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Abstract

In the medical world, one of the purposes of ambulances is that of providing aid to emergency
situations and transporting people to a facility where they can get further medical attention. However,
there is a possibility that there are too many emergencies for the ambulances available in a certain
region or that too many ambulances are made available resulting in resource wastage. Finding a balance
between the availability of resources, coverage of all medical emergencies and minimizing response times
has been shown to be a difficult task.

In this document, we analyze the literature on the Emergency Medical Services (EMS) ambulance
location problem, addressing several models presented in previous research work addressing the EMS
subject. Some define and formulate models with greater insight while other research works present
innovative techniques

Additionally, we define a mathematical model that is able to represent any situation on a defined
period of time with multiple emergency occurrences with several vehicles that can provide aid to said
occurrence. We do this using Multi-Objective Combinatorial Optimization (MOCO) to tackle the
ambulance location problem while focusing on minimizing the overall number of resources used, as well
as minimizing the response times. We apply this model to real data retrieved from three different
districts in Portugal, in various time periods. We then solve the instances created by our model in
these scenarios and inferred conclusions and possible improvements to the Emergency Medical System
in those situations.
Keywords:Multi-Objective Combinatorial Optimization, Ambulance Location Problem, Emergency
Medical System

1. Introduction

An Emergency Medical System (EMS) can be de-
fined as a system that aims to provide urgent treat-
ment or stabilization in medical emergencies. Struc-
turally, a control facility serves as an integrating
part of this system, serving the purpose of receiving
incoming emergency calls, which can be placed by
any person, and then assigning emergency vehicles
to the required location, depending on the number
of people in need of immediate medical assistance
and/or on the seriousness of the emergency at hand.
It is important that this service is provided in the
least amount of time possible in order to provide
medical care to the person in need in the fastest
possible way. Once the patient’s situation is stabi-
lized and he is transferred to the established health
facility, the ambulance that was dispatched becomes
available once more as soon as it returns to its base,
where it can be given a new task, and all the pro-
cedures have been completed for the ambulance to
be available again.

In the context of EMS, the vehicle location prob-
lem consists of locating the vehicles in some po-
tential service sites in order to reduce the delay

of covering emergency service demands [9]. How-
ever, in real-world scenarios, there is the need to
keep the solutions feasible, while still granting a
satisfiable level of optimality. This work focuses
on analysing proposed solutions to the vehicle lo-
cation problem, as the basis to then formulate a
model to apply to existing data from the Instituto
Nacional de Emergência Médica (INEM) and try to
see if there is a more efficient way of providing aid
to emergency situations.

This document is organized as follows. In Section
2, the fundamental concepts of the problem we are
addressing are explained, and a description of the
preparation we performed on our data is presented.
In Section 3 we introduce our model in detail, ex-
plaining the incremental steps that led to our final
model. Section 4 depicts the results of our investiga-
tion regarding the application of the created model.
Section 5 concludes the document and presents pos-
sible enhancements or ideas to continue the study
of this subject.

2. Background
The EMS system has an optimization problem re-
garding the allocation of the emergency vehicles
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(ambulances) which has been tackled in a number
of different ways throughout the years, all of them
ultimately aiming at increasing the efficiency of re-
source usage. The motivation for these works come
from the fact that EMS’s exist with the purpose of
not only assigning ambulances to emergencies when
these happen, but also conveying a distribution of
these ambulances in a way that allows them to max-
imize the area covered, as it was first described, by
Church & ReVelle [6], in their work that considered
a fixed size fleet of ambulances. After this work,
there have been an enormous number of authors
dwelling upon the intricacies of the ambulance lo-
cation, relocation and assignment problem, some of
them suggest the usage of a dynamic approach, in
which each ambulance is able to communicate with
other ambulances (multi-agent approach) or with
an ambulance coordinator (centralized approach) in
order to decide where to go after it has been dis-
patched to an emergency and therefore maximize
the coverage of each zone after each emergency has
been dealt with [10, 8, 5]. This dynamic approach
is presented with many computational or scalabil-
ity problems when applied to either large fleets of
ambulances or extensive land coverage. This means
that dynamic approaches may not be achievable in
the expected amount of time, effectively harming
the end goal of reducing the overall response time
to emergencies.

