
Active vs Passive Flow Adjustment in Games*
1st Alexandre Chı́charo

Instituto Superior Técnico
Instituto Superior Técnico

Lisbon, Portugal
alexandre.chicharo@tecnico.ulisboa.pt

Abstract—Flow is the mental state in which a person is
completely immersed in the activity at hand. Flow is arguably
the holy grail of game design, yet it isn’t trivial to design into our
games. The main challenge comes down to matching the game’s
challenge with the player’s ability. Because each player will have
a distinct skill level, which will also improve at different rates,
for a game to be able to keep a wider audience in the Flow state
a highly adaptive system is required.

In this work, we explore two approaches for implementing flow
in games, Passive and Active Flow Adjustment. The first refers to
the use of dynamic difficulty adjustment systems and the latter to
allowing the player control over the game’s challenges through
the mechanics of the game. We want to compare Passive and
Active Flow adjustment, applied to an action game. For this
reason, we developed ClusterTechRush, a top-down shoot’em up
game, we asked participants to play two versions, one where the
player controlled the game’s difficulty and another where the
game’s systems had the control.

We didn’t find any advantage when it came to experiencing
flow between the two versions but we did find that more casual
players felt more competent, less tense, and experienced more
positive emotion while playing the version that used Passive Flow
adjustment, which seems to suggest Passive Flow adjustment
might be better suited for designing games aimed at more casual
players.

Index Terms—Flow, Experience, Player Control, Active Flow
Adjustment, Passive Flow Adjustment, Dynamic Difficulty Ad-
justment.

I. INTRODUCTION

A. Motivation

The games industry is growing rapidly, having reached a
value of over 150 billion US$ Worldwide [17]. With more
and more people playing games, we as game designers dream
of being able to create great experiences that everyone, no
matter where they’re from or how skilled they are can truly
enjoy. What if we could make games that that would create an
optimal experience no matter the player? That’s where Flow
comes in.

Flow is a term coined by Mihaly Csikszentmihaly [1] that
refers to a state of mind where an individual is completely
involved in the task at hand, there is a balance between how
challenging the task is, and the individual’s ability. It’s linked
with an altered sense of duration of time, and loss of concern
over everyday problems, which is a very desirable property
in video games. In his research, Mihaly observed that Flow
could be experienced by anyone, independently, where they’re

Identify applicable funding agency here. If none, delete this.

from, as long as a few criteria were met. The problem is, that
these criteria are not always easy to ensure.

Implementing Flow into games is not a simple task. With
this work, we hope to help answer some of the questions about
Flow so that we can be closer to a future where it is easier
to implement. And, as game designers, we can bring optimal
experiences to as many people as possible.

B. Problem

The ability for a game to invoke Flow on its players is a very
desired quality. However flow is not trivial to implement, there
are a lot of variables that will influence an individual’s Flow
state. Jenova Chen [2] applied Mihaly’s Flow to video games.
And according to him, the biggest challenge is in keeping the
player in the Flow zone, the space where the challenge of the
game is in balance with the player’s skill. This is hard because
every player will not only have a different skill level at the
start of the game but will also improve at different rates, as
they progress through the game. To compensate for this the
game must adapt its challenges to the player’s ability as the
game progresses.

Chen distinguishes between two ways of achieving this,
either through Passive Flow Adjustment or Active Flow Ad-
justment. Passive Flow Adjustment (PFA) refers to Dynamic
Difficulty Adjustment(DDA) systems, which through software
will keep track of player flow, and dynamically adjust the
difficulty to try and maintain the player in the flow zone.
While Active Flow Adjustment (AFA) refers to player choice-
driven difficulty adjustment giving control to the player, over
the game’s challenges. Considering control over the task at
hand is one of the important elements necessary for flow, Chen
goes on to define a methodology for designing flow into games
based on active flow adjustment. To test his methodology he
developed the game Fl0w [2] which became a commercial
success.

This doesn’t make AFA immediately a better option. PFA
has a lot of potential that we don’t yet have the technology
to harness. We still don’t have the technology to accurately
measure the flow state of a player. Ultimately, a generic PFA
tool could be created, that could be used in different games.
This would allow developers to save development time and
money. Because Active flow adjustment is more of a design
problem, the same couldn’t be done for AFA. There are also
examples of successful games that use PFA, like Resident Evil
4 or Left 4 Dead, which proves it can also be a viable option.



The main difference between the approaches is the amount
of player control, which raises the question of how important
is player control when it comes to Flow?.

C. Research Questions

By having two very similar versions of the same game, the
only difference being, how the difficulty is managed. we want
to compare player experiences to see which version they enjoy
more. In the DDA version, the challenge will be adapted to
the player, by the game, while in the other version the player
will be responsible for controlling the amount of challenge
the game is presenting at any time. Locus of control defines
a personal belief about whether outcomes of behavior are
determined by one’s actions or by forces outside one’s control.
Because the main difference between the two versions will be
how much control the player has, it will be interesting to see
how the player experience relates to Locus of Control.

With this work we hope to get closer to answering these
questions: What option will produce a better game experience?
Active or Passive Flow adjustment? which option will work
best with our game? How important will player control be
for maintaining the Flow state? How will Locus of control
influence the player experience?

II. RELATED WORK

A. Flow

1) What is Flow?: Flow is a term coined by Psychologist
Mihaly Csikszentmihaly [1]. He described it as
”being completely involved in an activity for its own sake.
The ego falls away. Time flies. Every action, movement, and
thought follows inevitably from the previous one, like playing
jazz. Your whole being is involved, and you’re using your skills
to the utmost.”
In his research, he tried to find out what brought happiness by
interviewing people of different cultures from all around the
world. He found that, regardless of culture, they all described
the most enjoyable experiences they had in a similar way. He
identified eight components that were almost always present
when a person was in the state of Flow:

1) We confront tasks we have a chance of completing;
2) We must be able to concentrate on what we are doing;
3) The task has clear goals;
4) The task provides immediate feedback;
5) One acts with deep, but effortless involvement, that

removes from awareness the worries and frustrations of
everyday life;

6) One exercises a sense of control over their actions;
7) Concern for the self disappears, yet, paradoxically the

sense of self emerges stronger after the flow experience
is over;

8) The sense of duration of time is altered.
These eight components, together, can invoke in a person a

sense of deep enjoyment, that makes the task at hand worth
it, for the sake of itself, regardless of the effort necessary to
complete it.

