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ABSTRACT
Nowadays, the amount of data that needs to be analyzed and ma-

nipulated is rapidly increasing. Performing these actions is often

a complex and cumbersome task. OutSystems is a Low-Code De-

velopment Platform whose goal is to simplify the development

of many applications with most of the tasks automated by the

platform itself. This automation is closely related to the program

synthesis problem, which consists in automatically generating

a program from a specification.

This work introduces SKEL, an SQL query synthesizer that fol-

lows a sketch to guide the search process and uses input-output

examples as a specification. We start by studying different types

of sketches and create a sketch format that supports a wide range

of different options and holes. We then use CUBES as a start-

ing point, modifying it to receive sketches and adding several

constraints in order to optimize the search process. Finally, we

evaluate SKEL by comparing it to a baseline and analyzing the

accuracy and efficiency improvement when using different types

of sketches. Overall, our results show that SKEL is more efficient

and more accurate when compared with previous solutions for

the same problem.

1 INTRODUCTION
In recent years, Low-Code Development Platforms (LCDP) have

become a crucial tool in theweb/mobile application development

domain. Forrester [15] and Gartner [18] also estimate a signif-

icant market increase for LCDP in the following years. These

platforms allow a fast delivery of applications with the need for

minimal hand-coding, which makes the task of programming

more accessible to users from different backgrounds.

OutSystems
1
is an LCDP that simplifies the development

of many applications, enabling a rapid, agile, and continuous

delivery of enterprise-grade applications, with most of the tasks

automated by the platform itself. This task automation is closely

related to the program synthesis problem in which the user

has to provide a specification that contains the behavior of the

program to be implemented.

Nowadays, many users who have to manipulate large amount

of data lack the knowledge on how to perform such manipula-

tions. CUBES [2] is a state-of-the-art SQL synthesizer. A weak

point of CUBES is the time it takes to generate an SQL query and

the accuracy of these queries since not all correspond to the user

intent. To tackle this issue, we introduce SKEL, a synthesizer

that receives a sketch as part of the specification. We created

our sketch format that contains information about the structure

of the query the user intends to generate. By using sketches,
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id architect_id name length

1 1 Xian Ren Qiao (Fairy Bridge) 121.0

2 2 Landscape Arch 88.0

3 3 Kolob Arch 87.0

4 3 Sipapu Natural Bridge 69.0

5 2 Stevens Arch 67.0

6 1 Shipton’s Arch 65.0

7 1 Jiangzhou Arch 65.0

Table 1: Table Bridge

id name nationality

1 Frank Lloyd American

2 Frank Gehry Canadian

3 Zaha Hadid British

Table 2: Table Architect

name

Jiangzhou Arch

Shipton’s Arch

Xian Ren Qiao (Fairy Bridge)

Table 3: Output Table

our goal is to increase the efficiency of the synthesizer and the

overall accuracy of the queries generated.

Motivation Example
Suppose that the user wants to generate an SQL query that

manipulates Table 1 and Table 2 (input example) into Table 3

(output example). It is possible to provide a sketch that could

represent this implementation, guiding the synthesis process

more efficiently and accurately. A possible sketch is represented

in Example 1.1:

Example 1.1. Sketch motivation:

𝑇 1 = 𝑓 𝑖𝑙𝑡𝑒𝑟 (??, ??)
𝑇 2 = 𝑖𝑛𝑛𝑒𝑟_ 𝑗𝑜𝑖𝑛 (𝑇 1, ??, ??)
𝑜𝑢𝑡 = 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑛𝑎𝑚𝑒) 𝑜𝑟𝑑𝑒𝑟 𝑏𝑦 (??)

With this sketch, the synthesizer only searches for solutions

that follow its structure, pruning all others. The intended solu-

tion to this problem instance would be the query in Example 1.2.

It is relevant to note that this type of structure in a query is

very common; for example, it may correspond to a JOIN and a

filter condition or to a JOIN and an aggregate. SKEL will benefit

from these common types of queries that tend to follow a specific

structure.

Example 1.2. Solution motivation query:

SELECT name

FROM b r i d g e AS b

JOIN a r c h i t e c t AS a

ON b . a r c h i t e c t _ i d = a . i d

WHERE a . n a t i o n a l i t y = ' American '

ORDER BY b . l e ng t h
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Contributions This work introduces SKEL, a new synthesizer

to generate SQL programs, taking an input-output example as

specification and a sketch to guide the search process more

efficiently. SKEL was developed on top of the CUBES synthesizer

in order to extend it to receive sketches. We also introduced a

new sketch format that could be easily integrated into SKEL

and allowing it to support a wide range of different options and

holes. In summary, this thesis main contributions are:

• The SKEL synthesizer that extends CUBES into receiving

sketches as part of the specification and, by doing so,

increases the efficiency and accuracy;

• Introduction of a new sketch format with a wide range

of different options and holes;

• An analysis of several types of sketches to understand

which ones perform better and more accurately;

• SKEL is publicly available on an online repository
2
.

This document is organized as follows. Firstly in section 2,

we introduce background concepts necessary to understand this

documents. In section 3, we analyze techniques and state-of-

the-art synthesizers that are relevant for our developed work.

Next, in section 4, we describe our new sketch format and the

SKEL tool implementation in detail, followed by section 5, where

we evaluate this implementation, discuss the results obtained.

Finally, we conclude in section 6 with some final remarks about

our work and insights into future work.

2 FUNDAMENTAL CONCEPTS
In this section, we present fundamental concepts necessary to

understand the rest of the document.

2.1 Satisfiability Modulo Theories
A theory is a set of axioms in the underlying logic. Consider-

ing a theory 𝒯 , a 𝒯 -atom is a ground atomic formula in 𝒯 , a

𝒯 -literal is either a 𝒯 -atom or its negation and a 𝒯 -formula

is composed of 𝒯 -literals. The Satisfiability Modulo Theories

(SMT) problem [1] focuses on models that belong to a given

theory that constrains the interpretation of the symbols in the

𝒯 -formula. It consists of finding an assignment to the variables

in a given formula. If this assignment exists, then the formula is

satisfiable. If not, then it needs to prove that such an assignment

does not exist.

2.2 Program Synthesis
Program synthesis consists of automatically finding a program,

written in a given Domain Specific Language (DSL) (see Defi-

nition 2.1), that satisfies a given specification (user intent) [7].

