OSPREY: Migrating Smart Contracts Between
Heterogeneous Blockchains

Luis Abrunhosa

Abstract—Migration is an important topic of blockchain technol-
ogy. Once a blockchain becomes obsolete, or another one emerges
with new and more appealing features, it is necessary to migrate
all the data, including their smart contracts. Smart contracts are
a way of users to establish communication/transactions between
each other. We present Osprey, a smart contract migration tool
between heterogeneous blockchains.

Osprey is a flexible tool integrated as a Hyperledger Cactus
plugin, that allows the translation of Solidity smart contracts into
Typescript Hyperledger Fabric chaincode. Osprey was tested on a
curated dataset of 13 Solidity smart contracts and takes on average
3.68 miilliseconds to translate them. Also, we conducted a survey
where on average, Osprey ranked as a moderated structured and
readable translated tool.

I. INTRODUCTION

Blockchain technology has grown over the decade [10] and
drawn the attention in several areas: audits [9], health care
[12], education [14], among others. It is a decentralized system,
offering privacy, security, transparency, and data immutability
[13].

There are many blockchain platforms available, each with
its own set of features. Having multiple blockchains gives
developers the freedom to choose the blockchain that fulfills
their requirements. However, companies should be careful in
selecting the blockchain platform on which they develop their
applications. If later they find out that it does not meet the
requirements of the application, it can be hard to migrate into
a different platform, and thus the company may lose monetary
resources [8].

Blockchains over the years only focus on surpassing specific
obstacles, e.g. more performance, more security [8]. The inter-
operability scenario between each other is often overlooked[10].
Blockchain interoperability is a novel and an important aspect
to consider when choosing a blockchain to start developing.
In summary, blockchain interoperability manages all commu-
nications between homogeneous (blockchains built under the
same virtual machine) and heterogeneous (blockchains built
under different virtual machines) blockchains. Thus, leading
blockchain technology to raise its adoption and reducing the
risks.

Therefore, considering blockchains can become obsolete, it is
needed to have some mechanisms to migrate all the information
from the obsolete blockchain to newer blockchains [8]. Using
the blockchain interoperability mechanism, we make use of
Hyperledger Cactus, a blockchain connector, that allows to
establish a connection between the pair of blockchains in study,
Ethereum blockchain [4] and Hyperledger Fabric [13]. This
connection is to achieve the migration of smart contracts from
Ethereum to Fabric, thus providing more flexibility and risk
reduction in blockchain technology. Although, data migration

has been already conceptualized and is being implemented
towards its execution with Hyperledger Cactus open source
project [3], all work done around smart contract migration is
theoretical [11]. It is an important step towards the adoption
of blockchain technology and the reduction of risks mentioned
early.

We propose a tool converts Solidity smart contracts into
Hyperledger Fabric chaincode. It is based on a parser [15]
that extracts information from the Solidity smart contracts, and
through a converter, it converts that information into Hyper-
ledger Fabric chaincode.

A. Work Objectives

The primary goal of this study is to develop a tool for
migrating smart contracts between heterogeneous blockchains.
The objectives of developing this tool are to:

1) Formalize the problem of migrating smart contracts:

a) Smart contract data extraction;

b) Conversion of that data into the target blockchain
smart contract language;

¢) Guarantee that the behavior in the target contract is
equal to the source contract.

2) Propose a smart contract migration tool;

3) Implement in the proposed framework mechanisms that
allow the migration of Solidity smart contracts to Fabric
chaincode;

We envisage this study to be widely applicable and help
enterprises reduce the effort involved in migrating their existing
smart contracts to newer and more appealing blockchains.
However, one requirement to use our migration tool is that the
smart contract to be migrated has to be written in the Solidity
program language. The blockchains that use this language to
program smart contracts are, e.g. Ethereum, Hyperledger Besu,
and Quorum.

Our migration tool will try to replicate the behavior that the
Solidity smart contract had in its blockchain.

II. RELATED WORK

In this section, we discuss solutions relating to the migration
of smart contracts between heterogeneous blockchains. First,
we present Hyperservice [11], a framework able to abstract
which blockchains are in use. Additionally, the framework has
a built-in Domain Specific language able to abstract the smart
contract program language of each blockchain in it. Next,
we discuss a tool [15] able to extract relevant information in
smart contracts, specifically Solidity smart contracts in Ethereum
blockchain. Last, we discuss two solutions relating to smart
contract migration patterns [8] and the limitations and strengths
of using them.