When trying to design tasks that invoke Flow, a common
challenge in game design, it is important to maintain a balance
between the challenge provided by a task and the skill of the
player performing the task. If a player’s skill level is higher
than the challenge presented, the player will get bored, and
if the skill level of the player is too low for the presented
challenge it will result in anxiety. The space in between is
called the Flow Zone.

2) Flow in Games: In Flow in Games [2], Jenova Chen uti-
lizes Mihaly Csikszentmihaly’s Flow theory to define a game
design methodology to create experiences that are adapted to
different types of players. He breaks down Mihaly’s eight flow
components and defines three core elements necessary for a
game to invoke Flow experience.

1) As a premise, the game is intrinsically rewarding, and
the player is up to play the game;

2) The game offers the right amount of challenge to match
with the player’s ability, which allows him/her to delve
deeply into the game;

3) The player needs to feel a sense of personal control over
the game activity.

These three core elements can be linked to the original eight
defined by Mihaly has followed:

• Mihaly’s flow components 2, 3, 5, 7, and 8, the ability
of the player to concentrate on the task at hand, clear
goals, deep effortless involvement, the disappearance of
the sense of self, and the altered sense of time duration,
all contribute to a game that is intrinsically rewarding to
play, and that the player will want to play.

• Mihaly’s flow component 1, ”We confront tasks we have a
chance of completing” directly relates to the J.C’s second
core element, the matching of the player ability and the
game’s challenge. Which when met will result in the
merging of action and awareness, the disappearance of
the sense of self and the altered sense of time duration,
or Mihaly’s components 5, 7, and 8.

• The third core element, the need for the player to feel
personal control over the game, can be linked to Mihaly’s
third, fourth, and sixth components or the game has
to have clear goals, the game must provide immediate
feedback and the player exercises a sense of control over
the game.

Assuming the audience is interested in playing the game,
the biggest challenge in game design is how to maintain the
player in the Flow Zone. Since different players will not only
have different skill levels at the start of the game but their
skill, as the game progresses, will also increase at different
rates. The problem becomes how to continuously adjust the
challenge in order to maintain the player in the Flow Zone
until he finishes the game.

In order to realize optimal experiences for a much wider
audience, not only do we need to offer a wide Flow Zone
coverage, but we also need a highly adaptive system to
weave the rich gameplay experiences together, adjusting Flow
experiences based on the players. [2]



In Chen’s work, he makes a distinction between Static Flow,
Passive Flow adjustment, and Active Flow adjustment.

3) Static Flow: Static Flow refers to the approach that is
most often used in commercial games, where the game is tuned
for players of a certain skill level. And the game will not be
adapted so that any player regardless of skill level can reach
an optimal experience.

4) Passive Flow Adjustment: Passive Flow adjustment
refers to the game systems that will adjust the difficulty of the
game based on player performance. These systems often work
under an iterative loop, that will monitor player performance,
decide what needs to be changed in order to maintain the
player in Flow, apply those changes, and repeat this loop.

This approach in theory could solve the flow problem,
however, there are a few problems to which we still don’t
have a solution:

• No direct data - We still don’t have the technology, to
read what the player is thinking, it is really hard to know
if a player is actually in a flow state or not. And if not,
if he is bored or anxious, so that an adjustment can be
made.

• Performance doesn’t not mirror flow - Designer and
researchers have figured out how to estimate player’s
performance, using data like, ”Total Kills”, ”Accuracy”,
”Times Hit”, ”Headshots”, etc. However, even if perfor-
mance can be used as an approximation of flow, it doesn’t
translate directly to it.

• Analysis based on assumptions - Assumptions never work
for a mass audience. When a player enjoys performing a
suicidal stunt in Grand Theft Auto, it would be ridiculous
for a DDA system to assume that the player’s skill is too
poor because of the death count.

• Changes are based on rigid design – The way a system
adjusts its difficulty is pre-determined by the designer.
Different designers use their own preferences when de-
ciding how many changes should be applied; however, the
individual preferences of a designer will never represent
the preferences of a mass audience.

5) Active Flow Adjustment: Through the lens of the three
core elements of Flow, as defined by Chen [2], we will notice
that most System-oriented DDA designs focus a lot on the
second element, keeping the balance between the challenge
and player skill. However, they ignore another important core
element, to make the player feel a sense of control over the
game activity.

Using Active Flow Adjustment, players can be given
choices that give them control over their Flow experience.
This can be achieved by giving players a wide spectrum of
activities with differing difficulties. Depending on the player’s
skill and tastes, each individual will make different choices
and progress through the game at their own pace.

In order to adjust Flow experiences dynamically and to
reduce Flow noises, the choices have to appear in a relatively
high frequency [2]. A potential problem of this approach is
that, depending on how these choices are presented to the
player, they can be responsible for interrupting the player’s

Flow State. One solution to this problem would be to have a
monitoring system to detect the best moments to present the
player with these choices. Unfortunately, monitoring systems
are not yet advanced enough to detect player Flow. The only
solution is then, to embed the choices into the gameplay,
letting the player deal with choices as part of playing the
game, and, eventually ignoring them. Eventually, the choices
will become intuitive and start reflecting their actual desires.

6) Flow in Games Methodology: According to Jenova Chen
[2], designing a game system that will be able to invoke Flow
in a wide range of players is not difficult. He claims that
by applying the methodology shown below, any game can be
become more dynamic and flexible, meaning the game will be
able to invoke Flow in more players.

1) Expand your game’s Flow coverage by including a wide
spectrum of gameplay with different difficulties and
flavors.

2) Create a Player-oriented Active DDA system to allow
different players to play in their own paces.

3) Embed DDA choices into the core gameplay mechanics
and let the player make their choices through play.

