact on the performance was a major factor from the migra-

53

tion into a modular and microservice architecture. In the modular monolith, the performance degradation

was related to the amount of information sent between the modules through the dtos but, the number of

inter-module invocations did not have a relevant effect. Note that the modular monolith, when the amount

of information transferred between modules is low, can match and even obtain better performance in

some cases due to faster access to the database through the unique identifiers. On the other hand, the

number of remote invocations also severely affected the performance of the microservice architecture.

Therefore, these two factors should be avoided when designing the microservice architecture.

In the context of the migration process, this study confirmed the complexity of synchronous commu-

nication in a microservice architecture in both a local and cloud scenario and addressed some possible

performance optimizations. However, the performance degradation proved to be far too severe com-

pared to the scalability benefits. In what concerns the data consistency, the LdoD microservice archi-

tecture presented a simple case of eventual consistency, which did not require complex solutions like

SAGAs or two-phase commit like protocols. However, this solution does not address cases with multiple

write transactions that require some sort of compensation in case of failures, which would significantly

increase the migration effort and introduce new challenges.

5.5.1 Threats to Validity

The following threats to the validity of this study were identified: (1) it is a single example of a migration;

(2) it depends on the technology and programming techniques used in the monolith.

Despite being a single case study, it has some level of complexity and the literature lacks descriptions

of the problems and solutions associated with the migration from monolith to microservices architecture.

In this study, it was addressed both the migration into a modular and microservice and provides feedback

of challenges faced in the migration that benefits the overall process.

The technology and programming techniques used in the implementation of the monolith follow an

object-oriented approach, where the behavior is implemented through fine-grained interactions between

objects. A more transaction script based architecture may result in different types of problems. The

conclusions of this study apply when the monolith is developed using a rich object-oriented domain

model. On the other hand, the monolith is implemented using Spring-Boot technology which follows the

standards of web application design.

In the microservice architecture, the technology used for the inter-service communication can also

affect the migration results since different technologies may face different incompatibilities to migrate the

interfaces of the modules. But, in general, we made some observations from the migration which apply

to most microservice architectures.

Additionally, the case study presented specific types of functionalities that either requested significant

amounts of information or was implemented through fine-grained invocations with a strong synchronous

54

behaviour. Different type of functionalities can present other performance results, but in general most

functionalities in the LdoD Archive were similar to the Interpretation View. Therefore, we provided a good

coverage of the functionalities.

55

56

6
Conclusion

Contents

6.1 Conclusions . 59

6.2 Future Work . 59

57

58

With this work, we described the migration from a large object-oriented monolith into a microservice

architecture using a modular monolith as a middle stage, while analysing the migration effort to achieve

both, the modular and microservice architectures and the overall impact on the performance.

6.1 Conclusions

In this case study, the modular monolith can be used as an intermediate artifact that facilitated the mi-

gration process of the LdoD Archive monolith into a microservice application by addressing aspects like

the functional decomposition and encapsulation of the application, while providing a more agile software

development environment before tackling the challenges of a microservice architecture. In addition, the

migration results also made visible the necessary refactoring and redesign of the functionalities, in the

first step of the migration, to help handle the concerns associated with the overall migration to a mi-

croservice architecture, such as the type of inter-service communication, eventual consistency and the

performance impact and optimizations.

The migration of a modular monolith into a microservice architecture revealed the impact on the

migration effort and on the performance. Therefore, the migration effort to further decompose the mod-

ules and implement the inter-service communication depends on the quality and compatibility of the

interfaces with the type of distributed communication and technology utilized for the inter-service com-

munication. A serious consequence of the migration was the large impact on performance associated

with the latency of the implementation of the uses interactions as synchronous remote invocations, which

augments the latency associated with the execution of each one of the end-user requests.

Overall, the migration to a microservices architecture presented several challenges with different

levels of impact on the refactoring effort, performance, and data consistency, which highly depends on

the application structure and semantics. In the LdoD Archive, the migration presented a serious impact

on the performance due to the network overheads that proved to be far too high compared to the previous

architectures, but on the other hand, it offered a more scalable and manageable architecture. Note that,

as observed in the literature review, the benefits and drawbacks of the migration vary accordingly to

the architecture and the requirements of the application, therefore through this work we provided an

additional case study that evaluated a mainly synchronous microservice architecture while addressing

the efforts and the optimizations applied.

