
Using Randomized Byzantine Consensus To Improve Blockchain

Resilience Under Attack

Afonso Garcia Louro do Nascimento e Oliveira
afonso.n.oliveira@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

November 2021

Abstract

The rise in popularity of blockchains has lead to an increasing interest in the development Byzantine
Fault-Tolerant (BFT) state machine replication systems for a variety of use cases and operational
scenarios. A common approach when implementing these systems is to build on top of leader-based
partially synchronous consensus protocols, which rely on critical assumptions about the underlying
network in order to guarantee liveness. Alternatively, randomized protocols are able to avoid these
pitfalls by operating over a fully asynchronous model. However, existing constructions still fall signif-
icantly behind, in terms of optimal performance, when compared to their deterministic counterparts.
In this thesis we present Alea-BFT, an asynchronous BFT protocol, which leverages randomization
in order to guarantee liveness without relying on timing assumptions about the underlying network
and provides significant asymptotic and practical improvements over the state of the protocols in
this model. We implemented Alea-BFT and compare its performance with HoneyBadgerBFT and
Dumbo1/2, under a deployment scenario using up to 128 replicas, uniformly distributed across the
globe. The experimental results demonstrate that Alea-BFT is able achieve multi-fold improvements
over the remaining protocols, specially as the system size increases.
Keywords: Consensus, Blockchain, Asynchronous, Randomization, Byzantine Fault Tolerance

1. Introduction

The rise in popularity of cryptocurrencies has led
to an increasing interest in deploying blockchain
based systems for a variety of use cases and opera-
tional scenarios. The need for higher performance
guarantees and legal compliance forced organiza-
tions to steer away from the permissionless model
of Bitcoin [19] in favor of permissioned solutions.
In a permissioned scenario, where the identity of
network participants is known and the adversary’s
power is strictly bounded by the fraction of nodes
under its control, a classic Byzantine fault tolerant
state-machine replication approach is often used as
a building block to assemble blockchain systems.
The topic of Byzantine Fault Tolerance is not new
[15], in fact it has been extensively studied over the
last decades and a wide variety of solutions can be
found in the literature. The traditional approach
for BFT consensus algorithms follows two major de-
sign patterns: partial synchrony and leader-based.
Assumptions regarding the underlying network al-
low partially synchronous protocols to escape the
limitations of the FLP result [5] whereas relying on
a leader to coordinate consensus instances allows for
a decrease in the overall algorithm complexity. Pro-

tocols such as PBFT [9] and its derivatives mostly
fit into the previous model and have been consid-
ered the standard in BFT consensus for years. The
problem with protocols in this family is that, by op-
erating over a partially synchronous model, progress
is only guaranteed during periods where these tim-
ing assumptions hold, causing performance to de-
teriorate or even completely stall during uncivil in-
tervals [22]. Additionally a leader-based approach
introduces a single point of failure into the system,
for example a malicious leader can purposely slow
down the system throughput up until the minimum
threshold required to avoid being replaced [2, 10].
Finally, recent development efforts focused mostly
on optimizing performance under the assumption
that failures do not occur [10], falling back to a more
expensive strategies when forced to recover from
failures. We argue that in spite of achieving impres-
sive results under relatively controlled operational
conditions, protocols in this class, underperform
when subject to the more hostile deployment char-
acteristics of blockchain systems, such as wide-area
networks of mutually untrusting peers were nodes
are not only allowed but actually expected to fail, in
an attempt to slow down or subvert critical system

1

properties, and advocate for a different approach
based on non-determinism. Consensus protocols
based on randomization [3] bypass FLP by relaxing
one of the defining properties of the consensus prob-
lem to be probabilistic, therefore being able to oper-
ate on a completely asynchronous model, eliminat-
ing the possibility for a malicious network scheduler
to thwart performance. BFT solutions in this model
have been around since 1983 [4, 21], but despite pre-
senting characteristics that make them very inter-
esting from a theoretical standpoint have usually
been considered impractical due to high commu-
nication costs and expected termination time [18].
We believe that randomized BFT protocols are not
only practical but in fact, due to their leaderless
design and asynchronous network model, present a
more resilient solution than traditional determinis-
tic, leader-base based approaches for deployment in
adverse blockchain environments.

1.1. Contributions
The main focus of this thesis was to present a ran-
domized BFT protocol capable of achieving bet-
ter performance and scalability than existing solu-
tions for the asynchronous model. Further bridg-
ing the gap between asynchronous and partially
synchronous BFT protocols, while simultaneously
providing higher resilience guarantees in the pres-
ence of adversarial network scheduling and mali-
cious replicas. With these goals in mind, we de-
signed and implemented a novel randomized atomic
broadcast protocol called Alea-BFT, that presents
the following characteristics:

• It provides optimal resilience for the Byzantine
model, tolerating up to f = ⌊N−1

3 ⌋ faulty pro-
cesses out of N total processes, where faulty pro-
cesses are allowed to arbitrarily deviate from the
protocol spec and even collude with each other in
an attempt to subvert its properties.

• It is completely asynchronous, meaning that no
assumptions are made regarding the delivery
schedule of messages by the network. This prop-
erty is crucial to ensure robustness under ad-
versarial network conditions and prevent perfor-
mance attacks based on timing assumptions.

• It sidesteps from a design approach based on an
asynchronous common subset framework, where
most of recent efforts in developing asynchronous
BFT protocols have been concentrated, in favour
of a novel architecture based on a two phased
pipeline design.

