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Abstract

In the biomedical domain, the identification of synonymous concepts is highly challenging, due
to vocabulary heterogeneity, lexical variations, and non-uniform coverage across standardized termi-
nologies. This work tackles this particular challenge, arguing that concept alignment can be made
through approximate string similarity using deep neural networks. In particular, this work extends
recent studies that assessed string-matching methods in non-biomedical fields, i.e. using bi-directional
recurrent neural networks or transformer models to encode and match pairs of strings. The models were
trained with biomedical data collected from Wikidata, and tested on 15 datasets built from different
biomedical ontologies, representing specific domains. The tests assessed aspects such as the influence
of positional encodings together with the inputs, the size of the training dataset or the contribution
of model fine-tuning with specific in-domain data. The experimental results show that deep neural
networks consistently performed better than traditional string similarity approaches, particularly with
larger amounts of training data. In most of the tests, models based on Transformers also performed
better than models based on recurrent neural networks.
Keywords: Biomedical Concept Alignment, String-Matching, Supervised Machine Learning, Recur-
rent Neural Networks, Transformer Networks

1. Introduction

The standardisation of biomedical terminology and
interoperability of electronic health systems are en-
abled by controlled vocabularies and ontologies.
Controlled vocabularies are expressed by cataloged
concepts and terms [26] whilst biomedical ontolo-
gies provide a formal definition of biomedical con-
cepts and relationships between them [2]. This type
of resources, including well-known examples, such
as SNOMED1 or the International Classification of
Diseases (ICD)2, usually contain synonyms for most
terms, with Natural Language Processing (NLP)
methods leveraging terminological resources, but
they seldom cover all potential synonyms. This hin-
ders tasks such as integrating clinical notes across
different authors and domains or identifying new or
rare terms that are not presented in standardized
terminology [31]. Moreover, there are many on-
tologies covering overlapping domains, which leads
to the same concept being defined in different on-
tologies with different terms [25]. The non-uniform
coverage across subjects or languages motivates the

1https://www.snomed.org/
2https://www.who.int/standards/classifications/classific

ation-of-diseases

development of methods for automatically perform-
ing alignments between multiple existing special-
ized terminology resources, in order to link together
synonymous concepts across different vocabularies
[10].

Concept alignments have been extensively stud-
ied within the context of ontology alignment.
Most existing methods correspond to heuristic ap-
proaches combining multiple types of similarity
metrics [11]. In the clinical-medical domain, sim-
ilar concepts can be lexically similar (e.g. dilated
RA and dilated RV ), but also highly dissimilar (e.g.
cerebrovascular accident and stroke). Thus, using
similarity metrics based on matching character sub-
sequences can be especially challenging for medi-
cal synonym discovery. As an alternative, recent
studies have successfully explored deep learning ap-
proaches for synonym discovery in various contexts
[39, 18, 21, 30, 4].

This article explores and proposes neural meth-
ods for concept alignment in the biomedical do-
main. Extending previous studies in the area, this
work specifically assesses methods based on recur-
rent neural networks or Transformer. For this, a
generic dataset is used to train the models, and
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the models are tested in 1 in-domain and 14 cross-
domain datasets.

The remainder of this article is organized into the
following sections: Section 2 contains related work
on biomedical ontology and concept alignment, as
well as deep neural networks used for similar tasks
in other fields; Section 3 details the proposed mod-
els; Section 4 presents information on the datasets
used in this work together with the experimental
protocol and the main obtained results; finally, Sec-
tion 5 draws the main conclusions and advances pro-
posals for future work.

2. Related Work

In order to understand the baseline of the current
work, this section introduces neural network models
used in NLP and reviews related work on biomed-
ical ontology and concept alignment as well as on
string/matching methods in other fields.

2.1. Neural Network Models for Natural
Language Processing

In NLP applications, various machine learning al-
gorithms have been applied, with deep neural net-
works being a prominent choice nowadays. Specif-
ically, Recurrent Neural Networks (RNNs) are cur-
rently present in many state-of-the-art approaches.
RNNs are neural networks designed to recognize
patterns in sequences of data such as character
strings [29]. These time-dependent neural networks
compute a hidden state vector ht at each time step
t. The hidden state is obtained by a non-linear
transformation that receives as inputs the previous
hidden state ht−1 and the current input xt

ht = f(ht−1, xt). (1)

At a certain time-step t, the hidden state ht is a
function of the input at the same time step xt, mod-
ified by a weight matrix W . This result is added to
its own hidden-state-to-hidden-state matrix U , also
known as a transition matrix, and multiplied by the
hidden state of the preceding time step ht−1. The
weight matrices are essentially filters that determine
how much importance should be given to both the
present input and the past hidden state

ht = φ(Wxt + Uhht− 1). (2)

