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Resumo

No mundo médico, um dos propósitos das ambulâncias é providenciar auxı́lio a situações de emergência

e transporta pessoas para instalações onde estas possam ter acesso a melhores cuidados médicos. No

entanto, existe a possibilidade de haverem demasiadas emergências para as ambulâncias disponı́veis

numa certa região, ou que demasiadas ambulâncias estejam disponı́veis, o que resultaria num des-

perdı́cio de recursos. Encontrar um balanço entre a disponibilidade de recursos, providenciar auxı́lio

a todas as emergências médicas e a minimização dos tempos de resposta tem sido demonstrado ser

uma tarefa árdua.

Neste documento, analisamos a literatura sobre o problema de alocação de ambulâncias dos Sis-

temas de Emergência Médica, falando de diversos modelos apreentados em trabalhos de investigação

anteriores que focam no assunto dos Sistemas de Emergência Médica. Alguns definem e formulam

modelos com maior detalhe enquanto outros trabalhos de investigação apresentam técnicas inovado-

ras.

Adicionalmente, definimos um modelo matemático que consegue representar qualquer situação num

perı́odo de tempo definido com multiplas emergências com vários veı́culos que podem prestar ajuda a

essas emergências. Desenvolvemos este modelo através da utilização de Multi-Objective Combinatorial

Optimization (MOCO) focado na minimização do numero total de recursos utlizados, bem como na

minimização dos tempos de resposta. Aplicamos este modelo a dados que recolhemos de três distritos

em Portugal num total de três anos, quatro dias por ano. Finalmente resolvemos as instâncias criados

por este modelo nestes cenários e inferimos conclusões e possiveı́s melhorias à operação por parte do

Sistema de Emergência Médica nessas situações, assim como em outras possiveı́s situações.

Palavras-chave: Optimização Combinatória Multi-Objectivo, Problema de Alocação de Ambulâncias,

Sistemas de Emergência Médica
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Abstract

In the medical world, one of the purposes of ambulances is that of providing aid to emergency situations

and transporting people to a facility where they can get further medical attention. However, there is a

possibility that there are too many emergencies for the ambulances available in a certain region or that

too many ambulances are made available resulting in resource wastage. Finding a balance between the

availability of resources, coverage of all medical emergencies and minimizing response times has been

shown to be a difficult task.

In this document, we analyze the literature on the Emergency Medical Services (EMS) ambulance

location problem, addressing several models presented in previous research work addressing the EMS

subject. Some define and formulate models with greater insight while other research works present

innovative techniques

Additionally, we define a mathematical model that is able to represent any situation on a defined

period of time with multiple emergency occurrences with several vehicles that can provide aid to said

occurence. We do this using Multi-Objective Combinatorial Optimization (MOCO) to tackle the ambu-

lance location problem while focusing on minimizing the overall number of resources used, as well as

minimizing the response times. We apply this model to real data retrieved from three different districts

in Portugal, in various time periods. We then solve the instances created by our model in these sce-

narios and inferred conclusions and possible improvements to the Emergency Medical System in those

situations.

Keywords:Multi-Objective Combinatorial Optimization, Ambulance Location Problem, Emergency

Medical System
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Chapter 1

Introduction

An Emergency Medical System (EMS) can be defined as a system that aims to provide urgent treatment

or stabilization in medical emergencies. Structurally, a control facility serves as an integrating part of

this system, serving the purpose of receiving incoming emergency calls, which can be placed by any

person, and then assigning emergency vehicles to the required location, depending on the number of

people in need of immediate medical assistance and/or on the seriousness of the emergency at hand. It

is important that this service is provided in the least amount of time possible in order to provide medical

care to the person in need in the fastest way possible. Once the patient’s situation is stabilized and he

is transferred to the established health facility, the ambulance that was dispatched becomes available

once more as soon as it returns to its base, where it can be given a new task, and all the procedures

have been completed for the ambulance to be available again.

In the context of EMS, the vehicle location problem consists of locating the vehicles in some potential

service sites in order to reduce the delay of covering emergency service demands [24]. However, in real-

world scenarios, there is the need to keep the solutions feasible, while still granting a satisfiable level

of optimality. This work focuses on analysing proposed solutions to the vehicle location problem, as

the basis to then formulate a model to apply to existing data from the Instituto Nacional de Emergência

Médica (INEM) and try to see if there is a more efficient way of providing aid to emergency situations.

If we imagine a one dimensional space which has two emergency sites, represented by the crosses,

and two vehicle locations, represented by the dots, arranged as seen in Figure 1.1, and we imagine a

scenario where emergency 1 occurs first and only after does emergency 2 occur, it is easy to see why

assigning the closest vehicle, the vehicle in location A in this case, to emergency 1 might seem like a

decent choice, since the distance to that emergency, which is four kilometers, is much smaller when

opposed to the twelve kilometers from location B to emergency 1. However, since vehicle 1 will then

be unavailable when emergency 2 occurs, we can only assign vehicle 2, which will now have to travel

12 + 4 + 10 = 26 kilometers, which means that overall, to provide aid to both emergencies, both vehicle

travelled a total of 26+4 = 30 kilometers. Since our goal is to minimize the total distance travelled by both

our vehicles, we can choose to assign vehicle A to emergency 1 and vehicle B to emergency 2, which will

lead to a total distance travelled of 12+10 = 22 kilometers, which is a much better scenario than the one
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previously described. This is the simplest example in which we can demonstrate what we are looking for

when we talk about optimality in the context of the Emergency Medical System performance. In bigger

cases, we will have to test every possible assignment of vehicles to every emergency we analyse, which

will make the problem grow exponentially.

Figure 1.1: Illustrative Example

Additionally we also perform an aggregate demand analysis where we divide a vehicle allocation

problem from a large time period, for example a full day, into smaller time periods which are easier to

solve with the objective of finding a solution to the bigger problem by combining information from the

solutions to the smaller instances of the problem.

Although this situation is based on the assumption that we know where future emergencies will

happen, our goal is to create a model that will allow this optimization to be calculated for past solutions

where we have complete knowledge of what happened and want to access the performance of the

Emergency Medical System in use, or used in conjunction with a predictive model as a way to predict

and allocate vehicles in a way that creates a better expected performance in future situations.

This document is organized as follows. In Chapter 3, the fundamental concepts of the optimization

types are introduced. In Chapter 2, a set of contextual models and solving methods, as well as their

properties, are introduced, providing references from authors that explored the same subject. Chapter

4 contains the modelling and mathematical process that went into the creation of the final model and

Chapter 5 provides insight and further investigation of the application of the created model. Chapter 6

concludes the document and Chapter 7 presents possible enhancements or ideas to continue the study

of this subject.