III. HYPERSERVICE

Hyperservice is a framework designed to take another step
further in blockchain interoperability. It is a platform that helps
developers build and execute smart contracts able to run in
heterogeneous blockchains [11].

A. Architecture

Hyperservice is composed of four components: (i) dApp
Clients which are gateways consuming the services provided
by the framework. (ii) Verifiable Execution Systems (VESes)
are the compilers in the platform that compile decentralized ap-
plications into blockchain-executable transactions, Hyperservice
executables. (iii) Network Status Blockchain (NSB) which is a
blockchain of blockchains providing an overview over dApp’s
execution status. (iv) Insurance Smart Contract (ISC) which
arbitrate the correctness and violation of dApp’s execution in
a trust-free manner. Also, ISCs have mechanisms to prevent
misbehavior in transactions.

Unified State Model (USM) [11] is, according to the authors,
“a blockchain-neutral and extensible model for describing state
transitions across different blockchains, which in essential de-
fines cross-chain dApps.”. It is accomplished through a vir-
tualization layer where unifies the heterogeneous blockchains
by including (i) blockchains, regarding its implementations,
where it abstracts them through an object containing public
state variables and functions. (ii) Developers program dApps
only have to specify the operations and the order of them on
the objects.

A USM has a set of entities, operations possible to perform
over the entities, and the constraints that operations define.
Furthermore, there are two types of entities: accounts and
contracts. The account is what characterizes a person. It contains
its unique address and its account balance. The contract is all
the operations and constraints defined (public state variables,
callable interfaces, functions, and other attributes) to be executed
by clients. Moreover, all entities and operations belong to a local
machine, regarding the source blockchain of the smart contract.

Despite operations are local to a machine, when com-
piled, they eventually result in many transactions on several
blockchains. Thus, the synchronization of the consensus pro-
cesses is not guaranteed. To guarantee this “synchronization”
USM establishes some constraints when defining the depen-
dency of operations. There are two kinds of dependencies:
preconditions and deadlines. Preconditions are all dependencies
satisfied when all the preconditioning operations finish. Thus,
with preconditions, developers can order their operations into
direct acyclic graphs (DAGs). In these DAGs, the state of the
parents of the nodes is persistent. Its children have access to
it. Deadlines are all preconditioning operations bounded to a
time interval after the dependencies are satisfied. Moreover,
with deadlines, applications don’t get stuck and always move
forward.

Hyperservice Programming Language (HSL) allows develop-
ers to build smart contracts regardless of the cryptocurrency
used. Thus, developers can specify through a “universal call-
option”, which coin they accept as payment in the smart
contract. Additionally, the key aspect of the variety of payment

options given to clients is the HSL compiler. HSL compiler is
the core of the entire programming framework.

Hyperservice Language Compiler performs two tasks. First,
guarantee the security and correctness checks on HSL programs.
HSL has a multi-language front-end, based on the source
code of the smart contract. It extracts the information of the
state variables and functions, then converts it into a USM
object. This object passes through serious syntax and correctness
checks. Second, compile programs into blockchain-executable
transactions. Once the verifications are validated, the compiler
generates an executable program. This executable is structured
in a Transaction Dependency Graph, containing the information
about the set of blockchain-executable transactions, metadata of
each transaction, the preconditions, and deadlines constraints of
the HSL program.

B. Discussion

Hyperservice solution envisages solving the heterogeneity
of blockchains. It abstracts the blockchain layer by having a
virtualization layer defining which blockchain the Unified State
Model will compile. Furthermore, it abstracts the blockchain
smart contract language by (i) having in the front-end an in-
terpreter translating the smart contract input. (ii) By developing
an hyperservice language and compiler to manage, based on
the smart contract, the operations executed on each blockchain.
Although Hyperservice is a fined-grain concept towards the in-
teroperability between blockchains and suits all work objectives
of this study (1, 2 and 3), it has one limitation. It is a theoretical
solution at the time of writing this thesis.

Moreover, Hyperservice is considered as a framework where
developers develop under the Hyperservice programming lan-
guage, and the instructions in the programming file will trigger
transaction in the various blockchains that are specified in the
code.