B. Evaluation

1) The Game Experience Questionnaire (GEQ): The Game
Experience Questionnaire [10] was designed with a modular
structure in mind, it has a core questionnaire, and can then
be extended with a Social Presence module and a Post-Game
module. It should be administered immediately after playing
the game.

The Core part of the GEQ scores the player experience
in seven components, Competence, Sensory and Imaginative
Immersion, Flow, Tension/Annoyance, Challenge, Negative
affect, and Positive affect. The Social presence module tests
the Psychological and Behavioural involvement of the player
with other social entities, they can be in-game characters,
other players online, or, other local players. This module
consists of three components, Psychological Involvement -
Empathy, Psychological Involvement - Negative feelings, and
Behavioural Involvement.

The Post-game module scores the player in 4 components,
Positive Experience, Negative Experience, Tiredness, Return-
ing to Reality.

Each item of each component is scored from 0 to 4, and
each component is then scored by averaging the scores of its
items.

2) Locus Of Control: Locus of control defines a personal
belief about whether outcomes of behavior are determined
by one’s actions or by forces outside one’s control [13].
Most Locus of control scales used twenty to thirty items,
so, Kovaleva et al [13] constructed a four-item scale for the
assessment of Locus of control(IE-4). Using the IE-4 scale
player are asked how much they agree with 4 items:

• If I work hard, I will succeed.
• I’m my own boss.
• Whether at work or in my private life: What I do is mainly

determined by others.



• Fate often gets in the way of my plans.
The first two items look for internal locus of control, thinking
you have control over your actions, and the last two items for
external locus of control, believing outcomes are determined
by external forces. Each item is scored from 0 to 4. The
final score is calculated by adding the two internal scores,
subtracting the two external scores and then dividing by the
number of questions, four.

III. CLUSTERTECHRUSH

ClusterTechRush is a 3D top down shoot’em up game,
where the player’s goal is to get to the last level and beat
the final boss. In Every level the enemy’s health and damage
increases considerably, so, to survive the player must get
stronger by picking up power ups dropped from enemies.

The player’s power is defined by four main variables, maxi-
mum hit points(HP), damage per shot, fire rate and movement
speed. Every one of these could be increased by picking the
corresponding power up dropped from enemies.

If the player gets hit they loose a certain amount of HP,
to recover their lost health the player needs pick up health
nuggets or maximum HP power ups, both dropped by enemies.
Health nuggets heal the player by 5% of the players max
HP, meaning has the players max HP increases the relative
value of health nuggets wont. Enemies have a 30% chance to
drop between one and six health nuggets, meaning that killing
an enemy can restore between 5% and 30 % of the players
health. If the player is on a level too strong for him at that
moment, they have a harder killing an enemy and a harder
time recovering their health. However if a player is at a lower
level, they can easily kill enemies and quickly recover their
health.

Another element that was added to create some interesting
situations was a loot crate that when destroyed had a chance
to reward the player with power ups and health nuggets.

In order to teach players the basic mechanics of the game,
before their first run of the game, players were be asked to
play a tutorial that would teach them about the basic mechanics
that are common in both version of the game. The tutorial has
floating tool tips that tell player about the different mechanics.
First the player is instructed on how to run and dash. Then
after making their way through a corridor player is taught how
to shoot, and asked to shoot some loot crates that are blocking
the path. next they find a shooting gallery with stationary
enemies that need to be killed in order to open a door. This
also introduces the player to the multiple HP bars since those
enemies have different amounts of HP. Next the player is
taught about each power up, before reaching a corridor with
a turret at the end of it. In order to defeat it the player has
to dash trough it’s projectiles. After defeating it a door opens
revealing a teleporter and the player has to press E to activate
it and leave the tutorial.

Two versions of the game were developed one where the
player has control over their own progress through the game
(Version A) and another here that progress is controlled by
the game (Version B). The main differences between the two

versions is how the player goes up and down the levels, and,
the way death is handled.

In version A active Flow adjustment is implemented. In this
version it’s up to the player to control their experience, and
decide how fast they progress through the levels. In version
A, in every level, there is a portal, somewhere on the map,
and at any moment the player can enter it in order to move
to the next level. At the same time, if at any point, the player
wants to move down a level they can press a key to go back to
the previous level. Because the player has control over going
back, we wanted to increase the punishment of death, so in
this versions if you die you loose the power ups that were
picked up in the current level. In this version the player can
also choose to remain in a level after killing all the enemies,
so after a few seconds a new wave of enemies is spawned.
In this version it is important for the player to find the sweet
spot of difficulty so they can grow in power faster.

Version B is the version with passive Flow adjustment. This
version takes the decision of moving up or down the levels
from the hands of the player. In version B, if the player kills
all the enemies in a level they automatically moves to the next
one, and, if the player dies they go to the previous level. Now,
because of the harsh difficulty scaling the player is expected to
go back a lot, but we didn’t want the player’s feel frustrated,
so we implemented the safety teleport mechanic to try and
minimize that frustration. If the player’s health reaches below
twenty percent a ”Safety Teleport” will start charging, and the
player has ten seconds to recover his health points, or he will
be teleported to the previous level. The safety teleport will also
protect the player activating a shield if they’re about to die,
never letting the player’s health reach below one health point.
This mechanic is meant to take death and the negative emotion
associated with it out of the equation, and give the player a
second chance if they are in fact strong enough to be at his
current level. The only way for the player to recover health is
by picking up health nuggets dropped by enemies when killed.
So, if the player is strong enough to kill enemies in the level
they are at, in less than 10 seconds, they can continue in that
level, but if they’re not strong enough they’ll be moved to the
previous level. Another difference between the two versions
is the death penalty, because the player in this version has no
control over is progress we do not punish ”death” has much,
so the player may loose progress by going down a level but
they will not loose progress in power up levels, meaning when
they go down a level they’ll be stronger than they were the
last time they were there. In this version by going up a level
when killing all enemies and by going down on death, brought
the player closer to the sweet spot for picking up power ups.