2



Chapter 2

Related Work

One of the ways to improve the procedure that allows an hospital or medical care center to answer

medical emergency calls is to assess the ambulance workflow. This workflow can be tackled in a number

of different ways, some of them described in this section.

2.1 Overview and early works

The EMS system has an optimization problem regarding the allocation of the emergency vehicles (ambu-

lances) which has been tackled in a number of different ways throughout the years, all of them ultimately

aiming at increasing the efficiency of resource usage. The motivation for these works come from the

fact that EMS’s exist with the purpose of not only assigning ambulances to emergencies when these

happen, but also conveying a distribution of these ambulances in a way that allows them to maximize

the area covered, as it was first described, by Church & ReVelle [10], in their work that considered a

fixed size fleet of ambulances. After this work, there have been an enormous number of authors dwelling

upon the intricacies of the ambulance location, relocation and assignment problem, some of them sug-

gest the usage of a dynamic approach, in which each ambulance is able to communicate with other

ambulances (multi-agent approach) or with an ambulance coordinator (centralized approach) in order to

decide where to go after it has been dispatched to an emergency and therefore maximize the coverage

of each zone after each emergency has been dealt with [25, 22, 9]. This dynamic approach is presented

with many computational or scalability problems when applied to either large fleets of ambulances or

extensive land coverage. This means that dynamic approaches may not be achievable in the expected

amount of time, effectively harming the end goal of reducing the overall response time to emergencies.

Since the allocation of emergency vehicles is a very complex problem that involves a great deal of

variables and different scenarios, it is important to specify the context for each proposed solution. The

details of several of relevant works are present in an very complete and interesting set of tables present

in the work of Bélanger [6] in which the author divides and classifies the different works based on the

specific details they cover. These tables cover variables such as the number of different types of ambu-

lances available, a list of covering and standby site constraints and the objectives of the work developed
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in the literature. Different types of ambulances define an interesting alteration to the standard scenario,

for example, a certain type of ambulance is more effective in heart disease related emergencies, and

the system should, therefore, prioritize assigning these ambulances to emergencies of that nature.

However, other approaches have been taken in order to tackle this problem, namely some deter-

ministic models, probabilistic models [7], and some more recent approaches that use the heuristics, for

example, the tabu search heuristic[17]. Discussing all the papers in depth would make this work too

extensive and difficult to follow, hence, we will only be discussing a few examples and we will use the

tables in the next pages in order provide an overview on which papers cover what topics and which

techniques are used.

2.2 Static Ambulance Location Models

The ambulance location model can be defined as a graph G = (V,E) where V = N ∪M , N = (v1, ..., vn)

and M = vn+1, ..., vn+m being two vertex sets representing, respectfully, demand zones and potential

standby sites. whereas E is an edge set where each edge {(vi, vj) : vi, vj ∈ V, i < j} is associated with

a travel time or distance tij . Since most of the models use the notion of coverage, the sets Mi and M ′i
correspond to the sets of standby sites that can cover a demand zone vi respectively within a defined

time limit S and S′ , S′ > S . The set Nj will correspond to the set of demand zones that can be reached

by a vehicle located in vj within S . The number of ambulances, when given, is set as p. This model

definition to several models throughout this paper, therefore, the nomenclature will be reused further

ahead.

2.2.1 Deterministic single coverage Models

The first emergency vehicle location problem explicitly formulated using the notion of coverage is in the

work of Toregas, Swain, ReVelle, and Bergman[33], and it is stated in that work that a demand zone is

covered if and only if it can be reached by at least one vehicle within a previously established time or

distance frame. The objective this work aims to achieve is that of minimizing the number of vehicles in a

way that all zones are adequately covered. For this purpose, it uses Boolean variables xj that take the

value 1 when an ambulance is located at vj ∈ M , the same vertex representing the potential standby

sites than in the Static Ambulance Location Model. This is called the location set covering problem

(LSCP) and it is formulated as seen in Fig.2.1:

However, the amount of vehicles needed to achieve this level of coverage might not be realistic in

practice. Moreover, real-world problems often have a given vehicle fleet, therefore we should take this

number of vehicles into account. Having this in mind, Church and ReVelle[10] formulated the maximal

covering location problem (MCLP) which seeks to maximize the demand covered by an estabilished

number of vehicles p in a fleet. Another Boolean variable yi which takes the value of 1 when the demand

zone vi is covered by at least one vehicle within the time limit S and ai which is the demand associated

with zone vi, was added in order to formulate the MCLP, as shown in Fig.2.2.
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min
M∑
j=1

xj (2.1)

subject to:
∑
j∈Mi

xj ≥ 1, j = 1, ..., n, (2.2)

xj ∈ {0, 1}, j = 1, ...,m. (2.3)

Figure 2.1: Definition of the Location Set Covering Problem

max
n∑
i=1

aiyi (2.4)

(2.5)

subject to:
∑
j∈Mi

xj ≥ yi, i = 1, ..., n, (2.6)

m∑
j=1

xj = p, (2.7)

xj ∈ {0, 1}, j = 1, ...,m, (2.8)
yi ∈ {0, 1}, i = 1, ..., n. (2.9)

Figure 2.2: Definition of the Maximal Covering Location Problem

The MCLP has since then been studied and applied to a number of different scenarios in the am-

bulance location problem, some[15] only applied it to a concrete case. However, for the purposes of

this work, we will only reference those who contributed with different approaches to solve the model, as

did Galvão and ReVelle[16] when they proposed a LaGrangean heuristic approach to solve the MCLP

or the addition of a second type of vehicle to the problem by Schilling, Elzinga, Cohon, Church, and

ReVelle[30]. Both these works had the MCLP as a base model.

2.2.2 Deterministic multiple coverage Models

The core difference in relation to Deterministic single coverage models is that in Deterministic multiple

coverage models there is the possibility that no vehicles are available to answer a call, i.e., all the

vehicles are alocated to emergency calls and a new call is received. Single coverage models might not

be able to deal with these cases which often occur in real-life situations. In order to solve this problem,

multiple coverage problems seek to have a smaller likelihood that a zone is not being covered by any

vehicles by increasing the number of vehicles available to cover said zone. This is an improvement

over single coverage problems as it accounts for the natural randomness of emergency demands by

changing vehicle availability.