Since the allocation of emergency vehicles is a
very complex problem that involves a great deal of
variables and different scenarios, it is important to
specify the context for each proposed solution. The
details of several of relevant works are present in an
very complete and interesting set of tables present
in the work of Bélanger [3] in which the author di-
vides and classifies the different works based on the
specific details they cover. These tables cover vari-
ables such as the number of different types of ambu-
lances available, a list of covering and standby site
constraints and the objectives of the work developed
in the literature. Different types of ambulances de-
fine an interesting alteration to the standard sce-
nario, for example, a certain type of ambulance is
more effective in heart disease related emergencies,
and the system should, therefore, prioritize assign-
ing these ambulances to emergencies of that nature.

However, other approaches have been taken in
order to tackle this problem, namely some deter-
ministic models, probabilistic models [4], and some
more recent approaches that use the heuristics, for
example, the tabu search heuristic[7]. Discussing
all the papers in depth would make this work too
extensive and difficult to follow, hence, added to the
more concrete analysis of a few examples, the tables
in the next pages will provide an overview on which
papers cover what topics and which techniques are

used.
The works mentioned thus far describe a summa-

rized state of the art of the EMS location problem.
There have been various ways of formulating and
solving the problem throughout the years. How-
ever, for simplicity, we selected and analyzed those
which we deemed more important in order the un-
derstand how the state of the art has evolved.

There have also been studies and reviews on the
effectiveness, advantages and disadvantages of sev-
eral approaches and techniques used to try to solve
the EMS ambulance location or relocation prob-
lem. These studies are particularly helpful as an
introduction to the matter at hand because they
are often very generic in their descriptions in or-
der to fit most models that are referenced in it and
also because they allow the reader to become aware
of which papers address what specific topics before
actually reading them, effectively serving as a filter-
ing method for whoever needs to search for works
in this area of study[2, 1].

The database used, courtesy of the Instituto Na-
cional de Estatistica (INEM) has a variety of differ-
ent fields that track a number of different variables
regarding each emergency, vehicle, station and pos-
sibly other fields that were not used for the purposes
of this study.

From an analytical point of view, we wanted to
retrieve two important measures: the average dis-
tance that each vehicle traveled to get to an emer-
gency site and the average time between each dis-
patch of the same vehicle. The first problem we
came across had to do with missing values and in-
correctly formatted records, and this problem oc-
curred in the process of reviewing both measures.
Since there is no way to infer or calculate the miss-
ing values, we discarded any records that were ei-
ther.

This initial data cleaning allowed us to perform
the first proper analysis of the data we were work-
ing with and start to draw conclusions from the
results of that same analysis. However, in the
average distance measure, we found values that
were inconsistent with what we were expecting.
More specifically, and given the fact that we were
analysing data from continental Portugal, in which
the longest straight line that connects two parts of
the country is just below six hundred (600) kilome-
ters long, we found records that read distances over
four thousand (4000) kilometers. After analysing
these records, we discovered that they all the same
emergency coordinates corresponding to the point
at zero degrees latitude and zero degrees longitude
(0°N 0°E), as seen in Fig.1. Because of this we de-
cided to not take into account the records that used
this point as their emergency site.

Even though we had dealt with these erroneous
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Figure 1: Example of emergency being recorded at
position (0°N 0°E)

Figure 2: Example of emergency in the Madeira
Archipelago

records, we still had a number of emergencies occur-
ring at more than fifteen hundred kilometers (1500)
which were still out of context. After further in-
vestigation, we found out that these records re-
ferred to marine emergencies in the Atlantic Ocean.
These records still appear on this database because
the Portuguese territorial sea area is about fifty
one thousand squared kilometers (50957), sixteen
thousand (16460) of those belong to the continen-
tal portion of Portugal and the rest belonging to the
Açores and Madeira archipelagos, as seen in Fig.2.
Since we are only dealing with terrestrial emergen-
cies in this study, we imposed a coordinates limit
that ensured that the emergency sites were inside
continental Portugal.