According to previous research, modeling long se-
quences is challenging for standard RNNs. As a re-
sult, several extensions have been explored to han-
dle this problem [30]. Well-known examples include
Gated Recurrent Units (GRUs) [6] and Long Short-
Term Memory Networks (LSTMs) [16]. GRUs in-
volve two gates: a reset gate r, that determines how
to combine the new input with the previous mem-
ory and an update gate z that defines how much of

the previous memory is kept and how much new in-
formation is added. Mathematically, these models
can be defined by Equations 3 to 6:

zt = ϕg(Wz · xt + Uz · ht−1 + bz), (3)

rt = ϕg(Wr · xt + Ur · ht−1 + br), (4)

h̃t = ϕh(Wh · xt + Uh · (rt � ht−1) + br), (5)

ht = zt � ht−1 + (1− zt)� ht, (6)

where xt refers to the input vector at a certain time
step t, � is the Hadamard product (i.e. the entry-
wise product of two matrices) and parameters W ,
U and b denote different weight matrices and biases
that are adjusted when training the model through
back-propagation. LSTMs are similar to GRUs but
have more parameters (e.g. an extra gate). These
networks apply different gating mechanisms, more
specifically a forget gate ft that controls how much
of the previous gate will be kept, an input gate
it that controls how much of the proposed gate gt
should be kept, and an output gate ot that controls
the output at time t. Another relevant extension
is the use of bi-directional RNNs (BiRNNs) [32].
BiRNNs are composed of two RNNs and read an
input sequence in both directions, therefore getting
information from past and future states simultane-
ously. The forward RNN reads the input from left
to right, hence capturing unbounded left side con-
text, and the backward RNN reads the input from
right to left, therefore capturing the unbounded
right side context. The hidden states for each of
the RNNs are concatenated according to Equation
7, where hft and hbt are respectively the forward and
backward hidden states and ⊕ is the concatenation
operator

ht = hft ⊕ hbt . (7)

Besides RNN models, other neural architectures
are also commonly employed to model sequen-
tial data, including Convolutional Neural Networks
(CNNs) [19, 13] and Transformer models [9]. The
Transformer model architecture was proposed by
Vaswani et al. [37] as a way to use an attention
scheme to model input and output dependencies
without needing recurrence or convolutions. The
scaled dot product attention mechanisms, in which
numerous attention heads are applied in parallel,
enabling the model to attend to distinct represen-
tation sub-spaces at different points, are the foun-
dations of this model. A Transformer encoder has
two sub-layers within each layer. The first sub-layer
has a Multi-Head Attention module that aggregates
the embeddings (V ) of a collection of keys (K) to
compute the output embeddings for a set of queries
(Q) (Equations 8, 9 and 10). The second sub-layer
corresponds to a position-wise fully-connected feed-
forward network.
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MultiHead(Q,K, V ) =
Concat(head1, ..., headh)WO,

(8)

headi = Attention(QWQ
i ,KW

K
i , V WV

i ), (9)

Attention(Q,K, V ) = Softmax

(
Q ·KT

√
dk

)
·V. (10)

In the previous expressions, WQ
i , WK

i and WV
i are

matrices that linearly project queries, keys and val-
ues into the attention space of the ith head, while
WO is a matrix that linearly transforms the con-
catenation of the outputs of all heads. Transformer
models have also been extended. A relevant exam-
ple is the extension to the R-Transformer Model [40]
that combines a local RNN with the Transformer
attention mechanism.

2.2. Biomedical Ontology and Concept
Alignment

When considering ontology matching in the
biomedical domain, it is important to be aware of
the rich lexical component of biomedical vocabulary
and consider a variety of annotations per class, in-
stead of considering only the primary name of each
class within each biomedical ontology. Faria et al.
[11] have shown that it is more effective to use all
available synonyms for a certain concept, and only
by doing so can biomedical ontologies from different
communities be effectively bridged.

Several attempts have been made to build
machine-learning algorithms based on binary clas-
sification for ontology matching [23]. These ap-
proaches include, among others, classifiers based
on decision trees [3], Support Vector Machines [23],
and Logistic Regression [1].

Many state of the-art-approaches rely on con-
textual or external information to aid on identi-
fying medical synonyms or performing biomedical
ontology alignment. Wang et al. [39] and Jiang
et al. [18] both propose supervised ontology align-
ment methods through neural networks - a siamese
multi-layer perceptron with a sigmoid function [39]
and a LSTM based method enhanced with a char-
embedding technique [18]. On the other hand,
Scumaster et al. [31] and Kolyvakis et al. [21]
present unsupervised learning methods to tackle
these challenges. Schumaster et al. [31] developed
a neural network that makes use of contextual in-
formation from surrounding text or patient infor-
mation to build synonym representations and per-
form the task of synonym discovery. Kolyvakis et
al. [21] describe a network based on embedding
ontological terms in a high-dimensional Euclidean
space to perform ontology alignment, relying on a
similarity function whose measurement is higher in

the cases where vectors of words that appear in the
same sorts of context.

Although these methods have shown to be effec-
tive there is an underlying struggle on identifying
the most suitable and useful sources of background
knowledge [11], which in itself has also been a topic
of several studies. [12, 14, 33].

