
Refining High-Level Specifications of Decentralized Finance

Protocols to EVM bytecode using the K framework

Tiago Luis Barbosa
tiago {dot} l {dot} barbosa@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

November 2021

Abstract

Blockchains enable a democratic, open, and scalable digital economy based on decentralized
distributed consensus without a third-party trusted authority. They can be developed with a dis-
tributed execution environment, called virtual machines, which enables executing arbitrary programs,
called Smart Contracts. On Ethereum, the Ethereum Virtual Machine is the global virtual machine
whose state is stored and agreed upon by all network participants. In recent years, the amount of
Smart Contracts deployed on Ethereum has rapidly increased. The composability that the Ethereum
Virtual Machine offers has led to an emerging ecosystem of financial applications and protocols,
termed Decentralized Finance (DeFi). Because these protocols secure vast amounts of capital, bugs
or unintended behavior frequently leads to catastrophic financial losses for users. Consequently,
formal verification methods for these protocols have been a recent focus of research. Among those
methods, the K Framework is one of the most sophisticated and capable frameworks for defining and
verifying programs. It allows defining arbitrary executable specifications of protocols as well as directly
executing their bytecode with the KEVM implementation. In this dissertation, we aim to improve
the security of these protocols. To achieve this we focus on MakerDAO, a pioneer protocol in DeFi,
as well as its high-level K specification. We introduce new documentation for this protocol and we
extend the high-level specification with a new liquidations module and a non-trivial system invariant.
Finally, we develop and demonstrate refinement methods that enable refinement proofs which connect
an high-level protocol’s specification with the protocol’s bytecode implementation.
Keywords: Blockchain, Ethereum, Smart Contracts, Formal Verification, Decentralized Finance

1. Introduction
1.1. Motivation

Blockchain technology possesses a wide range of at-
tributes that make it a very appealing and efficient
solution to a vast variety of issues and obstacles.
Arbitrary programs that exist within a blockchain
network, called Smart Contracts, inherit some of
the Blockchain characteristics such as immutabil-
ity, unforgeability and irrepudiability which are de-
sired in many applications. Despite the demand for
these attributes, they may also be considered weak-
nesses in some scenarios. An existing flaw in an
arbitrary program that exists within a blockchain
network, a Smart Contract, may be found and con-
sequently exploited, or unexpected non-reversible
errors in user-defined logic may occur.

As interest rises in Blockchain technology and
the possibilities it entails grow [1] activity in de-
centralized ledgers increases its pace [2]. The
web of Smart Contracts and their interactions
present in Ethereum keeps increasing in complex-
ity as programmers create protocols, groups of bun-

dled Smart Contracts that serve a certain purpose
[3, 4]. These protocols serve many different pur-
poses, whether it be lending and borrowing of capi-
tal, decentralized exchanges, or insurance, etc. Due
to the nature of composability of these Smart Con-
tracts and their critical purposes, hard to spot er-
rors in these contracts lead to catastrophic scenar-
ios, which previously and currently results in im-
mense capital lost. These exploits happen on a reg-
ular basis and the figure in appendix ?? discloses
the list of major DeFi 2020 hacks. Previous errors
and exploits such as the famous DAO reentrancy at-
tack [5] are decreasing, and current hacks are now
non-intuitive, deeply semantic related, and require
high-level of expertise.

Despite the fact that some improvements on these
protocols can be made after deployment, by re-
deploying certain Smart Contracts and configuring
the remainder to use the most recent ones, there
might still be persistent errors, and whilst these er-
rors are not fixed the likelihood of an exploit by
an ill intentioned actor increases over time. To de-

1



velop trust in Smart Contracts even before they are
deployed, traditional verification methods such as
symbolic analysis approaches, including fuzzing [6],
static analysis, and regular code testing coverage
are regularly studied and implemented. However
these do not offer complete reliability on seman-
tic properties and are bound by computation power
and execution time, frequently generating false neg-
atives.

By virtue of this escalation in sophistication in
Smart Contract protocol architecture and academic
advances in mechanism design [7] it has become nec-
essary to verify that constructed abstract high-level
models of these systems adhere to their concrete im-
plementation and vice-versa.

1.2. Objectives

Taking into account the issues presented and the
insufficiency of investigation on Formal Verification
applied to this domain, we focus our research on
high-level modeling of Smart Contract systems, as
well as refining these with their concrete bytecode
implementation. In particular we aim to introduce
detailed approaches on how to properly break down
Smart Contract protocols, modeling these systems
with regards to different layers of abstraction, and
refinement techniques between abstraction layers
for use in the K framework.

2. Background
2.1. Blockchain

In the area of distributed systems byzantine fault
tolerant protocols for decentralized consensus have
always been a topic of high interest. Consequently,
the first distributed decentralized consensus mecha-
nism achieved, known as blockchain, was introduced
by Satoshi Nakamoto in his Bitcoin whitepaper [8]
that has subsequently become remarkably influen-
tial. Due to its versatility, blockchain related pa-
pers are increasing [9] and new employments of this
technology emerge regularly.

Blockchain’s qualities as an immutable, decen-
tralized, and efficient settlement layer allow for the
consensual and deterministic execution of arbitrary
programs, referred as Smart Contracts, on which all
of the network participants agree, without the need
for a centralized source of trust, on the network
states before, during and after their execution.

2.2. Smart Contracts

The concept of Smart Contracts was invented by
Nick Szabo, in 1996, [10] long before blockchain ex-
isted, and it was described as “a set of promises,
specified in digital form, including protocols within
which the parties perform on these promises”.

As a mean to fully extract benefit from
blockchain’s characteristics, they are conceptual-
ized and deployed with a program execution layer.