This well-studied problem is mostly characterized by three main

components: intent specification, program space, and search

technique [6].. Program synthesis has been a rapidly growing

research area since the sixties and is considered the "Holy Grail"

of Computer Science [7] and "one of the most central problems

in the theory of programming" [12] as Amir Pnueli described it.

Definition 2.1. The DSL represents the language in which syn-
thesized programs are written, defining its syntax and semantics.

2
https://github.com/Vivokas20/SKEL

Figure 1: K-tree representation example

2.3 Programming by Example
Programming by Example (PBE) consists of using input-output

examples as a specification for the synthesizer. Using input-

output examples naturally introduces some ambiguity since

these are an under-specification of the desired behavior. On the

other hand, it also has the benefit that users do not need to

know how to code because they can informally describe the

desired behavior without the need to understand the underlying

programming language.

3 RELATEDWORK
The SQL synthesis problem is an active research area. In recent

year, many SQL synthesis tools were developed [2, 3, 5, 10, 19, 20,

22, 23]. In this section, we describe state-of-the-art techniques

proposed in the literature for program and query synthesis.

3.1 Sketching
Sketching was introduced by Solar-Lezama [16, 17] and it al-

lowed users to provide as a specification a skeleton that expresses

the high-level specification about a program they want to create.

Definition 3.1. A sketch consists of a partial program, which

represents the high-level structure of the intended program with

holes that represent the low-level details.

Besides the sketch, programmers should also provide either a

reference implementation or a set of tests the code must pass

for the synthesizer to make the final assertions and ensure the

program satisfies the specification. The SKETCH syntax is very

similar to the C language with the additional symbol ?? repre-

senting the holes in the sketch. In this Example 3.2, the syn-

thesizer will eventually replace the ?? symbol with a 2, thus

satisfying the assertion statement.

Example 3.2. Basic sketch structure:

in t main ( in t x ) {

in t y = x ∗ ? ? ;

a s s e r t y = x + x ;

}

3.2 SQUARES
SQUARES [10] is built on top of the Trinity framework [9]. As a

specification, the user has to provide an input-output example.

However, this synthesizer can also receive as input some extra

information regarding the intended query, including:

• a list of aggregation functions;

• a list of constants;

• columns that must be used as arguments to aggregators.

A common approach to enumerate all feasible programs is

a tree-based encoding, which uses a 𝑘-tree, i.e., a tree where

each node has precisely 𝑘 children, except the leaves, where 𝑘
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Figure 2: Line-based representation example

is also the largest number of parameters of any given grammar

component. In Figure 1 is an example of the 𝑘-tree represen-

tation of the query 𝑗𝑜𝑖𝑛( 𝑗𝑜𝑖𝑛(𝑐𝑜𝑢𝑟𝑠𝑒, 𝑔𝑟𝑎𝑑𝑖𝑛𝑔), 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠). This
encoding grows the number of nodes exponentially with the

tree’s maximum depth. To mitigate this intractability, SQUARES

introduces the concept of line-based representation [11].

In line-based representation, a program is represented as a se-

quence of lines where each line corresponds to a DSL operation.

The goal is to represent a program where each line corresponds

to a tree of depth 1. With this implementation, the authors’ goal

is to reduce the overhead of SMT solving. In Figure 2 we can see

the line-based representation for the previous example where

the nodes reduction is notorious.

Let 𝑙 be the number of lines of code in a program and 𝑘 the

largest number of parameters of any given component of the

DSL. Thenwe can analyze the complexity of the number of nodes

in both encodings. We observe that in tree-based encoding, the

number of nodes increases exponentially with the number of

lines of code (see Equation 1), which contrasts with the linear

increase of the line-based encoding (see Equation 2).

𝑘𝑙+1 − 1

𝑘 − 1

(1)
(𝑘 + 1) ∗ 𝑙 (2)

The results showed that this encoding could solve a higher

number of benchmarks in less time than the tree-based encoding

and was far less complex in terms of the number of nodes.

3.3 CUBES
CUBES [2] was built on top of SQUARES, so every aspect de-

scribed in the previous subsection, also applies to CUBES. The

key benefit of this implementation is not only to take advantage

of modern-age computers’ multi-core processing to speed-up

the synthesis process but also greatly improve the performance

of SQUARES with the introduction of bit-vectors. CUBES has

three different versions: a sequential and two parallel solutions.

Sequential Synthesis. CUBES-Seq extends the SQUARES DSL

in order to be more expressive, thus supporting a wider range

of queries. It also removes the SELECT component from the DSL

introducing it as a post-processing step in order to improve

efficiency. An example of the Cubes DSL is given in Figure 3.

CUBES also introduces a new form of pruning that annotates

all component arguments with a pair of sets of columns in bit-

vectors. These new formulas are added to the SMT solver in the

form of constraints, forcing consistency regarding the columns.

This optimization was necessary since, with the previous en-

coding, many valid SQL queries could be generated that, for

example, performed a natural join of tables without matching

columns. With the new encoding, if a query is generated using

some table 𝑇 and given some constraint on column 𝐶 , then, if

𝑡𝑎𝑏𝑙𝑒 → 𝑖𝑛𝑝𝑢𝑡

| natural_join(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒)
| natural_join3(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒)
| natural_join4(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒)
| left_join(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒)
| inner_join(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒, 𝑗𝑜𝑖𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)
| cross_join(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒, 𝑐𝑟𝑜𝑠𝑠 𝐽𝑜𝑖𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)
| filter(𝑡𝑎𝑏𝑙𝑒, 𝑓 𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)
| summarise(𝑡𝑎𝑏𝑙𝑒, 𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑠𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑐𝑜𝑙𝑢𝑚𝑛𝑠)
| mutate(𝑡𝑎𝑏𝑙𝑒, 𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑠𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)
| union(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒)
| intersect(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒, 𝑐𝑜𝑙𝑢𝑚𝑛)
| anti_join(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒, 𝑐𝑜𝑙𝑢𝑚𝑛𝑠)
| semi_join(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒)

Figure 3: DSL used by the CUBES synthesizer

Name Id

John Smith 1

Mary Burns 2

Dale Cornish 3

Arian Millar 4

Peter Mayers 5

Table 4: Table Students

Id Grade

1 18

2 15

3 14

4 16

5 17

Table 5: Table Grading

𝑇 does not contain 𝐶 , that query is removed, as shown in Ex-

ample 3.3. This optimization helps to limit the search space and,

consequently, improve the search time.