• It provides significant asymptotic improvements
over the state of the art protocols in this model.
Particularly, both expected message and commu-
nication complexities can be reduced by a factor

of up to O(N), while still terminating in constant
time.

Our experimental evaluation of Alea-BFT con-
cluded that it consistently outperforms existing
asynchronous atomic broadcast protocols for any
system scale, further bridging the performance gap
between deterministic and randomized protocols,
while still providing all the resilience guarantees
characteristic of the asynchronous model.

2. Background
2.1. Consensus Problem
The consensus problem is a fundamental part of dis-
tributed systems research, and consists of getting a
set of distributed processes to agree on a common
value from a collection of initial proposals. A strong
form of consensus must satisfy the following prop-
erties [14]:

• Agreement: All processes that decide do so on
the same value.

• Termination: Every non-faulty process eventu-
ally decides.

• Integrity: The decided value must have been
proposed by some process.

The first and last properties are safety properties,
ensuring that nothing bad happens, whereas ter-
mination is a liveness property stating that good
things eventually happen [1]. Solving consensus in
the absence of faults is a trivial task. However, we
are interested in exploring this problem in the pres-
ence of faulty processors, particularly in the Byzan-
tine failure model where replicas may behave arbi-
trarily or even collude in an attempt to subvert the
properties of the protocol. Solving consensus also
provides a solution to a series of higher-level prob-
lems. An important one, in the context of SMR, is
the problem of atomic broadcast which informally
states that all correct processes must deliver the
same sequence of messages. This has been proven
to be solvable by running a series of consensus in-
stances deciding on which message to deliver next
making both problems equivalent. ABC can be for-
mally defined in terms of the the following proper-
ties [14]:

• Validity: If a correct process broadcasts a mes-
sage m, then some correct process eventually de-
livers m.

• Agreement: If any correct process delivers a
message m, then every correct process delivers
m.

• Integrity: A message m appears at most once
in the delivery sequence of any correct process.

2

• Total Order: If two correct processes deliver
two messages m and m′, then both processes de-
liver m and m′ in the same order.

In the paradigm of blockchain an atomic broadcast
primitive can be used to establish a total ordering
on appends to the ledger.

2.2. FLP Impossibility
The FLP impossibility result [5] states that there
is no deterministic solution for the consensus prob-
lem, capable of simultaneously ensuring both safety
and liveness properties, in an asynchronous model
where nodes can fail silently. In order to circum-
vent this result researchers have devised extensions
to the original system model where consensus is pos-
sible. The most popular extension approaches can
be grouped into the following categories: (i) Timing
assumptions, (ii) Failure detectors, (iii) Randomiza-
tion. The previous techniques are not mutually ex-
clusive and can be used as either a complementary
subsystem or combined into a hybrid approach.

2.3. Byzantine Consensus
Byzantine Fault Tolerance (BFT) refers to the abil-
ity of a system to tolerate arbitrary behaviour from
a subset of its participants without compromising
its critical operational properties. Achieving con-
sensus in the event of Byzantine failures was for-
mally proposed by Lamport et al. as the Byzantine
Generals Problem [15] and has been the target of
extensive academic research ever since. The FLP
result is logically still valid in Byzantine model,
forcing protocols to operate over the system mod-
els with stronger assumptions. Earlier work on this
topic considered a synchronous model with the first
solution was presented by Pease et al. [20], and
later improved by Dolev and Strong [11]. A re-
silience bound of ⌊N−1

3 ⌋ was proven optimal for
any Byzantine solution without digital signatures
by Ben-Or [4].

2.4. Randomization
Extending the system model using randomization
can be used to escape the limitations of FLP. The
most common approach is to extend the termina-
tion requirement to allow non-terminating execu-
tions with a collective probability of zero. The ter-
mination requirement can therefore be modified to
reflect this probabilistic nature:

• Probabilistic Termination: Every non-faulty
process eventually decides with probability one.

There are two ways to introduce non-determinism
into the system. One is to assume the model itself is
randomized and applicable operations on each state
only occur probabilistically [6]. The other random-
ized algorithm approach considers a source of ran-
domness located in the processes themselves. In

this model processes have access to coin-flip oper-
ations that return random binary values according
to a certain probability distribution. All of the ran-
domized protocols referenced in our work operate
based on this second approach. Another important
characteristic of these algorithms is that by operat-
ing over an asynchronous model they are completely
decoupled from the concept of “real time”. For this
reason their running time is usually characterized
based on the expected number of rounds required
for termination [8].

2.5. Asynchronous BFT

Randomization allows consensus protocols to oper-
ate over a fully asynchronous model, therefore elimi-
nating the need for timing assumptions and the live-
ness issues associated with them. In order to prove
the increases in robustness provided by randomized
protocols, Miller et. al [17] devised an experiment
where an adversarial scheduler with full control over
the delivery of messages attempted to compromise
the liveness properties of both PBFT and a novel
randomized protocol HoneyBadgerBFT [17]. The
experimental results showed that the scheduler in-
deed prevented PBFT from making any progress at
all while HoneyBadgerBFT (and by extension any
asynchronous protocol) was still able to continue
executing operations. Most recent attempts of im-
plementing practical atomic broadcast protocols for
the asynchronous model are instantiated based on
an ACS framework. In ACS every party proposes
an input value, and outputs a common vector con-
taining the inputs of at least N −f distinct parties.
HoneyBadgerBFT [17] is usually regarded as the
first practical BFT protocol for the asynchronous
model. The authors made the critical observation
that atomic broadcast could be built based on an
ACS framework by combining it with a threshold
encryption scheme, following the structure of Al-
gorithm .1. The protocol proceeds in epochs, every
epoch each replica proposes a set of ⌊B/N⌋ transac-
tions, whereB corresponds a configurable batch size
parameter, and delivers Ω(B) transactions. Pro-
posals are encrypted, using the shared public key
distributed during the trusted setup, before being
passed as input to to an ACS instance. The output
vector of ACS, consisting of at leastN−f encrypted
proposals, is then subject to a threshold decryp-
tion round, where replicas share decryption shares
for the proposals included in the vector, before be-
ing canonically sorted and committed. The use of
threshold encryption prevents an adversary from se-
lectively censoring transactions, by selecting which
proposals to include in the ACS output vector, since
replicas commit into delivering a certain set of pro-
posals before the adversary learns about the partic-
ular contents of each one. A particularly elegant as-

