
Multi-Tunnels: Implementation, configuration and
practical assessment of network tunnels with

multiple security layers
Ricardo Jorge Pimenta Lopes

Instituto Superior Técnico, Universidade de Lisboa, Portugal

Abstract—Computer network communication is at the
foundation of how the modern world works. Whether for
personal or organisational use, network communication
connects people and machines. However, most of the time this
communication needs to use a public network infrastructure in
order to connect the two points of communication. When leaving
the sphere of the user, this communication becomes vulnerable
to a diversity of attacks, either by passive listening of the
communication, or by active interference in the content and flow
of the communication. This is where transport layer security
protocols like TLS (Transport Layer Security) play a key role,
as they can guarantee confidentiality, integrity, freshness and
authenticity of the communication. In this paper, an extended
implementation of TLS called MultiTLS is specifically addressed,
which allows composing multiple TLS channels for enhanced
security. By using multiple cipher suites, a vulnerability exploited
in a given algorithm does not compromise the message because
there are others, thus becoming vulnerability tolerant. The
performance of this tool was also evaluated in order to prove
the viability of its use in various personal and corporate contexts.

Keywords: Transport Layer Security, Security, Secure Com-
munication, Confidentiality, Tunnel, Encapsulation, Virtual Pri-
vate Network

I. INTRODUCTION

From early on, the need to guarantee safe communications
in various fields of society became evident. This evidence
gave rise to the term cryptography, as a product of the need
for secure network communication. Although cryptographic
algorithms are becoming increasingly sophisticated, it is still
not possible to guarantee that a given algorithm is unbreakable,
therefore it is also not possible to guarantee the total security
of a communication.

It is possible, however, to add layers of security to a commu-
nication, such as the use of tunnels, a case that will be analysed
in this article. Based on the work carried out by Moura R.
[1], we will analyse how the use of a tool called MultiTLS
can contribute to a more secure communication between two
points, even when it is necessary to use a public network.
This tool was developed in the context of communication with
enhanced security through multiple encrypted channels in a
client/server architecture.

The implementation of MultiTLS required, firstly, the up-
dating of the dependencies used by the tool, so that it could
work optimally in the Ubuntu 20.04 LTS operating system,
for which various modules were also created to automate and
facilitate the use of the tool. Subsequently, an interface was

developed in order to allow the user to control the different
modules in a simpler and more intuitive way.

The evaluation of MultiTLS behaviour was developed
through the application of performance tests, using two ma-
chines on which the tool was executed. With a machine
in client mode and another machine in server mode, after
establishing the communication between them, the sending
time of files, which are characterized by their distinct size, was
measured, also using different configurations of MultiTLS.

II. SECURE COMMUNICATION: PROTOCOLS, TUNNELING
AND VPN

There are several protocols used to establish secure commu-
nications, such as the set of protocols that form IPsec (Internet
Protocol Secury); the TLS (Transport Layer Security) protocol;
and also the SSH (Secure Shell Protocol) protocol. It is also an
example the use of tunneling in the PPTP and L2TP protocols
and the communication between two Ipv6 routers through an
Ipv4 network as well as the use of VPN in several application
scenarios.

IPsec, constituting a set of protocols, enables secure com-
munication over the Internet. Based on the standards developed
by IETF, it guarantees confidentiality, integrity, authenticity
and data freshness, revealing itself as a very viable VPN tool
[2]. In each IPsec operation mode, transport mode and tunnel
mode, two distinct protocols can be used: AH (Authentication
Header) and ESP (Encapsulation Security Protocol). Both
protocols provide authentication, integrity and freshness, how-
ever, while AH does not define mechanisms to guarantee the
confidentiality of the messages exchanged, ESP already allows
messages to be encrypted, guaranteeing the confidentiality of
the data [3]. NAT firewalls (Network Address Translation)
constitute an obstacle to the use of IPsec, since they make
it impossible to use IPsec AH in both modes and IPsec ESP
in transport mode. Although there is the option of using IPsec
in tunnel mode, and this is the option of IPsec that provides
more security, it also brings a cost that is the increase of the
overhead.

The TLS (Transport Layer Security), being a successor of
SSL (Secure Sockets Layer), was developed in the context of
security assurance in a communication over the network in a
client/server architecture. This protocol has now reached its
most recent version, TLS 1.3, which guarantees the authen-
ticity, confidentiality and integrity of the connection. TLS is

1



composed by several protocols: TLS Record Protocol; TLS
Handshake Protocol; Change Cipher Spec Protocol; and Alert
Protocol.