Example 3.3. Consider Table 4, and Table 5 since Table 4

does not contain the column "Grade", we could never generate a

program with the operation 𝑓 𝑖𝑙𝑡𝑒𝑟 (𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠,𝐺𝑟𝑎𝑑𝑒 == 18), so
this program would be immediately pruned.

Since the CUBES implementation uses SMT solvers, it can

also take advantage of UNSAT cores to prune the search space

even further. The authors observed that, given the same amount

of time, the number of instances solved by CUBES-Seq was much

higher than other previous state-of-the-art synthesizers such as

SQUARES[10] and Scythe [19].

Parallel Synthesis. Two parallel SQL Synthesizers were imple-

mented: CUBES-Port, which uses portfolio solving, and CUBES-

DC, which uses a divide and conquer technique.

* Portfolio solving CUBES-Port diversifies the exploration of the

search space. To do so, it tries to force each thread to explore

the same search space in different ways, as the portfolio tech-

nique states, and as soon as a solution is found, the search ends.

The diversification of search space exploration can be achieved

by using the same solver but with different configurations or

applying a set of solvers that use different search techniques.

* Divide and Conquer CUBES-DC splits the problem into smaller

sub-problems, cubes, that can be solved by each of the processors.

It divides the search space into different cubes, each correspond-

ing to particular sequences of operations of the DSL in which

the arguments for those operations are still undetermined. The

cubes are then distributed over different threads.



Figure 4: SKEL’s architecture

natural_join(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒, [𝑡𝑎𝑏𝑙𝑒], [𝑡𝑎𝑏𝑙𝑒])
inner_join(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒, 𝑗𝑜𝑖𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)
anti_join(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒, [𝑐𝑜𝑙𝑢𝑚𝑛(𝑠)])
left_join(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒)
union(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒)
intersect(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒, 𝑐𝑜𝑙𝑢𝑚𝑛)
semi_join(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒)
cross_join(𝑡𝑎𝑏𝑙𝑒, 𝑡𝑎𝑏𝑙𝑒, 𝑐𝑟𝑜𝑠𝑠 𝐽𝑜𝑖𝑛𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)
filter(𝑡𝑎𝑏𝑙𝑒, 𝑓 𝑖𝑙𝑡𝑒𝑟𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)
summarise(𝑡𝑎𝑏𝑙𝑒, 𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑠𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, [𝑐𝑜𝑙𝑢𝑚𝑛(𝑠)])
mutate(𝑡𝑎𝑏𝑙𝑒, 𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑠𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)

Figure 5: Sketch Functions

4 SKETCH-DRIVEN SQL SYNTHESIS
In this section, we describe SKEL, a Sketch-driven SQL synthe-

sizer developed on top of the sequential version of CUBES [2].

SKEL’s goal is to generate an SQL query given an input-output

example and an incomplete sketch of the query we want to

generate. SKEL was implemented in Python 3.8 and R version

3.6.3. R was used to validate the program generated [8], using

the input-output example, and then translate it to a program in

SQL. SKEL also uses the Z3 SMT solver [4] to solve the SMT

formulas generated by the synthesizer.

Figure 4 shows an overview of our tool’s architecture. We can

see that SKEL receives as specification a file that must contain

the input-output tables, and also a sketch in the correct format.

Similarly to CUBES, the specification can also contain constants,

aggregate functions, columns, and Lines of Code (LOC).

4.1 Sketch Format
In this subsection, we thoroughly describe the format of the

sketches that must be provided in the specification and illustrate

all the different types of holes supported by the synthesizer.

The sketch is composed of one or more lines that can be either

a hole or take the form 𝑙𝑖𝑛𝑒_𝑛𝑎𝑚𝑒 = 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛. Each line that

is not a hole has a 𝑙𝑖𝑛𝑒_𝑛𝑎𝑚𝑒 , i.e., a name with which that line

could be referenced, and a 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, i.e., the name of the opera-

tion we want to perform (parent) and the corresponding input

arguments (children). In Figure 5 we represent the functions and

types of children the sketch supports, where the optional input

arguments are represented in brackets. To avoid ambiguity, no

column and table can have the same name. For future reference,

we note that a 𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑠𝑒𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is the same as an aggregate

function, such as MAX, MIN, COUNT, SUM, AVG.
It is also relevant to note that if we have more than one condi-

tion or column, these must be inside parenthesis and separated

by a comma as shown in bold in Example 4.1.

Example 4.1. Multiple columns:

summarise (𝑇 1, 𝑚𝑎𝑥_𝑔𝑟𝑎𝑑𝑒 =𝑚𝑎𝑥 (𝑔𝑟𝑎𝑑𝑒), (𝒊𝒅, 𝒏𝒂𝒎𝒆))

If the user has information about the final SELECT columns of

the query it intends to generate, then the final line of the sketch

must represent the SELECT operation. The table that is an input

of this SELECT operation is always the final table generated by

the synthesizer, i.e., the table with LOC identifier. An important

note is that this final line is optional, depending on the informa-

tion the user has. This optional final line takes 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 and/or

𝑜𝑟𝑑𝑒𝑟𝑏𝑦 as optional arguments and selects the columns used in

the output table:

𝑜𝑢𝑡 = select[distinct] (𝐶𝑜𝑙𝑢𝑚𝑛(𝑠)) [order by(𝐶𝑜𝑙𝑢𝑚𝑛(𝑠))]
The main symbol that we use to represent a hole is ??. The

following variations are also supported: ??∗ corresponds to zero

or more holes and ??+ corresponds to one or more holes. These

holes can be represented in the following ways:

• Line hole - It consists of a whole line replaced by a

hole. The only exception is the SELECT line that must

be completely omitted if the user cannot provide any

information about it. If ?? is used, it means that there is

exactly one line in the respective position. However, if the

user is unsure of the exact number of lines, he can also

use the previously defined ??∗ or ??+ variations. If the

user knows that there is definitely a line in that position,

he can also name the line to reference it in the sketch

lines that follow. Example 4.2 shows two different uses

of line holes. The first one corresponds to when the user

references an unknown line, and the second one to when

he does not know the exact number of lines.

Example 4.2. Line hole:

𝑇 1 = ??