Another way the two versions differed was in the UI. Both
version showed the player, how much hit points (HP) they had,
how much power ups they had picked up so far, what level the
player was currently on, how much time had passed since the
beginning of the run and the dash’s cooldown see fig ?? and
??. In both version the HP bar expands as the player picks
up max HP power ups. We tried implementing a subdivision
system but ultimately it wasn’t very readable once the bar



reached it’s maximum size, so we implemented a simple text
displaying the current and max HP of the player.

In version A we displayed additional information about the
cooldown for going back, this also served has a reminder of
which key to press. And the game displays not only the number
of pickups of each type but also how many were picked up
during the current level, this shows the player how many pick
ups they loose if they die. This can been in figure ??

In version B the only addition was a progress bar showing
the player how many enemies were left in the current level.
Since the player had no control and had to kill all enemies to
progress we felt it was important for the player to know how
close they were from finish a level. One last detail was that in
version B there is a marker on the HP bar marking the 20%
mark below which the safety teleport would be activated.

Additionally, in order to explain the different version spe-
cific mechanics, the menu has a page dedicated to explaining
the versions before the player started playing them (see figures
in ??).

A. Player Actions

The actions that can be performed by the player are:
• Running - The basic movement in the game, using the

WASD keys the player can run around, dodge projectile,
or pick up power ups and health nuggets.

• Shooting - Aiming and Shooting by clicking with the
mouse is the only way for the player to kill enemies, and
destroy loot crates.

• Dashing - The player has the option to dash in the
direction he is running by pressing shift or the right
mouse button. This is useful, because it gives the player
increased mobility allowing the player to quickly move
around the map, and, while performing the dash the char-
acter can pass through enemies and projectiles allowing
it to be used defensively.

• Version A - Entering Teleporter - In version A the player
can press E next to a portal to move to the next level.

• Version A - Going back - In version A, has long has it
isn’t inside the 10 second cooldown after going up a level,
the player can press Q go back to the previous level.

B. Enemies

In ClusterTechRush four types of enemies were imple-
mented, a melee enemy, a ranged enemy, stationary turrets
and a final boss. The enemies AI was implemented using
unreal engine’s behaviour trees. All the enemies have initial
stats for health and damage. The way the difficulty scaling
was preformed is by having a multiplier for each level that is
applied to the enemies health and damage.

leftmargin=*,labelwidth=*,before=
• Melee Enemies

Melee enemies run at the player and try to punch
them. They start with 50 health and do 10 damage

0 ”Unreal Engine” Game Engine developed by Epic Games,written in C++
initially developed for 3d FPS Games //todomaybe complete

per punch on the first level. After spawning they
wander around the map, And only engage combat
after seeing the player.

• Ranged Enemy
Ranged enemies are equipped with an assault rifle
and shoot at the player from a distance. Their default
health is 100 and they do 20 damage per shot. Their
default behaviour is to wander around the map, and
engage once the they see the player. After seeing the
player they run towards him until they are within
firing range, they shoot, and then dodge in a random
direction, then they repeat that behaviour.

• Turret
Stationary turrets are used to keep the player moving,
they shoot the player with homing projectiles that
follow the player, forcing the player to either shoot
the projectiles or run. Turrets start with 100 health
and do 20 damage. After increasing their fire rate
player could just stand still and shoot at the turrets
without moving. For this reason we implemented
splitting projectiles, that split into three projectiles
when hit. To maintain the total damage each frag-
ment of the projectile only does a third of the initial
projectile’s.

• Final Boss
The final boss a big stationary turret that alternates
between holding four shotguns, eight assault rifles
or activating a shield and spawning regular enemies.
When firing the boss also alternates between two
different types projectiles, one always goes straight
and can’t be destroyed by the player, and another
that can slightly curve in the direction of the player,
and split when hit like turret projectiles. It has a total
of 24000 health which gives it a total of 120 health
bars.

It was important to show players how much stronger ene-
mies got from level to level. We couldn’t show the enemies
damage just by looking at them, so we did in the form of
health bars. The HP multiplier goes from 1, in the first level,
to 16, in the fifth level. We needed a flexible way to show
how much HP enemies had, so, we implemented a multi bar
system that stacks HP bars with different colors on top of
each other(similar to what is seen in fighting games). Every
bar holds 200 HP and to show how many bars enemies had
left a multiplier is shown next to the bar.

C. Power Ups

The power ups are an important part of the game, as the
player needs to became stronger if he wants to reach higher
levels. Their are four power up types which increase a different
variable each with their own icon and color, these icons and
color are then matched on the counters in the UI. To create
a sense of emergency power ups disappear after 10 seconds,
creating tense moments where the player may have to risk
walking into heavy fire to pick up power ups before they
disappear.



leftmargin=*,labelwidth=*,before=
• Max Health Power Up

Increase the player’s Max HP by 50.
• Damage Power Up

Increase damage by 5%.
• Fire Rate Power Up

Increase Fire Rate by 5%.
• Movement Speed Power Up

Increase Movement speed by 2%.
To reward player for surviving and killing enemies on higher

levels the higher the player is the better drop rates are. The
drop rates are defined with a float flooring this value gives us
the number of pick ups always dropped by any enemy killed
on that level. And the remaining value is the chance to drop
an extra power up. Level 1 has a 0.5 drop rate, so there was a
50% chance an enemy drops a power up. Level 2 has a drop
rate of 1 so enemies always drop one power up. Level 3 has
a 1.5 drop rate, so player always drop at least one power up
but has 50% chance to drop another one. This pattern was
repeated on the remaining levels that have drop rates of 2 and
2.5 respectively. This drop rates did not affect health nugget
drop rate, that is always 30%.