Another challenge related to concept alignment
is that controlled vocabularies are not accessible in
all languages and often lack complete definitions.
Rahimi et al. [28] focused on aligning a controlled
vocabulary - the Unified Medical Language System
(UMLS) to Wikipedia, whose health related arti-
cles can contribute with content and multilingual-
ity, through a neural ranking model.

2.3. String-Matching through Deep Neural
Networks

String matching is the task of identifying character
strings that represent the same real-world entity or
concept [4] (i.e. determining whether two strings s1
and s2 refer to the same concept).

Traditionally, string similarity metrics can be
used as a method to determine if two string cor-
respond to the same concept. These metrics can be
based on character operations (e.g. Levenshtein [22]
and Jaro-Winkler [5] distances), vector-space rep-
resentations (e.g. Jaccard [17] and cosine-similarity
[7] distances) or hybrid methods of the aforemen-
tioned metrics (e.g. Monge and Elkman [24] dis-
tance). A more recent character operation met-
ric (I-Sub) has also been used in many approaches,
since it was specially developed for ontology align-
ment [34].

Recently, deep learning approaches have been
successfully explored as an alternative to standard
string similarity metrics in various domains. Many
of these deep learning models models that accept a
certain vector x as input. Hence, it is useful to rep-
resent textual information in a vector form. A well-
known way to do this is to rely on one-hot vectors,
where each instance of a given vocabulary with di-
mension V is represented in the vector with value of
1 [27], whilst all other vocabulary instances are rep-
resented by 0. Recently, Wang et al. [38] explored
the addition of positional embeddings to these rep-
resentations. The author showed that in a variety
of tasks, including positional encoding at a feature
level, consistently obtained better results, which in-
spired the extension proposed in this dissertation.

Conneau et al. [8] advanced a generic architec-
ture for determining, from a premise sentence, if
a given hypothesis sentence can be inferred. This
architecture has also been used for string-matching
[30, 4]. In these cases both strings were encoded
by a RNN, creating a representation of each vector
that were then matched in some way (e.g. through
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(a)

(b)

Figure 1: (a) The string encoder proposed by Santos et al. [30] with the extensions proposed by Borges et al. [4]
(average and max-pooling operations) and the positional encoding proposed in the present work. (b) Transformer
extension proposed by Borges et al. [4] with the positional encoding proposed in the present work.

the vector difference, through a concatenation of the
vectors, and/or through an element-wise product),
fed into a set of fully-connected layers, and finally
processed through a feed-forward layer with a sig-
moid activation, that generates a binary decision.

Santos et al.’s architecture [30] took inspiration
on the previously described generic architecture.
This neural network is a siamese RNN (i.e., a net-
work that has an architecture where different parts
have their parameters tied) that receives as input
a sequence of one-hot vectors (corresponding to the
characters of the input string). The string encoder,
that consists of a stack of two bi-directional Gated
Recurrent Unit (bi-GRU), then outputs the final
hidden state of the second bi-GRU, which serves
as a vector summary of the input string. Hence, if
X = [x1, ..., xL] is a sequence of one-hot vectors cor-
responding to the byte representations of the char-
acters that compose an input string, with length L,
we can denote by H the sequence of hidden states
output by the second Bi-GRU, and by s the final
representation of the input string, as described by
Equations 11 and 12.

H = BiGRU(BiGRU(X)) = (hi, ..., hL) (11)

s = hL (12)

After obtaining the two embedding vectors from
the two layers of bi-GRUs, these are combined into
a a single representation by concatenating them and
by calculating the element-wise product and the dif-
ference between them. This representation is finally
fed into two feed forward layers to produce the final
output. These layers consist of a simple combina-
tion of the inputs in addition to a Rectified Linear

Unit (i.e. a nonlinear activation function) and a
sigmoid activation function.

Borges et al. [4] proposed several extensions to
this model. Instead of considering the final hid-
den state of the second bi-GRU as the input vec-
tor representation the authors considered: the use
of max-pooling and average-polling operations over
the hidden states from the second bi-GRU to cre-
ate the representation of the whole input string; the
use of an inter-attention (i.e., alignment) layer, al-
lowing the model to learn to attend and align dif-
ferent pairs of characters between the two input
strings. The substitution of the activation functions
of the GRU cell with a penalized hyperbolic tangent
activation function was also advanced. Moreover,
Borges et al. [4] proposed another extension using
the R-Transformer model [38] for string matching.
In this case, instead of two bi-GRU the encoder
layers use a single and first bi-GRU followed by
multi-headed scaled dot product attention mecha-
nism to capture interactions between the two input
strings. In order to obtain the vector representa-
tion for the input, these layers are followed by max-
polling and average-pooling operations to aggregate
the outputs of the final encoder layer. The remain-
ing layers (specifically, the two feed-forward layers)
maintain themselves the same as in the previous ar-
chitecture. The bi-GRU with the max-pooling and
average-pooling extension presented better results
in most cases.

