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Abstract— E-commerce increases every single day, however it is still hard for people to buy clothes online because they have no
idea of how they will look. To this end, we present an approach to model an approximation of a human body shape with a given set
of body measurements in order to fit virtual clothes. To estimate a new body shape from body measurements we compared two
different models that we developed. The first one uses linear transformations and the other uses PCA weights to estimate a new shape.
Additionally, we selected the minimum number of body measurements required to perform an estimation with a similar shape as the
ground truth. We evaluated our approach by comparing our results with estimations, and through visual evaluation via pictures and
measurements taken from real people.

Index Terms—PCA, Linear Transformation, Body Measurements.

1 INTRODUCTION

According to Digital Commerce 360 website1, online apparel sales
accounted for 38.6% of total U.S. apparel sales in 2019 and 100% of the
growth in retail clothing sales. E-commerce’s share of apparel sales has
grown nearly 10 percentage points in the past 3 years, as online apparel
sales accounted for 34.0% of total U.S. apparel sales in 2018 and 29.9%
in 2017. The percentage of online shopping is increasing year after
year, and e-commerce captured an even greater share of apparel sales
throughout 2020 due to the coronavirus pandemic. As lockdowns
became the new normal, businesses and consumers increasingly went
digital, providing and purchasing more goods and services online,
raising e-commerce’s share of global retail trade from 14% in 2019
to about 17% in 2020 [25]. General e-commerce grew by leaps and
bounds during the pandemic by 33.6% in 2020, to a total of nearly
$800 billion. In 2021, online shopping will still expand and accelerate
far more than it did before shutdowns and social distancing. In fact,
Emarketer 2 recently estimated that e-commerce will grow another
13.7% in 2021, reaching $908 billion [12]. In early 2021, the EY Future
Consumer Index [ey], which has surveyed thousands of consumers since
the early days of the pandemic, found that 80% of U.S. consumers are
still changing the way they shop. Sixty percent are currently visiting
brick-and-mortar stores less than before the pandemic, and 43% shop
more often online for products they would have previously bought in
stores [15]. However, many still prefer to buy clothes in a physical
store instead of resorting to e-commerce [2, 30, 1], and one of the
reasons is due to the fact that it is impossible to know how a piece of
clothing would look when dressed [19, 10]. This is because it is hard
to model garments in a realistic way. To consider the fabric’s physics,
material, and texture, it is required a computational power that most
devices do not possess yet. In addition, the amount of data needed
in order to produce a realistic result is abysmal, which is monetarily
expensive. Especially, data that requires high tech hardware like 3D
scans, and several people to scan. The issue aggravates when privacy
and ethical concerns are pointed out, specially because this data consists
on the realistic shape of people’s body including 3D models and/or
photographs [13]. Everyday new deepfake videos are uploaded to the
internet and they are almost impossible to distinguish from reality. The
ability of this technology to replace a person with another one likeness
in a realistic ways have garnered widespread attention for their uses in
celebrity pornographic videos, revenge porn, fake news, hoaxes, and
financial fraud [7, 9, 21, 23]. This proposal consists on modeling a
human shape based on body measurements manually inserted by the
user, and to model an undressed human shape, it is necessary to get

1https://www.digitalcommerce360.com/
2https://www.emarketer.com/

naked examples and therefore it is necessary to scan people wearing
the bare minimal amount of clothes - underwear. The acquisition of
people that are willing to be scanned under those conditions can be hard,
because it can be seen as an invasion of personal space. These are a few
reasons on why there aren’t more solutions to approach the realistic
human body representation problem. We approach this problem by
comparing two different models, one only using linear transformations
and other using feature extraction, to see which is the best approach
to model a new body shape from only body measurements. We also
wanted to see if the usage of PCA was useful to map body shape
with body measurements. We will use polygon meshes that consist
on a collection of vertices, edges, and faces that defines the shape of
a three-dimensional object with flat polygonal faces, straight edges,
and sharp corners or vertices - polyhedral object. This objects can be
explicit once all vertex positions are defined in all axes, or implicit.
An implicit surface is the set of zeros of a function of three variables.
Implicit means that the equation is not solved for x, y or z. The usage
of implicit surfaces would be valid in this project, however, this kind
of surfaces are harder to handle and render, and since our dataset
consists of explicit surfaces, it makes sense to use algorithms that
apply to them. Therefore, we propose to model realistic 3D triangular
meshes - meshes composed of triangular faces - of human bodies
considering a set of body measurements, in an attempt to accurately
output a polygon mesh with the exact same measures as the ones
inserted by the user. Is important to highlight the fact that this proposal
will focus on approaching the 3D modeling of a realistic 3D human
mesh problem with focus on virtual garment fitting. Thus, it is vital that
the body shape is as similar as possible to the original one. There will be
two different aspects to evaluate the mesh quality in this proposal: the
quality of the produced body shape and the body measurements of the
final mesh. The first consists in directly comparing the final mesh with
the estimated one by measuring Distance between the correspondent
vertices of both meshes. Since we will not scan people to validate our
approach, in the tests with real users we will compare the final mesh
with the users silhouette extracted from pictures. Thus, at the testing
phase, the users will need to manually insert their body measurements
as well as an RGB image of themselves wearing minimal clothes. The
second one consists on analyzing the body measurements of the final
mesh and see how close they are to the original ones.

1.1 Project Goals

The goal of this project is to produce a realistic 3D model of a human
body that considers a set of standard body measurements, e.g., height,
waist, breast, and hips. These measurements are provided by the users,
and the system will use them to produce a realistic 3D mesh that
represents a human body with the specified measurements. As an extra,
we will define what are the minimum body measurements required to
produce a mesh with a similar body shape as the original one.



1.2 Results
To evaluate our approach, we calculated the the error of our represen-
tation facing the estimated results and see what are the relative errors.
We also studied the reliability of the result facing the provided body
measures, to see if the new estimated shapes respect those measures or
not. An analysis will be made to see what are the minimal measure-
ments required to accurately represent the result facing the estimation.
As an extra, we will also visually evaluate the reliability of the mesh
inspecting pictures.

Our approach that is able to produce a mesh that respects a set of
body measurements manually inserted by the users, it is fundamental
that the final mesh contains have similar body measurements as the
ones inserted. We also expect that the final mesh contains a body
shape similar to the user that inserted the measurements. Finally, an
analysis will be performed on how many body measurements are in fact
needed in order to represent the maximum amount of information. For
instance, it could be useful to use 5 measures (out of 10) if it accurately
represented 95% of the information, or by other words it could be
beneficial to use less measures if it resulted in a small error percentage.