The preparations for calculating the average dis-
patch time measure were not as extensive as the
ones for the average distance. In order to get the
records for this measure we first separated and or-
ganised the records according to the vehicle identi-
fier and we arranged these same records in a chrono-
logical order, which made it trivial to calculate the

consequent dispatch times and calculate the aver-
age dispatch time for all the vehicles. After getting
this initial value, we tried to get more detailed data,
namely isolating each one of the eighteen districts
in Portugal and after that getting data by vehicle
type and emergency priority levels.

3. Implementation
In this section we will go over the several models
we developed at different stages of the elaboration
of this document, explaining our thought process
behind each change we made along the way, as well
as providing insight as to what implications those
changes had in the way we treated data and had to
adapt our process.

After the initial analysis and preparation of the
data retrieved from the INEM database, the first
step was to create a very simple, traceable model
with which we could check for implementation mis-
takes as well as start testing very small examples
in the solver. These first examples were handmade
and not derived from data. Our main goals with
this approach were testing specific cases and how
the solver would react to them while also optimiz-
ing the generation of an instance that represents
each problem mathematically.

The ambulance location model can be defined
as a graph G = (V,E) where V = N ∪ M , N =
(v1, ..., vn) and M = vn+1, ..., vn+m being two ver-
tex sets representing, respectfully, emergency sites
and standby vehicles with and associated position.
Additionally, E is an edge set where each edge
{(vi, vj) : vi, vj ∈ V, i < j} is associated with a
travel time or distance tij . The variable xij will
take the value 1 if and only if, the the vehicle j pro-
vides aid to the emergency site i, and the value 0
otherwise.

For simplicity purposes, we designed a simple ex-
ample with a given set of emergency sites, N =
A,B,C,D, as well as a set of standby vehicles
M = 1, 2, 3 spread randomly on an example map,
represented in Fig. 3. This map does not represent
any specific zone, it merely serves as an example.

In this map, we implemented a baseline model. It
is meant to be a blueprint for Static Models, where
we only considered edges that represent connections
between emergency sites and standby vehicles. The
simplified graph for this implementation of a static
model is represented in Fig. 4.

The objective this type of models aims to achieve
is that of minimizing the number of vehicles and
the overall travel time in a way that all emergencies
are accounted for. For simplicity, we will consider
that a vehicle is unavailable for a period of time
correspondent to 2tij in these static models. These
time periods represent the minimum amount of time
that a vehicle takes to answer an emergency call and
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Figure 3: Example Map

Figure 4: Static Model Simplified Graph

min
M∑
j=1

xijtij (1)

subject to:
∑

xij ≥ 1, i = 1, ..., n,

(2)

xij ∈ {0, 1}, i = 1, ..., n, j = 1, ...,m.
(3)

Figure 5: Vehicle usage minimizing Model defini-
tion

min
M∑
j=1

yj (4)

subject to:
∑

yj ≥ n, j = 1, ...,m, (5)

yj ∈ {0, 1}, j = 1, ...,m. (6)

Figure 6: Vehicle usage minimizing Model defini-
tion

go back to a standby site.
In order to better understand each goal, we are

first going to formulate two separate model defini-
tions that represent single objective models. In the
first model, represented in Fig. 5, the goal is to
minimize the travel time throughout all operations
within a time frame. For simplicity, we consider
only the parcel tij associated with each variable xij .

After this, we defined a model in which the goal
was to minimize the number of vehicles being used.
In order to do that we will define a variable yj which
will take the value of 1 if and only if a vehicle j is
used to provide aid to an emergency. A reduction in
the number of vehicles used can mean that that area
in particular has a more vehicles than it should, and
these can be relocated to areas that are struggling
with more emergencies. Using this information, we
can also cut our vehicle fleet if we realise that there
are vehicles that are never used in the long term.
This model definition is represented in Fig.6.

Since these two objectives are conflicting, mean-
ing that a bigger number of vehicles used will result
in a smaller value for the distance covered and vice-
versa. Our goal is then to find a Pareto front, or
a set of optimal solutions that minimizes both the
number of vehicles used and the distance covered
by those vehicles.

After both these models are defined, the Multi-
Objective problem definition consists of joining
both the single objective formulations into a single
one, represented in Fig. 7.