The string matching problem can also be for-
mulated as retrieval-based ranking problem where,
given a string, the goal is to rank a set of other
similar strings, with the most similar placed on
top. Gan et al. [13], Traylor et al. [36] and Tam
et al. [35] all presented deep neural networks to
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Table 1: Testing Datasets Description

Dataset Source Total Positive
Dissimilar

Matches Non-Matches

Wikidata (train) Wikidata 1 250 000 625 000 1.02% 0.00%
Wikidata (test) Wikidata 43 214 21 607 0.99% 0.00%
Orphanet Rare Diseases Ontology (ORDO) OLS 116 860 58 430 33.35% 0.10%
Human Disease Ontology (HDO) OLS 98 494 49 247 7.55% 0.38%
Foundational Model of Anatomy Ontology (FMA) OLS 198 306 99 153 2.28% 0.00%
Uber-anatomy ontology (Uberon) OLS 300 322 150 161 7.07% 0.30%
Human Phenotype Ontology (HPO) OLS 350 234 175 117 8.93% 0.14%
Mammalian Phenotype Ontology (MPO) OLS 691 680 345 840 1.44% 0.01%
National Cancer Institute Thesaurus (NCIT) subset OAEI 7 592 3 796 0.09% 0.01%
Mouse adult gross anatomy (MA) OAEI 768 384 0.00% 0.00%
FMA + NCIT subset - 1 OAEI 26 752 9 229 0.00% 0.00%
FMA + NCIT subset - - 2 OAEI 20 000 7 082 0.00% 0.01%
MA + NCIT subset - - 1 OAEI 6 705 1 744 0.00% 0.01%
MA + NCIT subset – 2 OAEI 6 000 1 596 0.00% 0.01%
SNOMED CT SNOMED CT 3 988 1 994 0.00% 0.00%
NCBI disease entities NCBI Disease Corpus 15 541 7 770 0.76% 0.00%

address this problem. Gan et al. [13] proposed
a string encoder combined with a ranking compo-
nent. The string encoder was represented either
by a CNN, where final vector representations for
the input string were obtained by concatenating re-
sults of a max-pooling operation over the outputs
of the three convolution layers, or a bi-directional
LSTM, where vector representation was defined as
the last hidden state of the neural network. The
ranking component ranked the candidates based on
their cosine similarity with the query representa-
tions. Traylor et al. [36] and Tam et al. [35]
also used bi-directional LSTMs to encode pairs of
strings, but considered the whole sequence of vec-
tors output by the bi-LSTM for the input strings. In
the first case, a CNN with max-pooling was applied
to an alignment matrix (obtained by multiplying
both string representations), whilst in the second
case a transport plan matrix (the conversion of the
encoding of one string to the encoding of the other
string) is multiplied element-wise by a similarity
matrix (the inner product of both string represen-
tations) and its result is fed to a three layer CNN.
Both approaches output the desired score through
a final linear layer.

3. Proposed Approach

This work tackles the string matching problem
within the biomedical domain. Leveraging the neu-
ral network models proposed by Santos et al. [30]
and Borges et al. [4] (described in Section 2), I
propose to extend RNN and R-Transformer models
with positional encodings in order to classify the
strings as matching or non-matching. More specif-
ically the positional encoding is added to the RNN
model from Borges et al. [4] with max-pooling
and average-pooling operations and to the Trans-
former model. The implementation relied mostly

on Pytorch Lightning3 deep learning library. The
datasets, trained model and source code are avail-
able in a public github repository4.

3.1. Positional Encoding

The proposed positional encoding is added to the
aforementioned models so that, given a certain pair
of strings, the input representation includes infor-
mation on each character’s position, instead of con-
taining information only on which character it rep-
resents (i.e., a one-hot vector).

A trigonometric position embedding [37] was
added to the input representation where each po-
sition embedding is selected as:

PE2k(·, pos) = sin(pos/100002k/dmodel),
PE2k+1(·, pos) = cos(pos/100002k/dmodel).

(13)

In the previous expressions, pos is the position in-
dex, 2k and 2k + 1 are the dimension index and
dmodel is the dimension size of embedding.

The overall models are instances of the generic
approaches illustrated in Figure 1.

4. Experimental Methodology

This section describes the experimental evaluation
of the methods described in the previous section,
first detailing the datasets considered in training
and evaluating the proposed approaches and then
presenting the obtained results.