This abstract program execution layer abides by
consensus rules. Therefore, programs meant for
execution are written and interact following the
blockchain rules, on which different programming
languages, depending on the goal, may be imple-
mented.

Furthermore, Bitcoin’s non-turing complete Bit-
coin Script [8] was the first Smart Contract lan-
guage to exist. It has limited expressiveness and
computational power, which is considered a choice
in its implementation. Subsequent work from Vi-
talik Buterin and Gavin Wood proposed the use
of a general-purpose Turing complete Smart Con-
tract language [11], which materialized as Solidity,
Ethereum’s [12] Smart Contract language in 2015.

2.3. Ethereum

As we deepen our knowledge, a common and intu-
itive question arises due to Turing’s halting prob-
lem: if the Smart Contract language is turing com-
plete how can it be guaranteed its execution termi-
nation in the blockchain?

Many blockchains such as Ethereum use gas as
a way of providing metaphorical fuel to the execu-
tion of Smart Contracts, thus computation is always
bounded by the gas limit associated with its execu-
tion.

Moreover, another crucial question in this sub-
ject is: how can it be guaranteed that the execu-
tion of Smart Contracts and its results affecting
the blockchain state are what was intended and de-
signed by Smart Contract programmers?

This question leads to the area of study known
as Formal Verification.

2.4. Decentralized Finance

Ethereum’s Smart Contract execution layer, termed
Ethereum Virtual Machine or EVM, not only main-
tains the state and code of all the Smart Contracts
deployed on Ethereum, but also supports interop-
erability between them. This composability be-
tween Smart Contracts results in extremely sophis-
ticated protocols with complex non-trivial behav-
iors. A vast majority of these protocols are finan-
cial applications, and so the combination of them
is called Decentralized Finance. Currently, new fi-
nancial primitives made possible by the compos-
ability of blockchain’s virtual machines are heavily
researched, and although these represent a break-
through in financial tooling they become increas-
ingly troublesome to verify and prove correct.

2.5. Formal Verification

Before comprehending formal verification it is nec-
essary to first understand that a programming lan-
guage is divided into its syntactic and semantic
properties. While syntactic properties relate to how
the program is written, the semantic ones are asso-

2



ciated with the program’s behavior, in essence what
the program means and what is does. This process,
known as formal verification, is the only method to
inspect, understand and guarantee the correct and
intended behavior of a program. This means that
one can structure the property that wants proven
as a mathematical specification in the desired logic
system and soundingly prove that a program has
or has not such property. Moreover, mathemati-
cal models and property specifications can be de-
signed using different types of abstractions, logics,
axioms and formalisms which are regularly the fo-
cus of study of programmers interested in formal
verification.

As mentioned previously, the immutability na-
ture of blockchain makes Smart Contract properties
and execution correctness crucial for further devel-
opment and application of this technology.

3. K Framework
3.1. Introduction

Framework languages, used to define and reason
about programming languages, must be: user-
friendly, so language designers can use these frame-
works to create and experiment; mathematically
rigorous, so that the language definitions can be
used to support formal reasoning about programs;
modular, such that they can be extended with new
features without needing to revisit existing features;
expressive, in order to easily define programming
languages with any number of complex features.
The K framework [13] was created with this design
in mind and reflects these characteristics.

K’s goal is to distinguish specification of analysis
tools from specification for particular programming
languages or other models, which makes specifying
both analysis tools and programming languages eas-
ier [13]. Furthermore, in order to trust the results,
the generic tools instantiated for any given language
must be correct-by-construction, and should also
be efficient, so that there is no need to implement
language-specific tools, which in turn reduces hu-
man effort and time-consumption.

3.2. Reachability Logic

K’s foundation, Reachability Logic, is a logic for
symbolically reasoning about possibly infinite tran-
sition systems [14]. This logic is equipped with a
sound and nearly complete inference system which
allows efficient implementations.

3.3. Proving with Reachability logic

Reachability logic is extremely advantageous as it
can be used to prove statements, known as reach-
ability claims, syntactically structured as ϕ ⇒ ψ,
where ϕ and ψ are formulae in static logic. The
static logic applied is a subset of Matching Logic
[15].

Matching logic formulae are called patterns and
may be viewed as state configurations, using sym-
bolic variables for unknown values. Restrictions to
these patterns might also be applied implying that
it is not characterized by the set of possible configu-
rations that match it, but by the subset of configu-
rations in this set that also respect said restrictions.
Code may also be represented as algebraic data in
Matching Logic which causes the patterns ϕ and ψ
to regularly incorporate it. Figure ?? presents the
formal axioms that comprise the reachability logic
system [16].

3.4. KEVM
As explained previously, by virtue of the K Frame-
work’s structure, one can provide a formal definition
that can be mechanically transformed to a reference
interpreter for the EVM and benefit from a range
of analysis tools.

In 2017, [16] a formally rigorous executable in-
stance of the EVM semantics in the K framework
was implemented, covering all of the EVM instruc-
tions. Known as KEVM, this implementation is
open-source and can be found on the respective
repository 1.

4. MakerDAO
MakerDAO is a Decentralized Finance protocol.
The project started in 2015 [17] when Rune Chris-
tiansen developed the MakerDAO Protocol on the
Ethereum blockchain after first describing the sys-
tem on a reddit post [18]. Christiansen’s vision
was for a decentralized financial system to be man-
aged by its users. This would allow borrowers
greater control over their assets, even in difficult
economic conditions such as periods with high infla-
tion. Firstly, the protocol started as a DAO created
by Rune and a few other developers. Then, later,
it was developed under the auspices of the Maker
Foundation, and recently has come full circle by re-
turning to a self-governed and self-operating DAO.
The MakerDAO is made up of every type of enti-
ties, whether they be single individuals or groups.
These entities are from all parts of the globe and
own MakerDAO’s governance token MKR, which
gives them the right to vote for all kind of changes
in the network.