D. Gameplay loop

The game has a total of 5 levels and the goal of the player
is to reach the last one and defeat the final boss. As the player
goes up the levels the enemies grow increasingly stronger,
but, if the player is able to survive the amount of power
ups dropped, by enemies, also increases significantly. This
means that at every moment, depending on the players skill
and number of power ups, there is a level that maximizes the
amount of power ups gained. If the player is in a lower level,
for their power and skill, they could probably kill enemies
fast but overall he won’t pick up as much power ups. At the
same time if the player is at a higher level, they need to kill
enemies fast enough to make the higher drop rates worth it.
This control over the current level of difficulty was the main
difference between the two versions of the game:

In Version A the game loop consists of killing enemies to
pick up power ups and go up the levels while at the same
time managing the challenge by choosing in which level to be
at. The player enters a level, and at any point can choose to
keep fighting, run to the teleporter to move to the next level
or press the go back key to move to the previous level. This
decision is affected by factors such has their current health,
how much damage they are doing to enemies in this level,
how many power ups they have picked up so far. If deciding
to keep fighting the player will be both shooting and dodging
projectiles while trying to pick up power ups and health. After
killing all enemies on a level the player has choice stay and
wait 10 seconds for the next wave of enemies or move to the
next level. With this choices the player is able to manage their
challenge, find their own sweet spot, and progress through the
game at their own pace.

In version B, the player don’t have control over going up
and down the levels, so, the game loop consisted in killing

all enemies if they are strong enough to do it and moving to
the next level, or dying and moving the previous level. While
fighting the player has to shoot at enemies while dodging their
projectiles and trying to pick up power ups. If the player’s HP
gets low enough to trigger the safety teleport they have 10
seconds to recover their health back up to 20% or more. This
creates intense moments where the player need to be strong
enough to kill enemies, but also be lucky to get enemies drop
enough health nugget or max HP power ups. If the player fails
to recover their HP they are moved to the previous level but
keep all their power ups. Making it easier to climb up the
levels again to where they were previously.

E. Architecture

The game was developed in unreal engine, using the unreal
engine game framework. In this framework the Game Mode
class is responsible for controlling the game rules and getting
the game ready to play, this includes spawning the player,
enemies, setting up the level, transitioning between levels, and
more. We extended from this class and created our own game
mode class were we defined all the logic that was common in
both versions of the game. Then, we extended from this class
and created two one game mode class for each of the versions.

Another important class in the unreal engine framework
is the game instance. The game instance class is the only
class that persists after switching or reloading levels. For this
reason it used it to store information about the current state
of the player when changing levels. All levels, apart from the
last one, consisted of the same square arena, with a different
randomized layout. So we decided to just use the same map
for the first 4 levels. When starting a new level the game
mode class would load from the game instance all necessary
information about the current level, and then, spawn the player
enemies, loot crates and level layouts.

Spawning was done through the a spawner class that uses
unreal engine’s built in Environment Query System(EQS) to
select spawn location. The environment query system allows
us to query possible spawn locations an select from a random
subset that fits rules set by us. For example, for spawning an
enemy all possible location would be ranked based on distance
to the player and then one of the furthest location would be
selected. This ensured that enemy would not spawn next to
the player. The same thing was done for teleporters in version
A, because we didn’t want the player to see the teleporter as
soon as they spawned.

Initially the game was to have different kinds of weapons,
so we also developed a flexible weapon class that could be
parameterized to create any kind of weapon. With it we created
the assault rifle that is used currently in the game, along with
a pistol, a burst firing sub machine gun and a shotgun. The
player started with a pistol and then could pick up new weapon
from loot crates. Later we decided to simplify the experience
and that the player would only have access to the one weapon



so that everyone had the same experience.

F. Levels
To help us during development we built a flexible tool to

help parameterize level construction. Each level is defined by
a LevelInfo structure containing all the information needed
to start the level. This information is then utilized by the
game mode class when initiating a level. The structure holds
information about, what enemies to spawn, the multipliers for
health, damage and drop rate, for that level, the level color
and in case we wanted to implement levels in different maps,
the name of the map to spawn instead of the default. This last
point is used to spawn the last level. Initially we had a fourth
layout, but through player testing we observed that in some
rare occasions player were spawning inside the layout so we
decided to remove it.

Players had to play the game twice and we didn’t want
it to feel repetitive. So, for each level a random layout of
walls and pillars was selected. Since players would be going
up and down the levels it was important to keep the layout
consistent, so, when starting a run a random layout would be
selected from a pool for each of the levels, and that would be
stored on the LevelInfo structure. Then, when starting a level
the correspondent layout would be spawned.

G. Balancing
A lot of variables needed to be decided in order to balance

the game. Namely, player damage and health, enemy damage
and health, enemy health and damage multipliers for each of
the levels, drop chances for pickups for each of the levels,
and finally the effect pick ups would have on player stats.
We decided to simplify the problem and started by focusing
on health and damage since we could look at the problem
trough the metric of the number of hits it would take to kill
an enemy, or the player. After having a general idea of how
many hits to kill we wanted for each of the levels we then
looked at balancing the power ups. Following the same logic
we started by focusing the damage, and maximum HP power
ups. This helped us decide how many power ups players were
expected to get per level, and much of an impact they would
have. After having damage and max health we then balanced
the movement speed power up and the fire rate power up so
they were on par with the other two power ups.

From here we had a general idea of the values we wanted
and then after some player testing we decided on the values
that are currently in the game. Three tests were done with 3
to 4 players each, where players were asked to play one of
the versions of the game, while we observed, and took notes
on feedback.

IV. EVALUATION

A. Preliminary Evaluation
1) Objectives: A preliminary evaluation was run to make

sure that every aspect of the experimental procedure was work-

0GitHub, Inc. is a provider of Internet hosting for software development
and version control using Git. It offers the distributed version control and
source code management functionality of Git, plus its own features.

ing as intended. This included making sure the instructions in
the forms were clear and the participants knew what to do,
and that the game was working properly. As for the game
we wanted to make sure it was running smoothly with no
game-breaking bugs or crashes, and make sure participants
were understanding what they had to do. At this point, a small
tutorial had been developed but it hadn’t been tested yet.

2) Procedure: In order to test which difficulty adjustment
would create a better experience, we asked participants to play
the two versions of ClusterTechRush. The players were asked
to fill in a questionnaire, before playing any of the versions,
where we collected demographic information, and then after
playing each of the versions the players were presented with
the in-game QEG questionnaire. Two forms were created one
in which participants were asked to start with version A and
another where players were asked to start with version B.