2 RELATED WORK

On this section similar projects to this proposal will be presented and
their methodologies discussed. This section will aboard all research
done about body deformation techniques that better suit to our needs.

2.1 Body Deformation
Body representation has always been a major subject in computer graph-
ics. Until very recently, it has been used almost entirely in the gaming
industry, to create characters as realistic as possible. Amaury and
Daniel Thalmann describe in [5] that there are two major models that
are used to represent the human body: surface models and multilayered
models. Both models are composed by a skeleton and a skin repre-
sentation, which can be a triangular mesh or a set of surface patches.
With that, it is possible to add deformation functions to simulate the
joint movement to add realism to an avatar’s animation. Since that this
project mainly focuses on parametric models of the human body, the
research was also focused on that direction. In this specific case, the
parameters are measurements of an individual’s body such as height,
length of the legs, arms, etc. Those inputs can be manually inserted
by the user [6, 24, 26, 27], or the parameters could be learned from
a 3D scanned human mesh dataset [6, 14, 26, 4, 16, 18, 22, 24, 11,
8], a RGB image [14, 22, 31] or even a binary image [11]. Once the
system obtains those parameters, the next step is to model the mesh
accordingly to those parameters. The modeling of a human body is a
hard task to accomplish. Recently there’s a lot of work in supervised
learning done that involved the 3D scanning of plenty bodies [8, 11, 16,
22] that were later used to estimate a body deformation in a variety of
poses [Loper2012BlendSCAPE, 8, 16, 18, 4], or just simply to map
an image to a 3D model from a single image [11, 22, 32, 14, 31].

2.1.1 Surface Models
A surface model is either a triangular mesh or a set of surface patches,
whose deformation is driven only by the motion of an underlying hier-
archical structure or skeleton. This kind of model is still mainly used,
especially in the gaming industry, because it is much more computa-
tionally cheaper, despite the fact that the results are not considered the
best. This subsection is divided into three parts: estimating body mea-
surements as parameters, mesh modeling and deformation and mesh
animation. The first part talks about approaches that estimate body mea-
surements by plenty of means, mainly 3D scanned meshes or images,
and estimates a 3D mesh that best applies to those values. The second
part of this section references used techniques that deform meshes,
preferentially respect a set of parameters, or body measurements in this
case. The third and final part will identify some approaches proposed to
deform 3D meshes with different shapes depending on the body pose.
Currently available approaches can be divided into two main categories:
feature matching where a system directly regress a 3D geometry from
images, and template adaptation where the system deforms a template
mesh to respect a set of input parameters.

Estimating Body Shapes

Non surprisingly, the majority of recent work done in creating
parametric avatars has been accomplished using a mesh database
derived from 3D scanned bodies of real people. However, this process
is expensive because it requires some high-end gear. After scanning
the necessary meshes, one of the options is to train a system that either
estimates body parameters, where given some input, the system would
output the body measurements as parameters to estimate the desired
body shape. The usage of neural networks proved to be efficient in
this topic. In PIFuHD [22] it is used a neural implicit functions for
shape representation. in HS-Nets [11], the parameters themselves are
computed based on images as input, and are used to reconstruct the
3D human shapes by using a statistical human shape model based on
SCAPE [4]. This model was proposed in 2005 and the shape variation
is represented by using principal component analysis (PCA) on a set
of 3D scans of different people in different poses, which includes a
low-dimensional subspace of body shape deformations. In HS-Nets
however, to learn the global mapping from the data to the parameters, a
convolutional neural network (CNN) is trained. This CNN is trained by
feeding the images from different views into the network, however
the images are concatenated by a merge layer that performs a max
operator over each dimension. However, by outputing a 3D mesh with
this system might lead to a wrong human body shape representation
by misleading its body measurements. This proposal designs a model
that receives body measurements as input and outputs a realistic 3D
mesh representation of a human 3D mesh with the measurements
as constraints. The same argument is applied to Detailed Human
Depth Network (DHDNet) [31], where Zhang uses CNNs in order
to estimate a detailed and completed depth map from a single RGB
image that contains occlusions of human body. Since information is
retrieved from an RGB image, there is no certains that the outputed
body representation of the individual in the image respects its body
measurements. The estimation of a 3D mesh from an image could be
useful to evaluate the project by calculate the differences between
the mesh obtained from this proposal and the mesh estimated by the
CNN model, however that process will not be used because as said
previously, this systems do not consider the body measurements of the
person in the picture as a parameter.

Mesh Deformation

After obtaining the desired parameters, that in this case corre-
spond to body measurements, either by estimating those values using
machine learning, or by manually inserting them into the system, it
is necessary to create a 3D model based on those values. The usage
of blend shapes allows an approach without requiring any machine
learning technique. Morphing requires a final model shape (target)
to be able to morph from the base shape until the desired one. The
disadvantage of this kind of process is that it requires a lot of modeling
by the developers to have one or more target meshes. One example
is HMR [14], Zhang builds a standard model to be deformed in three
different levels and to recover occluded surface details using the depth
information. Both HMD [32] and Seo in [24] use blend shapes to
update the shape of a model in real time by using an iterative interface.
IntExMa [26] uses a morphing algorithm to comply with the desired
body measurements as input. Morph targets are used to define vectors
for the deformation of a defined set of vertices in the complete model.
The deformations are made in an automatic iterative process that ends
up with a model that fits the desired proportions. Another example
is [16] where blend shapes are used not only for body poses but also
for animations. SMPL [16] is a skinned vertex based model that
accurately represents a wide variety of body shapes in natural human
poses. This model contains four main elements: a template mesh (T),
shape blend shapes, pose blend shapes and a pose. A template mesh
in a T-pose is used, the output will be this same mesh into a certain
given pose, where the body shape depends oh that given pose, e.g. if
the pose is being sit the belly would pop out a bit more. Shapes blend
shapes consist of offsets applied to T in order to represent new body
shapes and post dependent shape changes. From training 3D scans



of real people in T-pose, shape blend shapes from different parts of
the human body are learned to capture human shape variation using
principal component analysis (PCA). This results on the principal
modifiers that act on mesh’s shapes, or by other words, returns the
components that most change in the provided dataset. Learning the
human body shape through PCA is a strategy used by a lot of projects
[6, 4, 16, 18, 24, 8] and it is an effective strategy to learn the variation
between different human body shapes, that is why this strategy will
be used in this proposal as well to learn the blend shapes that most
realistic modify a human 3D mesh. In [6] the data base is clustered and
statistically analyzed to capture the tendency of body shape variation,
and from that tendency the body shape parameters are extracted. One
of the meshes is considered to be the basis of registration, or in other
words, the ground truth. The mesh’s input body sizes are classified
into groups and the parameters (body measurements) of that group are
taken into account at the R3 7−→ R3 transformation that is applied to
the base mesh in order to output a new mesh with the desired input
measurements. The usage of a ground truth seems wise, because that
way exists an initial mesh to work with. Seo in [24], uses a template
mesh as well by using a database of 3D scanned meshes from real
people, and it is used as examples to correspond a template mesh
deformations with the body measurements. In fact, the usage of 2
templates (one male and the other female) could be beneficial to
generalize each gender better. A third neutral gender could be used
as the average of the entire dataset instead of the average of just one
gender. Having this, it is possible to apply transformations (in this case,
blend shapes) to that mesh to represent a different body shape.