4.1. Description of the Datasets

The proposed neural networks were trained with
a dataset featuring instances retrieved from Wiki-
data, and they were tested on 15 datasets corre-
sponding to pairs of strings from different biomedi-

3https://www.pytorchlightning.ai/
4https://github.com/LeonorFernandesIST/BiomedicalCo

nceptAlignment.git
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Table 2: Results with the Levenshtein and Jaro-Winkler metrics

Testing Dataset
Levenshtein (α = 0.1) Jaro-Winkler (α = 0.1)

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Wikidata 48.97 49.53 97.96 65.80 49.00 49.49 98.03 65.78
ORDO 43.23 46.37 86.47 60.37 45.56 47.68 91.13 62.61
SNOMED 50.00 50.00 100.00 66.67 50.00 50.00 100.00 66.67
HDO 48.95 49.47 97.90 65.73 49.69 49.85 99.39 66.40
NCBI 49.41 49.76 98.82 66.19 49.63 49.81 99.25 66.33
HPO 49.29 49.64 98.60 66.03 49.48 49.74 98.98 66.20
Uberon 49.75 49.87 99.50 66.44 49.84 49.92 99.68 66.53
FMA 49.85 49.93 99.70 66.54 49.93 49.97 99.86 66.61
NCIT subset 49.72 49.86 99.45 66.42 49.70 49.87 99.39 66.42
MA 49.61 49.80 99.22 66.32 49.70 49.87 99.39 66.42
MPO 49.37 49.68 98.75 66.11 49.70 49.87 99.39 66.42
FMA + NCIT subset - 1 34.49 34.49 100.00 51.29 34.48 34.51 99.97 51.31
FMA + NCIT subset - 2 35.41 35.41 100.00 52.30 35.40 35.43 99.96 52.32
MA + NCIT subset - 2 26.60 26.60 100.00 42.02 26.60 26.65 100.00 42.09
MA + NCITsubset - 1 26.01 26.01 100.00 41.28 26.01 26.06 100.00 41.34

cal ontologies or collected from biomedical text cor-
pora. In general, a positive instance corresponds to
the case where both strings in a pair correspond to
the same concept.

The training dataset is a generic balanced dataset
with 1 250 000 pairs of strings (and, therefore, with
625 000 positive instances). In order to obtain a
large and generic dataset, concepts were retrieved
from Wikidata5, belonging to the following classes:
physiological condition, biological component, health
science, biology, group or class of chemical sub-
stances, zootomy, veterinary medicine, compara-
tive medicine, biomolecular structure, biological re-
gion, anatomical entity, biological system, general
anatomical term and phenotype. Positive instances
correspond to pairs of concepts that are presented
as synonyms in this platform (e.g. induced mis-
carriage and abortion) whereas negative instances
were generated with randomly selected concepts
that were not synonyms or generated with the re-
placement of words in a given list by there antonyms
(e.g., concepts with anterior replaced by posterior).
A significant portion of the non-matching pairs are
not completely dissimilar, so that the dataset is
representative and challenging for automated clas-
sification (e.g., complex global pain syndromes and
complex regional pain syndromes are non-matching
pairs).

A testing dataset was also collected from the
same Wikidata classes. This dataset does not have
any pair equal to the ones in the training dataset
and is to be considered as a validation dataset from
the same domain. The remaining datasets were re-
trieved from the following sources:

• Ontology Lookup Service (OLS)6, i.e. a reposi-
tory for biomedical ontologies that aims to pro-

5https://www.wikidata.org/wiki/
6https://www.ebi.ac.uk/ols/index

vide a single point of access to latest ontology
versions. Positive instances correspond to iden-
tified cross-reference concepts.

• Ontology Alignment Evaluation Initiative
(OAEI)7, whose major purpose is to openly
compare systems and algorithms on an equal
basis so that anybody is allowed to make in-
formed decisions regarding the best matching
techniques. Datasets retrieved from OAEI are
from either ontologies/subsets used as sources
for ontology alignments, or from already per-
formed alignments in anatomy tracks. In the
first case, positive instances correspond to pairs
of strings belonging to the same name set (i.e.
group of synonyms and main labels of a class).
In the second case, positive instances corre-
spond to mapped synonyms in the performed
alignment. In both cases, negative instances
all have an ISub similarity ≥ 0.7.

• Systemized Nomenclature of Medicine – Clin-
ical Terms (SNOMED-CT), i.e. a standard-
ized, international, multilingual core set of clin-
ical healthcare terminology that can be used
in electronic health records. Positive instances
correspond to English terms with the same
SNOMED-CT code.

• National Center for Biotechnology Information
(NCBI) disease corpus8, a resource for disease
name recognition and normalization. Positive
instances correspond to strings marked as en-
tities in the text with the same SNOMED-CT
code.