3

Algorithm .1 Reduction from ACS to ABC

1: constants:
2: N
3: B
4: PK
5: SKi

6: state variables:
7: r ← 0
8: buf ← ∅

9: procedure START
10: while true do
11: // Step 1: Random selection and encryption
12: p← buf [0 : ⌊B/N⌋]
13: vi ← TPKE.Enc(PK, p)
14:
15: // Step 2: Agreement on ciphertexts
16: input vi to ACS (r)
17: wait until ACS (r) delivers {vj}j∈S , where S ⊂

[1..N] then

18:
19: // Step 3: Decryption
20: for each j ∈ S do
21: ej,i ← TPKE.DecShare(SKi, vj)
22: multicast ⟨DEC, r, j, i, ej⟩
23: wait until receive f+1 messages in the form
⟨DEC, r, j, k, ej,k⟩ then

24: yj ← TPKE.Dec(PK, {(k, ej,k)})
25:
26: // Step 4: Delivery
27: blockr ← sorted(∪j∈S{yj})
28: buf ← buf − blockr
29: r ← r + 1
30: output blockr

pect of HoneyBadgerBFT is its ACS construction,
illustrated in Figure 1, resulting from the compo-
sition of two sub-protocols/phases RBC and ABA.
During the broadcast phase, every replica starts an
RBC instance in order to disseminate its proposal
across all other replicas.

Figure 1: The structure of ACS in HoneyBad-
gerBFT [17].

Other asynchronous protocols, such as
BEAT [12], EPIC [16] and Dumbo1/2 [13] all
fit into the same ACS framework.

3. Implementation
Recent efforts in implementing practical asyn-
chronous atomic broadcast protocols, have mostly

concentrated efforts around an ACS framework.
Protocols in this framework despite having been
proven as practical [17], disproving the concep-
tion that asynchronous BFT protocols are natu-
rally inefficient, and further refined in subsequent
work [12, 16, 13], still present some significant draw-
backs. In Alea-BFT we completely sidestep from an
ACS based framework in favor of a novel pipelined
architecture composed by broadcast and agreement
components, executed in parallel, that communi-
cate with each other by performing write and read
operations over a shared data structure.

3.1. System Model

We consider a network composed of N pro-
cesses, uniquely identified from the static set S =
{P0, ..., PN−1} out of which up to f may fail, as well
as an unbounded number of clients. Our protocol
provides an atomic broadcast channel characterized
by local SEND and DELIVER events parameterized by
a payload value. A replica may execute SEND an ar-
bitrary number of times, triggered in response to
client requests, and must be prepared to DELIVER

as many messages as the atomic broadcast chan-
nel outputs. We assume a Byzantine failure model
where up to f = ⌊N−1

3 ⌋ processes can fail during
the execution of the protocol, we will refer to these
processes as corrupt. The adversary is given full
control over the behaviour of these corrupted pro-
cesses meaning that they can stop, deviate arbitrar-
ily from the protocol’s specification and even col-
lude among each other in order to subvert the prop-
erties of the protocol. The remaining processes that
do not fail during protocol execution are labeled as
correct. The system is asynchronous, with the de-
livery schedule of messages being delegated under
adversarial control without bounds on communica-
tion delays or processing times. We consider the
processes to be fully-connected by reliable channels
providing guarantees that messages are eventually
delivered and no modifications to the messages oc-
cur in the channel. Lastly the adversary is said to
be computationally bound and therefore unable to
subvert the cryptographic primitives employed.

3.2. Building Blocks

Similarly to other protocols in this setting we pro-
vide an higher level protocol for atomic broadcast
which invokes sub-protocols to carry out certain
tasks. In this modular stack architecture, upper
level protocols can provide input and receive output
from sub-protocols down the stack. Now we present
some baseline definitions and describe the underly-
ing primitives that are used as building blocks when
implementing the Alea-BFT protocol.

A threshold signature scheme (TSS) is a cryp-
tographic primitive that allows for multiparty key
generation and signing. A (t, n)-threshold signature

4

scheme allows a subset of t out of n participants to
generate a valid signature while disallowing its cre-
ation when the number of protocol participants is
smaller than t. In involves distributing shares of a
signing key ski to each of the N parties as well as
a common public key mpk and a public key vector
PK. A (t, n)-TSS must provide two basic security
requirements:

• Unforgeability: It is infeasible for a
polynomial-time adversary to output a valid
signature on a message that was submitted as a
signing request to less than n− t honest parties.

• Robustness: It is computationally infeasible for
an adversary to produce t valid signature shares
such that the output of the share combining al-
gorithm is not a valid signature.