Animating Body Meshes

The final part is to add movement to a certain mesh, but more
importantly is to know how to represent that mesh in different poses. A
realistic animation deforms a mesh depending on the body pose and
body shape. A very popular approach to this problem is the usage
of regression on joints to increase animation correction and realism.
Besides the rest pose template, blend weights, pose-dependent blend
shapes, and identity-dependent blend shapes, SMPL [16] also contains
a regressor from vertices to joint locations. Unlike previous models,
the pose-dependent blend shapes are a linear function of the elements
of the pose rotation matrices. This simple formulation enables training
the entire model from a relatively large number of aligned 3D meshes
of different people in different poses. It predicts the joint positions for a
given body shape as a function of the mesh vertices. Pose blend shapes
are learned from training 3D scans of real individuals in a variety of
poses, this captures how real bodies differ from blend skinned bodies,
and allows the system to learn how to model body meshes segments
(different parts of the body) as pose dependent. Given a pose that is
provided to SMPL, it computes the near contribution of this blend
shape, the correct skinning errors and produce realistic pose dependent
deformations. Finally the SMPL use of standard blend skinning to
transform the deformed template shape into the desired pose.

STAR [18], being the evolution of SMPL, is 80% smaller because it
uses far less parameters by defining per-joint pose correctives and learn
the subset if meshes vertices that are influenced by each joint movement.
This sparse formulation results in more realistic and general deforma-
tions and significantly reduces the number of model parameters to 20%.
The system learns shape-dependent pose-corrective blend shapes that
depend on both body pose and body mass index (BMI), which was
huge compared to SMPL, since it factors pose-dependent deformations
from body shape while, in reality, people with different shapes deform
differently. STAR also differs from SMPL by being trained with an addi-
tional 10000 scans of male and female subjects (being added a neutral
gender optimization recently), which improves model generalization.
Just like SMPL, STAR also uses a joint blendshape regressor that allows
poses to look realistic. This regressor however, is more compact than
the previous one by using a diferent representation, which contributes
to the significative reduction of parameters on STAR comparatively to
SMPL.

The consideration of the pose to deform a mesh is a valuable artifact,
however it is not the primal concern of this project. This is a desirable

feature that would allow a more realistic virtual dressing by performing
animations that a person would do personally in the dressing room, e.g.,
sitting, jumping, etc. Therefore we do not consider pose variation in
this project.

2.1.2 Multi-Layered Models
This kind of model takes into consideration that there are several types
of body tissues that behave differently. Therefore, this model will differ
from the previous one by adding more layers to it (just like the name
suggest). A multilayered model is not just composed by a skeleton and
a triangular mesh. It is also composed by some intermediary layers such
as muscle and fat layer. Here, the motion due an underlying hierarchical
structure or skeleton is also applicable, but instead of being directly
from the skeleton to the skin, it passes through two intern layers.

This way, when the skeleton moves, that motion will be reproduced
by the muscle layer first, then the fat layer, and finally the skin repro-
duces the result of them all. In terms of animation, this kind of model
produces a much better result than a simple surface model, especially
when each layer is modelled accordingly.

Multi-layer Lattice [iwamoto2015multilayerlatice] achieve that in
a really effective way using voxels. A voxel can be seen as a correspon-
dence of a pixel but in a three-dimensional space, therefore it represents
a value on that grid and in this case, that value will identify that specific
voxel as bone, muscle, fat or skin. This way, with a mesh as an input,
this mechanism was useful to fill the interior and to get separated layers
without any extra modeling work.

This procedure was especially interesting for this project because the
layer classification was made based on inputs that the user would insert,
including bone width and muscle-to-fat ratio, just like it is pretended.
It was also possible to define such parameters in a body part level, such
that the different parts of the character can behave differently during
the simulation. For instance, there are characters that contain more
fat in the belly than in the legs. The differentiation between layers is
useful for animation purposes, in which a layer behaves accordingly to
a certain model. For instance, the fat layer should be much more elastic
than the muscle one, since the fatty tissues hang loosely under the
action of gravity. This model results in more computational complex
but much more realistic animations.

Simulating both muscle and fat layers could add some realism to
this project, since it is intended to simulate garments with an avatar.
Having both layers reacting to external forces would add realism to the
dressing experience, since the avatar would react to the clothes in a
more realistic way. For instance, if you have an avatar and two pairs of
jeans: one of a small size and another of a large size, the avatar would
react differently to both of them. Since the fat layer would be dynamic,
the smaller pair would be tighter than the larger one and that would
reflect on the avatar by squishing it and deforming its body.

Another approach is to use premodeled parts and adjust them to the
inside of the input mesh, what is precisely what Michael Pratscher did
on Outside-In [20]. In similarity to Multi-layer Lattice, Outside-In also
receives a mesh as an input and the insides are filled, in this specific
case, with artificial muscles. The user can then change the muscle
sizes in order to give the avatar the desired shape. Contrary to Multi-
layer Lattice, this project only considers the muscle layer. This kind of
approach would definitely add more realism to the virtual mannequin,
because each user could customize their avatar in their own way, but
since the virtual mannequin should be as realistic as possible, the fat
layer should not be ignored.

Despite the fact that a multi-layered model would result in a more
realistic outcome, adding a soft tissue layer is a desirable feature for
future work and it is not considered on the project. Therefore, it won’t
be part of the proposal itself, instead it will be on the future work.

3 ESTIMATING A NEW SHAPE USING BODY MEASUREMENTS

To approach the problem of estimating a new body shape based on
body measurements, our approach is divided in three major sections:
preprocessing, model generation, and evaluation. The first step is to
preprocess the dataset. In this step, the template models are created,
measured, and analyzed in terms of their body measurements and



coordinates. With that information, it is possible to create a mesh of
any shape given a set of body measurements as input.