In fact, three acknowledged versions of the proto-
col have been deployed on the Ethereum blockchain.
Firstly, there was ProtoSai, then SAI, which was a
single-collateral DAI. Both these versions have been
deprecated. The last and current version is known
as MCD.

As mentioned previously, this thesis aims to refine
high-level systems models with their Smart Con-
tract bytecode implementation counterparts, as a

1https://github.com/kframework/evm-
semanticshttps://github.com/kframework/evm-semantics

3



result we decomposed the MakerDAO protocol into
its goal, the mechanisms that can achieve it, as
well as Smart Contract implementation. In this
extended abstract, we provide an example of the
decomposition of the protocol that was developed
in the dissertation.

4.1. Intent
Motivation MakerDAO is a decentralized or-
ganization that aims to bring stability to the
extremely volatile cryptocurrency market.

Goal The MakerDAO Protocol is a complex
system which at a very high-level serves a spe-
cific primary purpose: create an asset, known
as DAI, that has a particular economic value
in terms of some reference asset, the United
States Dollar. This is the definition of a pegged
currency. DAI is also a stablecoin, since it is
pegged to a fiat currency considered stable.

4.2. Mechanisms
DAI’s stability is achieved through a dynamic sys-
tem of collateralized debt positions, autonomous
feedback mechanisms and incentives for external ac-
tors.
The MakerDAO Protocol employs a two-token

system, DAI and MKR.

DAI a collateral-backed stablecoin that offers
price stability.

MKR the governance token that is used by
stakeholders to maintain, upgrade or stop the
system as well as manage DAI. MKR token
holders are the decision-makers of the Maker-
DAO Protocol, supported by the larger public
community and various other external parties.

Any actor with the required knowledge can freely
participate in any role, and they can occupy multi-
ple roles at once.

4.3. Collateralized Debt Position
DAI is created by locking assets with economic
value inside the protocol. Then, the system issues
DAI as debt against such assets creating what is
designated as a collateralized debt position, a CDP.
The owner cannot retrieve these assets without pay-
ing back the DAI they owe. Each asset has its own
associated system parameters. In fact, multiple rep-
resentations of the same asset, each representing dif-
ferent parameters, can be found within the system,
which is what defines Ilks. Ilks are the combination
of asset and parameter types that determine collat-
eral types. Each ilk is assigned a unique label.

Actor relationship to CDPs The sys-
tem recognizes separation between accounts to
which balances and positions are assigned. As

a result an external actor such as a person or
institution is able to control multiple accounts
simultaneously.

Actor ownership of CDPs Given that the
key terminology and basic concepts for this
topic were presented previously, we now have
the ability to explain the basic balances, and
their position structures. Balances are made of
collateral and DAI. Each user has a balance in
each ilk. Every user also has a DAI balance. A
position, formally termed vault or urn, requires
an ilk and an account and refers to the amount
of ink, the quantity of collateral locked, and the
issued DAI, which is represented as debt. To
complete our elementary descriptions, we add
vice. Vice is debt, DAI, issued by the system
that is not backed up by a CDP.

Fundamental invariant of the system
Given that we’ve explained some dynamic
properties now we can define the first non-
trivial system invariant, and the most relevant
one. It states that the sum of all issued DAI
for every account must equal vice plus the sum
of every debt for every type of ilk and account.
This is known as “The Fundamental Equa-
tion of DAI”, represented in equation 1.

∑
u∈U

daiu = vice+
∑

i∈I,u∈U

dbtiu (1)

Action dynamics of CDPs In this topic, it’s
important to begin by introducing the proto-
col’s dynamics starting with the rules for bal-
ances and positions. The ilk balances can be
changed by transferring assets in and out of
the protocol, transfers between accounts within
the protocol, or by adding or removing collat-
eral from a position. DAI, on the other hand,
cannot meaningfully flow into or out of the sys-
tem since it is defined by it. For every ilk the
system must have knowledge of some market
price for that asset in terms of DAI. In fact,
there’s a per-ilk time-varying parameter that
expresses the minimum ratio of collateral mar-
ket value to debt known as the collateralization
ratio. Moreover, a position is said to be safe if,
at a certain time point, the debt of an ilk, for a
given account, times the collateralization ratio
is equal or less than the ink amount times the
market price of the collateral.

Action Permissions These actions are re-
stricted to certain external actors in the system
in the following way: the change of DAI bal-
ances over time must respect the conservation

4



relationship defined earlier in “The Funda-
mental Equation of DAI”.

Furthermore, the debt of positions can be ma-
nipulated only according to certain rules that
are described as follows. The ilk balances
gemiu, the sum of all vault’s ink of a certain ilk
i and account u, can be changed by transfer-
ring assets in and out of the protocol, transfers
between accounts within the protocol, or by
adding or removing collateral from a position.

Time dynamics of CDP’s In this subject,
the concept of a stability fee is crucial. This
describes the time evolution of a position’s
debt. As stability fees accumulate, the addi-
tional debt is balanced by assigning an equiva-
lent amount of DAI to one or more accounts in
a special set of accounts, which belong to the
system, in order to respect the “Fundamen-
tal Equation of DAI”.

Stability fee Incentives Stability fees can
serve at least three different economic func-
tions within the system: motivate the creation
or destruction of DAI as needed to close the
gap between the market price and target price,
offsetting the danger posed by risky or volatile
assets held as collateral, and providing finan-
cial capital necessary for the operation of the
system (as well as profit to its stakeholders if
income exceeds costs).