Particularly, Alea-BFT relies threshold schemes for
digital signatures and coin-tossing. They are all
non-interactive and therefore do not require any
particular communication pattern and can be easily
integrated into an asynchronous protocol.

A verifiable consistent broadcast protocol
(VCBC) provides an extension of consistent broad-
cast that allows any party Pi, that has delivered
the payload message m, to inform another party
Pj about the outcome of the broadcast execution,
allowing it to deliver m immediately and terminate
the corresponding VCBC instance. More for-
mally, a VCBC protocol guarantees the following
additional properties over CBC [7]:

• Verifiability: If a correct party delivers a mes-
sagem, then it can produce a single protocol mes-
sage M that it may send to other parties such
that any correct party that receives M can safely
deliver m.

• Succinctness: The size of the proof σ carried
by M is independent of the length of m.

An asynchronous binary agreement (ABA) prim-
itive allows correct processes to agree on the value
of a single bit. Each process Pi proposes a binary
value bi ∈ {0, 1} and decides for a common value b
from the set of proposals by correct processes. For-
mally, a binary agreement primitive can be defined
by the following properties:

• Agreement: If any correct process decides b and
another correct process delivers b′, then b = b′.

• Termination: Every correct process eventually
decides.

• Validity: If all correct processes propose b, then
any correct process that decides must decide b.

Following the FLP impossibility result [5], there is
no deterministic algorithm capable of satisfying all
the previous proprieties in the asynchronous model
of Alea-BFT. A solution to this is problem is resort
to a randomized model that guarantees termination
in a probabilistic way. As a result, the termination
property is replaced with the following:

• Termination: Every correct process eventu-
ally decides with probability 1.

A priority queue is a custom data structure for
storing elements, sorted according to their priority
values. We refer to each position in a priority queue
as a slot, uniquely identified by a priority value as-
sociated with it. Only a single element can ever be
inserted in a given slot, even after being removed,
as the slot is permanently labeled as used and can-
not store another element. There is a special slot
called the head slot, that always points to the lowest
priority slot whose value hasn’t been removed yet.
The pointer to the head slot progresses incremen-
tally, conditioned by the insertion and removal of
elements from the queue. A priority queue exposes
the following attributes:

• id : The unique identifier of the queue (static).

• head : The priority associated with the head slot
of the queue (dynamic).

Additionally, a priority queue provides an interface
for interacting with its contents as described bellow:

• Enqueue (v, s) : Add an element v with a given
priority value s to the queue, ignore if the corre-
sponding slot is not empty.

• Dequeue (v) : Remove the specified element v
from the queue, if it is present.

• Get (s) → {v,⊥} : Retrieve the element v con-
tained in the slot specified by the priority s, or ⊥
if the slot is empty.

• Peek ()→ {v,⊥} : Retrieve the element v in the
head slot of the queue, or ⊥ if the slot is empty.

A queue mapping function is a function F (r) that
identifies the priority queue, over which the proto-
col should operate for a given round r. Informally
it can be thought of as a leader election function,
responsible for selecting which replicas pre-ordered
proposals do operate over for any given r. This
function can be any deterministic mapping from N
to i ∈ [0, N [as long as, for any given value r, there is
are values r′ > r such that F (r′) spans over all ele-
ments in [0, N [, guaranteeing that a queue is always
eventually revisited in a subsequent round. For
our initial implementation of Alea-BFT we chose
a queue mapping function F (r) = r % N , which
iterates over the priority queues following a round
robin distribution.

5

3.3. Protocol
In Alea-BFT we completely sidestep from an ACS
based framework in favor of a novel pipelined ar-
chitecture composed by broadcast and agreement
components, executed in parallel, that communi-
cate with each other by performing write and read
operations over a set of N priority queues. Pro-
cesses maintain two state variables shared between
components. The variable Si consisting of the set
of all messages delivered by the protocol, is initial-
ized as empty upon a call to the Start procedure
and updated during the execution of the agree-
ment component. The variable queuesi contains
N priority queues, each one mapping to a distinct
replica Pi,∀i ∈ [0, N [. Algorithm .2 is responsible
for initializing the shared state variables and start-
ing the pipeline components upon a to call to the
Start procedure. The broadcast component is re-

Algorithm .2 Alea-BFT - Initialization

1: constants:
2: N
3: f

4: state variables:
5: Si ← ∅
6: queuesi ← ∅

7: procedure START
8: queuesi[x]← new pQueue() , ∀x ∈ [0, N [
9: async BC-START()

10: async AC-START()

sponsible for establishing a local pre-order over the
client updates received and propagating that order
to other replicas. The overall component flow, il-
lustrated in Algorithm .3, starts with replicas re-
ceiving client requests and storing them in a buffer.
When the number of requests in the buffer exceeds
a certain threshold B, corresponding to the batch
size, the requests are removed from the buffer to
form a proposal. An incremental sequence num-
ber is attributed to the proposal and the pair is
disseminated via a VCBC primitive. Note that a
sequence number is local to each replica, mean-
ing that proposals originating from different repli-
cas may share the same sequence number. When
a replica VCBC-delivers a proposal, it stores it in
a backlog pertaining to the proposer, locally sorted
according to the respective priority value, such that
it can later be picked up by the next stage of the
pipeline. Particularly, every replica maintains N
separate proposal backlogs, consisting of undeliv-
ered pre-ordered proposals by each of the N repli-
cas. Additionally, each replica maintains two lo-
cal state variables, an buffer of pending requests
bufi, and an integer value, priorityi, indicating the
next sequence number it should attribute to a pro-
posal. The agreement component, presented in Al-