As a result, we had to make several changes to
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min
∑
i

∑
j

xijtij (7)

min
M∑
j=1

yj (8)

subject to:
∑

xij ≥ n, i = 1, ..., n, j = 1, ...,m,

(9)∑
yj ≤ 1, j = 1, ...,m,

(10)

xij ∈ {0, 1}, i = 1, ..., n, j = 1, ...,m.
(11)

yj ∈ {0, 1}, j = 1, ...,m.
(12)

Figure 7: Double Objective Model definition

both the way the data was being inserted in the
programmatic generation file, as well as the gener-
ation process itself, since it was not accounting for
a number of cases we had not initially considered,
for example, the case where two vehicles were being
used in subsequent time periods and therefore were
unavailable when they were needed in these limited
models where we did not have more vehicles than
emergencies, causing the solver to deem this exam-
ple as unsatisfiable.

With the initial model we were able to test some
examples for small time periods where each vehi-
cle could not be called to two distinct emergencies.
However, in a real scenario, it is important that the
vehicle can be dispatched to another emergency as
soon as it is available again. In order to apply this
concept to our model we divided a shift sized time
frame into smaller fractions. This alteration meant
that in our model we had to alter our set of con-
straints so that there was a variable for each vehicle
for every one of the smaller time frames, represented
by uij . Additionally, we also added a constraint
that made sure that a vehicle could not be used in
two consecutive time frames, effectively giving each
vehicle at least one small time frame where it is un-
available between each dispatch. These time frames
might differ in size depending on the situation and
the value has to come from an analysis to the differ-
ent time between dispatches in several similar real
case scenarios.

In order to mathematically model this addition,
we divided our large time period into a group of
smaller time periods E = E1, ..., Ek where k repre-
sents the index of the period of time within a certain
group E, which contains e time periods. This index
k also serves the purpose of identifying a vehicle as-
signment uijk, which is a new variable that takes

∑
uijk ≥ 1, i = 1, ..., n, j = 1, ...m, k = 1, ..., e

(13)

uijk + uij(k+1) ≤ 1, i = 1, ...n, j = 1, ...m, k = 1, ..., e
(14)

Figure 8: Time Period Constraints

∑
uijk − yj ≥ 0, i = 1, ...n, j = 1, ...m, k = 1, ..., e

(15)

Figure 9: New Time Minimization Expression

the value 1 if and only if the vehicle j provides aid
to the emergency i in the time period k. As for
the model itself, we adapted the previous version
to account for the addition of time periods and we
added a constraint that makes sure each vehicle can
only be assign in a certain time period if it has not
been assigned in the previous time period as seen
in Fig.8.

Additionally, because of this alteration, we have
also had to make changes to the expression we are
trying to minimize that represents the usage of each
vehicle. With these changes, if a vehicle is used in
any period of time, the corresponding variable yj
should be equal to one. Hence we have added a
constraint as seen in Fig.9

Emergencies are classified by a priority group
that is associated with severity. INEM has an eight
point priority rating system which can be converted
into three major priority groups, due to a very neg-
ligible amount of emergencies in some of the cat-
egories in the eight point system. Depending on
the priority value assigned to each emergency, we
wanted to have the more commonly assigned vehi-
cles for each of the three major priority groups be
preferred when selecting the vehicle that is going
to be dispatched. Therefore, we retrieved the type
of each vehicle and the priority of each emergency,
and imposed constraints that prevent certain sets
of vehicle types to respond to certain emergencies
depending on their priority.

Mathematically, this means that we will have
three sets V1, V2, V3 of vehicle types corresponding
to the allowed vehicles to our three major prior-
ity groups p1, p2, p3, which will contain the prior-
ity level of each emergency pij . When building the
model, we will only consider vehicles for a certain
emergency if their vehicle type is contained within
the set for the specific priority level of that emer-
gency.

As for the model itself, we added a constraint that
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uijk = 0, i /∈ V1, j ∈ E1, k = 1, ..., e (16)
uijk = 0, i /∈ V2, j ∈ E2, k = 1, ..., e (17)
uijk = 0, i /∈ V3, j ∈ E3, k = 1, ..., e (18)

Figure 10: Vehicle Priority Constraint

represents the vehicle exclusivity described above,
where only a certain group of vehicles can be as-
signed to a particular type of emergencies as seen
in Fig.10.