In 1981, Daskin and Stern[12] proposed the hierarchical objective set covering problem (HOSC), a

model that minimizes the amount of vehicles needed to provide complete coverage and maximizes the

amount of vehicles that can cover a zone. However, this can cause unwanted effects since each addi-

tional vehicle has the same effect on the objective function. Additionally the HOSC is prone to leaving
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harder to cover zones covered by only one vehicle. This happens due to the fact that the HOSC does

not take into account the demand in each zone. Later, the regrouping problem stated previously was

tackled by Eaton, Sanchez, Lantigua, and Morgan[14] by considering each zone’s demands. Further

drawbacks of the HOSC were assessed by Hogan and ReVelle[21] who created two additional models

(BACOP1 and BACOP2) that seek to maximize the demand covered twice, instead of just once, given a

number of vehicles to locate.

As a consequence of the integration of the double coverage model and different coverage radii, the

double standard model (DSM) is proposed by Gendreau, Laporte, and Semet[17]. This new model

aims to set the location of a given number of vehicles in an attempt to maximize the demand covered

twice within a time frame S. This model was then extended by a variety of other authors that integrated

different concepts to the main DSM algorithm or used the very same algorithm for different purposes,

most notably when Storbeck[31] proposed the maximal-multiple location covering problem (MMLCP),

a goal programming formulation that aims to locate a given number of vehicles with the objectives of

minimizing the demand that is left uncovered and maximizing the number of demand zones covered by

more than one vehicle.

2.2.3 Probabilistic and Stochastic Models

As previously described, deterministic multiple coverage models came as a significant improvement

over deterministic single coverage models. However, even though they brought improvement and solved

some of the problems of single coverage models, it was still hard to ensure a satisfying level of service.

Furthermore, the double coverage model excels at congested environments, which refers to very active

city centers, in this context, meaning that when applied to non-congested examples, it did not provide

such a big edge over the single coverage models. It is at this point that some authors considered in-

troducing sources of uncertainty, hence leading to several probabilistic and stochastic models being

proposed.One of the most important models, the maximum expected covering location problem (MEX-

CLP), aims to locate a given number of vehicles in a way that maximizes the expected coverage, while

taking into account that there is a probability that a vehicle might be unavailable to respond to an emer-

gency call. This probability is called the busy fraction. The MEXCLP and its variants[8, 13] have three

main assumptions at their core: the busy fraction is given and equal for all vehicles, the busy fraction

is independent of the location of the vehicle and each vehicle operates independently. A drawback in

MEXCLP is that these conditions are not generally met in real-world situations. In order to tackle this

issue, Batta[4] proposed two variants on the original MEXCLP which allowed for some relaxation on the

assumptions stated above.

So far, the models previously described assume deterministic or static travel times. However, in real

situations this is very often not the case due to a number of factors that can modify the travel time, like

traffic, for example. Daskin[11] proposed the first model in which not only the location of the vehicles

and respective demand zones were set to achieve the maximum expected coverage, but also the route

each vehicle should take was taken into account, considering these are not deterministic.
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2.3 Dynamic Relocation Models

The set of models discussed so far all assume that after completing an assignment, each vehicle returns

to the base that dispatched it. However, there might be cases where it is beneficial that the vehicles go

to a different location than the one they were stationed at. From this possibility, the relocation problem

arose, and it consists in relocating vehicles that are not responding to any emergencies to more a

location where it has a better impact in the operation of the EMS. In this particular section, only the

relocation models that consider the state of the system at the exact moment the decisions must be

made. This problem can be analysed in several ways, in the next few sections, namely: real-time

relocation models, compliance table policies and the use of dynamic programming as an algorithmic

solving techinque.

It is important to keep in mind that even though relocation may improve performance, it also leads

to additional ambulance movements that can be costly. Therefore, from a practical standpoint, dynamic

relocations are generally only acceptable within certain limits.

2.3.1 Real-time relocation models

Real-time relocation models (also called online relocation models) occur when a dynamic relocation

takes place at the exact moment a decision must be taken. A solution or an approximate solution must

be calculated every time a decision needs to be taken. Gendreau, Laport and Semet[18] proposed the

first relocation model that explicitly takes into account the dynamic nature of EMS, and this model is

based on the DSM proposed by the same authors, which was referred earlier in this paper. It aims to

maximize the demand covered by at least two vehicles within a time frame and minimize the relocation

costs. As a consequence, the objective functions contains a penalty term that tracks the relocation

history of the vehicles. This serves the purpose of avoiding round-trip or excessively long relocations

as well as moving the same vehicles repeatedly. The ambulance relocation problem (RP t) formulation

uses three Boolean variable, namely: ui that takes the value 1 if the demand zone i is covered at least

twice, yi that takes the value 1 if the demand zone i is covered at least once and xjk equal to 1 if the

vehicle k is in location j. It also contains a penalty term M t
jk related to the action of relocating a vehicle

k to a new location j at time t. Hence, the (RP t) is formulated as shown in Fig.2.3:

As stated before, the RP t is intended to be solved every time a decision needs to be made, which

corresponds to the times when a vehicle is dispatched to an emergency call. These calculations, how-

ever, yield great computational time needed to solve, and this might be too long for the system to rely

on every time a vehicle needs to be dispatched. In order to solve this problem the same tabu search

heuristic used by Gendreau[17] was proposed in combination with the use of parallel computing in order

to reduce the amount of time it takes to solve the different relocation problems. This methodology was

successfully applied to real data from Montreal, Canada.

The models described so far used the coverage measure as the way to assess the performance of

the system, Andersson and Värbrand[3] decided to diverge from this measure and introduced a real-time

ambulance relocation model that uses the notion of preparedness instead. This measure is defined as
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max
n∑
i=1

aiui −
m∑
j=1

p∑
k=1

M t
jkxjk, (2.10)

subject to:
∑
j∈M ′

i

p∑
k=1

xjk ≥ 1, i = 1, ..., n, (2.11)

n∑
i=1

aiyi ≥ α
n∑
i=1

di, (2.12)

∑
j∈Mi

p∑
k=1

xjk ≥ yi + ui, i = 1, ..., n, (2.13)

yi ≥ ui, i = 1, ..., n, (2.14)
m∑
j=1

xjk = 1, k = 1, ..., p, (2.15)

p∑
k=1

xjk ≤ pj , j = 1, ...,m, (2.16)

yi, ui ∈ {0, 1}, i = 1, ..., n, (2.17)
xjk ∈ {0, 1}, j = 1, ...,m, k = 1, ..., p. (2.18)

Figure 2.3: Definition of the RP t

%i =
1

ai

Ki∑
k=1

γk

tki
(2.19)

Figure 2.4: Mathematical definition of preparedness

the capacity of a system to answer future demands. The preparedness of a zone i has a weight, ai,

that mirrors the demand for ambulances in the zone, a given number of vehicles, Ki, that will be used

in the computation of the preparedness of the zone, the travel time of a vehicle k to a zone i, tki , and

γk, a contribution factor of each of the vehicles considered. Considering all of these parameters, the

preparedness of a zone, %i, is defined as seen in Fig.2.4:

When applied, the level of preparedness for each demand zone is verified regularly, and a relocation

takes place whenever the level of preparedness drops below a predetermined value. To determine what

the relocation plans are, the authors proposed the DYNAROC model. This model aims to minimize

the maximal travel time required to perform a relocation. Similar to the RP t, DYNAROC has a set of

constraints to limit the travel times and the number of relocated vehicles. Additionally, it aims to achieve

a minimum level of preparedness for each demand zone, %min. The DYNAROC formulation contains a

Boolean variable, xki , that takes the value of 1 if and only if the vehicle k is relocated to a standby site

in zone i, a set of zones Nk that can be reached by a vehicle k within a predetermined time frame S,

and finally, a parameter, Pmax, that denotes the maximum number of relocated vehicles allowed. Having

said this, the DYNAROC is formulated as seen in Fig.2.5.