Algorithm .3 Alea-BFT - Broadcast Component

1: constants:
2: B

3: state variables:
4: bufi
5: priorityi

6: procedure BC-START
7: bufi ← ∅
8: priorityi ← 0

9: upon receiving a message m, from a client do
10: if m /∈ Si then
11: bufi ← bufi ∪ {m}
12: if |bufi| = B then
13: input bufi to VCBC (i, priorityi)
14: bufi ← ∅
15: priorityi ← priorityi + 1

16: upon outputting m for VCBC (j, priorityj) do
17: Qj ← queuesi[j]
18: Qj .Enqueue(priorityj ,m)
19: if m ∈ S then
20: Qj .Dequeue(m)

gorithm .4, is responsible for establishing a total
order over the backlogs of replica proposals created
by the execution of the broadcast component. It
proceeds in rounds, such that for each round the
backlog of proposals pertaining to a certain replica
(which for ease of description we refer to as the
round leade) is selected for processing according to
a mapping function F . A correct replica examines
the leader’s proposal backlog and inputs a value into
an ABA execution depending on its contents. Par-
ticularly, if it had previously delivered a proposal
from the current leader with priority s, it expects
the backlog to contain a proposal with priority s+1
to be ordered next. Or s + 2, if the (s + 1)-th
leader proposal happens to be a duplicate from an
already ordered proposal originating from a distinct
replica. If it contains such proposal, it inputs 1 into
an ABA instance, or 0 otherwise. The outcome of
the ABA will dictate whether the pre-ordered pro-
posal should be totally ordered for that round or
not. Due to the fact that the broadcast primitive
used by Alea-BFT does not guarantee totality, some
replicas may need execute a fallback sub-protocol
to actively fetch this value from others. Processes
maintain a single state variable ri, serving as an
unique identifier for the current agreement round.
The execution of the agreement component starts
with a call to the AC-Start procedure, which ini-
tializes the local variable ri to 0 and begins execut-

6

ing the agreement loop.

Algorithm .4 Alea-BFT - Agreement Component

1: state variables:
2: ri

3: procedure AC-START
4: ri ← 0
5: while true do
6: Q← queuesi[F (ri)]
7: value← Q.Peek()
8: proposal← v ̸= ⊥ ? 1 : 0
9: input proposal to ABA (ri)

10: wait until ABA (ri) delivers b then
11: if b = 1 then
12: if Q.Peek() = ⊥ then
13: broadcast ⟨FILL-GAP, Q.id,Q.head⟩
14: wait until (v ← Q.Peek()) ̸= ⊥ then
15: ac-deliver(v)

16: ri ← ri + 1

17: upon receiving a valid ⟨FILL-GAP, q, s⟩ message from Pj

do
18: Q← queuesi[q]
19: if Q.head ≥ s then
20: entries←VCBC(queue, s′).REQ ∀s′ ∈ [s,Q.head]
21: send ⟨FILLER, entries⟩ to Pj

22: upon delivering a valid ⟨FILLER, entries⟩ message do
23: for each ⟨ANS, ∗, ∗⟩ message M ∈ entries do
24: deliver M to the corresponding VCBC

25: procedure ac-deliver(value)
26: for each n ∈ N do
27: queues[n].Dequeue(value)

28: S ← S ∪ {value}
29: output value

3.4. Efficiency Analysis
By analysing Alea-BFT we observe that, for every
particular proposal payload to be delivered, mes-
sage exchanges occur in three different places. First,
during the execution of the broadcast component,
a replica initiates a VCBC instance to disseminate
the pre-ordered proposal across all replicas, which
are queued in a priority queue slot according to the
priority value assigned to it. Second, all replicas
participate in successive ABA instances in order to
decide, whether or not, to deliver a particular slot’s
contents. We denote by σ the average number of
ABA instances executed over a single slot before it
decides for 1 and its contents are scheduled for de-
livery. Finally, a fallback sub-protocol is triggered
by replicas that did not VCBC-deliver the proposal
before the corresponding ABA execution decided
for 1, in order to actively fetch it from the other
replicas.
Time (round) complexity is defined as the ex-

pected number of communication rounds before
a protocol terminates, or before a given value is
output in case of a continuous protocol with on-
line inputs and outputs, such as Alea-BFT (atomic

broadcast). The first and third steps terminate in
constant time O(1), whereas the total number of
rounds required for the agreement component to de-
cide depend on the value of σ, therefore bounding
the overall time complexity of Alea-BFT as O(σ).

Message complexity is defined as the expected
number of messages generated by correct replicas
during the execution of the protocol. The VCBC
instance executed during the broadcast phase gen-
erates O(N) messages, every ABA instance ex-
changes O(N2) messages and finally the third re-
covery phase incurs an overhead of O(N) messages
per each replica that triggers this fallback proto-
col. Hence, the message complexity of Alea-BFT
is O(σN2), due to the σ ABA instances that are
executed per priority queue slot prior to delivery.

Communication complexity consists of the ex-
pected total bit-length of messages generated by
correct replicas during the protocol execution. Let
|m| correspond to the average proposal size and λ
the size of a threshold signature share. The exe-
cution of VCBC incurs a communication complex-
ity of O(N(|m| + λ)), each ABA instance requires
correct nodes to exchange O(λN2) bits and finally
each replica that triggers the recovery phase adds
an additional communication cost of O(N(|m|+λ))
bits. This results in an expected total communica-
tion complexity of O(σλN2 +N2(|m|+ λ)), due to
the σ ABA executions and up to N recovery round
triggers.