After gradually building our model with by
adding features to a base initial model, we ended up
with a final model that covered all of the aspects we
needed to be able to create instances for every sit-
uation we were going to be dealing with. All these
different additions led us to have a model that aims
to provide the best assignment for the available ve-
hicles to the emergencies that occur in a determined
amount of time, taking into account several relevant
details about both the vehicles, namely their vehi-
cle type and their availability as to not overuse a
small number of vehicles, as well as the emergencies,
namely their level of priority, the distance to each
vehicle station, the number of vehicles needed and
even taking into account district borders as to not
have vehicles from different cities attend to emer-
gencies in other cities if it is not expected.

Even though this model covers a variety of condi-
tions, it does not scale well, meaning that the solver
gets exponentially slower at coming up with opti-
mum or even satisfiable results. Because of this, we
decided to apply the model to 8 hour shifts, thus
dividing the day in 3 equal parts, as a way of allow-
ing the solver to be able to come up with solutions
that can be applied in real situations in a reasonable
amount of time.

4. Results
Upon having a reliable model built and tested, we
started comparing the results of real case scenarios
to applications of a solver algorithm to the instances
we created of those same scenarios. However, after
we analysed a small amount of these scenarios, and
consistently getting a Pareto front of solutions that
was better than the real case scenario, we wanted
to try to infer some additional conclusions as well
as come up with some possible solutions to help
improve the efficiency of the ambulance assignment
process for future situations.

Firstly, our main goal was to compare real case
scenarios, analyse how many vehicles were used and
how much distance they covered, and then compare
these results with the Pareto front solutions from
the application a solver to the instance we created
under the same conditions. From this comparison,

we expected to verify if the real case scenarios were
sub-optimal, and try to quantify how much the so-
lutions on our Pareto front were performing bet-
ter than these scenarios. In order to do this we
analysed cases with different periods of vehicle in-
activity, namely thirthy minutes and one hour and
different acceptable distances for a vehicle to pro-
vide aid to an emergency, namely ten and fifteen
kilometers. We selected four separate days across
three different years, namely the first day of Febru-
ary, May, August and December, from 2017, 2018
and 2019. Each of the days was divided in intervals
of one, two, four and six hours, giving us a total
of 46 instances created per day analysed. Cumula-
tively, we generated a total of 6624 instances, given
that we generated all of the previously mentioned
conditions in three different districts, namely Faro,
Guarda and Lisboa.

Our goal with this analysis is to compare solu-
tions between districts and seasons and try to un-
derstand whether or not we can allocate the vehi-
cles in a different way in order to try to improve
the overall performance in all of the places we are
analysing.

We wanted to see how big the impact was for the
overall solutions if we changed the time a vehicle
becomes inactive after it provided aid to an emer-
gency, therefore we tested using a thirty minute in-
activity period and using a one hour inactivity pe-
riod. We used examples with only a ten kilometer
radius of activity for the vehicles of each emergency.
These two values, thirty minutes and one hour, both
came from the analysis of data from previous emer-
gencies

As expected, the execution of the solver on the in-
stances with the thirty minutes inactivity time took
more time than the instances with the one hour in-
activity time due to the amount of vehicles available
for each emergency. This is especially true for larger
examples. In Figure 12, we see an example from a
two hour period in the district of Lisboa where in
the first one we use a thirty minute vehicle inactivity
period, represented by the green crosses, and a one
hour vehicle inactivity period, represented by the
red crosses. Since this is a larger example, it is the
only one where the solutions differ when we change
the inactivity time. If we look at Figures 13 and 14
on the other hand, the solutions found are exactly
the same for periods of four hours, hence the green
crosses and the red crosses are in the same positions.
Although these are larger time periods, because of
the difference in number of emergencies, the exam-
ples in Lisboa are far larger, and give a perspective
of the impact the vehicle inactivity period has on
the search of a solution.