The TLS Record Protocol is used by the TLS Handshake,
TLS Alert Protocol, TLS Change Cipher Spec Protocol and
the application data [4] and “allows to develop mechanisms
to send and receive messages” [1]. The Handshake Protocol
is responsible for negotiating the session which consists of
the following: a session identifier (chosen by the server), the
certificates (x509 standard), the compression algorithm used
to originate the TLS Compressed blocks in the TLS Record
Protocol, the cipher specifications (MAC and cipher algorithm
used in the TLS Record Protocol to originate the TLSCipher-
text), a master secret (shared between client and server) and
the flag is resumable which indicates whether the session can
be used to initiate new [4] connections. The Change Cipher
Spec Protocol consists of a message ciphered and compressed
according to the current state of the connection, to signal a
change in the negotiated cipher set. The Alert Protocol sends
an alert message that, depending on the severity, can be of type
warning or fatal (warning/fatal). These types of messages, like
the others, are encrypted and compressed based on the current
connection state [4].

On the other hand, from the need to create a tool that could
administer systems and transfer files securely over non-secure
networks, SSH was developed. This protocol replaced some
tools like telnet, ftp, FTP/S, etc., although some of these are
still in use [5]. SSH consists of three main components: the
Authentication Protocol [7], the Transport Protocol [8] and
the Connection Protocol [9], and these provide SSH with a
great ability to perform secure communications over encrypted
tunnels.

Tunneling is a tool that helps to send information securely,
so that only the recipients of such information have access.
However, for the connection to be successfully established it
is fundamental that both parties understand and use the same
protocol. In a tunneling protocol the message is encapsulated
inside the datagram of another message, thus allowing it to
be sent in a secure way. This characteristic in this type of
protocol makes it possible to send data between two private
networks, using a public network infrastructure.

PPP or Point-to-Point Protocol is a layer two protocol (data-
link) used to establish a direct connection between two nodes,
and allows the encapsulation of multiple layer three protocols.
PPP Encapsulation defines how network layer packets are en-
capsulated in the PPP frame. It requires three fields: protocol,
information and padding. The protocol field allows you to
identify the encapsulated protocol in the information field. The
information field can be filled by an arbitrary number of bits
(padding) up to the Maximum Receive Unit (MRU) moura:ist.
The PPTP (Point-to-Point Tunneling Protocol) protocol is one
of the oldest VPN protocols still in use today in the context of
securely exchanging PPP (Point-to-Point Protocol) messages
over the network [10]. L2TP or Layer 2 Tunneling Protocol, is
a VPN protocol that has its origins in two protocols: Layer 2
Forwarding Protocol (L2F) and PPTP. Like PPTP, this protocol

is used to send PPP traffic through a tunnel, thus inheriting its
[11] authentication and cipher methods. In L2TP there are
two agents: the LAC (L2TP Access Concentrator) and the
LNS (L2TP Network Server) [12]. Tunneling tools are also
used so that devices with older protocols can communicate
with devices supporting newer protocols, such as the Internet
Protocol (IPv4 vs IPv6).

A VPN or Virtual Private Network is a connection made
by a device over a public network to a private network. This
connection is made using tunneling and encryption techniques
that ensure that sensitive data can be transmitted securely,
preventing unauthorised people from having access to that
information [13]. When it comes to VPN there are several
types to consider: Machine-to-Network; Network-to-Network;
and Machine-to-Machine.

III. MULTITLS

The establishment of encrypted tunnels guarantees the se-
curity of a communication through an infrastructure where
security is not assured. However, there may be the need to
guarantee a reinforced security, and it is in this sense that the
MultiTLS tool was developed. With the aim of increasing the
security level of a communication, MultiTLS is a midleware
with several levels of protection, which offers security by using
the encapsulation of several TLS tunnels. The communication
is protected by several different ciphers, one for each TLS
tunnel. Thus, k * TLS tunnels will be established, where
k > 1, in case k-1 TLS tunnels are compromised the
communication remains secure [1]. MultiTLS also has the
advantage that it is not necessary to change the source code of
the applications/programs, since all the communication carried
out will be encrypted through multiple TLS tunnels, so the tool
guarantees security regardless of the application/programme
being used.