Table 1: Complexity of Alea-BFT decomposed by
stages.

Stage Message Communication Time
Broadcast O(N) O(N(|m| + λ)) O(1)

Agreement O(σN2) O(σλN2) O(σ)

Recovery O(N2) O(N2(|m| + λ)) O(1)

Total O(σN2) O(σλN2 + N2(|m| + λ)) O(σ)

As previously mentioned, Alea-BFT does not
provide a constant time reduction from VCBC and
ABA to atomic broadcast. In particular, this is
because multiple redundant zero deciding ABA in-
stances may be executed over the same priority
queue slot until its contents are considered to be to-
tally ordered. However, we argue that despite being
theoretically unbounded, the value of σ is in prac-
tice a very small constant, which ultimately con-
verges to the optimal value of 1. This statement
comes from the observation that given a round-
robin queue mapping function F , the same queue
is revisited every N epochs, meaning N sequen-
tial ABA instances must have been executed by the
time a particular queue is revisited. Considering
the validity property of ABA, which states that the
decided value must have been proposed by a correct
process, then the termination of a VCBC instance
by N − f correct replicas guarantees that the next

7

ABA execution pertaining to it will decide for 1.
Therefore, in order for the average value of σ to
increase by a single unit replicas must complete N
sequential ABA executions for every single VCBC
instance, a very unlikely scenario given the charac-
teristics of these protocols.

4. Results

For our WAN experiments we deployed Alea-BFT,
Dumbo1/2 and HoneyBadgerBFT on 4, 8, 16, 32,
64 and 128 Amazon EC2 t2.medium instances, uni-
formly distributed across 10 different regions (Paris,
London, Frankfurt, Singapore, Tokyo, Mumbai,
California, Virginia, Central Canada and St. Paulo)
therefore spanning 4 continents. Each instance was
equipped with 2 virtual CPUs, 4GB of memory and
running Amazon Linux 2. We split our experiments
in test groups based on the system scale N and a
varying batch size B ranging from 4 up to 106 trans-
actions. We use a fixed transaction size of 250 bytes
across all our experiments.

4.1. Measuring σ and Message Complexity

In Section 3 we presented a theoretical analysis on
the complexity of Alea-BFT. The analysis showed
that all complexity metrics are dependent on the
value of a variable σ, corresponding to average the
number of ABA executions per delivered proposal,
which is theoretically unbounded in the presence of
a particularly adversarial network scheduler. In an
attempt to quantify the actual value of σ under re-
alistic network conditions we measured the number
of messages generated by correct processes during
protocol execution for different system scales using
a constant batch size of 1000 transactions. Figure 2
compares the average number of messages gener-
ated by each correct process during the execution
of Alea-BFT, amortized by the number of deliv-
ered proposals, against a theoretical simulation for
different σ values. As we can see the experimen-
tal measurements follow very closely the theoretical
simulations for which σ = 1, independently from
the system scale, further supporting our hypothe-
sis that despite being theoretically unbounded, un-
der a realistic deployment scenario, the value of
σ does in fact converge to optimal value of 1. A
follow-up question is how does this translate, in
practice, in terms of relative message complexity
when compared to the state of the art. To this end,
we measured experimentally the relative message
complexity per replica, of Alea-BFT in compari-
son with HoneyBadgerBFT and Dumbo1/2. As we
can see in Figure 3, this metric scales exponentially
for the protocols based on ACS while staying lin-
ear for Alea-BFT. This is expected as in an ACS
framework every replica must RBC broadcast its
proposals for that batch which incurs O(N2) mes-
sages per replica, while in Alea-BFT the broad-

101 102

0

500

1,000

1,500

2,000

2,500

Number of Replicas

M
es
sa
g
es

S
en

t
p
er

re
p
li
ca

σ

σ = 1

σ = 2

σ = N

Figure 2: Messages generated per replica per batch
delivered (Alea-BFT).

cast primitive used has a message complexity of
O(N). Additionally, to cover an unfavorable sce-

0 20 40 60 80 100 120 140

0

0.5

1

1.5

2

·105

Number of Replicas

M
es
sa
g
es

S
en

t
p
er

re
p
li
ca

Alea-BFT

HBBFT

Dumbo1

Dumbo2

Alea-BFT

Figure 3: Messages generated per replica per batch
delivered.

nario where σ increases to a high value, we also
include experimental measurements for Alea-BFT
using a malicious scheduler that purposely delayed
the delivery of VCBC instances by N − f replicas
in order to artificially increasing the value of σ to
N . As illustrated in Figure 3, even under unreal-
istically adversarial network conditions Alea-BFT
still requires fewer message exchanges than Hon-
eyBadgerBFT, despite exceeding both Dumbo pro-
tocols. This makes sense, as for a scenario where
σ = N , both Alea-BFT and HoneyBadgerBFT re-
quire N ABA executions per consensus instance
while Dumbo1 and 2 reduce this number to a small
value k (independent of N) and a constant value,

8

respectively. The previous experiments help cor-

Table 2: Comparison of atomic broadcast protocols,
assuming σ is constant.
Protocol Message Communication Time

HBBFT O(N3) O(N2|m| + λn3 logN) O(logN)

Dumbo1 O(N3) O(N2|m| + λn3 logN) O(log k)

Dumbo2 O(N3) O(N2|m| + λn3 logN) O(1)

Alea-BFT O(N2) O(λN2 + N2(|m| + λ)) O(1)

roborate our initial hypothesis regarding the prac-
tical value of σ converging into a constant. Table 2
presents the expected complexities of Alea-BFT,
HoneyBadgerBFT and Dumbo1/2 when setting σ
to the measured value of 1, further improving the
state of the art, for asynchronous atomic broadcast
protocols, by a factor of N in terms of both message
and communication complexity.