7http://oaei.ontologymatching.org/
8https://www.ncbi.nlm.nih.gov/research/bionlp/data/di

sease
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Table 3: Results with the proposed RNN and R-Transformer models

Testing Dataset
Proposed RNN Proposed R-Transformer

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Wikidata 89.87 89.48 90.34 89.87 93.00 92.33 93.80 93.03
ORDO 86.82 90.14 82.65 86.19 90.15 93.23 86.55 89.73
SNOMED 82.95 76.24 95.88 84.91 84.34 79.57 92.55 85.54
HDO 81.76 78.59 87.32 82.67 84.41 82.02 88.16 84.92
NCBI 75.48 73.43 79.62 76.34 76.46 74.36 80.73 77.34
HPO 68.97 67.72 72.48 69.94 73.69 73.57 73.95 73.68
Uberon 68.28 65.73 76.39 70.58 71.77 69.24 78.38 73.45
FMA 71.94 71.94 75.97 72.95 74.29 75.90 71.20 73.39
NCIT subset 69.83 67.43 76.73 71.73 70.03 66.68 80.02 72.69
MA 63.93 62.72 67.62 65.02 67.32 65.21 74.22 69.42
MPO 65.82 66.28 64.39 65.23 68.33 69.62 65.09 67.18
FMA + NCIT subset - 1 69.48 53.58 85.95 65.93 66.05 50.46 86.57 63.66
FMA + NCIT subset - 2 68.84 53.81 86.07 66.11 64.94 50.38 86.15 63.45
MA + NCIT subset - 2 68.42 45.21 91.22 60.36 63.90 41.77 92.52 57.44
MA + NCIT subset - 1 68.75 44.77 90.88 59.88 64.51 41.76 92.08 57.34

All datasets are presented in the Table 1 detail-
ing their source, the total number of pairs, the to-
tal number of positive instances, the percentage of
pairs with matching concepts that are completely
dissimilar and the percentage of pairs with non-
matching concepts that are completely dissimilar.
Non-matching concepts correspond to cases when
the pairs had a Jaro-Winkler similarity of 0.

Apart from the OAEI datasets derived from the
alignment between FMA or MA with the NCIT sub-
set, all other datasets are balanced (i.e. half of the
instances correspond to matching concepts). The
four imbalanced datasets have more non-matching
than matching concepts. The existence of totally
dissimilar matches occurs with an incidence higher
than 1% only in 8 of the datasets and from these,
only the ORDO dataset has an incidence superior
to 10%. None of the datasets present a high per-
centage of totally dissimilar non-matches (they are
all below 1 percent).

Additionally, it is important to refer that none
of the datasets present cross-language pairs. The
English language was considered in all cases.

4.2. Evaluation Methodology

The proposed approach was compared to baseline
methods over all the testing datasets. Specifi-
cally, the considered baselines consist of individual
string similarity metrics, with a threshold value α
tuned for optimal F1 score on average over all the
datasets. Results were measured in terms of accu-
racy, precision, recall, and the F1 measure.

In terms of hyper-parameter choices and model
training strategies, the tests with models leverag-
ing RNNs used an RNN hidden layer size of 60, a
hidden layer size of 120 in the dense layer processing
the result from the interaction between the string
representations, a batch size of 32, and the Adam

[20] optimizer with a learning rate of 0.001. Regard-
ing experiments with the R-Transformer encoder, 3
layers of dimensionality 512 were considered, lever-
aging 8 attention heads in parallel.

Model training is performed for a maximum of
20 epochs over the training dataset with early stop-
ping being activated when the training loss does not
decrease after 3 epochs. Other experiments were
conducted in regards to the assessment of the im-
pact of the training dataset size or the contribution
of model fine-tuning with specific in-domain data.
The in-domain experiments were done with two-fold
cross validation, according to a stratified sampling
procedure.

4.3. Results

Tables 2, 3, and 4 present the obtained results.

Table 2 details the results over each dataset with
baseline methods. Although experiments were con-
ducted with 6 traditional string similarity measures,
only the results with Levenshtein and Jaro-Wrinkler
metrics are presented, since they obtained better
overall results and can, therefore, fairly be com-
pared with the proposed neural network results. It
is also important to notice that the threshold value
α was tuned for optimal F1 scores and has, in both
cases, the value of 0.1. Hence, it is highly likely that
most pairs are considered positive instances, which
results in the high recall values observed.

Table 3 presents the proposed neural network
methods. The results show that neural meth-
ods outperform traditional string similarity mea-
sures in terms of accuracy and F1 score in all
testing datasets. In most cases, the proposed R-
Transformer model obtains better scores than the
bi-GRU model.

The 4 imbalanced datasets (FMA + NCIT subset
1 & 2 and MA + NCIT subset 1 & 2) correspond
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Figure 2: Results changing the training dataset size

to the worst accuracy and F1 scores with the R-
Transformer model. Additionally, they correspond
to the cases where the RNN outperforms the R-
Transformer model. It is also interesting to notice
that the recall is always high (above 85 %) in these
cases, whilst precision is rather low (below 54%).
These imbalanced datasets not only have more neg-
ative instances than positive, but are also datasets
where pairs of strings that corresponded to negative
instances presented a high similarity between them
(ISub ≥ 0.7), thus, contributing to the identifica-
tion of false positives.

Datasets with pairs retrieved from disease related
ontologies (ORDO, HDO, NCBI) or general health
terms (SNOMED CT) had better results than
datasets related to phenotypes and anatomy terms.
This can be related to the classes from which the
Wikidata training set was retrieved (i.e., anatomy
and phenotype terms are underrepresented in rela-
tion to disease related terms).