IV. SOLIDITY PARSER

Solidity Parser is an open-source translator tool, developed
to translate smart contracts in Solidity to an Abstract Syntax
Tree (AST) in Javascript. The only option to run in another
blockchain smart contracts in Solidity is through integrating
the Ethereum Virtual Machine (EVM) or transcribe the smart
contract in Solidity to the smart contract language of the target
blockchain. Nevertheless, this tool [15], was developed with
the gold of translating smart contracts in Solidity and allow
developers to transcribe them into chaincode (Fabric smart con-
tract). Also, this parser can “successfully parse up to 75% of the
Solidity constructions (types, functions, inheritance, events)”.

A. Architecture

Translating Ethereum smart contracts into Hyperledger Fabric
smart contracts (chaincode) involves two steps: (1) The con-
ceptual mapping of Ethereum smart contracts to construct, as
much as possible to Hyperledger Fabric smart contracts, (2)
The development of a source-to-source compiler to maintain
the semantic equivalence.

Mapping Ethereum to a Fabric-based Network. A typical
Ethereum node maintains its state globally. To be equivalent,

Hyperledger Fabric has its nodes connected to a single channel.
They base the tool on that assumption.

However, contracts in Ethereum do not have a notion of
version. When instantiating a contract, the actor must specify the
name of the chaincode. This value (the name of the chaincode)
is then used to create a contract address and initialize it with a
value of zero in the balance of the chaincode. If the user’s cer-
tificate and contract’s address are strings, then the Ether balance
can be stored in it. This is done to keep track of the balance on
the accounts and contracts on both blockchains. Moreover, the
chaincode where the accounts and the balance of the contracts
are stored, in Fabric, is called balance. This chaincode provides
functions to send and transfer money (ether) and to query the
balance of a specific account or contract address. In order, to
perform these operations, the X.509 certificate and the name of
the contract are checked globally.

To translate smart contracts in Solidity into chaincode, the tool
uses two steps. First is the generation of an Abstract Syntax Tree
(AST) in JSON format. Second, based on the AST, it performs
two iterations over the tree. One to extract, and the other to
translate the AST into JavaScript code. The first iteration is to
take all the state variables, functions, events, structs, enums, and
others. The second iteration is to translate the statements.

Functions, Functions Modifiers, State Variables. Sol2js
does not make any verification regarding the semantics and syn-
tax of smart contracts in Solidity. Thus, each function invocation
and modification of state variables are handled based on their
visibility (e.g. private functions of a class cannot be accessed in
the derived classes). Visibility can be public, external, private,
or internal. If everything behaves as expected, then the smart
contract is translated without the need of modifying the code.

The tool generates a target function containing a copy of
the function modifier along with the function modified. Thus,
for state variables with public visibility, it generates a getter
function that returns the current value of the state variable.
Additionally, in the Hyperledger Fabric, to store and retrieve
state variables, Sol2js uses getState() and putState() functions of
ChaincodeStublnterface. In the context of the translated code,
its size has an impact by the number of state variables contained
in the Solidity smart contract.

B. Discussion

Solidity Parser envisages on converting a smart contract in
Solidity to a smart contract in Fabric(1 and 2). It tries to extract
all relevant information from the smart contract in Solidity (e.g.
functions, variables, etc), and adhoc transcribe it to chaincode.
Besides the successful translations are around 75% the tool does
not handle some features used in smart contracts in Solidity.
Sol2js does not support multiple inheritance, function overload-
ing, function types, fixed-point number types, and libraries and
type overriding. Also, this tool is not flexible, which means
that is a strictly end-to-end translation between Solidity and
Javascript, whereas our solution is more flexible and allows
other translations rather than Solidity to Typescript.

Although our datasets are different, based on the average that
the authors presented on the paper [15] (176.72 ms), our solution
presented around 3.68 ms. These results show that even our
solution does not support some features that Sol2Js does, it still
is more time performance than Sol2Js.

V. OSPREY OVERVIEW

To explore the possibility of migrating smart contracts be-
tween heterogeneous blockchains, we design Osprey [6]. We
decided to name the migration tool Osprey, because the name
itself is the name of a migratory bird species and, our goal is to
migrate smart contracts from one blockchain to another. Osprey
is a tool that can translate smart contracts written in Solidity to
chaincode written in Typescript. Also, with the integration of
Hyperledger Cactus, a blockchain connector, Osprey can pro-
vide a much reliable translation. This happens because Cactus
provides us a way of instantiating and destroying ledgers, to
simulate a running blockchain. These ledgers complement our
tool, giving it the ability to prove the behavior of the original
smart contract, and the translated chaincode. This proof is made,
by running the smart contract test files and the translated ones.
Thus comparing the result of both executions.