4.2. Throughput

Throughput is defined as the rate at which requests
are serviced by the system, in case of a transaction
processing system throughput is measured as the
number of transactions committed by unit of time.
In our experiments we measured the throughput
by launching multiple replicas executing the pro-
tocol being evaluated while periodically registering
the number of transactions committed during that
interval. Figure 4.2, compares the throughput of
Alea-BFT, HoneyBadgerBFT and Dumbo1/2, for
different system scales, as the batch size increases.
The positive slopes for the measurements pertain-
ing to Alea-BFT indicate that our experiments did
not fully saturate the available bandwidth, and it
would be possible to attain higher throughput by
increasing the batch size. In contrast, for Honey-
BadgerBFT and Dumbo1/2, the overall throughput
of the system initially increases linearly to the in-
crease of system load, but eventually the through-
put stops increasing in some cases even start de-
creasing. This result follows naturally from the dif-
ferences in communication complexity between the
protocols, as presented in Table 2. For the remain-
ing of this section we will compare the performance
of these protocols under the same batch size as we
assume the available bandwidth is ample and not a
bottleneck, However, readers should be aware that
Alea-BFT will provide much higher throughput if
using a larger batch size. In Figure 5, we present
the throughput of the protocols using a fixed batch
size of 5000 transactions. We start by noticing that
Alea-BFT not only outperforms all other protocols
for all systems scales, but this discrepancy in perfor-
mance actually increases with the number of repli-
cas in the system revealing better scalability. This
is expected since Alea-BFT presents lower message
and communication complexities that its counter-
parts while also reducing the number of expensive

101 102 103 104 105

100

101

102

103

104

Batch Size (tx)

T
h
ro
u
g
h
p
u
t
(t
x
/
s)

Alea-BFT

HBBFT

Dumbo1

Dumbo2

Figure 4: Throughput with varying batch sizes.

threshold cryptography operations required to com-
mit a transaction batch. Another interesting re-
mark is that for smaller values of N , HoneyBad-
gerBFT actually outperforms both Dumbo proto-
cols despite being theoretically more expensive.

4.3. Latency

Latency is defined as the time interval between the
instant the first correct replicas start the protocol
and (N − f) replicas deliver the result. In our ex-
periments we measured the latency from the instant
replicas select a transaction to propose, from the
pending buffers, until the instant (N − f) deliver it
to the application layer. In HoneyBadgerBFT and
Dumbo1/2 this corresponds to an instance of ACS
plus the threshold decryption round, while in Alea-
BFT it encompasses the full pipeline and including
the period during which a transaction is waiting in
the priority queues for the agreement component
to select it for delivery. In Figure 6, we exam-
ine the average latency of the protocols under no
contention for different system sizes, having each
node propose a single transaction at the time while
no other requests are being made. As we can see
for small values of N , the basic latency of all four
protocols is very similar. However, as the system
size increases we start to observe some considerable
difference, with the average latency of HoneyBad-
gerBFT increasing much faster than the remaining
protocols. This discrepancy can be explained by the
latency overhead associated with running multiple
ABA instances, a factor that is greatly reduced in
both Alea-BFT and the Dumbo protocols. Note
that the basic latency of Alea-BFT is greatly influ-
enced by the replica which proposes the transaction,
as the priority queues containing ordered proposals
are traversed in a round robin manner by replica id.
Particularly, a proposal from a low id replica will re-

9

4 8 16 32 64
0

1,000

2,000

3,000

4,000

Number of Replicas

T
h
ro
u
g
h
p
u
t
(t
x
/
s)

Alea Dumbo2 Dumbo HBBFT

Figure 5: Throughput of Alea-BFT, HoneyBad-
gerBFT and Dumbo1/2 with a batch of 5 ∗ 103 txs.

sult in a much smaller basic latency measurement
than if the proposal originated from a replica with
an higher identifier. For this particular experiment
the proposer was randomly selected and the results
averaged across multiple runs. Figure 7 shows how
latency evolves as the system load increases for a
medium system scale of 32 replicas. For all pro-
tocols, initially the latency stays relatively stable
only presenting small increases as the system load
grows. However, as we reach the nominal capac-
ity of each protocol we start to notice a very steep
increases in latency as the system resources stop
being able to keep up with the increase in system
load. We notice that Alea-BFT is able to sustain
a stable latency for much higher system loads than
all the other protocols due to its higher throughput
and optimized bandwidth usage.

5. Conclusions

In this work, we were motivated by the fact that
existing BFT protocols based on timing assump-
tions, present a series of characteristics that make
them vulnerable to performance degradation at-
tacks, and explored the use of randomization as
possible a robustness mechanism. The main contri-
bution consists on a different method for construct-
ing asynchronous ABC protocols, which completely
sidesteps from the ACS based model popularized by
HoneyBadgerBFT where most recent work in the
area of asynchronous BFT has been focused. Our
protocol provides significant asymptotic and practi-
cal improvements over the state of the art protocols
in this model. Particularly, an expected improve-
ment by a factor of up to O(N) in terms of both

0 10 20 30 40 50 60 70

0

20

40

60

80

100

120

Number of Replicas

B
a
si
c
L
a
te
n
cy

(s
)

Alea-BFT

HBBFT

Dumbo1

Dumbo2

Figure 6: Basic latency.