This summary of the decomposition of the differ-
ent mechanisms that the MakerDAO protocol uses
is further extended in the complete dissertation.

5. MakerDAO K specifications
The developed and refined models of the Maker-
DAO system that we document and improve on
this document are formalized in the K framework,
which, as explained previously, not only provides a
formal semantics engine for analyzing and proving
properties of programs but also allows developers
to define models that are mathematically formal,
machine-executable, and human-readable at differ-
ent levels of abstraction.
The system specifications are formal, defining

contracts as configuration patterns, and specifying
system behaviors as transitions over patterns, mod-
eled as K’s rewrite rules. Specifications are exe-
cutable in the K framework following the defined
rules, which due to the benefits provided by the K
framework’s design immediately produce an execu-
tion engine for the protocol. When modeling sys-
tems, executable specifications enable running sim-
ulations on different levels of abstractions, which
help prototyping and debugging different designs
during the development process and after their de-
ployment as well.

5.1. High-level model
This model abstracts the protocol’s implementa-
tion on the Ethereum Virtual Machine and details
the high-level mechanisms that comprise the Mak-
erDAO system.

This high-level model may be used as a canonical
specification for model-based test generation and
for validating other implementations. Additionally,
this method seamlessly facilitates the gradual im-
provement of the protocol’s formal design without
needing to alter the concrete Smart Contract im-
plementation.

Finally, the executable high-level specification of
the MakerDAO system in K can be immediately
subjected to K’s suite of reachability, model check-
ing and theorem proving tools, promoting and aid-
ing the verification of different formal analysis.

In order to further comprehend this topic, be-
low, we give additional information regarding the
abstraction level of this model. Alternatively to
previous sections, where we explained how the sys-
tem works, we now characterize where this high-
level formalization of the MakerDAO system stands
concerning abstraction with regards to the reference
Smart Contract implementation, clearly delineating
the similarities and differences between them.

Similarities:

• Notion of accounts, external actors, Externally
Owned Accounts in the EVM

• Non-concurrency of state manipulation

• Model is composed by files that use the same
naming conventions as in the Smart Con-
tract implementation with similar, but ab-
stract, state manipulation

• Naming of data structures

Differences:

• No bytecode manipulation

• Typing of variables is independent of imple-
mentation

• The configuration of the model only references
the MakerDAO system and not the complete
EVM state

• Notion of time not provided by the EVM

Summary:
This high-level model of the system could

describe the MakerDAO system on another
blockchain that presents similar characteristics
to the Ethereum Virtual Machine such as non-
concurrency and an account-based computational
model. However, without the finer-grained charac-
teristics of Ethereum or the EVM, such as typing

5



and consensus mechanisms, which is faithful to the
high-level design of the system that is already built
on top of these assumptions. In conclusion, it is
a high-level representation of the Solidity contracts
that comprise the MakerDAO protocol.

We must emphasize that the chosen level of this
system specification in the spectrum of abstraction
not only allows for testing the model with regards
to high-level properties, such as Finite State Ma-
chines, but also enables using some of the concrete
tests that are part of the implementation, further
validating the design decision.

Given that the reader now comprehends var-
ious crucial aspects of this high-level model,
we can proceed to summarize the compo-
nents of the K MakerDAO model specifica-
tion which is open-source and can be found
at https://github.com/makerdao/mkr-mcd-
spechttps://github.com/makerdao/mkr-mcd-spec.

5.2. Low-level model

This model of the system faithfully reproduces the
system’s implementation on Ethereum as it uses
the compiled Solidity bytecode that is available on-
chain and executes it on the reference EVM imple-
mentation in K, the KEVM, already detailed in the
respective Section 3.4. Moreover, using directly the
compiled bytecode eliminates the need to trust the
Solidity compiler, maximizing the functional guar-
antees provided by its verification.

The bytecode is made available for use in the
KEVM by inserting it in K syntax.

6. High-level Specification Extension

In this chapter we present our contributions to the
high-level model of the MakerDAO protocol.

6.1. Liquidations 2.0

The MakerDAO protocol uses liquidations of un-
collateralized vaults as a mechanism for maintain-
ing DAI’s peg to the dollar [19]. During the initial
phase of the development of this thesis, the liquida-
tions system of the Maker protocol was upgraded re-
placing the old liquidations with new more efficient
ones. This improvement to the system, known as
“Liquidations 2.0”, redesigned liquidations by re-
placing the previous English auction with a new
Dutch auction system. This upgrade to the protocol
was led by the motivations to reduce: the reliance
on DAI liquidity, the likelihood of auctions settling
far from the market price, and the barriers to entry.
An in-depth view of the research and analysis that
resulted in this change can be found on the Mak-
erDAO governance website 2 and the complete Im-

2[https://forum.makerdao.com/t/a-
liquidation-system-redesign-a-pre-mip-
discussion/2790]https://forum.makerdao.com/t/a-
liquidation-system-redesign-a-pre-mip-discussion/2790

provement Proposal, detailing implementation, can
be also found online 3.
We used this opportunity to familiarize with the

inner workings of the K framework and the KEVM,
understand how the MakerDAO protocol works,
from its mechanism design to implementation, and
gain thorough insight of the publicly available code-
bases that model the MakerDAO protocol in the
K framework, both at the high-level and low-level
specifications, all while contributing directly to the
continuous development of all the aforementioned
technologies.