Osprey has a smart contract module and a test module. The
smart contract module is responsible to process the input smart
contract, pass to the Abstract Syntax Tree and then iterate over
the tree to translate it into Typescript chaincode. The test module
is responsible to translate the input Javascript unit tests used to
test the Solidity smart contracts into Typescript test files used
to test in Hyperledger Fabric chaincodes. The way this module
works is similar to the smart contract module. It uses an Abstract
Syntax Tree to make a representation of the unit test file content
so it can be interpreted and translated to the structure used in
Typescript file to test Hyperledger Fabric chaincodes.

VI. REQUIREMENTS

Although the tool does not address all use cases, meaning it
does not perform all kinds of Solidity smart contract translations,
our goal is to address simple Solidity smart contracts that users
want to translate to Typescript Hyperledger Fabric chaincode.

Osprey was designed with two goals in mind. Translate smart
contracts written in Solidity to Typescript chaincode, and provide
flexibility. Flexibility means developers can use our tool to
translate smart contracts to other programming languages than
Typescript, without having to handle the implementation of the
intermediate language (Abstract Syntax Tree).

VII. TooL

Hyperlegder Cactus, a blockchain connector, and a plugin-
based framework, allow not only to connect with other permis-
sioned blockchains such as Hyperledger Fabric but with public
blockchains too, such as Ethereum blockchain. This connection
is achieved through a Hyperledger project, called Hyperledger
Besu. Besu is a Ethereum client, that allows performing oper-
ations such as get smart contracts, among other operations, in
Ethereum. This operation is a huge help to our tool because
it automatically obtains smart contracts from Ethereum and
inputs them in Osprey. Osprey will be a plugin integrated in
Cactus. After that, the translation process offered by our tool
will run, and once it is done, both the input and output will be
tested in instances of their blockchains. Once the validations are
done, then Cactus provide mechanisms to deploy the translated
chaincode in Hyperledger Fabric.

As Figure 1 shows, the first part of the process of migrat-
ing smart contracts between heterogeneous blockchains is the

Hyperledger
Cactus

| Ethereum " ‘ Hyperledger Besu | Ospr
T T | T
| Smart Contract's address 1 | |
| Respond the smart contract l
i INpUL SMart contract

>
Instantiate a tegt i
Ledger to test the
smart contract
(Connector)

! Instantjate a test Ledger
| to test the translated

! smart|contract

| (Conndctor)

Result of the testirg
X

| Resulk of the testing

| Deploy|the translated
| smart tontract

Fig. 1: Sequence diagram of the translation process integrated
with Hyperledger Cactus

retrieving of smart contracts. As explained, this part is done
by Cactus through establishing a connection with Hyperledger
Besu. After that, those smart contracts are inputted to Osprey
and, as you can see in Figure 2, the translation of the smart
contracts happens. After that, the translated files and the original
smart contract files are executed in their ledgers, provided by
Cactus, to test them. After that, the results of each ledger
execution are compared. Once the validation of the executions
is successfully checked, the translated chaincode is deployed in
Hyperledger Fabric.

|
Smart Contract Test
i Code —
o | pea
— ! .
[i test("testing”, (t: Test) => {
— b :

Source
Program

Input Processing Converting

Fig. 2: Osprey flow overview

Regarding the translation flow, Figure 2 shows us an overview
of each step of the process. Once Besu returns the smart contract
to the connector, the smart contract translation is divided in two
ways. The first one is the path of translating the smart contract
source files. The ones where the business logic is implemented.
The latter one is the path to translate the test files of the project.
The ones that prove the business logic is behaving as it supposes
to. In section VIII, we explained in detail, how the translation
of the smart contract source files is designed and how it behaves
in the translation process. In section IX, we explain in detail,
how the translation of the smart contract test files is designed
and how it behaves in the translation process.

After the process part of the smart contract source files
and the smart contract test files are done, then it comes the
converting/translating part. this part of the process is where
Osprey tries to translate the information received from the
processing part and write them in the proper files, structuring
them into folders, originating the project.