In the first stage, we preprocessed the Semantic Parametric Reshap-
ing of Human Body Models [29] dataset to be used in the next steps,
and it begins by repairing the meshes. This is an essential step as
it prevents any mistake that might happen while extracting the body
measurements. After reparation, all meshes will be segmented into
sub-meshes, where each submesh represents a different part of the
body (torso, upper leg, lower leg, etc). Since the dataset is only com-
posed by meshes, without any kind of landmarks, like height, arm
length, leg length, waist, etc, it is necessary to extract those distances
ourselves. That was accomplished by using three different distances
between points on the mesh: length, height, and girth. The usage of
distances like geodesics is important because it takes into consideration
the mesh surface to compute Distance. It simulates what a tailor would
do while measuring people. The measurements are be useful to learn
how different body parts deform, and to apply deformations based on
body measurements that users manually insert into the system. After
this, the model generation module can initiate.

The learning process is marked by two different models that will be
compared with each other. The first one uses feature extraction to learn
the principal components that vary in a human body, relate it to the
body measurements, and apply the learned model to new sets of body
measurements. The other model only uses feature selection to learn
which subset of body measurements describe human shape the best. It
learns a model for that subset and applies it to any new subset that is
inserted. Both models receive body measurements as input that they
use to learn how human body shapes vary based on body measurements,
and output an entirely new shape based on the inserted measurements.

3.1 Preprocessing

The input of the preprocessing module are the meshes of the Semantic
Parametric Reshaping of Human Body Models [29], and the output
are two new datasets computed from the original one: the vertex co-
ordinates of each mesh, and the body measurements of each mesh.
We first clean the samples by correcting any geometry imperfection
that they might have: internal faces, non-manifold vertices, etc. The
preprocessing process continues with the segmentation followed by the
creation of the required datasets from the 3D meshes.

3.1.1 Dataset

To extract information about human shape variation, Yipin Yang results
in Semantic Parametric Reshaping of Human Body Models [29] are
used. The dataset is composed of around 3000 meshes, where 1500
are male and 1500 are female. All samples have been placed in point
to point correspondence, means that for two meshes m1 and m2 all
vertices vi∀i in V are in the same semantic region. Correspondence is
established by nonrigid deformation of a template mesh obtained from
averaging all female and male meshes (separately). Each mesh contains
12500 vertices and all meshes are positioned in a neutral pose. However,
the pose of all meshes is slightly different due to human errors. For
instance, if two different people were asked to position themselves in
the same position, the final pose would always differ from person to
person because of the angle of the arms or even the position of the feet.
This means that the dataset is not perfect as it contains pose differences
that can compromise the body measurements and the overall results.
We do not consider the pose in this project.

3.1.2 Mesh Repair

The software that were used while producing [29] did not consider
that the mesh contained non-manifold vertices. We imported a random
mesh of the dataset to Blender3 software and an initial evaluation of
the mesh showed that it required more fixing than expected. The mesh
contained non-manifold vertices on the left foot which could become a
problem in later stages as it could interfere with the extraction of body
measurements.

3https://www.blender.org/

To solve this problem, it is necessary to repair all meshes of the
dataset. Unfortunately, Blender is unable to do that, so we needed to
use another software to repair the meshes. We used the Wrap 3, a paid
tool of the company Russian 3D Scanner4, but since this is a paid tool,
we took advantage of the free trial to execute the repairing process.
Wrap 3 solved the non-manifold vertices by adding more vertices to
where was an edge shared with more than 2 faces. In the end, the
repairing process added 5 more vertices to each mesh, resulting in a
repaired dataset where each mesh contained 12505 vertices and no
non-manifold vertices.

3.1.3 Extracting Body Measurements
Users will manually insert body measurements as the system’s input.
The measurements required are split into 3 different categories: girth
that measures Distance around the middle of something, length and
height that measure Distance between 2 points. The extracted body
measurements will be tabled values that are mostly used by the fashion
industry, and this measurements are represented in Tables 2, 1 and 3.

The fact that the Semantic Parametric Reshaping of Human Body
Models dataset [29] is in point correspondence allows to extract body
measurements by defining the initial and target points of the distance to
measure. Since all meshes are in point correspondence, this information
is equal to all meshes.

Height measures the distance between two points using the Euclidean
Distance on the z axis (the vertical one). The length measurement con-
sist on the distance between two points considering the mesh’s surface
that contains the initial and target points. This type of measurement
is useful to calculate the distance between two body parts considering
the body shape, just like fashion designers when extracting body mea-
surements from models. Lastly, girth measurements are calculated by
intersecting a plane with the mesh to be measured.

4 MODEL GENERATION

The preprocessing phase results in a clean selected dataset that can be
used to fuel our model to generate new body shapes entirely from a set
of body measurements. In this section, we explain how we generate
new body shapes from a set of body measurements.

We compare two distinct methodologies against each other, the
first simply uses linear transformations to output a new body shape,
while the second one uses feature extraction to explain the maximum
variance in the human body. However, before we estimate any new
body shape, it is fundamental to decrease the number of features that
the dataset contains. To fulfill our goal of obtaining the minimum body
measurements set that explains as much information as the original set
as possible, we perform unsupervised feature selection on the original
dataset. In this project, we do not want to classify the gender of a
mesh, or the age, we do not have a classification problem in hand.
Thus, the usage of supervised methodologies for body measurement
selection would be ineffective for this project. The process of feature
selection reduces the used features to approximately 17%, resulting in
only seven final features of the initial 41. Both of our models use the
subset returned from the feature selection process to output new body
shapes.

4.1 Feature Selection
We first start by selecting the minimum number of features that explain
the maximum of the human body variance. We perform feature selec-
tion strategies on the original body measurements dataset, to reduce the
number of features required to output a new realistic body shape.