TUN interfaces allow MultiTLS to create multiple virtual
network interfaces. It is through the TUN interfaces that
MultiTLS performs the encapsulation of the various tunnels.
These interfaces act at OSI level 3, and these devices can
be used to establish VPN communications, since they allow
the responsible software to encrypt the information before it
is sent. MultiTLS uses several TUN interfaces, since each
interface will allow establishing a TLS tunnel that will be
encapsulated by the TLS tunnel of the next TUN interface.
On the other hand, MultiTLS uses OpenSSL as a depen-
dency, which allows performing all the cryptographic part,
from creating and signing client and server certificates to
the development of message ciphering. Meanwhile, the Socat
dependency allows MultiTLS to establish several tunnels. This
tool allows the transfer of data between two independent
channels, being responsible for creating the TUN interfaces
and the use of OpenSSL. That is, it is through Socat that
the tunnel between the client-side TUN interface and the
server-side TUN interface is established, using the OpenSSL
implementation in order to secure the connection.

That said, the big advantage of Multi TLS is its tolerance to
vulnerabilities. To this end, the tool uses a different cipher set

2



for each TLS tunnel created. The implementation of MultiTLS
allows the user to initiate a connection using up to four
encapsulated TLS tunnels. In the present research, four cipher
sets based on the work of Moura R were used. [1]:

1) TLS ECDHE ECDSA WITH CHACHA20 POLY1305;
2) TLS RSA WITH AES 128 CCM8;
3) TLS DHE DSS WITH CAMELIA 256 SHA256;
4) TLS ECDHE RSA WITH AES 256 GCM SHA384.

To successfully establish a communication through the
MultiTLS tool, it is necessary to guarantee some configura-
tions. At first, the MultiTLS client uses port 4040 to send
the information that will be used to establish the encrypted
communication. This information includes: its IP address;
the number of tunnels to be considered in the MultiTLS
communication to be established; the port in which that
communication will be made; and the client certificate used in
the first tunnel. On the server side, it receives the information
on port 4040 and sends its certificate for the first tunnel.
The client receives the server’s certificate at port 4040. Due
to these initial negotiations, it is necessary to configure any
firewalls that may interfere with the communication in order
to accept inbound and outbound data flow to port 4040. Once
the initial negotiations are finished, the tool can now establish
k * tunnels (where k is the number of tunnels previously
defined by the user and less than or equal to four). The
first tunnel is established using the port indicated by the
user when starting the program on the client side. For the
remaining tunnels the port number used will be incremented
from the port initially indicated by the user. Due to this
property of the MultiTLS tool, it is only necessary to take
into account that no firewall blocks the data flow to the port
used to establish the first tunnel, since the other tunnels use
the structure previously created by the first tunnel. It should
also be noted that the number indicated by the user for the
first port must be chosen and configured at the firewall level
before initiating any communication through the MultiTLS
tool. Once these configurations are made, conditions are met to
establish communication between client and MultiTLS server
on the same network. However, if it is necessary to carry out
this communication between different networks it is necessary
to configure the port forwarding. Port forwarding is port
forwarding or mapping in order to redirect a communication
request from one combination of IP address and port to another
as the packets traverse a network gateway, such as a router
[14]. Therefore, it is possible through a gateway to redirect
connection requests coming from an external IP:port set to an
IP and port belonging to a machine on the internal network.
With the port forwarding configured in the gateways of both
networks, the connection request from the client located on
network 1 reaches the gateway of network 2, which in turn
knows that a message coming from that IP address for that
port must be delivered to the machine where the MultiTLS
server is located and vice versa. Through these configurations
it will be possible to establish secure communications through
the MultiTLS tool, whether the client/server pair is in the same

network or in different networks.
To use the MultiTLS tool it is necessary to run the tool via

a terminal at the two points to be interconnected, and after
execution, the program presents a menu to the user. On first
execution, the user must select the first option in order to
start the installation. In this step, the tool’s dependencies will
be installed, such as OpenSSL and Socat. This process must
be carried out in both points which are to be interconnected.
On finishing the installation phase, the user is redirected to
the previous menu. At this stage, the user must start the tool
in Server Mode at one point and Client Mode at the other.
At the Client Mode point you will need to indicate the IP
address of the server, the port to use and the number of tunnels
you want to encapsulate (this number should be between 1
and 4). The initial settings are only necessary on the client
side, because when establishing the connection with the server,
it also sends the information about the port and the number
of tunnels selected. On the server side, the server receives
the information from the client and establishes the connection
based on the settings received. Once the user completes this
step, the tool creates the TLS tunnels and interconnects the
two points establishing an enhanced security communication.