As a Cactus plugin, Osprey is a microservice tool that can
be deployed in the cloud and integrated with blockchain service
providers such as azure, aws, among others. The changes to

Output

be done to ensure the success of translations are to guarantee
that the source blockchain and target blockchain smart contracts
programming language is implemented in the tool, otherwise,
the tool cannot perform the migration. Figure 3 demonstrates
the communication.

X

user

http request cloud

to migrate

Fig. 3: Osprey as microservice in the cloud

VIII. SMART CONTRACT MODULE

As mentioned before, Osprey architecture is divided into two
modules, the Smart Contract Module, and the Test Module
described in Section IX. In this section, we explain in detail how
this module is structured, what features are implemented, what
features are not implemented, and how the translation process
behaves.

A. Architecture

Osprey was designed to be highly interface based, especially
in the Test Module IX. This decision was made to give develop-
ers the freedom to integrate other programming language trans-
lations, being those implementations, a plugin. Regarding this
module, although this concern of being highly interface-based
was taken into consideration, when implementing, we could not
strictly follow this line of thought. This happened because we are

~dependent on a tool called solidity2chaincode [5]. However, the
/6utput programming language of the translation is Javascript,

~ most of the code needed to be adapted in other to meet the

specifications of the Hyperledger Fabric Typescript chaincode.

Regarding the extension to new smart contract translation,
Osprey uses the adapter pattern [1], this pattern leverages
the incompatibility that each smart contract has between each
other. Through the interface I7ranslatorService users can have
the possibility to extend a new smart contract programming
language without interfering with the implementations of other
translations. This interface offers two functions to be imple-
mented, translate and write functions. The first function is
where it should be the logic about the interpretation of the
AST. This function, besides taking the AST as parameter, can
take a blockchain connector client. This blockchain connector
client offers functions to interact directly with the blockchain,
translating behaving as an inline translation. The write function
is where all the logic about the writing to files should be.

As you can see in Figure 2, the translation of a smart contract
project is made in three phases. The first phase is when a smart
contract project (source and test files) is inputted into the tool.
The second phase is where the files are processed. This phase is
responsible to read the project files and convert the information
within those files into an Abstract Syntax Tree (AST). The
AST is a way of representing an intermediate language of the
information held in the files. After being converted into an AST,
that tree is passed to the adapter to be interpreted and translated
to the output programming language. This is the last phase.

The translation process works as follows, first it iterates over
the AST to translate each dependency of the main smart contract

smart contract| - N input smart contract deplo .
s rpmer e Y >{ Target siockchan |

class. The dependencies are expressed in the imports within the
file. This process is done to guarantee that in the smart contract
where the dependency is being used, the functions and variables
are called correctly. Through each dependency found, the tool
will search for the path given in the import and translate that
file.

When translating a file, the behavior of the tool is, for every
class found (classes in Solidity are expressed with the contract
keyword), it will search first the global variables, then structs,
enums, events, modifiers, functions, and object dependencies
(in Solidity object dependencies are declared using the using
keyword). Although in Hyperledger Fabric chaincodes there are
no global variables, because the state is managed by key-value
pair storage, this process is very important to be sure which
variables are to be stored as key-value pair when instantiating
the chaincode. Translating from Solidity to Typescript, structs
are classes which are a representation of many variable types
in memory. Enums are datatypes that enable setting predefined
constants. Events are variable objects used to signal users when
some conditions happen. Modifiers are functions applied to other
functions. They are used to specify preconditions to enable
or not the execution of the called function. To handle the
translation of these types, we have data model classes such as
the EnumBuilder responsible to translate enum types, Mixins
responsible to translate the inheritance of classes. Typescript
does not support multiple inheritances, so a workaround is to
use mixins. Mixins are functions that return other functions.
StructBuilder that are responsible to translate structs in Solidity
to Typescript classes. The ClassBuilder class is the main class
responsible to combine all data model classes into a single class
file. After all, is translated, the adapter wraps all the translations
and starts writing them in the proper files. Figure 4 shows an
overview of this module.