𝑇 2 = summarise (𝑇 1, 𝑚𝑎𝑥_𝑔𝑟𝑎𝑑𝑒 =𝑚𝑎𝑥 (𝑔𝑟𝑎𝑑𝑒), 𝑖𝑑)
𝑜𝑢𝑡 = select (𝑛𝑎𝑚𝑒, 𝑚𝑎𝑥_𝑔𝑟𝑎𝑑𝑒)

𝑇 1 = filter (𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠, 𝑖𝑑 > 3)
??+

𝑜𝑢𝑡 = select (𝑛𝑎𝑚𝑒, 𝑚𝑎𝑥_𝑔𝑟𝑎𝑑𝑒)

• Previous line hole - In case the user knows that some

line in the output query must use a previous sketch line,

but there is no name for the line (due to the usage of,

for example, ??+), the user has a special semantics 𝑇 ??.

This semantic represents a hole that must be filled by

previously generated lines, thus giving the user more

flexibility while writing a sketch. In Example 4.3 we show

a possible usage of this type of hole.

Example 4.3. Previous line hole:

??+
𝑇 2 = summarise (𝑻??, 𝑚𝑎𝑥_𝑔𝑟𝑎𝑑𝑒 =𝑚𝑎𝑥 (𝑔𝑟𝑎𝑑𝑒), 𝑖𝑑)
𝑜𝑢𝑡 = select (𝑛𝑎𝑚𝑒, 𝑚𝑎𝑥_𝑔𝑟𝑎𝑑𝑒)

• Children holes - Assuming that all children have a

known parent function, then the user will also be aware

of the type and format of the input arguments for that

function. This way, the user can put holes, ??, in the place

of the input arguments he does not have information

about, as shown in Example 4.4.



Example 4.4. Children hole:

𝑇 1 = filter (𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠, ??)
𝑇 2 = summarise (𝑇 1, 𝑚𝑎𝑥_𝑔𝑟𝑎𝑑𝑒 =𝑚𝑎𝑥 (𝑔𝑟𝑎𝑑𝑒), ??)
𝑜𝑢𝑡 = select (𝑛𝑎𝑚𝑒, 𝑚𝑎𝑥_𝑔𝑟𝑎𝑑𝑒)

• Parent and children hole - All parents can be replaced

by a hole, ??, which implies that the user may have less

knowledge about the number of children for that line. If a

parent is replaced by a hole, then we assume that the user

does not have information about the order of the input

arguments. To address this, we consider the children to

be out of order so that the user can freely provide any

children that he has information on. For this hole type,

there are several possible scenarios:

– The user knows all the children. In this case, the par-

ent is represented with a ??, and the user inserts the

children regardless of the order.

– The user knows how many children exist in the un-

known function, but not all their concrete expressions,

thus he replaces the ones he does not know with ??

without taking the children’s order into account. This

scenario is illustrated in the first part of Example 4.5.

– The user only knows some of the children without

knowing how many exist in total. This involves the

user giving information about the children he knows,

regardless of the order, and then inserting a ??+ or ??∗
at the end, depending on the information he has. This

is shown in the second part of Example 4.5.

Example 4.5. Parent hole:

𝑇 1 = filter (𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠, 𝑖𝑑 > 3)
𝑇 2 = ?? (𝑖𝑑, ??, ??)
𝑜𝑢𝑡 = select (𝑛𝑎𝑚𝑒, 𝑚𝑎𝑥_𝑔𝑟𝑎𝑑𝑒)

𝑇 1 = filter (𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠, 𝑖𝑑 > 3)
𝑇 2 = ?? (𝑚𝑎𝑥_𝑔𝑟𝑎𝑑𝑒 =𝑚𝑎𝑥 (𝑔𝑟𝑎𝑑𝑒), ??+)
𝑜𝑢𝑡 = select (𝑛𝑎𝑚𝑒, 𝑚𝑎𝑥_𝑔𝑟𝑎𝑑𝑒)

• Select hole - The SELECT line, if exists, is the last line of

the sketch and its holes follow particular rules:

– The columns given to the SELECT function have to be

exactly the ones the output must have; otherwise ??

should be provided in the SELECT function.
– If the distinct option is not provided, the synthesizer

assumes that it should not be used, but if the user is

unsure, then ?? may be provided in place of distinct.
– The order by option is similar to the distinct option.
However, in this case, when the order by is present,
the user can also specify the columns or a hole, ??, in

case he does not knowwhich columns to use to perform

the ordering, as shown in Example 4.6.

Example 4.6. Select hole:

𝑇 1 = filter (𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠, 𝑖𝑑 > 3)
𝑇 2 = summarise (𝑇 1, 𝑚𝑎𝑥_𝑔𝑟𝑎𝑑𝑒 =𝑚𝑎𝑥 (𝑔𝑟𝑎𝑑𝑒), 𝑖𝑑)
𝑜𝑢𝑡 = select ?? (𝑛𝑎𝑚𝑒, 𝑚𝑎𝑥_𝑔𝑟𝑎𝑑𝑒) order by (??)

• Alternative hole - It may be the case that the user knows

that a given hole should be filled by one production of a

small subset of parents or children. This can be done by

Figure 6: Sketch Tree Example

providing a set of productions inside brackets, [ ], thus

giving the synthesizer more information. In Example 4.7

we demonstrate a possible use of this functionality given

three tables - stock, supplier, and parts.

Example 4.7. Alternative hole:

𝑇 1 = [left_join, semi_join] (𝑠𝑡𝑜𝑐𝑘, [𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟, 𝑝𝑎𝑟𝑡𝑠])
𝑜𝑢𝑡 = select distinct (𝑃𝑎𝑟𝑡𝑁𝑎𝑚𝑒)

4.2 Sketch Parsing
After receiving a sketch as a specification from the user in the

format described in subsection 4.1, we start parsing it by creating

the tree structure of the sketch. In this subsection, wewill explain

the tree structure and also how the synthesizer generates the

grammar from the DSL using the sketch information.

4.2.1 Sketch Structure. Let 𝑙 be the number of lines in the

sketch, and 𝑘 the maximum number of parameters of any given

DSL component. The sketch structure consists of 𝑙 trees of depth

1 with 𝑘 leaves each. Figure 6 illustrates the tree structure for

the sketch in Example 4.4. The four main types of lines are:

• Normal line - a line without a parent hole;
• Incomplete line - a line for which the function name is a

hole, and we do not know the exact number of children or

their order. For example,𝑇 1 =?? (𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠, ??+) would be
an incomplete line since it can have two or more children;

• Unordered line - a line for which the function name is a

hole, but we know the exact number of children, although

not their order. For example,𝑇 1 =?? (𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠, ??) would
be an unordered line since we know it has exactly two

children but not their order since we do not know the

parent function. The example 𝑇 1 =?? (𝑖𝑑 > 3, 𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑠)
would also be an unordered line since, as the function

is not specified, we cannot infer the order of the input

arguments;

• Empty line - a line that represents a named empty tree.