Feature selection differs from feature extraction by returning a subset
of the original variable set, while feature extraction extracts the princi-
pal components of a set and creates an entire new subset featuring those
components. This problem is not a classification problem because we
do not want to classify a body shape, or gender, or anything, we do not
have a target class. That means that observing the human shape is an
unsupervised problem and requires an unsupervised feature selection
approach. In this project we filter the more important variables by their

4https://www.russian3dscanner.com/



Length
Measurement

Parameter Definition

3 Shoulders The distance between the shoulders following the collarbones.
5 Rise The distance between the waist passing by the crotch to the back point of the waist.
16 Glutes The distance between the back point of the abdomen passing by the center of the glute to the beginning of the leg.
17 Neck to Waist The distance between the center back point of the end of the neck to the back center point of the waist.
18 Collarbone to Waist The distance between the top point of the collarbone passing by the widest part of the bust to the waist.
20 Upper Arm The distance between the shoulder to the elbow.
21 Lower Arm The distance between the elbow to the wrist.
22 Breast The distance between the top point of the chest passing by the widest part of the bust to the under bust.
25 Front Lower Trunk The distance between the central point of the waist to the lowest point of the groin.
30 Armpit to Waist The distance between the lowest point of the armhole to the waist.
31 Collarbone to Under bust The distance between the collarbone passing by the widest part of the bust to the under bust.
32 Under bust to Belly Button The distance between the central front point of the under bust to the belly button.
35 Arm The distance between the shoulder passing by the elbow to the wrist.
37 Groin The distance between the lowest central point of the abdomen to the lowest point of the groin.
38 Belly The distance between the lowest central point of the under bust to the lowest central point of the abdomen.

Table 1. Length type measures asked as input by the system. Users will need to measure themselves, it might be required an extra person to help to
take the measurements.

Girth
Measurement

Parameter Definition

1 Waist Perimeter of the narrowest part of the torso.
2 Head Perimeter of the widest part of the head.
4 Bust Perimeter of the widest part of the bust.
6 Hips Perimeter of the widest part of the hips.
8 Knee Perimeter of the widest part of the knee.
9 Ankle Perimeter of the narrowest part of the ankle.
11 Neck Perimeter of the narrowest part of the neck.
12 Lower Arm Perimeter of the widest part of the lower arm.

13 Upper Arm Perimeter of the narrowest part of the upper
arm.

14 Wrist Perimeter of the narrowest part of the wrist.
16 Tight Perimeter of the widest part of the tight.
18 Calf Perimeter of the widest part of the calf.

22 Arm loop
Girth

Perimeter of the loop from the top of the
shoulder to the armpit.

26 Elbow Perimeter of the widest part of the elbow.
29 Abdomen Perimeter of the widest part of the abdomen.
30 Under bust Perimeter of the widest part of the under bust.
32 Mid Tight Perimeter of the narrowest part of the mid tight.

Table 2. Girth type measures asked as input by the system. Users will
need to measure themselves, it might be required an extra person to
help to take the measurements.

Height
Measurement

Parameter Definition

7 Waist to Knee Distance between the waist and the knee.
15 Waist Distance between the waist and the floor.

17 Inseam Distance between the lower groin
and the ankle.

27 Feet Distance between the ankle and the floor.

31 Torso Distance between the neck and the
lowest groin point.

36 Neck Distance between the jaw and
the collarbone.

37 Hips to Ankle Distance between the hip and the ankle.
Table 3. Height type measures asked as input by the system. Users will
need to measure themselves, it might be required an extra person to
help to take the measurements.

variance and correlation. The usage of the variance in the selection
of variables is important because we want to keep the variables that
describe better the body shape variation, rather than keeping redun-
dant variables. Correlation is any statistical association, although it
commonly refers to the degree to which a pair of variables are linearly
related. Thus if two measurements are correlated, we can predict one
measurement from the other and vice versa and select only one for the
final subset, reducing redundant variables.

The usage of feature selection strategies will be performed on male
and female datasets separately. By doing this, we will not only observe
how the human body shape varies but also how gender impacts the
human body shape.

4.1.1 Data Analysis
The process of unsupervised Feature Selection consists on analyzing
the dataset that we want to reduce. Thus, in this section we describe in
detail our analysis that lead to the filtering of seven measurements out
of 41.

We first checked the amount of missing values on the measurements
dataset, but since there were none, we proceeded to the distribution
analysis of each variable. We replaced all outliers that were outside
of the µ ± 3σ Gaussian boundary by missing values, to prevent en-
tropy in our system. The analysis of the missing values count after
replacing the outliers indicated that the girth measurements were more
affected by missing values than the other measurements, specially the
underbust girth, bicep girth, armhole girth and knee girth. Since those
measurements were prone to high amounts of error, we decided to
exclude them from the final subset. Next, we normalized all variables
and then sorted them by variance and plotted it. The normalization step
is fundamental, each variable was scaled by shifting their values so that
they end up ranging between 0 and 1. This process brings equality to
all measurements by being able to directly compare the height with
the head girth and see which one changes more overall. To select the
final subset of variables, we must select the ones that have a higher
variance. This strategy is unsupervised, because we do not contain a
target variable in the dataset.

We selected the top 10 body measurements that most vary in both
datasets. There are many measurements that both genders share, while
there are others that are characteristic of each gender. Selecting 10
variables out of 41 is already a reduction of more than 83% of the
original dataset, but we can reduce the final subset even more.

To further decrease the final subset, we need to analyze the relation
between the variables, something that can be accomplished by calculat-
ing the correlation between the variables. By analyzing the correlation
relationship of the top 10 measurements, we concluded that all height
measurements are highly correlated. This means that all height mea-



Body Measurements Gender
Male Female

1 Bust Girth Bust Girth
2 Hips Girth Hips Girth
3 Thigh Girth Abdomen Girth
4 Waist Girth Thigh Girth
5 Abdomen Girth Height
6 Height Waist Girth
7 Neck Girth Mid-Thigh Girth

Table 4. Final body measurements subset per gender sorted by higher
(1) to lower (7) variance. Both subsets have the first 6 elements in
common (even with a different sequence) and only the last element of
both subsets is unique.

surements can be predicted using only the height measurement. Thus,
any other height measurement in the top 10, besides height, can be
removed without any information loss. By removing all height measure-
ment, besides the height itself, from the top measurements, the female
subset gets with 7 measurements and the male one with 9. In the male
dataset, the neck girth is correlated both with the rise and underbust
to belly button lengths. This means that the neck girth contains a high
percentage of the information that those two measurements contain,
and if we delete them, we would still have partial information about
them in the neck girth measurement.

At the end of the feature selection process, we ended with 2 subsets
of 7 body measurements, as shown in Table 4 with a high level of
variation that are not correlated among them. Both subsets share 6
measurements in common, leaving only one measurement that is unique
for each gender: neck girth for males and mid-thigh girth for females.
We were able to reduce the initial set of measurements by almost 83%.

4.2 Estimating New Body Shapes From Body Measure-
ments

After we selected the features that describe the variation of the human
body the most, we can implement our models - linear and PCA - using
that subset. However, the models implemented do not depend directly
on the subset used. By other words, the models apply to any body
measurement set. This means that the models can be tested using
several subsets. Both of these models output a new 3D shape entirely
from a set of body measurements.