Analogously, we wanted to test the impact of the
radius of activity for the vehicles of each emergency,
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min
∑
i

∑
j

uijktij (19)

min
M∑
j=1

yj (20)

subject to:
∑

uijk ≥ n, i = 1, ..., n, j = 1, ...,m, k = 1, ..., e (21)

uijk + uij′(k+1) ≤ 1, i = 1, ...n, j = 1, ...,m, j′ = 1, ...,m, k = 1, ..., e (22)∑
uijk − yj ≥ 0, i = 1, ...n, j = 1, ...,m, k = 1, ..., e (23)

yj − uijk ≥ 0, i = 1, ...n, j = 1, ...,m, k = 1, ..., e (24)
uijk = 0, i /∈ V1, j ∈ E1, k = 1, ..., e (25)
uijk = 0, i /∈ V2, j ∈ E2, k = 1, ..., e (26)
uijk = 0, i /∈ V3, j ∈ E3, k = 1, ..., e (27)
uijk ∈ {0, 1}, i = 1, ..., n, j = 1, ...,m. (28)
yj ∈ {0, 1}, j = 1, ...,m. (29)

Figure 11: Double Objective Model definition

Figure 12: Comparison between inactivity times
in Lisbon. The green crosses represent the thirty
minute vehicle inactivity period and the red crosses
represent the one hour vehicle inactivity period.

Figure 13: Comparison between inactivity times
in Guarda. The green crosses represent the thirty
minute vehicle inactivity period and the red crosses
represent the one hour vehicle inactivity period.

Figure 14: Comparison between inactivity times in
Faro. The green crosses represent the thirty minute
vehicle inactivity period and the red crosses repre-
sent the one hour vehicle inactivity period.

or in other words, how far away from the emergency
a vehicle can be to be taken into account as a pos-
sible vehicle to provide aid to an emergency. When
we first started this test we had three values for this
distance, however, upon several tests, we decided to
rule out the distance of five kilometers because a lot
of emergencies were getting no available vehicles to
provide aid to them. Therefore we ended up with
the values of ten and fifteen kilometers and running
the tests on these two values.

In some cases, making the radius of search big-
ger allows the solver to find more solutions that
normally use less vehicles but increase the distance
travelled by these vehicles overall. These additional
solutions are usually cases in which the distance
traveled is larger than the real case scenario, and
therefore are not interesting when we have other
solutions that can both reduce the number of vehi-
cles used and the distance traveled. In Figure 15
we can see that the usage of fifteen kilometers adds
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Figure 15: Comparison between distance times in
Guarda. The green crosses refer to a ten kilometer
radius and the red crosses refer to a fifteen kilometer
radius

two solutions, respectfully using three and four ve-
hicles and combined distances of 49348 and 66176
kilometers, but these represent cases that we do
not want to consider exactly because the two so-
lutions that we already had from the ten kilometer
radius case, respectfully using five and six vehicles
and combined distances of 35239 and 34673 kilo-
meters, reduce both the distance travelled and the
number of vehicles used when compared to the real
case scenario which used eight vehicle and with a
combined distance of 43197 kilometers.

On top of this, using a fifteen kilometer radius
also largely increases the execution time of the
solver for the same scenarios, especially for larger
examples. In most cases for Lisboa, the solutions
found by the solver were not even close to being
optimal as they were worse than the real case sce-
nario. This happened because adding five kilome-
ters means that there are a lot more vehicles to
consider for each emergency, and since Lisboa has
a larger number of emergencies than the Faro and
Guarda and the complexity of this problem makes
it grow exponentially fast, the solver could not pro-
vide acceptable solutions in the established amount
of time of one hour.

Practically, this means that the ten kilometer
range is more appropriate in most scenarios, since
it grants enough vehicles to reach optimal solution
and also because it reduces the universe of vehicles
we would have to consider using, making the de-
cision of which vehicle to assign less complex. We
could not infer how the Emergency Medical Sys-
tem decided which vehicles were considered for each
emergency from the data we had, however, if like
us, they use a radius around the emergency, we
would suggest the usage of a ten kilometer range as
the standard from the three hypothesis we tested.
Eventually, if the population density drops heavily
there might be a need to use the fifteen kilometer
range since there should be less vehicles in that area.
Among our three districts, Guarda is the one with
the least population density and we did not find any

Figure 16: Seasonality comparison in Lisboa. The
red figures refer to the month of August and the
green figures refer to the month of January

Figure 17: Seasonality comparison in Faro. The red
figures refer to the month of August and the green
figures refer to the month of January

example time period in which there was a need for
the fifteen kilometer range, so we infer this is a very
unlikely scenario.