The form (see chapter ??) started with a quick description
of what was going to be asked of the participants and how
long it would take. Followed by a link to where to download
the game.

Next, we asked the participants to fill in the demographic
section. In the demographic component of the questionnaire,
we inquired participants about age, gender, how frequently
they play video games, how familiar they were with the genre
of game played in the experience, how comfortable they were
playing this type of game with a keyboard, and mouse, and
lastly we add a section measuring Locus of Control.

After this section players were instructed on how to extract
and get the game ready to play. With the game ready players
were asked to play the tutorial, so they got used to the game’s
mechanics, and then play one of the versions. After finishing
they had to answer the in-game GEQ, and then do the same for
the second version. After finishing both versions the players
were asked to evaluate each of the versions from 1 to 7, and
if one had a higher score than the other they were asked why.
Finally, the players were asked to upload the log file created
by the game, containing the logged data about both runs.

3) Results and changes: From the preliminary evaluation,
we didn’t find any major problems with the forms, only minor
text fixes were needed. However, we did find a few problems
with the game.

Apart from a few small bugs that were easy to fix, we
noticed that players weren’t leaving the tutorial with a full
grasp of the game mechanics. Namely, some players were
playing without ever realizing they had a dash mechanic. For
this reason, we extended the tutorial with a section where
a turret would fire at the player from the end of a narrow
corridor, forcing the player to dash through the projectiles to
kill it.

We also noticed that the more casual players were finding
the game too challenging, for this reason, we decided to make
health drops move slowly towards the player. Meaning players
still might have to put themselves in high-risk situations to
grab power-ups but health drops would be safer to pick up.

Finally, in version A, we implemented a cooldown for going
back after going up a level, to solve the problem of players



exploiting the fact that moving up a level would make the
power-ups you picked up during the previous level persistent.
This way the players at least needed to survive 10 seconds in
the harder level to save their progress.

B. Final Evaluation

1) Objectives: With this experiment, we wanted to help
answer the research question presented in this document, what
produces a better game experience? Active or Passive Flow
adjustment? How important is player control over a game’s
difficulty for maintaining the Flow state?

2) Procedure: From the preliminary evaluation, no major
problems were identified with the experimental procedure, and
only minor text fixes were implemented. Because of this,
the experimental procedure for this phase of evaluation was
identical to the one described in chapter IV-A2.

3) Sample: In total, we collect data from 23 participants. Of
these 23, 9 started with versions A, and 14 started with version
B. The majority of participants were male and mainly 24 and
25 years old. We had a total of 20(89.96%) male participants
and only 3(86.96%) female participants. Participants’ ages
ranged from 21 to 32 but around 65% had either 24 or 25
years of age.

In order to differentiate casual players from more expe-
rienced players, we asked participants how frequently they
played video games. They could answer with one of 3 options:
We observed that 12(52.17%) participants said they made time
in their schedule to play video games, 10(43.48%) participants
said they played video games occasionally, and only 1 (4.35%)
said they rarely played video games.

Next, we wanted to know how familiar the participants
were with similar games to ClusterTechRush. We asked if
they enjoyed Top Down Shoot’em Up Games, and gave Enter
the Gungeon1 and Nuclear Throne2has examples. Participants
could choose one of 3 options: 13 (56.52%)participants said
they knew and enjoyed playing or watching the games, 8
(34.78%) said they didn’t know the games, and 2 (8.70%)
said they had played or watched but didn’t enjoy the games.

Next, we asked participants to choose between one and five,
how comfortable they were with playing a Top-down shooter
with a mouse and keyboard. Most participants felt comfortable
using a keyboard. Of the 23 participants, 10 (43.48%) answer
5, 4 (17.39%) participants answered 4, 8 (34.78%) answered
3, and only one participant answered 2.

Lastly, participants were asked to answer a short locus of
control section, participants had to answer 4 questions and
with the results, we would calculate a total score that would
have a value between -2 and 2.

Overall we were please with the scope of the demographic
sample. Despite participants being mostly male and between
the ages of 24 and 25, we ended up with a good distribution

1Enter the Gungeon, Dodge Roll, PlayStation 4, Xbox One, Nintendo
Switch, macOS, 2016

2 Nuclear Throne, Vlambeer, PlayStation 4, Microsoft Windows, Linux,
macOS, 2015

in terms of frequency of play, genre knowledge, keyboard
comfort, and locus of control.

4) Results: Since we only had 23 participants we used a
non-parametric Wilcoxon test between two samples, to detect
significant changes between the two versions of the game. We
started by comparing each of the scores from the seven GEQ
components between versions A and B, and the final scores at-
tributed by the participants for each version. For the Wilcoxon
test, two samples are statistically different if the row Asymp.
Sig. (2-tailed) has a value of 0.05 or lower. We then repeated
the test for different subsets according to demographic data.
We tested players that play games frequently vs those who
do not, we tested the group of participants who were familiar
and liked top-down shooters against the group participants who
either didn’t like the genre or didn’t know anything about it
and, we tested participants based on how comfortable they felt
playing with a keyboard and mouse, one subset with player
how had selected 3 or less on the keyboard comfort question
and another subset of players who selected more than 3.

No significant differences were found between QEG flow
scores (Z = -0.461, p = 0.645) or finals scores (Z = -0.076, p
= 0.939) between the A and B. But we did find statistically
significant differences in Competence(Z = -1.961, p = 0.050),
Tension(Z = -2.418, p = 0.013) and Positive Affect(Z = -2.442,
p = 0.015).

The competence score mean for version A was 2.022 and
for version B it was 2.413. Showing that, overall, players felt
more competent while playing version B. We then retried the
same Wilcoxon test but with different subsets of players. We
observed that for more experienced players the difference in
competence score was not felt. The difference in competence
score was only present for more casual players(Z = 0.017,
p = -2.388) with whom we observed an average competence
score in version A of 1.773 vs a mean of 2.455 in version B.
Meaning casual players felt more competent in version B.