4.3 Estimating New Body Shapes Using PCA Weights

In this section, we explain the implementation of one of the two models
compared in this project. This particular model will use feature ex-
traction to understand how the human shape dataset, containing vertex
positions of all samples, varies.

It is important to understand that the feature extraction process was
be performed on a different dataset that suffered from the feature selec-
tion process. The feature selection is applied on the dataset containing
the body measurements, while the feature extraction is performed on
the dataset containing the vertex positions of the samples. This means
that the feature extraction process is completely independent of the
feature selection process. However, in this specific model, we use
both processes. The feature extraction is performed on the coordinates
dataset using Principal Component Analysis (PCA). This results in the
model learning the principal components of the dataset. These principal
components represent how the human shape varies the most, with each
component representing a specific body variation e.g, the height, the
breast size, the body volume, etc. These principal components are
mapped as weights and are associated with the vertices of a template
mesh obtained from the mean of the samples used to train our model.
The template model is deformed by adding the weights associated with
the new set of body measurements. Finally, once we insert a new set of
body measurements, the model outputs a new body shape that respects
the body measurements inserted.

4.3.1 Feature Extraction Algorithm
The first step of this model is to calculate the template models S̄ for
male and female genders. These templates consist on the mean of
all male and female meshes in the dataset, respectively. It is of the
most importance to calculate the template meshes because it will be the
foundation of this model.

This approach is accomplished by extracting information regarding
the vertex coordinates of the samples and is based on S. Wuhrer pro-
posal for estimating human shapes based of body measurements [28].
As input to the method, it is given a database of n triangular manifold
meshes S0,..., Sn−1 of human bodies with similar posture and a set
of measurements P. Let Pi denote the measurements corresponding
to Si. Furthermore, we are given a set of distances Pnew. Our aim
is to estimate a shape Snew that interpolates the distances Pnew. This
approach proceeds by learning the correlation between the shapes and
the measurements.

The template meshes S̄ are used to calculate how much the samples
differ from the average shape. Therefore, there is a new dataset D that
is composed by the differences between all samples of S and S̄, as it is
demonstrated in Equation 1.

D = Si − S̄,∀Si ∈ S (1)

Let D be a (3v× n) matrix, by performing PCA in D, it yields a
matrix y that corresponds to the transformed dataset D and a matrix A
that is a transformation matrix. The first matrix W and matrix D are
the representation of the same information but in different spaces. By
applying PCA to D we extract the information in the dataset by creating
a new coordinates system that fits the data where it varies the most. In
other words, we lose information regarding the variables of D because
new ones are created. The second matrix A is the matrix that allows
the transformation of D into W and vice versa, it is a transformation
function. Thus, a new shape Snew can be estimated using the Equation
2 where the sum of the template mesh S̄ and the weights of a new set
of measurements Wnew transformed by A result in a new shape Snew.

Xnew = AWnew +µ (2)

However we still need to calculate matrices A and Wnew. We know
that W is D transformed into the PCA coordinate system, thus a trans-
formation A is responsible for the coordinate system swapping. So, W
is the result of the multiplication of A and D, what means that we can
obtain A by multiplying W and D, like demonstrated in Equation 3 with
D+ being the pseudo-inverse of D.

W = AD ⇔WD+ = ADD+ ⇔WD+ = AI ⇔ A =WD+ (3)

To calculate the weights matrix Wnew, we need to take into consider-
ation the body measurements and relate them to the PCA weight Wi of
each mesh Si. For that, we learn a linear mapping from Pi to Wi with
i = 0, ...,n−1, by transforming each Pi to a new coordinate system Wi.
To perform this, we need another transformation matrix B that maps
body measurements to its corresponding PCA weight. We can infer B
by assuming that Wi is the result of the multiplication between B and
Pi, like demonstrated in Equation 4, with P+ being the pseudo-inverse
of P.

W = BP ⇔WP+ = BPP+ ⇔WP+ = BI ⇔ B =WP+ (4)

With this, we are able to relate the body measurements to the in-
formation extracted from the human body variation through PCA and
give it a weight. It is important to notice that to reproduce the results
obtained in [28] we must normalize each entry of W by its correspon-
dent PCA eigenvalue. Finally, to estimate a new shape Xnew based on a
new set of body measurements Pnew, we can transform Pnew to the PCA
coordinates, resulting in a weight vector Wnew and then transforming
Wnew to the coordinate system that dictates the shapes. Therefore, we
can re-write the Equation 2 into Equation 5.



Xnew = ABPnew +µ (5)

The mapping between the measurements and the PCA weights of the
3D shapes learned allows us to find an new shape Snew new given Pnew.
With this process we can understand how much the human shapes vary
from the average human shape S̄. We can relate that variation with the
body measurements P and estimate new shapes Snew with a new set of
body measurements Pnew. By adding the weights corresponding to a
new set of body measurements Wnew to the template mesh S̄ we obtain
a new shape that respects the variation dictated by Pnew.

4.4 Estimating New Body Shapes Using Linear Transfor-
mations

This second model obtains a shape directly from the body measure-
ments. We accomplish this by creating a transformation matrix between
the coordinates and body measurements datasets. This way, we can eas-
ily transform a body measures vector into a coordinates vector without
intermediate steps.

4.5 Linear Transformations Algorithm
Let S be coordinates dataset and M be the body measurements dataset.
Both datasets contain k samples, because they both have different
information regarding the same 3D objects. Each sample contains 3v
vertices and m body measurements. Lets assume that there is a function
T that maps a vector of body measurements M into a vector of vertices
coordinates V, as shown in Equation 6.

T : M →V (6)

In this case, T represents a linear transformation mapping the space
of body measurements to the space of 3D coordinates. So, T is a linear
transformation mapping ℜm → ℜ3v and given a column vector x with
m entries then the transformation function can be represented as in
Equation 7, where T(x) returns a column vector with 3v elements.

T (x) = Ax (7)

For T(x) return a column vector with 3v elements, A must be a
(3v×m) matrix. Note that A have 3v rows and m columns, whereas the
transformation T is from ℜm to ℜ3v. This follows the linear algebra
rule that for matrix multiplication to happen, the number of columns
in the first matrix must be equal to the number of rows in the second
matrix. The resulting matrix has the number of rows of the first and
the number of columns of the second matrix. With A being a (3v×m)
matrix and x being a (m×1) vector, the Ax multiplication results in a
(3v×1) matrix.