Another interesting note is that the percentage
of totally dissimilar pairs that are synonyms does
not seem to have an influence on the results. The
ORDO dataset presents the highest percentage of
totally dissimilar matches (33.35%) and is also the
testing dataset with the highest scores (excluding
the Wikidata validation set). Furthermore, the
datasets that do not present any dissimilar matches
do not perform necessarily better or worse (e.g.
comparing the SNOMED-CT and MA + NCIT sub-
set - 1 datasets’ results one can infer that this does
not have a direct influence).

In order to assess the impact of the training
dataset size, experiments were conducted in which
the size of the training dataset was reduced (us-
ing stratified folds) and the effect on the evalua-
tion metrics evaluated. This was conducted for the
following testing datasets: Wikidata, which is con-
sidered from the same domain; ORDO and MA +
NCIT subset - 1 which obtained better and worse
results in the previous tests, respectively. Figure 2
illustrates the results for this set of experiments.

Both the ORDO and Wikidata datasets show
that a greater amount of training data leads to bet-

ter results, independently of the model being used.
The R-Transformer model continues to outperform
the RNN in most cases, although the difference be-
tween the two models’ scores is smaller with smaller
training sets. On the other hand, experiments with
the MA + NCIT subset- 1 dataset were different
than expected. Although, in the R-Transformer
model the pattern maintains itself (higher scores
for bigger training sets), for the RNN model we
have that the 12 500 size dataset presented the
better scores. Moreover, in this case the differ-
ence between the dataset scores is bigger when us-
ing smaller training sets (with the R-Transformer
model outperforming the RNN model in the ex-
treme of the smallest training set). For a small
training generic dataset (1 250 pairs of strings) the
results are rather discouraging, obtaining in both
MA + NCIT subset - 1 and Wikidata worst scores
than some of the traditional approaches. Hence,
the proposed models are considered a good alter-
native when using a generic training dataset, if it
is big and representative enough of the biomedical
domain.

The neural model that performed better in most
cases (the R-Transformer model) was chosen to de-
sign an additional set of experiments to evaluate the
effect of how the training domain (i.e. the Wikidata
training dataset) affected performance when evalu-
ating the results in same-domain settings. On the
one hand, fine-tuning experiments were conducted,
where the training set included data from the on-
tology or domain being tested. I opted for fine-
tuning the pre-trained model instead of training it
from scratch every time since these are time con-
suming and resource intensive processes. On the
other hand, an experiment where a single 2-fold
training was executed with the training dataset in-
cluding data from all ontologies at once was also
conducted. Since the Wikidata testing set was used
as reference for the same domain as the training
dataset (whilst the remaining datasets were con-
sidered cross-domain experiments), I expected that
the scores obtained in both cases to become more
similar to the ones in the Wikidata dataset. In each
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Table 4: In-domain or in-ontology results for the R-Transformer model

Testing Dataset
Fine-tuning Training with all ontologies

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

ORDO 95.87 97.19 94.47 95.81 92.22 96.47 87.66 91.85
SNOMED 98.76 97.56 100.00 98.77 91.02 88.44 94.49 91.36
HDO 91.80 95.04 88.22 91.50 89.96 91.63 87.94 89.74
NCBI 88.45 97.39 79.04 87.26 82.90 84.24 80.75 82.45
HPO 88.94 93.60 85.28 89.25 89.33 94.35 85.74 89.84
Uberon 82.38 89.70 73.15 80.59 87.59 86.60 88.95 87.76
FMA 97.04 96.37 96.37 97.06 94.67 96.72 92.47 94.55
NCIT subset 81.04 86.44 73.61 79.51 85.45 87.60 82.59 85.02
MA 74.80 79.43 67.66 73.07 89.55 90.58 89.50 90.03
MPO 90.22 96.30 83.66 89.54 89.24 93.71 81.10 88.29
FMA and NCIT subset - 1 87.63 86.51 76.17 81.01 84.38 73.96 84.46 78.87
FMA and NCIT subset - 2 86.40 84.88 75.15 79.72 83.62 73.44 84.28 78.49
MA and NCIT subset - 2 90.35 82.10 74.02 77.85 87.02 69.91 90.00 78.69
MA and NCIT subset - 1 89.82 83.21 76.04 79.46 86.93 69.04 78.62 73.52

test it was ensured that the dataset being evaluated
was not present at train time. Table 4 presents the
obtained results for these tasks, where one can ob-
serve that in both cases the scores obtained were
better in the 4 evaluation metrics for all datasets.
For the R-Transformer model, accuracy scores were
all above 80% and F1 scores all above 70%.