6.2. Liquidations 2.0 High-level K Specifications
Liquidations 2.0 introduces three new contracts to
the MakerDAO protocol Ethereum implementation,
each responsible for a certain key component of
the liquidations system. These three contracts re-
place the two previous contracts in charge of liqui-
dations, cat.sol and flip.sol. Each of the new con-
tracts, dog.sol, clip.sol and abaci.sol, provide differ-
ent functionality to the system, described below:

The dog.sol contract is responsible for liquidat-
ing vaults and initiating a Dutch auction to sell the
vault’s collateral for DAI. The liquidation is trig-
gered by an external user who signals that a partic-
ular vault is uncollateralized. After verifying if the
vault is indeed uncollateralized, it then also decides
whether the vault should be entirely liquidated or
whether it should only be performed a partial liq-
uidation.

The clip.sol contract is responsible for the Dutch
auctions that receive a certain amount of DAI for
the confiscated collateral of the liquidated vault.
After a Dutch auction has been initiated, external
users can bid with DAI to buy the respective collat-
eral. Since the auction style is Dutch there might be
no bids for the collateral and when a price thresh-
old is met, then an external user is encouraged to
instruct the contract to reset the auction.

Lastly, the abaci.sol contract is responsible for
calculating the price of the collateral to be sold,
at each time step on the Dutch auction. It is the
responsibility of the clip contract to query the aba-
cus whenever it needs a new price for the currently
auctioned collateral.

Each of these contracts was specified and
added to the high-level K model of the Maker
protocol, extending the codebase with these
new files. Respectively, the dog.sol was for-
malized into dog.md, clip.sol into clip.md, and
abaci.sol into abaci.md, all of which can be found
here https://github.com/makerdao/mkr-mcd-
spec/pull/250https://github.com/makerdao/mkr-

3[https://forum.makerdao.com/t/mip45-
liquidations-2-0-liq-2-0-liquidation-system-
redesign/6352]https://forum.makerdao.com/t/mip45-
liquidations-2-0-liq-2-0-liquidation-system-redesign/6352

6



mcd-spec/pull/250. All of the high-level behavior
described above was captured in the K high-level
specification of these contracts, representing a
suitable abstraction on par with the rest of the
codebase and following the conventions defined in
the section highlevel.

In order to integrate these files into the system,
some changes to the execution framework and data
types of the system had to be made to accommodate
new behavior and data manipulation.

Liquidations 2.0 introduced two new modifiers
to the system, a reentrancy call prevention mecha-
nism called lock, and a four stage liquidation circuit
breaker mechanism called stop.

The locking mechanism was formalized in the
general execution framework of the high-level spec-
ification by introducing the modifier at the call
boundaries, faithfully capturing the intended high-
level behavior of the mechanism, correctly locking
and unlocking the intended rules, making reentrant
calls impossible. The code necessary to do so has
already been shown and explained when detailing
the high-level model.

The circuit breaker mechanism only applies to
the clip contract and, therefore, it was formalized
using a new sort, consisting of terminal strings, and
then defining the rules necessary for comparisons
between members of the sort, which yield a Boolean
value. This formalization captures the intended be-
havior of the modifier, while only requiring the in-
tended comparison to be made at the requires part
of a rule.

It was also necessary to add some data conversion
rules between arithmetic types but without preci-
sion loss, which would make the system’s behavior
to be wrongly captured by the specification.

6.3. Fundamental Equation of DAI

We extended the high-level MakerDAO K specifica-
tion with a non trivial property of the protocol mod-
eled as a Finite State Machine. This property is the
Fundamental Equation of DAI which, as mentioned
earlier, is an invariant of the dynamic system that
states the following: The Sum of DAI of all users
must be equal to vice plus the sum of debts of all
ilks of all users, represented in equation 1.

In order to express this property it was necessary
to extend the specification’s measured events to en-
compass the sum of the total DAI issued over the
vat.

As it is shown in the repository 4, even though
this is a non trivial property of the system, it is
formalized over the high-level specification in a suc-
cinct and clear way. This difference in the expres-

4https://github.com/makerdao/mkr-mcd-
spec/pull/250https://github.com/makerdao/mkr-mcd-
spec/pull/250

siveness of properties between various abstraction
levels of a system’s specification reinforces the mo-
tivation behind refinement proofs, which are dis-
cussed on the next chapter.

7. Refinement Proofs
Refinement is the process of moving from an ab-
stract specification, termed the model, to a concrete
specification, termed implementation. Refinement
proofs demonstrate that the abstract model accu-
rately captures behaviors of the concrete implemen-
tation. Note that this allows the implementation
to exhibit behaviors not captured by the model.
To disallow this, one can do a refinement proof in
the other direction: show that the implementation
accurately captures the behavior of the abstract
model. An equivalence proof can be constructed
by showing refinement proofs in both directions.

7.1. Motivation
When formalizing system’s designs at higher-levels
of abstraction it is always desirable to guarantee
that its behavior is captured by the implementa-
tion. The MakerDAO high-level specification of the
system is no exception. When it was first formal-
ized, its creators, the MakerDAO and Runtime Ver-
ification teams at the time, sought to ensure that
certain behaviors of this model were present in the
implementation. This was achieved by: firstly, ex-
ecuting the high-level model, checking for the vio-
lations of properties and state updates. During ex-
ecution, the high-level model collects the sequence
of contract interactions and state changes. After-
wards, it constructs a Solidity unit test with the
equivalent sequence of calls and assertions about
the state changes. Finally, the generated Solidity
test is ran against the Solidity implementation to
validate conformance between the model and the
implementation on that execution trace.