IV. CASE STUDIES

Currently, there are several situations where the security
solution consists in the use of encrypted channels. These can
be used to reinforce the security level of a communication or
even to secure mechanisms that would otherwise present an
obsolete security level.

In order to contextualise the use of MultiTLS in practical
scenarios, four case studies were defined where the use of a
tool such as MultiTLS can present a great advantage in terms
of security:

1) Secure communication between areas of operation;
2) Secure communication between two cloud solutions;
3) Secure communication between the employee and the

organisation’s network;
4) Secure communication between legacy applications.
In the case of secure communication between areas of oper-

ation (Network-to-Network) it will be necessary to configure
the MultiTLS tool in both areas of operation, which will
function as reverse proxy. In this situation, it would be the
responsibility of the organisation to perform the configuration
of the tool in both areas of operation. Through the MultiTLS
tool, it is possible to establish a secure connection through
multiple encrypted TLS channels, which reinforce the security
level between two areas of operation of an organisation (ex:
buildings, offices, etc). In this way, despite being geographi-
cally distant, it is possible to perform data exchange securely
between both areas of operation. In this study, firstly, Area 1
and Area 2 want all communication between them to be done
in a more secure way due to the sensitivity of the information
that needs to be exchanged between these areas. Next, Area
1 and Area 2 establish through MultiTLS, multiple TLS
channels with different cipher types to provide security with
diversity. Finally, traffic between areas is redirected through

3



these channels established by the MultiTLS tool, thus adding
a strong security factor.

In the next case study, secure communication between two
cloud solutions, it is intended to strengthen the security in the
communication between two cloud solutions, whether they are
from the same vendor, or from different vendors. Similarly to
the case study above described, it will also be necessary to
configure a machine in each cloud solution that will serve as a
reverse proxy to the remaining assets. The MultiTLS tool will
be configured on both machines in order to establish the TLS
channels through which communication will be redirected.
The use of a tool such as MultiTLS, adds an extra security
factor, which enables the existence of a system composed of
several solutions cloud (cloud-of-clouds) with a high level of
security of the exchanged information. In this study, firstly,
it is intended to establish a communication with enhanced
security between two cloud solutions. Next, Cloud 1 and Cloud
2 establish through MultiTLS, multiple TLS channels with
different cipher types. Finally, traffic between cloud solutions
is redirected through the channels established by the MultiTLS
tool, thus adding a strong security factor.

The case study secure communication between the em-
ployee and the organization network (Machine-to-Network),
intended to study the secure communication between an
employee, who is outside the organization network, and the
internal network of the organization. It will be the organisa-
tion’s responsibility to guarantee the availability of the service
(MultiTLS tool in server mode), in order to accept connection
requests. On the employee’s side, he/she shall configure the
MultiTLS tool in client mode and establish the connection with
the server. This study intends to portray the situation of an em-
ployee who is working outside the office and, therefore, is not
protected by his organisation’s infrastructure. However, due to
the sensitivity of the information exchanged, there is a need
to strengthen the security of the communication. Through the
MultiTLS tool the employee can establish a secure connection
between his machine and the network of his organisation. For
this case study it will be necessary to configure MultiTLS on
the employee’s machine, and on the organisation’s side it must
have a machine/server to accept the communication requests
from MultiTLS. In this study, firstly, the employee intends to
establish a security-enhanced communication by VPN to the
organisation’s network. Subsequently, the collaborator estab-
lishes through MultiTLS, multiple TLS channels with different
cipher types that are selected automatically and transparent to
the user. Finally, the traffic between the collaborator and the
organisation is redirected through these channels established
by the MultiTLS tool, thus adding enhanced security to the
VPN connection.

The last case, secure communication between legacy appli-
cations (Machine-to-Machine), focused on the communication
between legacy applications and how to make it secure in
critical environments. For this case it will be necessary that
both machines run an instance of the MultiTLS tool. Either
machine can run in client or server mode, however for the con-
nection to be possible the machines must operate in different

modes, i.e. one in server mode and the other in client mode.
The use of the MultiTLS tool in this case study, allows legacy
applications with known security vulnerabilities to be used
securely. For this case study, it will be necessary to configure
the MultiTLS tool on the machines where these applications
that wish to communicate are located. The use of MultiTLS
allows communication to be carried out in a secure manner by
encapsulating the message of the legacy application through
secure cryptographic protocols. A more concrete example
would be the interconnection of an application server with
a database that does not support a recent version of the
TLS protocol. For this case study, firstly, Host 1 and Host
2 intend to establish a connection through an application that
uses legacy protocols (e.g. SSL 2.0, 3.0 and TLS 1.0) and
therefore not secure due to there being known vulnerabilities.
Then, Host 1 and Host 2 establish through MultiTLS, multiple
TLS channels that are presented as a tunnel. Finally, the
traffic between the two is redirected through these channels
established by the MultiTLS tool, thus making it feasible to
use the legacy application.