To calculate the transformation matrix A we just need to start from
Equation 7 and isolate A, just as demonstrated in Equation 7.

T (x)=Ax⇒ y=Ax⇔ yx+=Axx+⇔ yx+=AI ⇔ yx+=A⇔A= yx+

(8)
According to Equation 8, A can be calculated by calculating the dot

product between the samples coordinates (y) and the pseudo inverse of
the body measurements (x).

After calculating A, we are able to map a vector of body measure-
ments into a vector of coordinates with Equation 7. However, the result
of that equation is a vector with 3v elements, 3 times more than the sam-
ple vertices, because while building the coordinates dataset we joined
all vertices coordinates to form a 1-dimensional array. To represent a
3D shape from T(x) we just need to group the elements 3 by 3, resulting
in a set of v 3D points.

5 EXPERIMENTAL EVALUATION

Our evaluation process is composed by two main processes: validation
and evaluation itself. The validation process is intended to verify that
models are performing as expected. As an extra, we observed which
model performed the best and used the winner to the final evaluation
process that involved real users. The validation and evaluation process

are qualitatively evaluated based on the estimations body shape and
measurements. The estimated body measurements were expressed in
centimeters and were directly compared to the original ones in both
processes. The qualitatively evaluation of the body shape was compared
to the original meshes in validation step and with real users silhouettes
in evaluation step.

For the evaluation process, we used six different friends and family
members. Unfortunately, we were not able to have a balanced testing
sample regarding the gender. We tested five females and only one male.
The age ranges of the tested people is in between 21 and 46 years, with
the average being 23 years.

5.1 Validation
To first validate out approach before testing with real human users, we
decided to test our model with four different samples from the database.
There are two male and two female scans with one having a smaller
size and the other with a bigger size. The usage of samples that cover
all spectrum of human shape is important to see if the models know
how to deal with all cases.

5.1.1 Body Shape
The validation is made by comparing the shape returned by the model
with the original one by measuring the distance between the point-to-
point correspondent vertices. In other words, we compare the position
of the vertices with the same index on the both shapes and calculate the
Euclidean distance between them. With all distances calculated, we can
visualize the error using a color map, like represented in Figures 2 and
1. Each column represents a different subset, and therefore a different
estimation. From right to left in Figures 2 and 1: top 2, top 4, top 6 ,
top 8, top 10, selected 6, selected 7 and ground truth. To validate our
linear and PCA models, we estimated the same shape using 7 different
body measurement subsets: top ten to top two measurements, the best
seven, obtained from feature selection, and the selected six, that is
composed of only the measurements that both genders have in common
in the best seven subset. To address to a specific estimation we will
use the nomenclature (xy) where x is the row number and y the column.
Therefore estimation (3c) corresponds to the one on the third row and
column c, that represents the result of the estimation using the top six
measurements that vary the most.

In both Figures 2 and 1, we can understand that some body mea-
surements configurations work better than others. We can see that
the results are often better when using more measurements. This is
supported by the MSE values, since they are higher as the number of
measurements used to estimate a new shape increases. However, in
Figure 2 we see that the difference between (1d) and (1e) is almost 0
and their MSE difference is of about 0.0002. This indicates that the
insertion of the body measurements 9 and 10 is irrelevant, and we can
obtain the same results using only the first eight measurements. In
(1c) of Figure 2 we notice a big difference in the height comparing
the original sample. This happens specially to male meshes because
the height is not part of the top six measurements, however it is more
noticeable in (1c) than in (2c). This happens because of the high values
of the remaining measurements, like waist bust, abdomen, etc. Like
sample SPRING306’s body measurements are way higher than average
on the dataset and there are not many samples with bigger sizes, the
model estimates a new shape using the information that it has. This
results in a shape that is very similar to the average male body, but in
a bigger scale. This explains why in (1b) and (1c) of Figure 1 have
a higher distance difference of sample SPRING0306 in their feet and
head, since the center of all meshes is on their groin. To produce a
shape with such big measurements, the model scales the shape in order
to respect them and the model ends up being huge because in top 6
measurements we do not have height as a constraint. This effect is also
visible in (1b) regarding the top 4 measurements, however in (1a) it is
not visible. It is visible that in (1a), (1b) and (1c) the main differences
regarding the original mesh are in the belly. Sample SPRING0306 (1g)
is characterized by having larger dimensions and our linear model may
have difficulties representing those dimensions to perfection. However
it is able to return a shape with larger dimensions but not as big as the



Fig. 1. Error color map of the pca model using several body measure-
ments sets. Each column corresponds to a subset of the top ten body
measurements or from the selected seven from Table 4, from left to right:
(a) top two(b) top four (c) top six (d) top eight (e) top ten (f) selected six
(g) selected seven (h) original shape. The yellow parts correspond to the
parts that have a higher distance error in cm associated, while the dark
blue parts are the ones that are more similar to the original shape.

ones inserted. This may be happening because groups of male with
larger dimensions are poorly represented in the Semantic Parametric
Reshaping of Human Body Models dataset [29]. The estimation repre-
sented in (1a) is very similar to the ones of columns (1d) and (1e), it
even has a similar maximum error (15cm) but it fails to represent the
belly in a more similar way. We expected the columns (1g) and (1g) to
perform better since the subsets are composed by body measurements
that were obtained through feature selection, represented in Table 4.
But the absence of the measurements like rise length and/or under-bust
to belly button had a negative impact on the returned shape, especially
on the belly of the estimations were they have a higher distance error.
By analyzing the results of the estimation of sample SPRING0306 and
its MSE values, we conclude that the best subset of body measurements
is the top 8.

5.1.2 Body Measurements

In this section, we explain how we validate the body measurements
with the estimations returned by our models. The validation is made
by comparing the body measurements extracted from the estimated
shapes with the original ones. The body measurement extraction of the
estimated shapes was made just like the extraction of the measurements
of the original shape was made to preserve consistency among tests. By
observing the results obtained from the estimated body measurements,

Fig. 2. Error color map of the linear model using several body measure-
ments sets. Each column corresponds to a subset of the top ten body
measurements or from the selected seven from Table 4, from left to right:
(a) top two (b) top four (c) top six (d) top eight (e) top ten (f) selected six
(g) selected seven (h) original shape. The yellow parts correspond to the
parts that have a higher distance error in cm associated, while the dark
blue parts are the ones that are more similar to the original shape.

we observe that our linear model is more able to estimate shapes that
belong to a group that is well represented in the dataset better than
samples that are poorly represented. Which means that the estimated
measurements of average shapes were more similar to the original ones.
In one of the female estimations we could observe that all subsets,
except for top 4 and top 2, performed relatively well with a bigger error
rate on the girth measurements. Thus, since the usage of the subsets
obtained from Table 4 do not produce better results, we will discard
them for the evaluation, only focusing on the subsets of the top 10
measurements.