However, this implementation of the refinement
does not directly refine the high-level specifica-
tion with the bytecode implementation. It requires
trusting the external python library and also the
Solidity compiler for the tests. Moreover, this pro-
cedure could be described as refinement testing, as
it only ensures that the set of behaviors exhibited
when fuzzing the high-level model are in fact cap-
tured by the implementation. A sound proof of re-
finement between the high-level specification and
bytecode implementation in the K framework re-
moves the necessity of using external tooling, trust
in the Solidity compiler, and also ensures that the
implementation captures all of the high-level speci-
fication behaviors.

The method described here is an attempt to prove
refinement of the high-level model to the implemen-
tation and is pioneer work in the area of DeFi [20],
an up to date model, and until now on the forefront

7



of verification in Decentralized Finance.
Additionally, as discussed in the previous chap-

ter, when documenting the MakerDAO protocol
and finding interesting properties to model over the
high-level specification, it became clear that sound
refinement proofs were necessary.
Having this in sight, in the following sections we

present methods and examples that not only make
this sound refinement in the K framework possible
but also intuitive and approachable.

7.2. Refinement Methods
The refinement technique presented in this thesis
uses the MakerDAO protocol as an example, but it
can be modified with low overhead to refine other
protocol’s high-level models to EVM bytecode.
In order to formalize the refinement proofs we

must first define how will the refinement method
between the two specifications work.
Our refinement method is based on cut-

bisimulation, introduced by Daejun et al. [21]. Cut-
bisimulation allows two programs to semantically
synchronize at relevant “cut” points, but to evolve
independently otherwise. We now outline the cut-
bisimulation mechanism and correctness guarantees
for our refinement model.
Inspired by the cut-bisimulation method ex-

plained above we model our refinement proofs using
a slightly different technique. Instead of specifying
pairs of cuts on which the simulations states should
be equivalent throughout execution, we start with a
symbolic state in the high-level model, construct a
refined state in the implementation directly, execute
the low-level state symbolically to completion, then
map the final state back to the high-level model
where we check it for correctness. By providing a
constructive translation between the model states,
we can refrain from having to execute both models
to prove refinement.
Summarizing, our refinement proofs follow the

ensuing procedure:

1. Start with a transition in the high-level model,
which consists of an initial symbolic state and
a final symbolic state.

2. Initiate a transaction on the high-level specifi-
cation.

3. Symbolically execute the implementation state
to completion.

4. Map the final symbolic implementation state
back to a model state, proving that it is identi-
cal to the final state described by the high-level
transition.

5. Restart high-level execution on item 2 until the
entire behavior specification is proven.

In the refinement process, by symbolically updat-
ing the storage of the KEVM we can then demon-
strate that these updates are equal to the symbolic
updates defined on the high-level specification. This
ensures that a subset of possible behaviors of the
implementation is captured by the high-level model.
Repeating this process for every possible high-level
behavior proves that every behavior in the high-
level specification is captured by the implementa-
tion, meaning that the high-level behavior is a strict
subset of the bytecode implementation. We note
that this refinement model does not state any con-
clusion about additional behavior in the implemen-
tation not contemplated in the high-level specifica-
tion.

Implementing this refinement can be divided into
two major issues. Firstly, how the transactions
should be refined to the bytecode, execution refine-
ment. Secondly, how the symbolic storage updates
should be verified equivalent, state refinement.

As we can observe the refinement between spec-
ifications is non-trivial. Therefore, throughout the
rest of this chapter we break apart the issues pre-
sented and demonstrate our solutions for the con-
crete implementation details of the proposed refine-
ment model.

7.3. Execution Refinement
The execution refinement between the high-level
specification execution framework and the KEVM
can be re-used with minor adaptations for other
low-level models.

Model Configuration

At the bottom of the presented high-level spec-
ification configuration we include the KEVM con-
figuration, ⟨kevm⟩. This allows accessing KEVM
state and concurrent state manipulation between
both specifications. Additionally, we also add a
helper configuration which translates between users
in the high-level model and accounts in EVM,
⟨mcd − accounts⟩. This represents the initial con-
figuration on step 1.

Data Structures

As discussed previously, it is necessary to intro-
duce a configuration that enables translating be-
tween users in the high-level specification and ac-
counts in EVM. This configuration is a pair con-
sisting of a single user and account. It ties both of
these together and each unique pair is identified by
its high-level specification user id.

Specification Transition Functions

As mentioned in step 3 of the refinement proofs
methodology it is necessary to refine transactions

8



from the high-level specification into equivalent
bytecode transactions accepted by the EVM. In
order to achieve this we could manually specify a
translation for every high-level transaction, but it
would not be modular to use as refinement for other
specifications other than the MakerDAO one.

7.4. State Refinement
In the refinement technique declared above we must
be able to verify that the symbolic updates to stor-
age made by the low-level specification match the
storage update claims of the high-level model.
We implement a new technique introduced in this

dissertation. This technique allows manipulating
abstract storage when executing bytecode on the
low-level implementation. It abstracts the EVM
storage mapping, making it possible to define ar-
bitrary storage configurations in K. It trades off be-
ing able to execute the KEVM over typical bytecode
storage for the possibility of directly verifying that
symbolic storage updates of the low-level specifica-
tion match the expected high-level model claims,
proving the refinement correct. In our refinement
example, we substitute the KEVM representation
of storage with the same structured representation
of the Smart Contract storage from the high-level
model and adapt the KEVM storage reads and
writes to work over this representation. This al-
lows to trivially check that symbolic storage up-
dates match claims, while minimizing the changes
to KEVM necessary in order for it to properly read
and write from storage. This new technique results
in a much more practical method for refining large
codebases such as the MakerDAO protocol.
The validity of the storage updates performed

over an abstract storage assumes the correctness
of the storage layout regarding its equivalence to
the actual bytecode storage. In Solidity, variables
present in the storage are declared at the begin-
ning of a contract along with their identifier and
data type, making it trivial to confirm that they are
properly expressed in the high-level configuration’s
cells. The Solidity compiler uses hashed locations
to ensure that there are no data collisions [22]. At
the moment, every Solidity contract and Solidity
developer assume that this statement is true, and
although bugs in other EVM bytecode compilers
like the Vyper compiler have been found in previ-
ous work with the K framework [23, 24, 25] it is
still an accepted assumption in the Ethereum com-
munity. This trust model implies that the abstract
storage we are using does not use additional trust
assumptions to ensure correctness.