V. EVALUATION

As already explained, a set of real scenarios were prepared
in order to analyse the behaviour of the MultiTLS tool in those
usage contexts.

When performing the tests, two machines with the Ubuntu
20.04 LTS operating system installed and located on the same
network were used. Both machines have similar computational
power and configurations, with both having a four-core pro-
cessor and eight gigabytes of RAM. The MultiTLS tool was
configured on the machines (as well as its dependencies),
in client and server mode respectively. After installing the
machines and the MultiTLS tool on each host, the process
of configuring the tools necessary to perform the tests was
initiated.

In the machine-to-machine case study, the MultiTLS tool
is used to make feasible the use of legacy applications and,
therefore, with known vulnerabilities, thus making them safe
to use in a real context. More specifically, FTP (File Transfer
Protocol) [15] was used, which, through its client/server archi-
tecture, has the ability to establish a connection between two
points, which can be used to transfer files and perform other
operations. However, due to its age, FTP in its original form
does not have any type of encryption during communication,
and this is the reason why it is less and less used, especially in
a corporate context. This characteristic that makes it insecure,
at the same time makes it an excellent example of how a
tool like MultiTLS can play a fundamental role, guaranteeing
the encryption process of messages and making FTP a viable
alternative.

Before carrying out the tests, it was necessary to install and
configure the FTP client and server on the respective machines.
Next, four files of different sizes were considered:

• 25MFile;
• 50MFile;
• 75MFile;

4



• 100MFile.
It was taken into account that the files should be neither too
small, as it would hinder the data collection process, nor too
large, as it would hinder the process of carrying out several
measurements. After some initial attempts it was concluded
that a file size of 25 MB would meet both these requirements.
The sizes of the remaining files are multiples of the first value.
This results in a constant increase in file size which facilitates
data analysis.

The tests performed consisted of transferring the different
files (25MB, 50MB, 75MB and 100MB) and measuring the
transfer time for different numbers of tunnels. Initially, as a
form of reference, a test was performed for k = 0, i.e., the
measurements were performed without using any tunnel, just
a normal FTP communication. Next, the same procedure was
performed for k = 1, k = 2, k = 3 and k = 4, where k represents
the number of tunnels used by the MultiTLS tool.

In order to minimise the impact of possible network distur-
bances, all the results obtained were collected at the same
time of the day, under similar conditions. Another aspect
that was taken into account was the representativeness of the
data. In order to guarantee that the data sample collected was
representative, the standard deviation of the data obtained was
calculated. After collecting the samples it was found that the
standard deviation for all cases considered was less than one
second. Considering that the network may sometimes suffer
some disturbances, this standard deviation is considered a
very acceptable value. Finally, an average of the obtained
measurements was made in order to be analysed.

A. Results

The results obtained through the procedures described above
will now be presented in the form of tables. These are
organised according to the number of tunnels, and five tables
are presented (k = 0, k = 1, k = 2, k = 3 and k = 4). Each table
also has five columns: the first indicates the order in which the
data was inserted, and the remaining four indicate the value
of the measurements for the different files considered. Finally,
each table also indicates the average transfer time for each file.
The tables present in this section represent only a summarised
version of the original ones.

In table I, the data referring to the transfer of the files using
only FTP (k = 0) are represented.

k = 0
25MFile 50MFile 75MFile 100MFile

1º 0.08 s 0.20 s 0.24 s 0.31 s
2º 0.08 s 0.18 s 0.24 s 0.33 s
3º 0.07 s 0.15 s 0.24 s 0.26 s
4º 0.08 s 0.15 s 0.23 s 0.44 s
5º 0.07 s 0.14 s 0.23 s 0.28 s