In order to solve the DYNAROC model, the authors proposed a tree-search heuristic and tested this

solution using data from Stockholm, Sweden.
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min z (2.20)

subject to: z ≥
∑
i∈Nk

tki x
k
i , k = 1, ..., P, (2.21)

∑
i∈Nk

xki ≤ 1, k = 1, ..., P, (2.22)

P∑
k=1

∑
i∈Nk

xki ≤ Pmax, (2.23)

1

ai

Ki∑
l=1

γk

tli(x
1
1, ..., x

P
N )
≥ %max, i = 1, ..., n, (2.24)

xkj ∈ {0, 1}, i = 1, ..., n, k = 1, ..., P. (2.25)

Figure 2.5: Definition of the DYNAROC model

Mason[26] follows the work of Gendreau[18] to determine the location of available vehicles in a way

that maximizes the service quality and minimized relocation costs. Therefore, they propose the real-

time multi-view generalized cover repositioning model (RtMvGcRM) as a way to address the dynamic

ambulance relocation problem. This model was implemented using Optima Live, an EMS management

software. The objective function in this model is based on a general concave piecewise linear function

that specifies the reward attributed to each demand zone with relation to the number of vehicles covering

it. The objective funtion also handles several types of vehicles with varying performances, effectively

expanding the performance measures that Gendreau[18] introduced, even if still using the concept of

coverage.

Naoum-Sawaya and Elhedhli[29] proposed a two stage stochastic programming approach to address

the dynamic relocation problem. This approach aims to minimize the cost related to vehicles’ relocation

and the cost associated to demands that cannot be served in the prescribed delay. The first stage of

this process concerns decisions on the initial location of the vehicles and the goal here is to minimize

the number of future relocations. A set of scenarios, estabilished based on data from Waterloo, Canada,

represent the uncertainty in this first stage. The second stage concerns the assignment of vehicles to

emergency demands once the emergency calls arrive and, additionally, it identifies the emergencies that

cannot be reached within a known time frame. This problem, applied to the same data referred earlier,

was solved using the CPLEX, with relatively short computation times.

Focusing on a different aspect within the dynamic ambulance relocation problem, Jagtenberg, Bhu-

lai, and van der Mei[23] proposed a dynamic version of the MEXCLP with the goal of minimizing the

expected fraction of late arrivals, meaning, the emergency calls for which the maximum allowed re-

sponse time is exceeded. Additionally, this work featured an important change relative to other works

in this area, the vehicles can only be relocated at the end of a mission. The results obtained from the

application of this model to data from Utrecht, Netherlands, showed that the fraction of late arrivals was,

in fact, lower, when compared to a static policy featuring no relocations.
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max
P∑
k=1

n∑
i=1

aiqkyik, (2.26)

subject to:
∑
j∈Mi

xjk ≥ yik, i = 1, ..., n, k = 0, ..., P, (2.27)

m∑
j=1

xjk = k, k = 1, ..., P, (2.28)

xjk − xj,k+1 ≤ ujk, (2.29)
m∑
j=1

ujk ≤ αk, k = 1, ..., P − 1, (2.30)

xjk ∈ {0, 1}, ujk ∈ {0, 1}, j = 1, ...,m, k = 1, ..., P, (2.31)
yik ∈ {0, 1}, i = 1, ..., n. (2.32)

Figure 2.6: Definition of the Maximal Expected Relocation Problem

2.3.2 Compliance table policies

In the previous section the relocation models needed to be solved in real-time multiple times during the

day. This poses a dimensionality problem in which the larger the problem at hand is, the stronger the

computational power needs in order to solve it in a timely manner. This is where the need for relocation

plans or compliance tables comes in. These tables represent sets of scenarios applied to the system

that have been solved a priori, in other words, they represent relocation plans for the vehicles in each

situation. Taking this offline approach proves much easier to implement in real-life situation as it comes

closer to the actual EMS practices. Nonetheless, the number of potential states that need to be solved

can also be significantly large. Gendreau, Laporte, and Semet[20] proposed the maximal expected

relocation problem (MECRP), which is one of the first dynamic offline relocation model used to create

a set of relocation plans. This model aims to determine the appropriate location plan for each possible

state of the system, which depends on the number of available vehicles. The authors also introduced a

constraint on the number of vehicles that can be relocated between states. The model has a Boolean

variable xjk that takes the value 1 if, and only if a vehicle is located at j when the system is in state

k, a Boolean variable yik that takes the value 1 if, and only if a demand zone i is covered by at least

one vehicle when the system is in a state k, a Boolean variable ujk that takes the value 1 if, and only

if a location j is no longer used when the system goes from state k to state k + 1 and finally qk, a

probability of reaching state k, k = 0, ..., P where P is the total number of vehicles. The MECRP is

formulated as seen in Fig.2.6. In this model, constraint 2.27 mean that a demand zone is covered only if

a least one vehicle is located in particular site, and constraint 2.28 control the number of vehicles used

in the solution. Constraints 2.29 and 2.30 control the number of waiting site changes when the system

changes states.

These constraints are similar to those formulated in the MCLP. Nevertheless, other constraints need

to be added to control the number of vehicles relocated between the states. This model is solved once,

a priori, and the compliance table referring to each state is applied when needed. In order to solve this
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model the authors used CPLEX and validated the solution with data from Montreal, Canada.

van Barneveld[34] suggested a model that combines both the MECRP and the MEXCLP in order to

account for vehicle unnavailability. This model is referred to as the minimum expected penalty relocation

problem (MEXPREP). It features a non-decreasing penalty function that depends on the response time

that in the objective function, allowing the consideration of several performance measures. After the

initial step of calculating the compliance tables for this model, an online assignment model is solved in

order to find the best ambulance movements to reach compliance. This application outperformed both

the static policy with no relocation as well as the solution provided by the MECRP, on most performance

measures. The same authors later proposed an extension of this model that accounted for two different

types of vehicles and a bound on the time needed to perform relocation between states.