This way, the tree can be referenced in subsequent lines.

For example, 𝑇 1 =?? would be an empty line with a tree

named T1 that can be referenced in the following lines.

We now describe more in-depth each one of the tree compo-

nents: the root and the leaves. Every tree root contains:

• the name of the function production(s) or a hole;

• the name of the line, so that it can be referenced in sub-

sequent lines;

• the position of the line in the sketch;

• the type of line.

Currently, SKEL is using the same DSL as CUBES. Therefore,

every tree has four leaves since the largest DSL production has

four parameters. Each leaf contains:

• the name(s) of the production(s) allowed, or a hole;

• the child type;



Besides the child types described in subsection 4.1, the sketch

structure also allows the "line type" or the "unknown type": The

"line type" corresponds to a table generated in a previous line,

i.e., a previous root identifier. A child has an "unknown type"

when we do not know the function name, and we cannot infer

the argument type while looking for matches in table names.

* Select line In order to build the sketch structure, we start by

parsing each line into this structure except the SELECT line. This
last line, when present, is treated differently since the CUBES

DSL does not contain the SELECT component. To parse this

line, we simply store which columns are present in the SELECT
statement; if the SELECT statement must have a distinct; and if

the table rows must be arranged in a specific order.

* LOC value In the sketch, we also consider the maximum and

minimum LOC possible. In the simplest cases, the LOC is the

number of sketch lines. However, if a line has a ??+ hole, the

minimum LOC is increased by one, and the maximum LOC is

removed since we do not know what the maximum number of

lines the final solution will have. If a line has a ??∗ hole, then
we only remove the value of the maximum LOC. If we do not

have a maximum LOC, then all of the lines that succeed the

hole are considered a free line since we do not know their exact

position. The only guide on those lines is their id, which tells

the synthesizer that it has to appear before or after another line.

4.2.2 DSL. After parsing the specification and constructing

the sketch structure, the synthesizer generates the grammar

from the DSL that will be used during synthesis. The DSL fol-

lows the same format as the CUBES DSL (see Figure 3). Each

production of the DSL has a non-negative identifier, 𝑖𝑑 ↦→ 𝐼𝑁0.

By making a change in the configuration, we can opt between

having the grammar generated as CUBES, or having the gram-

mar generated from the sketch productions, with the option

generate_sketch_dsl.
We provide the user with these two options since it is unfea-

sible to generate all possible productions that can be applied to

a specific input-output example without severely compromising

the efficiency. To improve efficiency, we limit the number of

productions generated.

To generate the grammar from the sketch productions, we

store every aggregate, constant, and column while parsing the

sketch. If a line contains the called function’s name, this process

is trivial since all the children have their respective types identi-

fied, and we can easily distinguish between aggregates, columns,

and constants. However, if the function is unknown (a hole),

the synthesizer has to analyze each child individually and infer

which type of production it is. This information is stored so that

the synthesizer can later generate the grammar accordingly.

4.3 Sketch Filling
After having generated the grammar, the synthesizer maps every

known production in the sketch structure to its corresponding

DSL production identifier. In this subsection, we explain how

this matching is done in order to complete the sketch structure.

In order to assign the DSL identifiers to the sketch structure,

for every line, we first check if the root is a hole or not. If the

root is a hole, we add to the structure the information that it can

be any function. However, if it is not a hole, then we assign its

correspondingDSL function production identifier or themultiple

possible identifiers in case of an alternative hole. Afterwards,

Figure 7: Filled Sketch Tree Example

for every child in the sketch structure, we check if the child

contains information regarding the name and type, in which

case SKEL assigns the corresponding production identifier from

the DSL. If we do not know the child type, we search in all the

generated productions for a match and then assign those DSL

identifiers to the child in the sketch structure. This search must

be performed because some productions have equal content but

a different type. If the child is a hole, no extra information is

added to the sketch. If we know the exact number of children

in a line, we can assign the 𝑒𝑚𝑝𝑡𝑦 DSL identifier to the excess

leaves.

After this phase, the sketch tree example in Figure 6 will

be filled with the DSL identifiers as shown in Figure 7. These

numbers were retrieved from an extensive DSL with almost

30,000 productions. We can observe that the second leaf of the

first tree and the third leaf of the second tree are filled with all

the possible children productions, which is not very efficient. It

is relevant to note that this sketch filling process is performed

only once. The synthesizer can then use the sketch structure to

generate new constraints every time the LOC is increased.

The synthesizer then uses this sketch structure to generate

the trees with the additional sketch information.

Optimizations. We implemented two optimizations when as-

signing the DSL identifiers to the sketch structure. The first

optimization applies when we have a parent hole. In this case,

we can deduce a subset of functions that cannot be assigned

to the parent’s hole by analyzing the respective children. This

deduction helps to prune solutions that would not satisfy the

sketch. To do this, we analyze the type of each leaf and how

many leaves there exist in the tree that are not 𝑒𝑚𝑝𝑡𝑦. For every

unordered line, we add the DSL identifier of every function with

arity equal to the number of non-empty leaves. For every incom-

plete line, we only add the DSL functions identifiers that have

more input arguments than the known leaves in that sketch

tree. We then check, for each function, if the children’s types

are consistent with the types of the known tree leaves in the

sketch structure. If not, we remove that DSL function identifier

from the possible sketch structure root productions.

The other optimization applies when we do not know the

child’s name but know its type. If this is the case, we only add

the DSL identifiers that have the respective type. This optimiza-

tion results in fewer productions allowed for the respective hole,

thus pruning many invalid solutions. After applying these opti-

mizations to the example in Figure 7, we obtain an optimized

tree shown in Figure 8 where we can see a much smaller set of

different DSL identifiers allowed for the leaves when compared

to the non-optimized sketch filling method.



Figure 8: Filled Sketch Tree Example Optimized

4.4 Sketch Encoding
After having a complete sketch structure, the synthesizer will

enumerate programs with the help of an SMT solver. Firstly,

instead of building LOC trees with every production in every

node (as CUBES does), we add the sketch constraints to each

node, i.e., the set of productions allowed for each node is re-

stricted according to the sketch. Subsequently, we implement

new constraints that ensure the synthesizer follows the sketch

correctly and optimize already existent CUBES constraints.