8. Analysis
We now analyze the extension of the high-level
MakerDAO model and the new abstract storage
technique.

8.1. Liquidations 2.0

The Liquidations 2.0 module was properly specified
in the high-level model 5, maintaining the same ab-
straction from the Solidity implementation as the
rest of the codebase. The codebase was not ex-
tended with randomized concrete tests for this mod-
ule as refinement proofs and formalization of system
properties were prioritized.

8.2. Fundamental DAI Equation

Following the definition of the Fundamental DAI
Equation invariant as a Finite State Machine on the
high-level model in Section 6 we executed the al-
ready defined randomized concrete tests present in
the specification 6, explained in Section 5. Running
this test suite ensured that for the set of behav-
iors tested the non-trivial invariant of the system
remained true.

8.3. Abstract Storage

In the complete dissertation we present an exam-
ple of a reachability claim successfully proven using
KEVM with the abstract storage model discussed
in section 7.

9. Conclusions

This chapter summarizes this dissertation’s major
contributions and addresses future research and de-
velopment.

9.1. Contributions

This thesis provides several contributions on the di-
rections described in Section 1.2.

Concretely, our research used MakerDAO as the
Smart Contract system to model and the K frame-
work to formally specify this system, both at high
and low levels of abstraction. Firstly, we extended
MakerDAO’s documentation, detailing it’s goal,
mechanisms that are designed to achieve it, and im-
plementation of such mechanisms. Afterwards, we
created documentation for the high-level K speci-
fication of MakerDAO. Subsequently, we extended
MakerDAO’s current high-level K specification with
the Liquidations 2.0 module in order to correctly
represent the currently deployed system’s archi-
tecture and a non-trivial property of the system.
Later, we refined this high-level model to match the
Smart Contract EVM representation of the system
in the same semantic framework K, leveraging the
existing implementation of EVM in K, introducing
novel K modelling techniques to achieve this result.
Consequently, this refinement leads to being certain
that proofs over the high level model of the system

5https://github.com/makerdao/mkr-mcd-
spec/pull/250https://github.com/makerdao/mkr-mcd-
spec/pull/250

6[https://github.com/makerdao/mkr-mcd-
spec/tree/master/tests]https://github.com/makerdao/mkr-
mcd-spec/tree/master/tests

9



are also correct over the bytecode implementation
of the system.
Our main contributions are summarized as fol-

lows:

• We improved MakerDAO’s documentation, fo-
cusing on refinement proofs, in Section 4.

• We introduced documentation for Maker-
DAO’s high-level K framework specification, in
Section 5.

• We expanded MakerDAO’s high-level K spec-
ification to include the new Liquidations 2.0
module 7, in section 6.

• We formalized a non trivial high-level property
over the high-level MakerDAO specification 8,
in Section 6.

• We developed the software necessary for re-
finement proofs between the high-level Mak-
erDAO specification, modeled in K, and the
EVM bytecode implementation, 9 10 11, im Sec-
tion 7.

• We created a blueprint for refinement proofs
between high-level specifications of system’s
models and their implementation that can
be generalized for different semantics, in Sec-
tion 7.

9.2. Future Work
As blockchain and Smart Contract development are
rapidly growing industries it is necessary to con-
stantly keep improving research. Direct directions
for future work are:

Finish refining the codebases The refine-
ment techniques presented in this thesis and
working examples of their utilization show the
benefit and practical use of it in this codebase.
However, the full refinement proof of all the be-
haviors of the high-level specification has not
yet been completed and will continuously be
implemented in the upcoming months.

7https://github.com/makerdao/mkr-mcd-
spec/pull/250https://github.com/makerdao/mkr-mcd-
spec/pull/250

8https://github.com/makerdao/mkr-mcd-
spec/pull/250https://github.com/makerdao/mkr-mcd-
spec/pull/250

9https://github.com/makerdao/mkr-mcd-
spec/tree/mcd-to-kevm-transactionshttps://github.com/makerdao/mkr-
mcd-spec/tree/mcd-to-kevm-transactions

10https://github.com/makerdao/mkr-mcd-
spec/tree/simple-refinementhttps://github.com/makerdao/mkr-
mcd-spec/tree/simple-refinement

11https://github.com/makerdao/mkr-mcd-
spec/tree/step-subsortshttps://github.com/makerdao/mkr-
mcd-spec/tree/step-subsorts

Continue modeling protocol properties
In this document we provided documentation
of MakerDAO that clearly separates design and
implementation. Continuing to reason about
the mechanism design of the protocol will lead
to the formalization of more system invariants
and properties which can be specified on the
high-level model and refined to the implemen-
tation.

Automate the high-level k model directly
from contract source The execution abstrac-
tion of the presented MakerDAO high-level K
specification can be re-used by other protocols
with minimal effort. A tool that attempts to
automate as much as possible the creation of
a high-level model of a protocol directly from
Solidity source may also be developed.