... ... ... ...
Mean 0.08 s 0.17 s 0.22 s 0.33 s
σ 0.01 s 0.02 s 0.01 s 0.06 s

TABLE I: Test values for k = 0

Using only FTP (k = 0), it was possible to verify that the
sending of the files was practically instantaneous. Next, the

same test was performed, however, this time for k = 1, that
is, using the MultiTLS tool with only one tunnel configured.
The results obtained can be seen in table II. Through the

k = 1
25MFile 50MFile 75MFile 100MFile

1º 2.90 s 3.78 s 6.93 s 9.86 s
2º 2.25 s 3.63 s 6.63 s 9.81 s
3º 3.25 s 2.86 s 7.50 s 11.90 s
4º 2.58 s 2.87 s 8.77 s 8.77 s
5º 1.53 s 3.59 s 5.44 s 8.09 s

... ... ... ...
Mean 2.87 s 3.30 s 7.39 s 9.54 s
σ 0.96 s 0.88 s 0.96 s 0.92 s

TABLE II: Test values for k = 1

observed data it was possible to verify that when configuring
a connection with only one tunnel, an increase in the average
times is already noticeable. The remaining data, referring to
k = 2, k = 3 and k = 4, that is, the MultiTLS tool configured
with two, three and four encapsulated tunnels, can be observed
in the tables III, IV and V respectively.

k = 2
25MFile 50MFile 75MFile 100MFile

1º 3.00 s 8.38 s 14.41 s 19.16 s
2º 4.14 s 7.28 s 16.09 s 20.38 s
3º 2.07 s 7.63 s 13.92 s 21.38 s
4º 5.81 s 7.04 s 15.78 s 19.98 s
5º 3.99 s 6.16 s 13.24 s 21.12 s

... ... ... ...
Mean 3.41 s 7.70 s 14.46 s 20.26 s
σ 0.81 s 0.94 s 0.90 s 0.95 s

TABLE III: Test values for para k = 2

k = 3
25MFile 50MFile 75MFile 100MFile

1º 7.61 s 16.95 s 19.42 s 30.48 s
2º 6.81 s 14.89 s 20.39 s 29.51 s
3º 5.93 s 15.27 s 20.05 s 28.43 s
4º 5.48 s 15.54 s 19.51 s 30.76 s
5º 8.13 s 17.71 s 20.05 s 29.78 s

... ... ... ...
Mean 7.20 s 16.00 s 20.28 s 30.17 s
σ 0.95 s 0.93 s 0.93 s 0.96 s

TABLE IV: Test values for k = 3

k = 4
25MFile 50MFile 75MFile 100MFile

1º 10.95 s 19.91 s 26.68 s 39.35 s
2º 10.44 s 18.54 s 27.11 s 38.83 s
3º 9.07 s 19.66 s 26.31 s 40.08 s
4º 10.13 s 18.91 s 26.54 s 41.02 s
5º 9.00 s 17.71 s 20.05 s 29.78 s

... ... ... ... s
Mean 9.33 s 19.33 s 27.18 s 39.64 s
σ 0.90 s 0.84 s 0.99 s 0.96 s

TABLE V: Test values for = 4

VI. DISCUSSION

Regarding the analysis of results, the graph of the figure 1,
was obtained through the data, collected in the experiments

5



performed, which can be observed in the tables I, II, III,
IV and V. This graph, allows us to make a comparison of
the time involved in the transfer of files, when using files
of different sizes and different numbers of tunnels. That is,
through the graph of the figure 1 it is possible to observe
how the number of tunnels, used in the configuration of the
MultiTLS tool, and the size of the data to be transferred during
the communication, can affect the performance of MultiTLS.
Observing the ordinate axis, it is possible to verify that it is
represented in seconds (s). This axis, represents the transfer
time of each file. As for the abscissae axis, it is divided by the
size of the files used in the set of experiments (25 MB, 50MB,
75 MB and 100 MB) and, consequently, for each file five
different values are presented. These values correspond to the
number of tunnels used, during the experiments, to download
each file, where:

• Zero means that no tunnel was considered and therefore
only FTP was used in the file transfer;

• Number one represents the file transfer using the Multi-
TLS tool with only one tunnel configured;

• Number two means that 2 tunnels were used during the
file transfer;

• In number three the file upload is performed with three
tunnels configured in the MultiTLS tool;

• Finally, in number four the MultiTLS tool is used with
four tunnels configured.