Nair and Miller-Hooks[28] proposed a relocation model similar to the one proposed by Gendreau[19]

to position the vehicles. This model considers the evolution of the system’s state overtime. However,

unlike Gendreau[19], the states are defined by the incoming call probability distributions, the number of

available vehicles and the travel time between locations, as opposed to being defined only by the number

of vehicles available. This model aims to maximize the double coverage and also to minimize relocation

costs. The impact that relocation has is therefore incorporated in the objective function instead of being

a set of constraints. The model is solved a priori to establish a compliance table for each possible state,

just like in the MECRP. Application of the model to data from Montreal, Canada, achieved improvements

depending on the number of vehicles.

With the same intent to maximize the expected coverage but also to limit the number of relocation

between states, Sudtachat, Mayorga, and McLay [32] proposed a dynamic relocation model that used

a set of nested compliance tables where only one ambulance is moved whenever the system goes

from one state to another. This model has foundations on other works, like Batta[4], that proposed an

extended version of the MEXCLP where servers are not independent and might have different busy

probabilities and Alanis, Ingolfsson, and Kolfal[2] which used Markov Chains to model a EMS system.

Inspired by these two works to compute and analyze the performance of a fixed compliance table policy,

the model uses an adapted version of the Markov Chains to approximate the steady-state probabilities

of the system for each state and then incorporates these values in the proposed nested compliance

table model. This model is formulated as an integer programming model that maximizes the expected

coverage for each state, defined as the number of busy vehicles and the state of the system with respect

to compliance. It also ensures that, for each possible state, available vehicles are located and that the

coverage is accounted for. When applied to data from Virginia, USA, it showed improvements when

compared to the static case where no relocation is allowed.

2.3.3 Approximate Dynamic Programming approaches

Using dynamic programming enables a proper understanding of the random evolution of the system

through time, which, in this EMS context, is extremely relevant. One downside is that dynamic program-

ming is usually limited to small problems, which is rarely the case in the EMS context. This is where
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J(s) = minx∈X(s){E[c(s, x, f(s, x, w(s, x))) + ατ(f(s,x,w(s,x)))−τ(s)J(f(s, x, w(s, x)))]} (2.33)

Figure 2.7: Optimality equation

approximate dynamic programming (ADP), which is a method that requires a preparatory tuning process

that can be computationally expensive to then be able to operate in real-time situations, comes in handy.

Maxwell, Restepo, Henderson, and Topaloglu[27] were the first to apply ADP to the dynamic ambu-

lance relocation problem. In their definition of the problem, relocations can only occur in vehicles that

just completed their mission. This was an attempt to reduce the inconveniences on a practical, human

resources’ standpoint, at the cost of a reduction of the number of possible decisions, from a mathemati-

cal standpoint. Upon mission completion, a vehicle can be relocated to another site, the problem lies in

determining what this site will be such that the number of high-priority calls that can be reached within a

given time frame is maximized. The model assumes a level methodology for call queuing where the calls

with the most priority are answered first and within the same level, a first-in, first-out policy is followed.

Calls that cannot be served are queued and the nearest ambulance is always dispatched to a call. The

optimality equation that defines this model aims to minimize the discounted total expected cost given

an initial state, where the cost is defined as the number of high-priority calls that cannot be reached in

a timely manner. The model also accounts for the systems’ state, s, which is defined according to the

current time and event. The state of each vehicle is defined in a vector A, the call state is described in a

vector C. Additionally, the model uses X(s), the set of all feasible decisions given a state s, a transition

cost, c(sk, xk, sk+1), from state sk to state sk+1 given a decision xk, the transfer function, f(s, x, w(s, x))

that depends on the system state, the decision made and random elements w(s,x), a fixed discount fac-

tor, α ∈ [0, 1[, and the time at which the system visits state s, τ(s). The optimality equation expressed in

Fig.2.7 can be used to compute the value function to determine the policy that minimized the discounted

total expected cost given and initial state s.

In this case, the set X(s) is relatively small, since only one vehicle is eligible for relocation. The

number of emergency locations that will not be reached within the time frame are calculated based on

the transition costs, which take the value 1 if the next event is of the form ”ambulance i arrives at scene

of call j” and the corresponding call is urgent and the time frame is exceeded, and 0 otherwise. This

value function evaluation is a challenging task nonetheless, and the high dimensionality of the state

variable makes it so that classic dynamic programming cannot be applied directly.

The challenge of using approximate dynamic programming consists of selecting the right values for

the parameters needed to determine an adequate approximation of the value function. When such an

approximation is found, it is possible to identify the optimal policy by enumerating each possible decision

and evaluating the corresponding expected value, in this work, the Monte Carlo simulation was used.

The results obtained from this study showed an improvement over the static policy, where no relocation

is allowed. It was also shown that the performance can be enhanced by considering more frequent

locations and involving more vehicles in the relocation process, but this would significantly increase

computational times.
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2.4 Analysis Works

The works mentioned thus far describe a summarized state of the art of the EMS location problem.

There have been various ways of formulating and solving the problem throughout the years. However,

for simplicity, we selected and analyzed those which we deemed more important in order the understand

how the state of the art has evolved. Table 2.1 contains a collection of papers described in this work

classified by a set of relevant aspects. This table serves as both a summary of Chapter 2 and a quick and

comprehensive mapping of what papers cover which aspects within the EMS location problem context.

There have also been studies and reviews on the effectiveness, advantages and disadvantages

of several approaches and techniques used to try to solve the EMS ambulance location or relocation

problem. These studies are particularly helpful as an introduction to the matter at hand because they

are often very generic in their descriptions in order to fit most models that are referenced in it and also

because they allow the reader to become aware of which papers address what specific topics before

actually reading them, effectively serving as a filtering method for whoever needs to search for works in

this area of study[5, 1].
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Paper Objective Solution Strategy Model Type
Toregas et al.(1971) Min. Number of Vehicles Branch and Cut Deterministic
Church and ReVelle
(1974)

Max. demand covered once Branch and Bound &
Greedy Heuristic

Deterministic

Schilling et al.
(1979)

Max. demand covered once Branch and Cut Deterministic

Daskin and Stern
(1981)

Min. number of vehicles & Max. demand
covered more than once

Branch and Cut Deterministic

Storbeck (1982) Max. demand covered once & Max. de-
mand covered more than once

Not presented Deterministic

Eaton et al. (1985) Max. demand covered once NaN Deterministic
Hogan and ReVelle
(1986)