Let𝐷 denote the DSL, 𝐹𝑢𝑛𝑐 (𝐷) the set of functions in the DSL
and 𝑃𝑟𝑜𝑑 (𝐷) the set of children productions in the DSL. Now,

for the sketch notations, let 𝑆𝑅𝑜𝑜𝑡 (𝑖) represent all the possible
function productions for the root in tree 𝑖 of the sketch and

𝑆𝐿𝑒𝑎𝑓 (𝑖, 𝑗) represent all the possible children productions for

the 𝑗-th leaf of the tree 𝑖 of the sketch.We use 𝑖𝑑 (𝑝) to denote the
identifier of a given production 𝑝 . Finally, let 𝑛 be the number

of lines of the program the synthesizer is trying to generate,

with a maximum operator arity of 𝑘 , then we have the following

integer variables:

• {𝑜𝑝𝑖 : 1 ≤ 𝑖 ≤ 𝑛}: where each variable 𝑜𝑝𝑖 denotes the

production function used in tree 𝑖;

• {𝑎𝑖 𝑗 : 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑘}: where each variable 𝑎𝑖 𝑗
denotes the child production corresponding to argument

𝑗 in tree 𝑖 .

* Root The function assigned to each tree must follow the sketch

structure. If there is no information about that specific root in

the structure, then we have the following constraints:

∀ 1 ≤ 𝑖 ≤ 𝑛 :

∨
𝑓 ∈𝐹𝑢𝑛𝑐 (𝐷)

𝑜𝑝𝑖 = 𝑖𝑑 (𝑓 ) (3)

If we have information on the DSL identifiers in the sketch

structure for a specific root, we have the following constraints:

∀ 1 ≤ 𝑖 ≤ 𝑛 :

∨
𝑓 ∈𝑆𝑅𝑜𝑜𝑡 (𝑖)

𝑜𝑝𝑖 = 𝑖𝑑 (𝑓 ) (4)

From now on, let 𝑅𝑜𝑜𝑡 (𝑖) represent the possible function

productions for the 𝑖-th tree.

* Leaf The productions assigned to each leaf must also follow the

sketch structure. If there is no information about that specific

leaf in the structure, then we have the following constraints:

∀ 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑘 :

∨
𝑝∈𝑃𝑟𝑜𝑑 (𝐷)

𝑎𝑖 𝑗 = 𝑖𝑑 (𝑝) (5)

If we have information on the DSL identifiers in the sketch struc-

ture for a specific child, then we have the following constraints:

∀ 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑘 :

∨
𝑝∈𝑆𝐿𝑒𝑎𝑓 (𝑖, 𝑗)

𝑎𝑖 𝑗 = 𝑖𝑑 (𝑝) (6)

From now on, let 𝐿𝑒𝑎𝑓 (𝑖, 𝑗) represent the possible children
productions for the 𝑗-th leaf of the 𝑖-th tree.

* Unordered and incomplete lines We need to ensure that all

the children must appear at least once in any of the leaves for

that line (instead of only a specific leaf, like in the previous

constraint). Let 𝑈𝐿 represent the set of indices of unordered

lines and 𝑁𝐶𝑖 the number of children of line 𝑖 , i.e., if line 𝑖 is

incomplete, then the number of children is going to be 𝑘 , but

if the line is unordered, then we use the information about its

number of children given in the sketch. Let 𝑆_𝑎𝑙𝑙_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑖)
denote all the productions known for each children in the sketch

for line 𝑖 . Finally, let 𝑐 𝑗 represent all the possible productions

for the j-th child. As a result, we have the following constraints:

∀ 𝑖 ∈ 𝑈𝐿 :

∧
𝑐∈𝑆_𝑎𝑙𝑙_𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 (𝑖)

∨
1≤ 𝑗≤𝑁𝐶𝑖

∨
𝑝∈𝑐 𝑗

𝑎𝑖 𝑗 = 𝑖𝑑 (𝑝) (7)

* Type matching We must ensure the functions arguments for-

mat is followed. We traverse all function productions allowed

for a given root and add two constraints. The first constraint

ensures that the number of children is equal to the arity of the

function, assigning the 𝑒𝑚𝑝𝑡𝑦 production to all excess children:

∀ 1 ≤ 𝑖 ≤ 𝑛, 𝑝 ∈ 𝑅𝑜𝑜𝑡 (𝑖), 𝑎𝑟𝑖𝑡𝑦 (𝑝) < 𝑗 ≤ 𝑘 :

(𝑜𝑝𝑖 = 𝑖𝑑 (𝑝)) =⇒ (𝑎𝑖 𝑗 = 𝑖𝑑 (𝑒𝑚𝑝𝑡𝑦)) (8)

The second constraint ensures that for every possible function

of a given root, every input argument of that function (leaf) has

the correct type of productions. Let 𝑇𝑦𝑝𝑒 (𝑡) denote the type

of production 𝑡 and 𝑇𝑦𝑝𝑒 (𝑝, 𝑗) denote the type of parameter 𝑗

of production 𝑝 . If in the set of possible leaf productions for

children 𝑗 of line 𝑖 there exist no productions of the correct type,

i.e., 𝑠 = ∅, then we only add the constraint in Equation 9. On

the other hand, if there exist productions with the correct type,

then the constraint in Equation 10 is added.

∀ 1 ≤ 𝑖 ≤ 𝑛, 𝑝 ∈ 𝑅𝑜𝑜𝑡 (𝑖), 1 ≤ 𝑗 ≤ 𝑘 :

¬(𝑜𝑝𝑖 = 𝑖𝑑 (𝑝)) (9)

(𝑜𝑝𝑖 = 𝑖𝑑 (𝑝)) =⇒

©«
∨

𝑠∈{𝑡 ∈𝑙𝑒𝑎𝑓 (𝑖, 𝑗) :𝑇𝑦𝑝𝑒 (𝑡 )=𝑇𝑦𝑝𝑒 (𝑝,𝑗) }
𝑎𝑖 𝑗 = 𝑖𝑑 (𝑠)ª®¬

(10)

* Free lines If we have free lines, we must ensure that those

lines appear in the generated programs even if we do not know

their exact position. Let 𝐹𝐿 be the set of free lines in the sketch

(the lines we do not know the exact position), and 𝐸𝑇 the set of

indices of trees in the enumerator, which we do not have any

information on. Then, we have the following constraints:

∀ ℎ ∈ 𝐹𝐿 :

∨
𝑖∈𝐸𝑇

©«
∨

𝑝∈𝑆𝑅𝑜𝑜𝑡 (ℎ)
𝑜𝑝𝑖 = 𝑖𝑑 (𝑝)ª®¬∧©«

∧
1≤ 𝑗≤𝑘

∨
𝑝∈𝑆𝐿𝑒𝑎𝑓 (ℎ,𝑗)

𝑎𝑖 𝑗 = 𝑖𝑑 (𝑝)ª®¬


(11)

The SMT solver will then try to return a valid solution, with

all the remaining holes filled. If it exists, the solution is given

to the decider to check if the program is satisfiable. If so, we

have found a solution. Otherwise, the enumerator must generate

another program. If we exhaust all possible solutions for that



size, and if the sketch does not have a fixed maximum number

of LOC then the number of LOC is increased. Otherwise, the

program terminates with no solution found.