For the tension score in version A, we found a mean of
1.587 and a mean of 0.935 in version B, showing, overall,
players felt tenser while playing version A. We didn’t find a
significant difference in tension score between casual and ex-
perienced players but we did see a difference when testing the
genre familiarity and keyboard comfort. The test didn’t show
a statistical difference for participants who were familiarized
with this game genre, but for participants who either didn’t
know the genre, or didn’t like it we observed (Z= 0.036, p =-
0.933) a mean tension in version A of 1.759, and of 0.900 in
version B. For keyboard comfort the more comfortable data
set didn’t show significant differences in the tension score,
but, in the less comfortable subset, we observed a significant
difference in tension(Z = 0.28, p = -2.200). The mean in
version A was 1.722 and 0.778 for version B.

In the positive effect component, the means for versions
A and B were 2.196 and 2.609 respectively. Meaning, overall,
version B elicited more positive emotions. Looking at the sub-
sets we observed significant differences in the positive effect
component of GEQ, in the frequency of play, genre familiarity,
and keyboard comfort. In frequency of play we only observed



differences for the more casual players (Z = 0.011, p = -
2.549) with positive affect score means of 1.864 and 2.591 for
versions A and B respectively. When separating participants
based on genre familiarity we observed no difference between
participants less familiar with the genre but we did observe it
with the more familiarized participants(Z = 0.020, p = -2.326)
with mean of 2.500 and 2.962 respectfully. And in Keyboard
comfort, we observed a difference for participants that were
less comfortable with a keyboard and mouse (Z = 0.31, p =
-2.157) with means of 1.667 and 2.278 for version A and B
respectfully. This leads us to believe, that more casual players,
who are also less comfortable with a mouse and keyboard, had
a better experience in version B.

Since players had to play two versions, one after the other,
we wanted to know how much of an impact having already
completed one run of the game had on a second run with a
different version so we separated the GEQ scores and final
score of the 2 versions into the first run and second run,
independently of version. We ran the Wilcoxon test again
with these variables and observed that overall the order in
each of the players who played the 2 versions had no effect.
However, after checking the subsets of participants who started
with version A or with version B we can see that participants
who started with version A report significantly higher positive
emotion when playing version B(Z = 0.31, p = -2.157). On
average participants who started with version A reported a
positive effect score of 2.100 and then an average score of
2.650 in version B.

The locus of control score had a median of 1.0 so we split
the data set into one with participants with locus of control
score of less than 1 and another with participants with a score
greater or equal to 1. Running the Wilcoxon test again against
the GEQ components and final score showed no differences
for the subset with a high locus of control, but it did show
significant statistical changes for the competence (Z = 0.039,
p = -2.066) and positive affect scores (Z = 0.009, p = -2.623) in
the low locus subset. For the competence score, we observed a
mean of 2.059 for version A and of 2.500 for version B. And
for positive effects, we observed 2.147 and 2.647, for versions
A and B respectively. This shows that players with lower locus
of control felt more competent and had more positive emotions
while playing version B.

C. Discussion

In this chapter, we described the evaluation process of this
work. We started by describing the preliminary evaluation,
the feedback we got, and how it affected the final evaluation.
In the final evaluation section, we described the experimental
procedure, including what was expected from the participants
and what questions were asked.

We had a total of 23 participants, and, even though most
of them were male and between 24 and 25 years of age, we
had a varied sample when it came to frequency of play, genre
knowledge, and keyboard comfort, and locus of control.

After analyzing the data, we did not observe a significant
difference, in the GEQ flow score, nor did we find a difference

between the final scores attributed by participants to both
versions. However we did find, differences in the competence,
tension, and positive affect QEG scores. Overall, players felt
more competent while playing version B, felt tenser while
playing version A, and experienced more positive emotion
while playing version B.

When exploring the subsets of players we observed that
more casual participants tended to display a preference for the
version where they had less control over the game experience.
This could be seen in the group of players that didn’t play
video games frequently, showing more competence and more
positive effects on version B. The subset of players that
were not very familiar with this genre, showing more tension
in version A. And In the subset of players that were less
comfortable with a keyboard, showing more positive emotions
in version B and more tension in version A. This seems to
show that more casual players might prefer a passive flow
adjustment approach to game difficulty.

As expected, while taking into consideration participant
locus of control scores we found that participants with a lower
score, meaning they were more prone to believe that they
didn’t have control over their lives, seemed to have a better
experience while playing the version that didn’t give them
control over their progress.

By comparing scores between the first version played and
the second version played we found that the order of play
didn’t seem to make a difference in scores. However, after
testing separately participants who played the A version first
and then participants that had played version B first. We found
having played version B first didn’t show any differences,
but participants who started with version A tended to report
significantly less positive effect scores.

The fact that players seem to have more positive emotions
while playing version B after starting with version A, in
conjunction with the fact that more casual players seemed
to prefer version B, suggests that more casual players might
have had trouble understanding the mechanics of the game,
namely, the importance of going back, since in most games
it is natural to always push forward. We didn’t see such a
difference with more experienced participants because they
quickly get the importance of going back. And we didn’t see
such a difference in players who started with version B because
they were already familiar with the game when playing version
A.

V. CONCLUSIONS

In this document, we explored active and passive Flow
adjustment, one approach that gives the player control over the
game’s difficulty and another where the game has control. We
compared the two approaches and tried to figure out which one
produced the best experience, and facilitates invoking Flow in
games. Using unreal engine 4, we developed, from scratch,
two versions of the same game, ClusterTechRush, to support
our research.

ClusterTechRush is a 3D top-down shoot’em up game where
the player has to beat 5 levels and kill the final boss. From



one level to another the enemies get significantly stronger. To
survive higher levels the player needs to kill enemies and pick
up the power-ups they drop. Two versions of the game were
created, version A using active Flow adjustment and giving the
player the option to go up and down the levels, and version
B, using passive Flow adjustment, where if the player kills all
enemies in a level he will be moved to the next one and if the
player dies he will go back to the previous one.