Max. demand covered once & Max. de-
mand covered twice

Branch and Bound Deterministic

Galvão and ReVelle
(1996)

Max. demand covered once Lagrangean Heuris-
tic

Deterministic

Gendreau et al.
(1997)

Max. demand covered twice Tabu Search Deterministic

Bianchi and Church
(1988)

Min. uncovered demand Branch and Bound &
Heuristic Method

Probabilistic, Ex-
pected Coverage

Batta et al. (1989) Max. expected covered demand Heuristic Method &
Descent Method

Probabilistic, Ex-
pected Coverage

Galvão et al. (2005) Max. expected covered demand & Max.
demand covered with reliability α

Simulated Annealing Probabilistic, Ex-
pected Cover-
age, Chance-
Constrained

Gendreau et al.
(2006)

Max. expected covered demand General-purpose
Solver

Dynamic

Naoum-Sawaya and
Elhedhli (2013)

Min. number of relocated vehicles & Min.
number of calls that cannot be reached in
time

General-purpose
Solver

Dynamic

Jagtenberg et al.
(2015)

Min. number of calls that cannot be
reached in time

Heuristic Method &
Discrete Event Sim-
ulation

Dynamic

van Barneveld
(2017)

Max. expected covered demand General-purpose
Solver

Dynamic

Sudtachat et al.
(2016)

Max. expected covered demand General-purpose
solver & Discrete
Event Simulation

Dynamic

Schmid (2012) Min. average response time Approximate dy-
namic programming

Dynamic

Table 2.1: Classification of several papers.

14



Chapter 3

Preliminaries

All of the data used in this paper has been retrieved from a database containing detailed information

about the medical emergencies in Portugal. This database was provided to us by the INEM (Instituto

Nacional de Emergência Médica). In this chapter, a brief description is made about the work that has

been done after retrieving the data about emergencies and vehicles from the INEM database as well as

insights on the process of deducting further information from the data we were able to retrieve.

3.1 Data Analysis

After cleaning, organising and getting the information we wanted from the INEM database, we needed

to draw conclusions that could be used to model our solution for the Ambulance Location problem.

Objectively, we were aiming at getting the values of the minimum dispatch time for each individual

vehicle and also a measure for the radius of the action zone for each emergency station, which would

come from the analysis of the average distance to an emergency.

Dispatch Time Measure

For the purposes of defining an average dispatch time that we could use to model our solution we

needed to see the disparities between highly populated districts and districts with less population density,

therefore we divided all the eighteen districts in two groups, the first one containing Lisboa and Porto

and the other group containing the remaining 16 districts and we noticed that the distribution of dispatch

times for the same vehicles was much more elongated in the less populated districts, for example Beja,

Évora and Viana do Castelo 3.2 as opposed to a much more steep descent in the distribution in Lisboa

and Porto 3.1. In both of these groups of graphs we can see these two similar distributions, with the

previously mentioned more elongated descent in the less populated districts of Beja, Évora and Viana

do Castelo. It is also important to note that Lisboa and Porto also have significantly more occurences

depicted in these graphs as opposed the the other three districts.

We noticed that for the highly populated districts, the most common time between dispatches was be-

tween one and two hours, with a steep descent in occurrences of higher values between each dispatch.
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Figure 3.1: Histograms of the time between each dispatch of the same vehicle in Lisboa and Porto (More
populated districts
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Figure 3.2: Histograms of the time between each dispatch of the same vehicle in Beja, Évora and Viana
do Castelo, all three lesser populated districts than Lisboa and Porto
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In the less populated districts the most common values had the same distribution with a much less steep

descent, meaning that there are more vehicles that take more than two hours to be dispatched again.

However, the most common values still oscillate around one to two hours in most districts. This differ-

ence between results might be a consequence of a higher density of emergencies in the more populated

districts due to a sheer difference in population number. However, it can also be the case that in the less

populated districts there is a higher rate of emergency vehicles to number of emergencies, indicating a

less than optimal distribution of resources.

3.2 Data Preparation

The database used, courtesy of the Instituto Nacional de Estatistica (INEM) has a variety of different

fields that track a number of different variables regarding each emergency, vehicle, station and possibly

other fields that were not used for the purposes of this study.

From an analytical point of view, we wanted to retrieve two important measures: the average distance

that each vehicle traveled to get to an emergency site and the average time between each dispatch of

the same vehicle. The first problem we came across had to do with missing values and incorrectly

formatted records, and this problem occurred in the process of reviewing both measures. Since there is

no way to infer or calculate the missing values, we discarded any records that were either empty or had

out of context information.

Distance Measure

This initial data cleaning allowed us to perform the first proper analysis of the data we were working with

and start to draw conclusions from the results of that same analysis. However, in the average distance

measure, we found values that were inconsistent with what we were expecting. More specifically, and

given the fact that we were analysing data from continental Portugal, in which the longest straight line

that connects two parts of the country is just below six hundred (600) kilometers long, we found records

that read distances over four thousand (4000) kilometers. After analysing these records, we discovered

that they all the same emergency coordinates corresponding to the point at zero degrees latitude and

zero degrees longitude (0°N 0°E), as seen in Fig.3.3. Because of this we decided to not take into account

the records that used this point as their emergency site.

Even though we had dealt with these erroneous records, we still had a number of emergencies

occurring at more than fifteen hundred kilometers (1500) which were still out of context. After further

investigation, we found out that these records referred to marine emergencies in the Atlantic Ocean.

These records still appear on this database because the Portuguese territorial sea area is about fifty

one thousand squared kilometers (50957), sixteen thousand (16460) of those belong to the continental

portion of Portugal and the rest belonging to the Açores and Madeira archipelagos, as seen in Fig.3.4.

Since we are only dealing with terrestrial emergencies in this study, we imposed a coordinates limit that

ensured that the emergency sites were inside continental Portugal.
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Figure 3.3: Example of emergency being recorded at position (0°N 0°E)

After cleaning all the data, we ended up with the complete graph of all the distances covered by each

vehicle when providing aid to an emergency, as seen in Fig.3.5

Dispatch Time Measure

The preparations for calculating the average dispatch time measure were not as extensive as the ones

for the average distance. In order to get the records for this measure we first separated and organised

the records according to the vehicle identifier and we arranged these same records in a chronological

order, which made it trivial to calculate the consequent dispatch times and calculate the average dispatch

time for all the vehicles. After getting this initial value, we tried to get more detailed data, namely isolating

each one of the eighteen districts in Portugal and after that getting data by vehicle type and emergency

priority levels.
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Figure 3.4: Example of emergency in the Madeira Archipelago

Figure 3.5: Distance Covered by each vehicle when providing aid to emergencies
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Chapter 4

Ambulance Assignment

In this section we will go over the several models we developed at different stages of the elaboration of

this document, explaining our thought process behind each change we made along the way, as well as

providing insight as to what implications those changes had in the way we treated data and had to adapt

our process.