Provided that Portugal has a big affluence of
tourists towards the South in the summer, we
wanted to see if this had an influence on the number
of occurrences when compared to other times of the
year, especially between Faro and Lisboa.

The first thing to note about the examples shown
in Figures 16 and 17, which represent periods of one
hour and four hours from the same time period of
the day in the year 2019, in Lisboa and Faro re-
spectively, is that the seasonality is present in both
districts. This means that both districts account for
a consistently different number of emergencies dur-
ing the month of August as opposed to the month of
January. However, in Lisboa January is the month
with more emergencies as opposed to Faro, where
August is the month with more emergencies. We
present only the results for the year 2019, because
in the remaining two years of 2017 and 2018, the
results were analogous.

We wanted to see if there was a possibility that
these seasonal changes were not being addressed
properly. In order to infer this, we looked ate the
difference between the solutions in our Pareto front
and the real case scenarios in both districts and we
can see that in both districts, our real case scenario
is closer to the optimal solutions in the month of
August as opposed to the month of January. How-
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ever, this difference is more evident in the district
of Faro, which can mean that there are fewer vehi-
cles available than there should be for this district
at this time of year. This difference could be at-
tenuated if some of the vehicles that are allocated
to Lisboa in the month of August were reallocated
temporarily to Faro, in an attempt to allow for a
better response to a month where there are more
emergencies at the expense of a slightly less optimal
performance in that month in the district of Lisboa.
In the months where the Faro has less emergencies,
these vehicles would then be reallocated to Lisboa
again as there will be a higher need for them there.

5. Conclusions
Firstly, when we first set out to do this project, the
main goal was to be able to create a model that
could accurately represent any situation in the con-
text of the ambulance assignment problem and use
it to determine what the optimal situations would
be and compare them to the data we had from
INEM. This objective was achieved successfully as
we created a working model that can in fact repre-
sent every situation we have idealized.

Apart from the main goal, we discussed several
possible smaller possibilities for further research us-
ing the model we had created. Ultimately, we
ended up conducting an analysis on three differ-
ent districts of Portugal and inferring information
and possible adjustments to the current way the
ambulances are being allocated by the Portuguese
Emergency Medical System. This analysis required
an analysis of the records we had access to in a
variety of different measures like number of emer-
gencies, number of vehicles available for each emer-
gency, emergency priority levels, specific vehicle in-
formation, as well as an extensive stage of creation
of instances followed by the solving of these same
instances. This allowed us to contextualize each
situation and be able to critically analyse and com-
pare the real case scenarios and the solutions we
obtained from running our examples through the
solver in order to come up with possible solutions
for less optimal situations we encountered.

In the development process of our algorithm we
always considered a given situation in which the
total number of vehicles available as well as total
number of emergencies were known variables. This
means that we have privileged insight when look-
ing for a solution that the operators who choose
which vehicles to assign to each emergency. With
this in mind, it would be interesting to develop a
real-time vehicle assignment mechanism that would
better emulate the situation in which the operators
have to make the assignment decisions. Afterwards,
it would be possible to compare both performances
to the solution given by the model developed in this

paper. Furthermore, that real-time vehicle assign-
ment mechanism could then benefit from informa-
tion retrieved from various solutions given by our
model like identifying periods of time more prone
to a large number of emergencies in a certain area,
and trying to preserve more vehicles in that area,
even if at the cost of a more lengthy assignment on
some other emergency beforehand.

Furthermore, we have talked about using a pre-
dictive model to predict possible future emergen-
cies and then apply our model to allocate a higher
amount of vehicles in the zones we predict are going
to have more emergencies in a certain time period,
and leaving zone we deem to be less likely to have
emergencies with a smaller amount of vehicles. This
would serve as an attempt at optimizing the perfor-
mance of the Emergency Medical System even fur-
ther, focusing on probabilities of what will happen
in the future, and not only on data from what has
happened in the past.
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