5.2 Evaluation
The final and most important part of the evaluation is evaluation step
itself - test our model with real users. In this section we will explain
how the evaluation with real users was made. We concluded that our
pca model was unable to estimate new realistic body shapes given s
subset of body measurements. For this reason the linear model was
selected as the best performing model and the pca one was excluded.
Then, we performed the evaluation process using only the linear model.
Therefore, we evaluated our model that uses linear transformations
with real people. We tested six different people to validate our model.
They were friends and family, with five females and only one male
individual. The age ranges of the tested people were between 21 and
46 years, with the average being 23 years. To perform the tests we
asked each individual to extract ten body measurements according to
top 10 measurements and to take two full body picture of themselves:
a frontal and a profile one. Since we did not extract the measurements
ourselves, and didn’t take the pictures either, we noticed that the action
of the individuals to measure themselves is quite complex and difficult.
The same can be applied to the photos, we asked for photos at the hip
level, however there were some differences in the angle that the pictures
were taken. We then used the photos to compare the estimated mesh
with the users body shape. We extracted the body measurements of the
estimated mesh and compare them to the original ones.

5.3 Body Shape
To evaluate our model regarding the estimation of real users body shape,
we took two pictures of the users: a frontal and a profile one. Since we



Fig. 3. Visual comparison of real users silhouette with their correspondent
shape estimation using the top 8 measurements subset. From left to
right and top to bottom we called these estimations P1, P2, P3, P4, P5
and P6.

deal with sensible information on this project, we wanted to protect our
testers identification. We did this by only using the silhouettes of their
body shape, instead of the raw pictures. First of all, we took pictures of
the testers body. Then, we contoured the silhouettes by using Adobe
Photoshop and removed the filling of the images, resulting only the
silhouettes of the users. These images were placed side by side on their
body estimation meshes, in Figure 3 we can see the final results.

We noticed that our model has difficulty on model the waist of
estimations. In cases where the original shape has hips relatively larger
than the waist, as P3 does, our model returns a shape with a larger
waist than it should. However our model estimates shapes with a waist
relatively similar to the hips as having smaller waists. Almost every
users are considered to be part of the group that is well represented in
the dataset: A more slim appearance for both represented genders, and
for females a waist that is thinner that the hip. This made possible for
our model to return better estimations regarding P1, P2, P3, P4 and P5.
Since P6 belongs to a group that is poorly represented in the dataset,
the model struggled to estimate its shape based only in measurements.
Besides the waist, our model also had difficulties on estimating fuller
thighs. P2 is a good example, we see that the frontal silhouette (the
first image counting from the right of P2) has fuller thighs, something
that the estimation does not. It has an indication of fuller external
thighs, however the interior of the thighs is not very similar. The
estimations presented in Figure 3 are not perfect representations of
the users silhouettes, the model had difficulties on correctly estimate
waits and thighs. However the estimation returned new shapes that are
pretty similar to the original ones. We asked the users if the estimation
was similar to their bodies, they pointed some issues like the waist and
thighs but said that overall it looked like them. We conclude that our
model is capable of estimate a new body shape according to a small set
of body measurements input.

5.4 Body Measurements
After evaluating the body shape of our estimations using the linear
model, we evaluated the body measurements of the estimations and
compared them with the original ones. The first thing that we noticed
is that, the estimated height and waist height measurements in female
estimations were the same as the original ones. This means that these

measurements did not have any kind of error, and that the visible differ-
ence in height in Figure 3 was caused by the perspective and nothing
else. However, the inseam height and hips to ankle height measure-
ments had some errors associated. In inseam height, the estimation
was off by 12cm in some cases. We realized that this is because people
found it difficult to understand how they should measure the inseam
height, therefore all users measured it differently. On other hand, our
only male sample showed some errors associated with the height mea-
surements, especially in the waist height one. We do not have test
samples to support this, but we believe that is because of the fluctuation
of the waist point in the dataset meshes. This vertex will always be part
of the belly, but depending on the dimensions of the mesh, the vertex
might be positioned bellow or above the waist line, which can lead to
errors. The measurement that had more error associated was abdomen
girth, with a distance difference reaching up to 31cm. We believe that
this is also because the vertex fluctuations on the meshes, and the girth
extracted might sometimes be more similar to the waist than the ab-
domen itself. The estimations of the bust girth are usually smaller than
the original one, reaching a distance difference of 5cm in the worst case.
We observed that some measurements not behave like this: thigh girth
and mid-thigh girth estimations had a higher measurement value than
the original one.

Total distance error (TDE) is the sum of all distance errors between
the original (T) and estimated (E) measurements. This value helps us
understand which body shapes our model struggles more (or less) to
estimate according to a measurement constraint. The TDE per user
is T DEP1 = 36cm, T DEP2 = 66cm, T DEP3 = 61cm, T DEP4 = 84cm,
T DEP5 = 51cm and T DEP6 = 27cm. P6 is the shape with less TDE
given it is the shape that differs the most from the original one according
to Figure 3, with an estimated waist far thinner than the original one.
According to the results, our model estimated more accurately the
new shape measurements that have higher dimensions, but in this case
the body shape is far different from the original one. The opposite
also applied, more thinner shapes originated estimations that have a
similar body shape but with a high TDE value, normally estimating
measurements that are way smaller.

6 CONCLUSIONS

Our approach involved the comparison of the two models, one using
PCA weights and the other using linear transformations to estimate new
shapes. The comparison of both models was also useful to conclude
that the usage of PCA weights is not appropriate to the estimation of
new shapes, thus we only evaluated our linear model.

We evaluated our linear model using the top 8 measurements subset.
Just like in the validation step, we evaluated the estimations regarding
the estimated body shape and measurements and reached the conclusion
that our model is not appropriate to estimate new shapes with similar
body measurements as the original shape. And since this project is
targeted for a virtual dressing room, it brings concerns on how similar
the estimation is to the real user if both the estimation and user do not
have the same measurements. Instead of helping the user on choosing
a size, it may mislead the user into buying the wrong size. On the
other side, our model was able to provide new body shapes that were
very similar to the original ones. This was also supported by the users,
because the majority said that the estimation had a similar shape as
them.
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