After the initial analysis and preparation of the data retrieved from the INEM database, the first step

was to create a very simple, traceable model with which we could check for implementation mistakes as

well as start testing very small examples in the solver. These first examples were handmade and not

derived from data. Our main goals with this approach were testing specific cases and how the solver

would react to them while also optimizing the generation of an instance that represents each problem

mathematically. As a result, we had to make several changes to both the way the data was being inserted

in the programmatic generation file, as well as the generation process itself, since it was not accounting

for a number of cases we had not initially considered, for example, the case where two vehicles were

being used in subsequent time periods and therefore were unavailable when they were needed in these

limited models where we did not have more vehicles than emergencies, causing the solver to deem this

example as unsatisfiable.

4.1 Initial Model

The ambulance location model can be defined as a graph G = (V,E) where V = N ∪M , N = (v1, ..., vn)

and M = vn+1, ..., vn+m being two vertex sets representing, respectfully, emergency sites and standby

vehicles with and associated position. Additionally, E is an edge set where each edge {(vi, vj) : vi, vj ∈

V, i < j} is associated with a travel time or distance tij . The variable xij will take the value 1 if and only

if, the the vehicle j provides aid to the emergency site i, and the value 0 otherwise.

For simplicity purposes, we designed a simple example with a given set of emergency sites, N =

A,B,C,D, as well as a set of standby vehicles M = 1, 2, 3 spread randomly on an example map,

represented in Fig. 4.1. This map does not represent any specific zone, it merely serves as an example.

In this map, we implemented a baseline model. It is meant to be a blueprint for Static Models, where
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Figure 4.1: Example Map

we only considered edges that represent connections between emergency sites and standby vehicles.

The simplified graph for this implementation of a static model is represented in Fig. 4.2.

The objective this type of models aims to achieve is that of minimizing the number of vehicles and

the overall travel time in a way that all emergencies are accounted for. For simplicity, we will consider

that a vehicle is unavailable for a period of time correspondent to 2tij in these static models. These time

periods represent the minimum amount of time that a vehicle takes to answer an emergency call and go

back to a standby site.

At this stage we can already say that we will have to impose thresholds on both the values we want

to minimize due to the fact that they represent conflicting objectives, meaning that we have to find a

balance between the two.

In order to better understand each goal, we are first going to formulate two separate model definitions

that represent single objective models. In the first model, represented in Fig. 4.3, the goal is to minimize

the travel time throughout all operations within a time frame. For simplicity, we consider only the parcel

tij associated with each variable xij .

After this, we defined a model in which the goal was to minimize the number of vehicles being used.

In order to do that we will define a variable yj which will take the value of 1 if and only if a vehicle j is

used to provide aid to an emergency. A reduction in the number of vehicles used can mean that that area

in particular has a more vehicles than it should, and these can be relocated to areas that are struggling

with more emergencies. Using this information, we can also cut our vehicle fleet if we realise that there

are vehicles that are never used in the long term. This model definition is represented in Fig.4.4.

22



Figure 4.2: Static Model Simplified Graph

min
M∑
j=1

xijtij (4.1)

subject to:
∑

xij ≥ 1, i = 1, ..., n, (4.2)

xij ∈ {0, 1}, i = 1, ..., n, j = 1, ...,m. (4.3)

Figure 4.3: Distance covered minimizing Model definition

min
M∑
j=1

yj (4.4)

subject to:
∑

yj ≥ n, j = 1, ...,m, (4.5)

yj ∈ {0, 1}, j = 1, ...,m. (4.6)

Figure 4.4: Vehicle usage minimizing Model definition
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min
∑
i

∑
j

xijtij (4.7)

min
M∑
j=1

yj (4.8)

subject to:
∑

xij ≥ n, i = 1, ..., n, j = 1, ...,m, (4.9)∑
yj ≤ 1, j = 1, ...,m, (4.10)

xij ∈ {0, 1}, i = 1, ..., n, j = 1, ...,m. (4.11)
yj ∈ {0, 1}, j = 1, ...,m. (4.12)

Figure 4.5: Double Objective Model definition

Since these two objectives are conflicting, meaning that a bigger number of vehicles used will result

in a smaller value for the distance covered and vice-versa. Our goal is then to find a Pareto front, or a

set of optimal solutions that minimizes both the number of vehicles used and the distance covered by

those vehicles.

After both these models are defined, the Multi-Objective problem definition consists of joining both

the single objective formulations into a single one, represented in Fig. 4.5.

4.2 Different Time Periods and Vehicles Unavailability

With the initial model we were able to test some examples for small time periods where each vehicle

could not be called to two distinct emergencies. However, in a real scenario, it is important that the

vehicle can be dispatched to another emergency as soon as it is available again. In order to apply this

concept to our model we divided a shift sized time frame into smaller fractions. This alteration meant

that in our model we had to alter our set of constraints so that there was a variable for each vehicle

for every one of the smaller time frames, represented by uij . Additionally, we also added a constraint

that made sure that a vehicle could not be used in two consecutive time frames, effectively giving each

vehicle at least one small time frame where it is unavailable between each dispatch. These time frames

might differ in size depending on the situation and the value has to come from an analysis to the different

time between dispatches in several similar real case scenarios, as well as the data analysis described

in Chapter 3.

In order to mathematically model this addition, we divided our large time period into a group of

smaller time periods E = E1, ..., Ek where k represents the index of the period of time within a certain

group E, which contains e time periods. This index k also serves the purpose of identifying a vehicle

assignment uijk, which is a new variable that takes the value 1 if and only if the vehicle j provides aid to

the emergency i in the time period k. As for the model itself, we adapted the previous version to account

for the addition of time periods and we added a constraint that makes sure each vehicle can only be

assign in a certain time period if it has not been assigned in the previous time period as seen in Fig.4.6.

Additionally, because of this alteration, we have also had to make changes to the expression we are
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∑
uijk ≥ 1, i = 1, ..., n, j = 1, ...m, k = 1, ..., e (4.13)

uijk + uij(k+1) ≤ 1, i = 1, ...n, j = 1, ...m, k = 1, ..., e (4.14)

Figure 4.6: Time Period Constraints

∑
uijk − yj ≥ 0, i = 1, ...n, j = 1, ...m, k = 1, ..., e (4.15)

Figure 4.7: New Time Minimization Expression

trying to minimize that represents the usage of each vehicle. With these changes, if a vehicle is used

in any period of time, the corresponding variable yj should be equal to one. Hence we have added a

constraint as seen in Fig.4.7

4.3 Emergency priority and vehicle type

Emergencies are classified by a priority group that is associated with severity. INEM has an eight point

priority rating system which can be converted into three major priority groups, due to a very negligible

amount of emergencies in some of the categories in the eight point system. Depending on the priority

value assigned to each emergency, we wanted to have the more commonly assigned vehicles for each

of the three major priority groups be preferred when selecting the vehicle that is going to be dispatched.