6.2 Future Work

While the main objectives from this thesis were accomplished, the LdoD microservice architecture can

still be improved and expanded upon, to either improve the quality of the implementation and reduce the

59

limitations of the architecture.

The performance of the microservice architecture is a crucial limitation of the current migration, since,

despite the optimizations and understanding of the faced performance bottlenecks, the difference in

performance between the architectures is still considerably high. One way to address this concern is

to fine-tune the functionalities with the correct amount of information by either limiting the information

sent in that functionality or by caching the most utilized information in the front-end services to diminish

the impact of remote invocations. Another possible approach would be to experiment with a different

serialization protocol like the protocol buffers described in [28] that are compatible with the REST API

and offer better performance for the serialization which may improve the latency of the functionalities.

Regarding the architecture, a fully asynchronous approach of the architecture might be interesting to

be explored in future work to increase the service’s availability and evaluate the effects on the scalability

of the application. To explore this approach, a significant redesign of the functionalities has to be done,

which may also include changes to its behaviour, for instance, by redesigning the user interface to not

present all information at once.

60

Bibliography

[1] E. Evans, Domain-Driven Design: Tacking Complexity In the Heart of Software. Addison-Wesley

Longman Publishing Co., Inc., 2003.

[2] C. Richardson, Microservices Patterns. Manning, 2019.

[3] W. F. Opdyke and R. E. Johnson, “Creating abstract superclasses by refactoring,” in

Proceedings of the 1993 ACM Conference on Computer Science, ser. CSC ’93. New

York, NY, USA: Association for Computing Machinery, 1993, p. 66–73. [Online]. Available:

https://doi.org/10.1145/170791.170804

[4] M. Fowler, Refactoring: Improving the Design of Existing Code (2nd Edition). Addison-Wesley

Longman Publishing Co., Inc., 2018.

[5] D. Haywood, “In defense of the monolith,” in Microservices vs. Monoliths - The Reality Beyond

the Hype. InfoQ, 2017, vol. 52, pp. 18–37. [Online]. Available: https://www.infoQ.com/minibooks/

emag-microservices-monoliths

[6] M. Fowler and J. Lewis, “Microservices,” 2014, accessed on 2021-10-13. [Online]. Available:

http://martinfowler.com/articles/microservices.html

[7] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R. Casallas, and S. Gil, “Evaluating

the monolithic and the microservice architecture pattern to deploy web applications in the cloud,” in

2015 10th Computing Colombian Conference (10CCC), 2015, pp. 583–590.

[8] T. Ueda, T. Nakaike, and M. Ohara, “Workload characterization for microservices,” in 2016 IEEE

International Symposium on Workload Characterization (IISWC), 2016, pp. 1–10.

[9] A. M. Joy, “Performance comparison between linux containers and virtual machines,” in 2015 Inter-

national Conference on Advances in Computer Engineering and Applications, 2015, pp. 342–346.

[10] O. Al-Debagy and P. Martinek, “A comparative review of microservices and monolithic architec-

tures,” in 2018 IEEE 18th International Symposium on Computational Intelligence and Informatics

(CINTI), 2018, pp. 149–154.

61

https://doi.org/10.1145/170791.170804
https://www.infoQ.com/minibooks/emag-microservices-monoliths
https://www.infoQ.com/minibooks/emag-microservices-monoliths
http://martinfowler.com/articles/microservices.html

[11] F. Tapia, M. Mora, W. Fuertes, H. Aules, E. Flores, and T. Toulkeridis, “From monolithic systems to

microservices: A comparative study of performance,” Applied Sciences, vol. 10, no. 17, 2020.

[12] P. Di Francesco, P. Lago, and I. Malavolta, “Migrating towards microservice architectures: An in-

dustrial survey,” in 2018 IEEE International Conference on Software Architecture (ICSA), 2018, pp.

29–2909.

[13] M. Kalske, N. Mäkitalo, and T. Mikkonen, “Challenges when moving from monolith to microservice

architecture,” in Current Trends in Web Engineering, I. Garrigós and M. Wimmer, Eds. Cham:

Springer International Publishing, 2018, pp. 32–47.

[14] V. Velepucha and P. Flores, “Monoliths to microservices-migration problems and challenges: A

sms,” in 2021 Second International Conference on Information Systems and Software Technologies

(ICI2ST). IEEE, 2021, pp. 135–142.