Automate the refinement proofs Most of
the refinement technique we presented can be
re-used with a similar high-level K specifica-
tion. If a tool that automatizes the specifi-
cation of a high-level model from Solidity is
created then defining the appropriate rules for
each particular contract storage lookup and
writes should be trivial to implement as well.

Ensure reverting behavior in implemen-
tation Further research should look to ensure
that implementation behaviors not captured by
the high-level model should lead to reverting
states, not affecting storage.

Summing up, if research continues in this direc-
tion, the Ethereum ecosystem will benefit from be-
ing able to automatically specify and refine high-
level models of Solidity Smart Contracts with their
produced bytecode and vice versa. Advances in this
area leads to immensely improving quality stan-
dards of Decentralized Finance protocols, reducing
economic risk for users and enabling the secure de-
sign of new financial primitives.

References

[1] W. Chen, Z. Xu, S. Shi, Y. Zhao, and
J. Zhao, “A survey of blockchain ap-
plications in different domains,” Proceed-
ings of the 2018 International Conference
on Blockchain Technology and Application
- ICBTA 2018, 2018. [Online]. Available:
http://dx.doi.org/10.1145/3301403.3301407

[2] A. Anoaica and H. Levard, “Quantitative de-
scription of internal activity on the ethereum
public blockchain,” in 2018 9th IFIP Interna-
tional Conference on New Technologies, Mobil-
ity and Security (NTMS), 2018, pp. 1–5.

10



[3] F. Schär, “Decentralized finance: On
blockchain- and smart contract-based fi-
nancial markets,” 03 2020.

[4] D. Zetzsche, D. Arner, and R. Buckley, “De-
centralized finance (defi),” SSRN Electronic
Journal, 01 2020.

[5] N. Atzei, M. Bartoletti, and T. Cimoli, “A
survey of attacks on ethereum smart contracts
(sok),” 03 2017, pp. 164–186.

[6] B. Jiang, Y. Liu, and W. K. Chan,
“Contractfuzzer: fuzzing smart contracts
for vulnerability detection,” Proceedings
of the 33rd ACM/IEEE International
Conference on Automated Software En-
gineering, Sep 2018. [Online]. Available:
http://dx.doi.org/10.1145/3238147.3238177

[7] A. Mamageishvili and J. C. Schlegel, “Mech-
anism design and blockchains,” CoRR, vol.
abs/2005.02390, 2020. [Online]. Available:
https://arxiv.org/abs/2005.02390

[8] S. Nakamoto, “Bitcoin: A peer-to-peer elec-
tronic cash system,” 2009. [Online]. Available:
http://www.bitcoin.org/bitcoin.pdf

[9] L. Zhou, L. Zhang, Y. Zhao, R. Zheng,
and K. Song, “A scientometric review of
blockchain research,” Information Systems and
e-Business Management, 02 2020.

[10] N. Szabo, “Smart contracts : Building blocks
for digital markets,” 2018.

[11] V. Buterin, “A next-generation smart contract
and decentralized application platform,” 2015.

[12] G. Wood et al., “Ethereum: A secure de-
centralised generalised transaction ledger,”
Ethereum project yellow paper, vol. 151, no.
2014, pp. 1–32, 2014.

[13] G. Rosu, “K framework - an overview,”
https://runtimeverification.com/blog/k-
framework-an-overview/, 2018.

[14] A. Stefanescu, Ş. Ciobâcă, R. Mereuta,
B. M. Moore, T. Serbanuta, and G. Rosu,
“All-path reachability logic,” CoRR, vol.
abs/1810.10826, 2018. [Online]. Available:
http://arxiv.org/abs/1810.10826

[15] G. Rosu, “Matching logic - extended ab-
stract,” in 26th International Conference on
Rewriting Techniques and Applications, RTA
2015, ser. Leibniz International Proceedings
in Informatics, LIPIcs, M. Fernandez, Ed.
Schloss Dagstuhl- Leibniz-Zentrum fur Infor-
matik GmbH, Dagstuhl Publishing, Jun. 2015,

pp. 5–21, 26th International Conference on
Rewriting Techniques and Applications, RTA
2015 ; Conference date: 29-06-2015 Through
01-07-2015.

[16] E. Hildenbrandt, M. Saxena, N. Rodrigues,
X. Zhu, P. Daian, D. Guth, B. Moore, D. Park,
Y. Zhang, A. Stefanescu, and G. Roşu, “Kevm:
A complete formal semantics of the ethereum
virtual machine,” 07 2018, pp. 204–217.

[17] R. Christensen, “Makerdao has come full cir-
cle,” https://blog.makerdao.com/makerdao-
has-come-full-circle//, 2021.

[18] ——, “Introducing edollar, the ulti-
mate stablecoin built on ethereum,”
https://www.reddit.com/r/ethereum/comments/30f98i/introducingedollartheultimatestablecoinbuilt/, 2014.

[19] MakerDAO, https://docs.makerdao.com/, 2021.

[20] R. Burton, “Formal verification, virtual
hardware, and engineering for blockchains,”
https://medium.com/balance-io/formal-
verification-virtual-hardware-and-engineering-
for-blockchains-51d07abdc934, 2019.

[21] D. Park, T. Kasampalis, V. S. Adve, and G. Rosu,
“Cut-bisimulation and program equivalence,” 2020.

[22] E. Foundation, https://docs.soliditylang.org/en/v0.8.9/internals/layoutinstorage.html, 2021.

[23] D. Park, https://github.com/ethereum/depositcontract/issues/27, 2019.

[24] ——, https://github.com/ethereum/depositcontract/issues/28, 2019.

[25] ——, https://github.com/ethereum/depositcontract/issues/38, 2019.

11