Analysing the graphic of the figure 1, it is possible to verify
that the greater the size of the file and the number of tunnels
used, the greater the transfer time will be. Something that
would be expected, considering that not only the size of the
file itself was increased but also the overhead caused by adding
tunnels to the communication. Thus, it is possible to conclude
that the size of the file to be transferred and the number of
tunnels used to protect the connection, have a direct impact on
the performance of the MultiTLS tool. Another phenomenon
that can be observed, is that as the file size increases there
is also an increase in the difference of the times for different
numbers of tunnels. Which leads to the conclusion that the
number of tunnels chosen for communication has a more
significant impact on transfer time the larger the file size.

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4Tunnels:

File size:

Tr
an

sf
er

 t
im

e 
(s

)

Fig. 1: Chart - Test results

That said, it would be easy to fall into the error of disregard-
ing the usefulness of a tool like MultiTLS, based only on the
high transfer times for larger files in cases where the highest
number of tunnels are used. However, it should be clarified
that everything depends on the use case in question. A tool
will only be effective if the work performed is appropriate for
its use. MultiTLS, being a tool, is no exception. If the goal is
to send the file as quickly as possible, it might be better to go
for another alternative. What MultiTLS does offer, however,
is the ability to securely send extremely sensitive information
due to its fault-tolerant property.

As an example, a company X wants to send the following
document:

• File type: .txt;
• Number of characters: around 595 000 (equivalent to 100

pages);
• File size: 0.582 MB;
• Classification: Highly Confidential.
If a 25 MB file in the tests performed was transferred in an

average of 9.33 seconds for k = 4, the text file of company
X, classified as Highly Confidential and equivalent to 100
pages (0.582 MB) would be transferred via MultiTLS in a
very short period of time, considering similar conditions to
those encountered when the data was collected.

With this example as a reference, it is possible to see that it
is not enough to take into account the size of the information
and transfer time. In this case, it is also important to understand
what it means, and what the impact is if that information is
intercepted by unauthorised individuals. Based on all factors, it
is considered that MultiTLS is a very useful tool whenever the
goal is to reinforce the security factor of a communication, or
even add this factor where it does not exist in the first instance.

Additionally, the average transfer speed of each file was
calculated for the different numbers of tunnels. These values,
present in the table VI, were calculated from the average
values of the transfer times already presented.

Transfer speed (MB/s)
25MFile 50MFile 75MFile 100MFile

k = 0 312.50 MB/s 294.11 MB/s 340.90 MB/s 303.03 MB/s
k = 1 8.71 MB/s 15.15 MB/s 10.14 MB/s 10.48 MB/s
k = 2 7.33 MB/s 6.49 MB/s 5.18 MB/s 4.93 MB/s
k = 3 3.47 MB/s 3.12 MB/s 3.69 MB/s 3.31 MB/s
k = 4 2.67 MB/s 2.58 MB/s 2.89 MB/s 2.52 MB/s

TABLE VI: Transfer speed

The 2 graph, created from the data in the VI table, allows
us to verify that there is a notable difference in the average
speed calculated, when transferring the file, without any type
of protection (k = 0), when compared with the remaining cases
where tunnels were used to protect the communication (k =
1, k = 2, k = 3 and k = 4). However, it should also be noted
that, although the difference in performance from k = 0 to k
= 1 is evident, for the remaining cases this difference is less
pronounced. This means that, when the mechanisms are used
to protect the communication, they have a strong impact on
its performance. This is true even for k = 1, which would

6



0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Tr
an

sf
er

 s
p

ee
d

 (
M

B
/s

)

Tunnels:

File size:

Fig. 2: Chart - Transfer speed (MB/s)

be equivalent to using only the TLS protocol. However, when
more tunnels are added to the communication (k = 2 , k = 3
and k = 4), although there is a negative impact on performance,
this impact is less evident when compared with the difference
between the case without security (k = 0) and the use of a
security level equivalent to using only the TLS protocol (k =
1).

VII. CONCLUSION

The cryptographic algorithms as used in communication
protocols play a key role in network communication. In the
course of this research it was verified the existence of a
wide range of cryptographic algorithms, some being legacy
protocols, therefore not so used anymore, and others more
modern and used nowadays. MultiTLS, being an extended
implementation of TLS, guarantees increased security through
the encapsulation of several TLS tunnels, where several ci-
phers can be used and, in this way, allows tolerating attacks
that compromise the security of one cipher but do not affect
the others.