[15] J. Gouigoux and D. Tamzalit, “From monolith to microservices: Lessons learned on an industrial

migration to a web oriented architecture,” in 2017 IEEE International Conference on Software Ar-

chitecture Workshops (ICSAW), 2017, pp. 62–65.

[16] A. Bucchiarone, N. Dragoni, S. Dustdar, S. T. Larsen, and M. Mazzara, “From monolithic to mi-

croservices: An experience report from the banking domain,” IEEE Software, vol. 35, no. 3, pp.

50–55, 2018.

[17] M. H. Gomes Barbosa and P. H. M. Maia, “Towards identifying microservice candidates from busi-

ness rules implemented in stored procedures,” in 2020 IEEE International Conference on Software

Architecture Companion (ICSA-C), 2020, pp. 41–48.

[18] A. Megargel, V. Shankararaman, and D. K. Walker, “Migrating from monoliths to cloud-based mi-

croservices: A banking industry example,” in Software Engineering in the Era of Cloud Computing.

Springer, 2020, pp. 85–108.

[19] N. C. Mendonca, C. Box, C. Manolache, and L. Ryan, “The monolith strikes back: Why istio migrated

from microservices to a monolithic architecture,” IEEE Software, vol. 38, no. 05, pp. 17–22, sep

2021.

[20] D. Guaman, L. Yaguachi, C. C. Samanta, J. H. Danilo, and F. Soto, “Performance evaluation in the

migration process from a monolithic application to microservices,” in 2018 13th Iberian Conference

on Information Systems and Technologies (CISTI). IEEE, 2018, pp. 1–8.

[21] N. Bjørndal, A. Bucchiarone, M. Mazzara, N. Dragoni, S. Dustdar, F. B. Kessler, and T. Wien,

“Migration from monolith to microservices: Benchmarking a case study,” 2020, unpublished.

[Online]. Available: http://10.13140/RG.2.2.27715.14883

62

http://10.13140/RG.2.2.27715.14883

[22] R. Flygare and A. Holmqvist, “Performance characteristics between monolithic and microservice-

based systems,” Bachelor’s Thesis, Faculty of Computing at Blekinge Institute of Technology, 2017.

[23] M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar, and M. Steinder, “Performance evaluation

of microservices architectures using containers,” in 2015 IEEE 14th International Symposium on

Network Computing and Applications, 2015, pp. 27–34.

[24] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara, “Serverless computing: An investi-

gation of factors influencing microservice performance,” in 2018 IEEE International Conference on

Cloud Engineering (IC2E). IEEE, 2018, pp. 159–169.

[25] X. J. Hong, H. S. Yang, and Y. H. Kim, “Performance analysis of restful api and rabbitmq for mi-

croservice web application,” in 2018 International Conference on Information and Communication

Technology Convergence (ICTC). IEEE, 2018, pp. 257–259.

[26] J. L. Fernandes, I. C. Lopes, J. J. P. C. Rodrigues, and S. Ullah, “Performance evaluation of restful

web services and amqp protocol,” in 2013 Fifth International Conference on Ubiquitous and Future

Networks (ICUFN), 2013, pp. 810–815.

[27] B. Shafabakhsh, R. Lagerström, and S. Hacks, “Evaluating the impact of inter process communica-

tion in microservice architectures.” in QuASoQ@ APSEC, 2020, pp. 55–63.

[28] P. Johansson, “Efficient communication with microservices,” Master’s thesis, Umeå University, June

2017.

[29] M. Jayasinghe, J. Chathurangani, G. Kuruppu, P. Tennage, and S. Perera, “An analysis of through-

put and latency behaviours under microservice decomposition,” in International Conference on Web

Engineering. Springer, 2020, pp. 53–69.

[30] A. Furda, C. Fidge, O. Zimmermann, W. Kelly, and A. Barros, “Migrating enterprise legacy source

code to microservices: on multitenancy, statefulness, and data consistency,” IEEE Software, vol. 35,

no. 3, pp. 63–72, 2017.

[31] R. Laigner, Y. Zhou, M. A. V. Salles, Y. Liu, and M. Kalinowski, “Data management in microservices:

State of the practice, challenges, and research directions,” arXiv preprint arXiv:2103.00170, 2021.

[32] C. K. Rudrabhatla, “Comparison of event choreography and orchestration techniques in microser-

vice architecture,” International Journal of Advanced Computer Science and Applications, vol. 9,

no. 8, pp. 18–22, 2018.