101 102 103 104
0

20

40

60

80

100

Throughput (tx/s)

L
a
te
n
cy

(s
)

Alea-BFT

HBBFT

Dumbo1

Dumbo2

Figure 7: Throughput vs. Latency (n=32).

message and communication complexities. The ex-
perimental evaluation of Alea-BFT concluded that
it is able achieve multi-fold improvements over the
current state of the art protocols, specially as the
system size grows, therefore also providing better
scalability guarantees. Overall, the main conclu-
sion to retain from this thesis is that randomized
BFT protocols can in fact be used to deploy high
performance systems, while still providing all the
resilience guarantees associated with a fully asyn-
chronous operation model.

References

[1] B. Alpern and F. B. Schneider. Defin-
ing liveness. Information Processing Letters,
21(4):181–185, 1985.

[2] Y. Amir, B. Coan, J. Kirsch, and J. Lane.
Prime: Byzantine replication under attack.

10

IEEE Transactions on Dependable and Secure
Computing, pages 564–577, 2011.

[3] J. Aspnes. Randomized protocols for asyn-
chronous consensus. Distributed Computing,
(2–3):165–175, Sept. 2003.

[4] M. Ben-Or. Another advantage of free choice:
Completely asynchronous agreement proto-
cols. In Proceedings of the Second Annual ACM
Symposium on Principles of Distributed Com-
puting, PODC ’83, page 27–30, New York, NY,
USA, 1983. Association for Computing Ma-
chinery.

[5] E. Borowsky and E. Gafni. Generalized flp im-
possibility result for t-resilient asynchronous
computations. In Proceedings of the Twenty-
Fifth Annual ACM Symposium on Theory of
Computing, STOC ’93, page 91–100, New
York, NY, USA, 1993. Association for Com-
puting Machinery.

[6] G. Bracha and S. Toueg. Asynchronous con-
sensus and broadcast protocols. J. ACM, page
824–840, Oct. 1985.

[7] C. Cachin, K. Kursawe, F. Petzold, and
V. Shoup. Secure and efficient asynchronous
broadcast protocols. volume 2139, 04 2001.

[8] R. Canetti and T. Rabin. Fast asynchronous
byzantine agreement with optimal resilience.
In Proceedings of the Twenty-Fifth Annual
ACM Symposium on Theory of Computing,
STOC ’93, page 42–51, New York, NY, USA,
1993. Association for Computing Machinery.

[9] M. Castro and B. Liskov. Practical byzan-
tine fault tolerance. In Proceedings of the
Third Symposium on Operating Systems De-
sign and Implementation, OSDI ’99, page
173–186, USA, 1999. USENIX Association.

[10] A. Clement, E. Wong, L. Alvisi, M. Dahlin,
and M. Marchetti. Making byzantine fault
tolerant systems tolerate byzantine faults. In
Proceedings of the 6th USENIX Symposium
on Networked Systems Design and Implemen-
tation, NSDI’09, page 153–168, USA, 2009.
USENIX Association.

[11] D. Dolev and H. R. Strong. Polynomial
algorithms for multiple processor agreement.
STOC ’82, page 401–407, New York, NY, USA,
1982. Association for Computing Machinery.

[12] S. Duan, M. K. Reiter, and H. Zhang. Beat:
Asynchronous bft made practical. In Proceed-
ings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS

’18, page 2028–2041, New York, NY, USA,
2018. Association for Computing Machinery.

[13] B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang.
Dumbo: Faster asynchronous bft protocols. In
Proceedings of the 2020 ACM SIGSAC Confer-
ence on Computer and Communications Secu-
rity, CCS ’20, page 803–818, New York, NY,
USA, 2020. Association for Computing Ma-
chinery.

[14] V. Hadzilacos and S. Toueg. A modular ap-
proach to fault-tolerant broadcasts and related
problems. 1994.

[15] L. Lamport, R. Shostak, and M. Pease. The
byzantine generals problem. ACM Trans. Pro-
gram. Lang. Syst., page 382–401, July 1982.

[16] C. Liu, S. Duan, and H. Zhang. Epic: Efficient
asynchronous bft with adaptive security. pages
437–451, 06 2020.

[17] A. Miller, Y. Xia, K. Croman, E. Shi, and
D. Song. The honey badger of bft protocols.
CCS ’16, page 31–42, New York, NY, USA,
2016. Association for Computing Machinery.

[18] H. Moniz, N. F. Neves, M. Correia, and
P. Verissimo. Ritas: Services for randomized
intrusion tolerance. IEEE Transactions on De-
pendable and Secure Computing, pages 122–
136, 2011.

[19] S. Nakamoto. Bitcoin: A peer-
to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf, 2008. Ac-
cessed: 2021-01-08.

[20] M. Pease, R. Shostak, and L. Lamport. Reach-
ing agreement in the presence of faults. J.
ACM, page 228–234, Apr. 1980.

[21] M. O. Rabin. Randomized byzantine generals.
In 24th Annual Symposium on Foundations of
Computer Science (sfcs 1983), pages 403–409,
1983.

[22] A. Singh, T. Das, P. Maniatis, P. Druschel, and
T. Roscoe. Bft protocols under fire. NSDI’08,
page 189–204, USA, 2008. USENIX Associa-
tion.

11