Fine-tuning involves initializing the deep learn-
ing process with weights of the pre-trained model,
and training it with the new data. The model is,
therefore, adjusting its weights to the new data. In
the case of imbalanced datasets, this can be ex-
tremely important, since it can perform a class re-
weighting (i.e. to take into account asymmetry of
cost error directly during the training of the clas-
sifier). In my experiments, results for the imbal-
anced datasets all improved significantly, increasing
at least 21% in terms of accuracy and 16% in terms
of F1 score. These datasets also presented better
results in the fine-tuned models than when train-
ing with all ontologies, as expected. Seeing that
there is less adjustment to the imbalanced classes,
recall maintains itself higher in the model trained
from scratch. It is also interesting to notice that the
datasets which improve less with fine-tuning are the
ORDO, in terms of accuracy, and the MA, in terms
of F1 score. In the first case it may be due to the
fact that the model already obtained high scores
without fine-tuning, and hence the rare disease on-
tology was probably already well represented in the
model. In the second case, it is important to re-
fer that the mouse ontology is the smallest dataset,
with only 768 pairs of strings. Consequently, when
fine-tuning the model with each fold of 384 pairs
the available data might not be enough to adjust
the weights significantly to the domain.

Concerning the results obtained from the model
trained with a dataset including data from all on-
tologies at once, it is significant to note that I am

not only adding these domains and ontologies to
the training set but also enlarging it significantly
(2 193 272 instances in each fold). As shown pre-
viously, the size of the training dataset also influ-
ences the outcome and, therefore training with a
dataset that is approximately 1.75 times larger than
the original training dataset contributes to the gen-
erally better obtained scores. In particular, this
experiment showed that the ORDO dataset pre-
sented worse results than with the initial training;
the rest of diseases or general medical terms re-
lated datasets all improved in comparison to ini-
tial training, but performed worse than fine-tuning
the model. Most of the balanced datasets with
anatomy or phenotype related terms obtained im-
proved the scores. Assuming that, as mentioned
before, the initial Wikidata training dataset was
underrepresented in terms of anatomy of pheno-
type related concepts, then these results support
this idea. These datasets benefit from each other
being in the training dataset, and the percentage of
anatomical and phenotype representation increases.
Disease or generic related datasets perform bet-
ter with fine-tuning because the initialized weights
already benefited them and are then adjusted in-
domain, not needing each other to perform better.
Hence, it is seems to be extremely challenging to
find a large and generic dataset that not only in-
cludes all relevant biomedical classes but that also
contains them proportionally so that it is applicable
with all ontologies.

5. Conclusions and Future Work

This article describes extensions of the neural string
matching methods developed by Santos et al. [30]
and Borges et al. [4], augmenting the proposed
architecture to include positional embeddings, and
assessing its performance in cross-domain settings
(the main goal for biomedical concept alignment),
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in in-domain settings, and when varying the amount
of training data. The proposed models were tested
on different datasets, covering several biomedical
ontologies and domains (i.e., disease, anatomy and
phenotype related ontologies).

A comparison was also performed between the
proposed neural models against classical string sim-
ilarity metrics where the proposed neural network
models consistently outperformed the other tech-
niques. Except for the 4 imbalanced datasets (out
of 15 testing datasets), the R-Transformer model
outperformed the one based on RNNs.

Regarding the experiments in which the size of
the training datasets was varied, both models per-
formed better with a larger number of training in-
stances. It is possible to observe that when the
training dataset was very small (i.e. only 1250 in-
stances) the results were discouraging leading, in
some cases, to a worse score than traditional ap-
proaches.

After identifying the neural architecture that con-
sistently obtained better results, I focused on as-
sessing how well the proposed models performed
when considering data of the same ontology or do-
main. The results showed that cases where training
included in-ontology terms performed better than
the initial experiments. However, in the biomedi-
cal context, it would be relevant that in-ontology
training was not needed. This would be useful to
perform concept alignment even when the ontology
is not known. Moreover, it can enhance synonym
discovery and identification between several authors
and contexts. All things considered, a large train-
ing dataset that considers and represents the most
biomedical categories it can should be aimed for.
Wikidata, still seems to be a good option for this
data retrieval since it is a large-scale collaborative
ontological medical database.

There are several potential paths for future re-
search based on the findings given in this article. A
straightforward future experiment would be to re-
trieve a larger amount of data from Wikidata for
the training dataset, including a larger amount of
classes in order to obtain more anatomy and pheno-
type related terms. However, it is also important to
notice that these models are time and resource con-
suming, so there should be a balance between en-
larging the dataset and computational effort. Fine-
tuning pre-trained models has showed to be a suc-
cessful alternative for this balance (e.g. using the
already trained model and adding more data). In
what regards to the positional encoding, it would
be interesting to generalize the word and character
embeddings as continuous functions over a variable
(position) instead of being defined as independent
vectors. Recently Wang et al. [38] demonstrated
this to be more efficient. Keeping in line with recent

advances in natural language processing, I believe
other extensions to the Transformer model might be
beneficial to the task in hand (e.g. considering the
residual attention layer Transformer [15]). Finally,
testing with cross-language datasets would also be
an interesting experiment, wherefore contributing
to the multilinguality challenge mentioned in Sec-
tion 2.
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