[33] R. Laigner, M. Kalinowski, P. Diniz, L. Barros, C. Cassino, M. Lemos, D. Arruda, S. Lifschitz, and

Y. Zhou, “From a monolithic big data system to a microservices event-driven architecture,” in 2020

63

46th Euromicro Conference on Software Engineering and Advanced Applications (SEAA). IEEE,

2020, pp. 213–220.

[34] P. Kookarinrat and Y. Temtanapat, “Design and implementation of a decentralized message bus

for microservices,” in 2016 13th International Joint Conference on Computer Science and Software

Engineering (JCSSE). IEEE, 2016, pp. 1–6.

[35] A. Lesniak, R. Laigner, and Y. Zhou, “Enforcing consistency in microservice architectures through

event-based constraints,” in Proceedings of the 15th ACM International Conference on Distributed

and Event-based Systems, 2021, pp. 180–183.

[36] N. Gonçalves, “A product family for digital humanities repositories,” Master’s thesis, Instituto Supe-

rior Técnico, October 2019.

[37] K. J. Lienberherr, “Formulations and benefits of the law of demeter,” SIGPLAN Not., vol. 24, no. 3,

pp. 67–78, Mar. 1989. [Online]. Available: http://doi.acm.org/10.1145/66083.66089

64

http://doi.acm.org/10.1145/66083.66089

A
Code and Schemas

Listing A.1: ScholarInterDto after the optimization

1 public class ScholarInterDto {

2

3 private final TextProvidesInterface textProvidesInterface =

4 new TextProvidesInterface();

5 .

6 .

7 .

8 public ScholarInterDto(ScholarInter scholarInter) {

9 setXmlId(scholarInter.getXmlId());

10 .

11 .

12 .

13 }

65

14 .

15 .

16 .

17 public LdoDDateDto getLdoDDate() {

18 return this.textProvidesInterface

19 .getScholarInterDate(this.xmlId);

20 }

21

22 public HeteronymDto getHeteronym() {

23 return this.textProvidesInterface

24 .getScholarInterHeteronym(this.xmlId);

25 }

26

27 public ExpertEditionDto getExpertEdition() {

28 return this.textProvidesInterface

29 .getScholarInterExpertEdition(this.xmlId);

30 }

31

32 public SourceDto getSourceDto() {

33 if (isSourceInter) {

34 return new TextProvidesInterface()

35 .getSourceOfSourceInter(this.xmlId);

36 }

37 return null;

38 }

39

40 public List<AnnexNoteDto> getSortedAnnexNote() {

41 return this.textProvidesInterface

42 .getScholarInterSortedAnnexNotes(this.xmlId);

43 }

44 }

66

Fi
gu

re
A

.1
:

Ld
oD

m
on

ol
ith

do
m

ai
n

m
od

el

67

68

69

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings

	1 Introduction
	2 Related Work
	2.1 Monolith to Microservice
	2.2 Microservice Performance Evaluation
	2.2.1 Monolith and Microservice Comparison
	2.2.2 Inter-service communication

	2.3 Data consistency

	3 LdoD Background
	3.1 Modular Decomposition
	3.2 LdoD Modular Architecture
	3.3 Refactoring to Modular Monolith
	3.4 Performance Evaluation
	3.4.1 Specifications
	3.4.2 Optimizations
	3.4.3 Performance Results

	4 LdoD Microservice Architecture & Implementation
	4.1 Microservice Architecture
	4.1.1 Inter-service communication

	4.2 LdoD Microservice Refactoring
	4.2.1 Additional Modular Refactoring
	4.2.2 Inter-service communication
	4.2.2.A Synchronous Communication
	4.2.2.B Event driven Asynchronous Communication

	4.2.3 Microservice Deployment
	4.2.4 Refactoring Cost

	4.3 LdoD Microservice Architecture

	5 Evaluation
	5.1 Performance Evaluation - Local
	5.2 Microservice Optimization
	5.2.1 Refactoring
	5.2.2 Optimization Results

	5.3 Performance Evaluation - Cloud
	5.3.1 Specifications
	5.3.2 Performance Results

	5.4 Data consistency
	5.4.1 Eventual Consistency
	5.4.2 Functionalities
	5.4.3 Caches

	5.5 Discussion
	5.5.1 Threats to Validity

	6 Conclusion
	6.1 Conclusions
	6.2 Future Work
	Bibliography

	Bibliography
	Appendix A

	A Code and Schemas
	Appendix B