©OspreyApp\ication

@JTransIa torService ©TypescriptSrCAdapter

AN

@C.fassﬂui.fder @ Mixin

TN

@EnumBuiIder @StructBuiIder @UsingBu\Ider

Fig. 4: Smart Contract Module Overview

B. Features

Our tool migrates smart contracts written in Solidity to
Hyperledger Fabric chaincode written in Typescript. To ensure
a perfect migration between those blockchains, the tool should
ensure all features that Solidity offers, the translated smart
contract also offers. Table I shows the features Solidity Parser
[7] have and what Osprey offers.

Features Solidity Osprey
Parser
Modifiers support support
Structs support support
Events support support
Payables support not support
Libraries support support
Using support support
Data Structures (Mappings, Ar- support not support (Future Work)
rays)
EVM objects (msg, tx, etc) support not support (Future Work)
EVM functions (transfer, send, bal- support not support (Future Work)
ance, etc)
Imports support support
Multiple Inheritance support not support (Future Work)

TABLE I: Comparison between features to migrate Solidity
smart contracts to Hyperledger Fabric chaincode presented by
a perfect migration tool and Osprey

Table I shows us a comparison of what Solidity Parser tool
[7], with what Osprey currently supports. Note that table I is
mostly focused on the current migration in study between smart
contracts written in Solidity to chaincodes written in Typescript.
Analysing Table I, Osprey comparing with Solidity Parser,
supports almost every feature but those who are specific of
the Ethereum blockchain. Those specific features are Payables,
EVM objects such as the msg object that goes with every
transaction triggered over a smart contract, EVM functions
such as the function transfer which performs a transfer of
assets between two wallets, the balance function responsible
to return the amount of cryptocurrency a specific wallet has.
The Data Structures such as Mappings and Array and, multiple
inheritances are not specific features of the blockchain.

IX. TEST MODULE

In this section, we will explain in detail the Test Module, its
architecture, how it behaves, and the features it supports in its
translation.

A. Architecture

To guarantee the successful translation of a smart contract
on both sides, the original smart contract and translated smart
contract, the unit tests of both smart contracts must behave in
the same way. This behaves must be coherent because the results
expected will be approximated from what the developer tried to
test in the test file of the source smart contract. Thus, conclude
whether or not the behavior was preserved during the translation
process.

Regarding the test translation flow, the Osprey test module
behaves similar to the smart contract module. First, it will search
in the test directory specified as input for the test file which was
inputted too. After that, it will transform the information of the
source test file into a Abstract Syntax Tree (AST). This process
is made using a package called accorn. Accorn is a package
that converts Javascript files into Abstract Syntax Tree. Once
the AST is built, Osprey iterates over it and, node by node it
translates to Typescript. After the translation is done, Osprey
produces a test file to be used in Hyperledger Fabric. Also,
integrating Osprey in Hyperledger Cactus, our tool can have
two major features: (i) provide an end to end translation and,
(ii) run, automatically, those tests translated. Cactus, could be
seen as a framework-as-a-service, where it provides mechanisms

to get the source smart contracts and, to instantiate two ledgers,
one to run the source smart contract, and the other to run the
translated smart contract.

In terms of architecture, the Osprey test module was designed
the same way as the smart contract module, using the adapter
design pattern. This pattern allowed us to have the same feature
that the smart contract module has, flexibility. Flexibility, be-
cause we can have multiple output translation implementations
without compromising the entire structure of the tool. Also, in
this module, we used another design pattern to complement
the adapter. This pattern is called Factory design pattern [2].
It allows us to decide which instance of the test translation to
use based on the input of the user. Based on that input, Osprey
can use an instance to translate the test files and output the files
in the chosen programming language.

In Figure 5 we can see the test module architecture.

cinterface» «interface»
IExpression IFactory

Literal [

T t

«interface»
ITranslatorTestService

TypeScriptTestAdapter

1

Fig. 5: Test Module architecture overview

As presented the architecture in its genesis, is not different
from the one we saw in Figure 4 from the Smart Contract
Module. However, we can see a new component added to the
architecture in both modules, Test and Smart Contract modules,
called Monitor. This decision was made, because the fact we
needed to not only track where the smart contract translations
were outputted, but also to track in the tests’ translation process
when we were facing smart contract function calls or calls to
other packages used in the translation. It is the monitor’s job
to track that kind of information as long as the iteration and
translation process occurs. For instance, in Figure 6 we can
observe on the left a call to a smart contract function. The
monitor will save that information, and when the translation
occurs we can see on the right side that it was adapted to a smart
contract function call used on the Cactus test file template.