5 EXPERIMENTAL RESULTS
In this section we evaluate SKEL. The results were obtained

using an Intel
®
Xeon

®
CPU E5-2630 v2 @ 2.60GHz, with 64GB

of RAM. We ran the benchmarks using runsolver [14] with a

10 minutes limit. We took the benchmarks used in CUBES and

prepared a subset of them to include several sketches, each one

with different properties, resulting in a total of 100 benchmarks:

• 29 instances extracted from exercises of the textbook

Database Management Systems [13];
• 22 + 39 instances from the benchmarks used in Scythe [19],

collected from recent and top-rated posts from StackOver-

flow
3
, respectively;

• 9 instances from Spider [21], a dataset of SQL queries and

respective natural language descriptions.

We analyzed each instance and converted its SQL ground

truth solution into our sketch format without any holes, a full

sketch. We then proceeded to replace parts of the solution with

holes. The sketches can be split into the following categories:

• Sketch with no root, i.e., sketches where the parent is
replaced by a hole;

• Sketchwithno children, i.e., sketches where the children
are replaced by holes;

• Sketch with no root and no filterwhere the parents and
the filter production are replaced by a hole;

• Sketchwithno root andno aggregatewhere the parents
and the aggregate production are replaced by a hole;

• Sketch with no children except filter, i.e., the sketch
children are replaced by holes except the filter production;

• Sketch with no children except aggregate, i.e., sketch
children are replaced by holes except the aggregate;

We use the following evaluation metrics to analyze SKEL:

(1) Efficiency (runtime to return a solution);

(2) Number of attempted programs;

(3) Accuracy;

(4) Precision.

5.1 Baseline Analysis
We start the evaluation by comparing two of the most simple

sketch formats with a baseline using no sketch in Figure 9. The

synthesizer solved 72 instances when no sketch was provided,

and we can see it started having some difficulties roughly after

the 50th instance. Since we do not give the synthesizer any addi-

tional information regarding the expected solution, this result is

expected. Using sketches with no children, the synthesizer can

solve a total of 92 instances, which is a considerable improve-

ment compared with the baseline. With a sketch that had no

root, the synthesizer was able to solve all benchmarks with a

significant boost in performance. It is expected that when we

give the synthesizer a sketch with no children, it performs worse

than a sketch with no root, since it has less information. We can

also see that the time, the synthesizer took to return a valid

solution decreased significantly when a sketch was provided.

We then analyzed the number of programs generated by

the synthesizer before a solution is found. Around the 70th

3
https://stackoverflow.com

Figure 9: Baseline efficiency

Sketch Type

Accuracy

(%)

Precision

(%)

Average

Time (s)

#Solved

Instances

No sketch 52,00 72,22 40,01 72

No children 69,00 75,00 6,37 92

No root 83,00 83,00 3,48 100

Table 6: Baseline metrics

instance, the benchmarks with no sketch were already exceed-

ing 2000 tested programs before returning a solution. Regarding

the sketch with no children we start seeing a more notable in-

crease in attempted programs by the 85th instance. After further

analysis, we concluded that this increase is mainly because the

instances have more filter conditions to choose from since the

solution has to have two filters, which impacts the number of

attempts. Regarding the sketch with no root the number of at-

tempted programs is very low which is expected because the

synthesizer has more information than previous sketches.

In Table 6, we can observe that the accuracy and precision

metrics increase with the more information the sketch has, as

expected. When no sketch is provided, we can see an accuracy

of 52% meaning that, of all the instances, this benchmark could

only solve a little more than half of them correctly. On the

other hand, the accuracy when a sketch with no children or a

sketch with no root is provided corresponds to 69% and 83%,

respectively. Nonetheless, this increase was not so notorious

when we compare the precision of the benchmarks with no

sketch with the ones that have a sketch with no children. This
precision means that although the synthesizer can solve more

instances, many of those instances are not solved correctly. The

slight increase is expected since the sketches with no children

do not contain much more information than no sketch. When a

sketch with no root is provided, we see that 83% of the instances

solved were consistent with the ground truth. The instances that

were not correct are mostly cases where parents that should be

classified as natural_join are instead classified as left_join
or semi_join, mainly due to the ambiguity of the specification.

With this information, we can see the positive impact of giv-

ing the synthesizer a sketch, which results in a boost in perfor-

mance since a solution can be found faster and more accurately.

5.2 Optimization Analysis
In this subsection we analyze the impacts of the optimizations

described in subsection 4.3. In Figure 10, we observe that the

optimization has a positive impact on the efficiency. With the

https://stackoverflow.com


Figure 10: Optimized efficiency

Sketch Type

Accuracy

(%)

Precision

(%)

Average

Time (s)

#Solved

Instances

No children 69,00 75,00 16,55 92

No children

optimization

76,00 80,00 12,29 95

No root 83,00 83,00 3,63 100

No root

optimization

87,00 87,00 3,59 100

Table 7: Optimized version metrics

sketch with no children being able to solve 95 out of the 100

instances, while the non-optimized version only managed to

solve 92 instances and required overall more time to return an

answer. Regarding the sketch with no root, we cannot clearly see

an improvement in efficiency, with both sketches solving the

100 instances. In general, both of the sketches are side by side

in terms of attempted programs, but the optimized version can

solve more instances using less generated programs.

In Table 7 we can observe that the accuracy and precision

metrics increase for the optimized versions, as expected.Without

the optimization, the benchmarks ran with a sketch with no
children had an accuracy of 69% while the optimized version

was able to achieve an accuracy of 76%. The precision increased

from 75% with no optimization to 80% with the optimization.