Throughout this work, several algorithms and concepts that
contributed and still contribute nowadays to make commu-
nication possible in a safe way online were presented. It
was also presented the implementation of the MultiTLS tool,
including its architecture, its dependencies and how it can be
easily installed and configured. Next, four case studies were
presented where the security solution was to use MultiTLS
and, finally, a set of experiments were carried out in order to
evaluate the performance of MultiTLS. Based on the results
and conclusions obtained, it was proven that a tool such
as MultiTLS can be a way to ensure enhanced security in
communications that require it, whether for individual use or
at an organisational level. Its usefulness was also demonstrated
through the application of the four case studies already men-
tioned. In each of them, MultiTLS revealed that its tolerance
to vulnerabilities is a feature that gives it a more solid security,
and that makes it evident when compared with the use of a
normal VPN.

Additionally, it was also verified how MultiTLS performs
with different file sizes and different numbers of tunnels,
proving that these two variables influence significantly the

performance of MultiTLS. The larger the file size, the greater
the impact of the number of tunnels chosen on the transfer
time. This increase in transfer time, when a larger number
of tunnels are used, is essentially due to the cryptographic
processes involved in the creation of the different tunnels.

The MultiTLS tool, is capable of providing enhanced secu-
rity to communications that require it, however it should be
noted that the tool still has room for evolution.

The use of MultiTLS in the enterprise context will require
the existence of a user authentication mechanism. For that
to be feasible, it would be necessary for the tool to have an
integration mechanism that allows the provision of identity,
i.e., that allows extracting from a database the necessary
information about the company’s users. Therefore, users would
only be able to access, through MultiTLS, the company’s
resources through authentication, which would also allow the
limitation of access to certain resources. Having said that,
it would be interesting in a future work to work on these
issues, since the lack of authentication is a shortcoming of the
MultiTLS tool. Although, as has been shown, MultiTLS has
several advantages when used, it does not provide security
against unwanted users at its root. Therefore, it would be a
great consolidation of the tool to guarantee that not all users
who install MultiTLS have access to the other side of the
communication. To have such access, it would be necessary
to prove that the user is who he really says he is and that he
has authorisation and, therefore, credentials to access all the
functionalities of the system.

On the other hand, it could be interesting and even quite
useful to work on the relationship of MultiTLS with operating
systems. At the moment, this tool only supports some envi-
ronments such as Linux, leaving aside systems like Windows,
Android and iOS, which are very relevant systems in the world
market.

REFERENCES

[1] M. R., “Multitls: Secure communication channel with diversity,” Mas-
ter’s thesis, Instituto Superior Técnico, junho 2018.

[2] CISCO, “Introduction to cisco IPsec technology,”
https://www.cisco.com/c/en/us/td/docs/net mgmt/vpn solutions center/2-
0/ip security/provisioning/guide/IPsecPG1.html, agosto 2007.

[3] IBM, “What is the difference between the ah and esp proto-
cols of ipsec?” https://www.ibm.com/support/pages/what-difference-
between-ah-and-esp-protocols-ipsec, maio 2017.

[4] D. T. e Rescorla E., RFC5246-The Transport Layer Security (TLS)
Protocol Version 1.2, IETF, agosto 2008.

[5] SSH, “Ssh (secure shell),” https://www.ssh.com/ssh/.
[6] Y. T. e Lonvick C., RFC4251 - The Secure Shell (SSH) Protocol

Architecture, IETF, janeiro 2006.
[7] ——, RFC4253 - The Secure Shell (SSH) Transport Layer Protocol,

IETF, janeiro 2006.
[8] ——, RFC4252 - The Secure Shell (SSH) Authentication Protocol, IETF,

janeiro 2006.
[9] ——, RFC4254 - The Secure Shell (SSH) Connection Protocol, IETF,

janeiro 2006.
[10] S. B. M. e Wagne D., “Cryptanalysis of mi-

crosoft’s pptp authentication extensions (ms-chapv2),”
https://people.eecs.berkeley.edu/ daw/papers/pptpv2.pdf, outubro
1999.

[11] e. a. Patel, RFC3193-Securing L2TP using IPsec, IETF, novembro 2001.
[12] T. et al., RFC2661-Layer Two Tunneling Protocol “L2TP”, IETF, agosto

1999.

7



[13] CISCO, “What is a vpn? - virtual private network,”
https://www.cisco.com/c/en/us/products/security/vpn-endpoint-security-
clients/what-is-vpn.html.

[14] J. A. Verma N, Kashyap M, Extending Port Forwarding Concept to IOT.
India: IEEE, 2018.

[15] R. J. Postel J., File Transfer Protocol (FTP), IETF, outubro 1985.

8