Furthermore, a decision in the test translation process was
made. We didn’t include the assertions packages used in the
source test file (i.g. chai, bigint, among others). This decision
was made because, in the Cactus template, those packages are
being used. Also, we ignore the first test function in the source
test file, the one with the keyword contract. This decision was
made, based on the fact that the test translation will be wrapped
up in a test function from the Cactus template.

X. IMPLEMENTATION

Osprey tool was implemented not only as a standalone migra-
tor tool but also as a plugin integrated into Hyperledger Cactus.
Osprey was developed in Typescript to use the interoperability

/

const SimpleStorage = arifacts require(" /SimpleStorage sol’)

\

channelld,
ceVersion: 1.0.0°,

constructorArgs:™

sourceFiles

ccName: contractName

targetOrganizations: [org1Env, org2Env]

caFile

*S{orgCfaDirjordererOrganizations/example. com/..,
ccLabel: "SimpleStorage”,

ccLang: ChainCodeProgrammingLanguage. Typescript,
ccSequence: 1,

orderer: "orderer example.com:7050",
ordererTLSHostnameOverride: “orderer example.com”
connTimeout: 60,

contract("SimpleStorage”, accounts => {
it("..should store the value 89.", async () => {

const simpleStoragelnstance = await SimpleStorage deployed()

/1 Set value of 89
await simpleStoragelnstance.set(89, { from: accounts{0] 3}

11 Get stored value
const storedData = await simple Storagelnstance get call(),

assert equal(storedData, 89, "The value 89 was not stored " + 4),

p

- /

between blockchains that Cactus framework offers, such as
Hyperledger Fabric connector, Hyperledger Besu connector.

Mainly Hyperledger Cactus complements Osprey such that
it can successfully perform smart contract migration between
the various blockchains. As stated before, this migration process
takes at least 4 connections to both blockchains in the migration
process, the source, and the target blockchains. These four
connections provided by Cactus are made through connectors.
Connectors are implementations that allow blockchains to have
interoperability between them, as well as guaranteeing all the
security specifications that each transaction must have in their
respective blockchain. Also, these connections are respectively
to obtain the smart contract to be translated and then migrated;
Then to instantiate two test ledgers of both blockchains, the
source and the target blockchains; And, after that to deploy the
smart contract in the target blockchain.

Looking at the connections that Osprey must have to complete
a full smart contract migration, it states the category where
we consider Hyperledger Cactus as a blockchain-as-a-service.
Blockchain-as-a-service, because it allows Osprey to connect to
both blockchains to perform transactions over them and, also
to build a test infrastructure to test the smart contract before
deploying them in the real target blockchain environment.

Fig. 6: Monitor job overview

XI. CONCLUSION

This research presents you Osprey, a smart contract mi-
grator tool between heterogeneous blockchains. Osprey helps
blockchain interoperability take a step further on making com-
panies use blockchain technology without being afraid of the
costs of maintenance or afraid to start over when a blockchain
becomes obsolete or even when they find another blockchain
that offers more appealing features. Integrated in Hyperledger
Cactus, a blockchain connector, as a plugin, Osprey can (i)
establish a connection with Hyperledger Besu and Hyper-
ledger Fabric; (ii) acquire the smart contracts from Ethereum
blockchain through Hyperledger Besu; (iii) use a blockchain
validator, before and after deliver the contracts to the migra-
tor, to evaluate/analyse them; and (iv) issue the transactions
in Hyperledger Fabric blockchain. Also, another reason on
integrating our tool in Cactus, the ability to instantiate and
destroy blockchain instances to test the functionality of the smart
contracts. After the original and translated smart contracts are
tested, and the ledgers destroyed, both execution outputs are
compared to validate their correctness and behavior. Moreover,
Osprey can be used as a blockchain cloud migration tool

const simpleStoragelnstance = await apiClient deployContractV({

solution where it can be deployed in the cloud and used by
the community. The experimental results over a dataset with
13 Solidity smart contracts, shows that Osprey in average can
perform translations in about 3.68 milliseconds. Although this
is a solution that can be extended and can be improved in more
features, this is a contribution to help blockchain community
move forward on blockchain smart contract migration and help
future works on blockchain interoperability solutions.