The benchmarks with a sketch with no root follow a pattern

similar to that of the version without optimization, resulting in

an accuracy and precision of 83% without optimization and 87%

with. Although the efficiency of both approaches is very similar,

we still observed an increase in accuracy and precision.

To sum up, the optimization proved to be relevant for our

work, not only slightly increasing the efficiency but, most im-

portantly, increasing the accuracy of the solutions returned. For

the rest of this section we will only use the optimized version.

5.3 Sketches with Filters
We used a subset of 48 instances for which the respective ground

truth contains at least one filter for this evaluation. In Figure 11

we can see that the two new sketches perform better than the

sketch with no children. It is also expected that both of these new

sketches perform worse than the sketch with no root since the
new sketches have less information than this type of sketch.

Between the sketch with no root and no filter and the sketch
with no children except filter, we can see that the latter performs

better, which is according to our expectations. This improvement

Figure 11: Filter sketches efficiency

Sketch Type

Accuracy

(%)

Precision

(%)

Average

Time (s)

#Solved

Instances

No children 60,42 65,91 31,30 44

No root and

no filter

64,58 64,58 7,99 48

No children

except filter

77,08 80,43 6,07 46

No root 91,67 91,67 3,77 48

Table 8: Filter sketches metrics

is because there are many different filter productions in the DSL,

so if we immediately give the synthesizer the correct production,

it does not need to test all of the filter productions.

The sketch with no children except filter generally attempts

more programs than the sketch with no root and no filter before
returning a solution. A possible explanation could be an increase

in accuracy since the synthesizer could have to generate more

programs in order to return the correct solution.

Looking at Table 8, we can see how the accuracy increases

when we provide a filter in the sketch. This increase is expected

since it is hard for the synthesizer to distinguish between, for

example, a condition with ">=" or with only ">" if the respec-

tive corner case is not included in the specification. Using a

sketch with no root and no filter, we obtain an accuracy of 64,58%,

meaning that it could solve more instances correctly than the

sketch with no children, which resulted in an accuracy of 60,42%.

However, the precision of this sketch is lower than the pre-

cision of the sketch with no children. One explanation could

be that natural_joins are often mistaken by left_joins or

semi_joins by the synthesizer, and since we do not provide the
roots, this results in additional ambiguity for a sketch. Consider-

ing the results of the sketch with no children except filter, we can
see a substantial improvement with an accuracy of 77,08% and a

precision of 80,43%. The sketch with no root still has best perfor-
mance, as expected, with a 91,67% of accuracy and precision.

We concluded that the filter conditions significantly impact

the efficiency and accuracy of the synthesizer.

5.4 Sketches with Aggregates
We used a subset of 49 instances for which the respective ground

truth contains an aggregate. In Figure 12 we see that there is an

improvement in the performance of all sketches when compared

to the sketch with no children. The two new sketches perform



Figure 12: Aggregate sketches efficiency

Sketch Type

Accuracy

(%)

Precision

(%)

Average

Time (s)

#Solved

Instances

No children 83,67 89,13 11,29 46

No root and

no aggregate

77,55 79,17 4,25 48

No children

except

aggregate

79,59 82,98 3,81 47

No root 91,84 91,84 3,42 49

Table 9: Aggregate sketches metrics

very similarly in terms of efficiency and do not perform as ex-

pected when compared with each other. After further analysis,

we understood the reason for this was that SKEL does not gen-

erate an extensive amount of aggregate productions in the DSL.

This substantially reduces the number of productions the synthe-

sizer must consider before returning a solution, could explain the

obtained results. The sketch with no children generates the most

programs before returning a solution followed by the two new

sketches. The sketch with no root requires the fewest attempts.

In Table 9, we see that the two new sketches yield worse

results than expected. The accuracy and the precision of the

sketch with no children are 83,67% and 89,13%, respectively, both

better than the results using the new sketches. This is can be

because the synthesizer does not have an extensive number of

productions that needs to try for returning a solution with an

aggregate. This allows the sketch with no children to achieve a

greater accuracy since, for the aggregate children, it does not

need to do an extensive search, and is not as prone to make

mistakes due to the ambiguity of the specification. Overall giving

the synthesizer an aggregate will likely not yield better results.

For the sketch with no root and no aggregate we can see that an
accuracy of 77,55% and a precision of 79,17% were obtained. Both

are worse than using a sketch with no children except aggregate.
The behavior between the two sketches is the expected, and

it can explain the results obtained in the efficiency and the at-

tempted programs since the synthesizer could have been taking

longer so that it could return the correct one.

The instances that were not solved correctly by the sketch
with no children except aggregatewere mainly due to an incorrect

filter condition. This sketch also performedworse than the sketch
with no children probably because the synthesizer traversed the

search space in a different order. Since it is much more likely

to return a wrong filter condition than an aggregate due to

the difference in the number of possible productions generated,

adding this additional information does not improve SKEL’s

performance. The sketch with no root continues to outperform

the others by having the most information.

6 CONCLUSION
In this work, we proposed a new query synthesizer, SKEL, that

receives sketches as a specification to help in guiding the syn-

thesis process more efficiently and accurately. We introduce a

new sketch format with a large variety of hole options allowing

the user to provide a sketch that fits different situations.

We then evaluated SKEL comparing it with a baseline, namely

the CUBES-Seq version, while using simple sketches. The in-

crease in performance was notorious as expected. Nonetheless,

there was also an increase in accuracy. The optimizations per-

formed in our synthesizer also proved to increase the efficiency

but mainly the accuracy of the synthesizer. We can conclude

that SKEL boosts the performance and the accuracy even if the

sketch provided has only a limited amount of information.

Since the sketch format is based on the CUBES [2] DSL, our

work is not friendly for users who are not familiar with that

DSL. In the future, it would be interesting to implement a parser

that converts an SQL query into a language similar to this DSL.

For future work, we can also perform a more extensive eval-

uation with other metrics, such as considering the size of the

solution to return or the number of joins the query must have.

Since SKEL has a significant impact on performance, the DSL

could also be extended to include more productions, such as

always generating aggregate functions for every column of the

input tables. This way, the user does not need to explicitly spec-

ify that a specific aggregate function needs to be used in order

for it to be generated in the grammar. The problem with this

approach is that more filter productions will also need to be gen-

erated for the new possible aggregate columns, so it is crucial

to understand the bottleneck of this extension.
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