To compare both versions of the game, after answering a
demographic section of the questionnaire, containing questions
about frequency of play, genre knowledge, ease with keyboard
control, and locus of control, participants were asked to
play both versions and fill in an in-game Game experience
questionnaire [10] after each of the version. Players were then
asked to give a score from 1 to 7 to each of the versions

The final evaluation showed no significant difference in
GEQ Flow score, nor did we find a difference between the final
scores attributed by participants to both versions. However
we did find, through the Game experience questionnaire, that
player felt more competent in version B, tenser in version A
and experienced more positive emotions in version B.

After further analyses, we observed that less experienced
participants tended to display a preference for the version
where they had less control over the game experience. This
could be seen in the group of players that didn’t play video
games frequently, showing more competence and more posi-
tive effects in version B. The subset of players that were not
very familiar with this genre, showing more tension in version
A. And in the subset of players that were less comfortable
with a keyboard, showing more positive emotions in version
B and more tension in version A. This seems to indicate
that Passive Flow adjustment might be a better approach for
creating games for more casual players. Implementing an
Active Flow adjustment solution requires precise design and
balancing especially when trying to accommodate more casual
players.

Finally, analyzing locus of control scores we found that
participants with a lower score, meaning they were more prone
to believe that they didn’t have control over their lives, seemed
to have a better experience while playing the version that
didn’t give them control over their progress.

In a game, making a decision to go back is not always
natural since for most games players are asked to always
push forward in order to overcome challenges. One possible
explanation, for the fact that more casual players seem to
be having a better experience with version B, might be that
more casual players found it harder to understand that going
back is important. And more experienced players picked it up
fairly quickly. This hypothesis seems to be further confirmed
when comparing participants’ first and second runs. Overall,
the order in which the version were played didn’t seem to have
an effect on player experience. But, after analyzing the subset
of participants that played version A first we observed that
they reported higher positive emotion when playing version
B. Further research is needed to understand what makes an
active Flow adjustment approach less appealing to more casual

players.
Both Active Flow adjustment and Passive Flow adjustment

are viable options. We couldn’t prove that one is objectively
better than the other at creating a good experience. But we did
find that Active Flow adjustment might be more appropriate
when designing games with more experienced players in mind.
Active Flow adjustment is hard to develop and is very much
a design problem. The sensible nature of its implementation
makes it harder to use when creating experiences for more
casual players. Having a greater understanding of both ap-
proaches to implement Flow in games would be great for
future game developers, so further research is needed on this
topic.

REFERENCES

[1] Csikszentmihalyi, M.(1990). Flow: The Psychology of Optimal Experi-
ence.New York: Harper & Row

[2] Chen, J. (2006). Flow in games. School of Cinematic Arts Los Angeles,
USA, University of Southern California. MFA in Interactive Media.

[3] Sweetser, P. and Wyeth, P. GameFlow: a model for evaluating player
enjoyment in games. Computers in Entertainment (CIE), 3, 3 (2005).

[4] J. Togelius, N. Shaker, and M. J. Nelson, “Introduction,” In Procedural
Content Generation in Games: A Textbook and an Overview of Current
Research, N. Shaker, J. Togelius, and M. J.Nelson, Eds. Springer, 2016,
ch. 1.

[5] J. Togelius, E. Kastbjerg, D. Schedl, and G. N. Yannakakis, “What is a
procedural content generation?: Mario on the borderline,” in Proceedings
of the 2nd International Workshop on Procedural Content Generation in
Games, ACM, 2011

[6] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey.,” in IEEE
Transactions on Computational Intelligence and AI in Games 3, pp.
172–186, ACM, 2011.

[7] G. Smith, J. Whitehead, and M. Mateas, “Tanagra: A mixed-initiative
level design tool,” in Proceedings of the Fifth International Conference
on the Foundations of Digital Games. ACM, 2010, pp.209–216.

[8] Smeddinck, Jan & Mandryk, Regan & Birk, Max & Gerling, Kathrin &
Barsilowski, Dietrich & Malaka, Rainer. (2016). How to Present Game
Difficulty Choices?: Exploring the Impact on Player Experience. 5595-
5607. 10.1145/2858036.2858574.

[9] J. Catarino and C. Martinho, Holiday Knight: a Videogame with Skill-
based Challenge Generation, 2019

[10] K. L. Norman, ”GEQ (Game Engagement/Experience Questionnaire):
A Review of Two Papers,” in Interacting with Computers, vol. 25, no.
4, pp. 278-283, July 2013, doi: 10.1093/iwc/iwt009.

[11] McAuley E, Duncan T, Tammen VV. Psychometric properties of the
Intrinsic Motivation Inventory in a competitive sport setting: a confir-
matory factor analysis. Res Q Exerc Sport. 1989 Mar;60(1):48-58. doi:
10.1080/02701367.1989.10607413. PMID: 2489825.

[12] Johnson, Daniel & Gardner, John & Perry, Ryan. (2018). Validation of
two game experience scales: The Player Experience of Need Satisfac-
tion (PENS) and Game Experience Questionnaire (GEQ). International
Journal of Human-Computer Studies. 118. 10.1016/j.ijhcs.2018.05.003.

[13] Kovaleva, Anastassiya, The IE-4: Construction and Validation of a Short
Scale for the Assessment of Locus of Control, GESIS - Leibniz-Institut
für Sozialwissenschaften, https://nbn-resolving.org/urn:nbn:de:0168-
ssoar-371199

[14] ”GAMES YOU DIDN’T KNOW FEATURED DYNAMIC
DIFFICULTY”, https://www.svg.com/138490/games-you-didnt-know-
featured-dynamic-difficulty/ Nov, 2018, accessed: 23-12-2020

[15] ”Gamasutra Cognitive Flow: The Psychology of Great Game Design”,
https://gamasutra.com/view/feature/166972/cognitive flow the psychology of .php,
2012, accessed: 22-12-2020

[16] ”Shoot ’em up”,https://en.wikipedia.org/wiki/Shoot %27em up, ac-
cessed: 01-010-202

[17] ”Video game market value worldwide from 2012 to 2023”,
https://www.statista.com/statistics/292056/video-game-market-value-
worldwide/ Christina Gough, Aug 28, 2020, accessed: 31-12-2020