A. Contributions

This research allows blockchain technology to take a step
further and contribute to the interoperability of blockchains, by
allowing the migration of smart contracts between heteroge-
neous blockchains. At the time this study is made, the solutions
available are only theoretical ones, such as Hyperservice [11].
Also, the only solution found at this time was the solidity
parser solution [15]. A solution that is a proof of concept that
blockchain migration between heterogeneous blockchains can be
made. However, it is an old solution that has not been maintained
nor updated and, it only performs migrations between Solidity
smart contracts to Javascript chaincode. This means it lacks
flexibility.

Osprey on the other hand is a tool flexible, which first starts
to migrate Solidity smart contracts to Typescript chaincode, but
it can be extended to perform migrations between other types
of smart contracts. Our contributions are as follows.

1) Translate smart contracts written in Solidity to Typescript.

2) Design a tool, able to be flexible, meaning it can be ex-
tended to migrate smart contracts from other blockchains
and whose smart contract programming languages are
different from Solidity as input and Typescript as output.

3) Develop translation mechanisms for unit tests between
both blockchains, source, and target.

4) Becoming Hyperledger Cactus a more complete tool in
terms of blockchain interoperability.

XII. FUTURE WORK

This work help the subject of smart contract migration on
a new level, being one of the tools implemented with almost
full translation of Ethereum smart contracts written in Solidity.
Osprey helps companies to not being afraid of migrating their
projects when it’s development reaches a critical stage (e.g. the
maintenance cost of the project is too high, or some vulnerabil-
ities were discover in the current blockchain their working on).
Furthermore, to turn each individual module of the tool more
complete, in the future we plan to tackle the features, in the
smart contract module VIII, that were not implemented. After
that we, plan to disconnect completely from the dependency held
on the solidity2chaincode tool [5], turning the implementation
of this module, similar to the test module.

Regarding the test module (Section IX), for future work we
plan to move further on the implementation of the features that
are not implemented and, to implement a way of having inline
test calls. The inline testing feature, allow at runtime, when the
test ledgers are instantiated the code can automatically be called
over those ledgers, becoming the migration process and testing
more automatic.

(1]
[2]
(3]
(4]
(3]
(6]

(7]
(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

Adapter.

Best Practice Software Engineering - Factory Method.
cactus/whitepaper.md at master - hyperledger/cactus.

Ethereum Whitepaper — ethereum.org.
hyperledger-labs-archives/solidity2chaincode: This tool converts solidity
contract into javascript chaincode through source-to-source translation for
running them onto hyperledger fabric.

theliso/cactus: Hyperledger cactus is a new approach to the blockchain
interoperability problem.

tool to migrate solidity do javascript.

H. D. Bandara, X. Xu, and I. Weber. Patterns for Blockchain Migration.
pages 1-40, 2019.

R. Belchior, M. Correia, and A. Vasconcelos. Justicechain: Using
blockchain to protect justice logs. In OTM Confederated International
Conferences” On the Move to Meaningful Internet Systems”, pages 318—
325. Springer, 2019.

R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia. A Survey on
Blockchain Interoperability: Past, Present, and Future Trends. 2020.

Z. Liu, Y. Xiang, J. Shi, P. Gao, H. Wang, X. Xiao, B. Wen, and Y. C. Hu.
Hyperservice: Interoperability and programmability across heterogeneous
blockchains. Proceedings of the ACM Conference on Computer and
Communications Security, pages 549-566, 2019.

M. Mettler. Blockchain technology in healthcare: The revolution starts
here. In 2016 IEEE 18th International Conference on e-Health Network-
ing, Applications and Services (Healthcom), pages 1-3, 2016.

P. Ruan, G. Chen, T. T. A. Dinh, Q. Lin, B. C. Ooi, and M. Zhang.
Fine grained, secure and efficient data provenance on blockchain systems.
Proceedings of the VLDB Endowment, 12(9):975-988, 2018.

M. Turkanovi¢, M. Holbl, K. Kosi¢, M. Hericko, and A. Kamisalié.
Eductx: A blockchain-based higher education credit platform. IEEE
Access, 6:5112-5127, 2018.

M. A. Zafar, F. Sher, M. U. Janjua, and S. Baset. SOL2JS: Translating
solidity contracts into Javascript for hyperledger fabric. SERIAL 2018 -
Proceedings of the 2018 Workshop on Scalable and Resilient Infrastruc-
tures for Distributed Ledgers, pages 19-24, 2018.