Therefore, we retrieved the type of each vehicle and the priority of each emergency, and imposed con-

straints that prevent certain sets of vehicle types to respond to certain emergencies depending on their

priority. Mathematically, this means that we will have three sets V1, V2, V3 of vehicle types corresponding

to the allowed vehicles to our three major priority groups p1, p2, p3, which will contain the priority level of

each emergency pij . When building the model, we will only consider vehicles for a certain emergency if

their vehicle type is contained within the set for the specific priority level of that emergency.

As for the model itself, we added a constraint that represents the vehicle exclusivity described above,

where only a certain group of vehicles can be assigned to a particular type of emergencies as seen in

Fig.4.8.

uijk = 0, i /∈ V1, j ∈ E1, k = 1, ..., e (4.16)
uijk = 0, i /∈ V2, j ∈ E2, k = 1, ..., e (4.17)
uijk = 0, i /∈ V3, j ∈ E3, k = 1, ..., e (4.18)

Figure 4.8: Vehicle Priority Constraint
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min
∑
i

∑
j

uijktij (4.19)

min
M∑
j=1

yj (4.20)

subject to:
∑

uijk ≥ n, i = 1, ..., n, j = 1, ...,m, k = 1, ..., e (4.21)

uijk + uij′(k+1) ≤ 1, i = 1, ...n, j = 1, ...,m, j′ = 1, ...,m, k = 1, ..., e (4.22)∑
uijk − yj ≥ 0, i = 1, ...n, j = 1, ...,m, k = 1, ..., e (4.23)

yj − uijk ≥ 0, i = 1, ...n, j = 1, ...,m, k = 1, ..., e (4.24)
uijk = 0, i /∈ V1, j ∈ E1, k = 1, ..., e (4.25)
uijk = 0, i /∈ V2, j ∈ E2, k = 1, ..., e (4.26)
uijk = 0, i /∈ V3, j ∈ E3, k = 1, ..., e (4.27)
uijk ∈ {0, 1}, i = 1, ..., n, j = 1, ...,m. (4.28)
yj ∈ {0, 1}, j = 1, ...,m. (4.29)

Figure 4.9: Double Objective Model definition

4.4 Final Model

All these different additions led us to have a model that aims to provide the best assignment for the

available vehicles to the emergencies that occur in a determined amount of time, taking into account

several relevant details about both the vehicles, namely their vehicle type and their availability as to

not overuse a small number of vehicles, as well as the emergencies, namely their level of priority, the

distance to each vehicle station, the number of vehicles needed and even taking into account district

borders as to not have vehicles from different cities attend to emergencies in other cities if it is not

expected.

Even though this model covers a variety of conditions, it does not scale well, meaning that the solver

gets exponentially slower at coming up with optimum or even satisfiable results. Because of this, we

decided to apply the model to 8 hour shifts, thus dividing the day in 3 equal parts, as a way of allowing

the solver to be able to come up with solutions that can be applied in real situations in a reasonable

amount of time.
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Chapter 5

Experimental Results

Upon having a reliable model built and tested, we started comparing the results of real case scenarios to

applications of a solver algorithm to the instances we created of those same scenarios. However, after

we analysed a small amount of these scenarios, and consistently getting a Pareto front of solutions that

was better than the real case scenario, we wanted to try to infer some additional conclusions as well

as come up with some possible solutions to help improve the efficiency of the ambulance assignment

process for future situations.

5.1 Benchmarking

Firstly, our main goal was to compare real case scenarios, analyse how many vehicles were used and

how much distance they covered, and then compare these results with the Pareto front solutions from

the application a solver to the instance we created under the same conditions. From this comparison, we

expected to verify if the real case scenarios were sub-optimal, and try to quantify how much the solutions

on our Pareto front were performing better than these scenarios. In order to do this we analysed cases

with different periods of vehicle inactivity, namely thirthy minutes and one hour and different acceptable

distances for a vehicle to provide aid to an emergency, namely ten and fifteen kilometers. We selected

four separate days across three different years, namely the first day of February, May, August and

December, from 2017, 2018 and 2019. Each of the days was divided in intervals of one, two, four and

six hours, giving us a total of 46 instances created per day analysed. Cumulatively, we generated a total

of 6624 instances, given that we generated all of the previously mentioned conditions in three different

districts, namely Faro, Guarda and Lisboa.

The districts we chose to conduct our analysis are different in population size where Lisboa is the

most populated district in Portugal with 2275591 people residing there as of 2021. Faro and Guarda, in

the same census from INE, have 467495 and 143019 habitants, respectively.

We also wanted to choose at least one region that had a bigger seasonality than the rest, in this

case that region is the district of Faro, which is a common destination for tourists in the summer time. In

table 5.1 we see that the month of August is the month that consistently has more emergencies in the
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Faro Guarda Lisboa

2017

01-02 211 74 860
01-05 180 50 675
01-08 258 63 720
01-12 201 45 785

2018

01-02 216 47 814
01-05 176 59 699
01-08 232 55 739
01-12 184 53 850

2019

01-02 191 60 907
01-05 200 56 724
01-08 266 61 724
01-12 157 44 794

2472 667 9291 12430

Table 5.1: Number of Emergencies

district of Faro, which we speculate happens because of the seasonality present at these times of year.

As far as the other two districts, only Lisboa has a similar pattern in the month of February, but not as

accentuated as the one in Faro.

Upon running our instances in a generalization of openWBO, a solver developed by João Cortes,

that specializes in solving Multi-Objective Combinatorial Optimization instances, we came across some

undesirable situations, the first one being the complexity of the problem, which made our solver unable

to provide acceptable solutions to a large number of instances within the one hour time limit we set for

each instance. In these cases, the solution would be to split the instance problem into smaller problems

and then solve them individually. This happened mostly with the larger examples from Lisboa, namely

the instances that covered periods of four and six hours in their entirety. However, even among the

smaller one and two hour period instances there were several solutions that were not acceptable as

these were not better than the original scenario. In the examples of periods of one hour for Lisboa, we

stopped getting acceptable solutions when we had about fifty vehicles available for periods with close to

one hundred emergencies. Although it is hard infer when exactly the solver is no longer able to provide

acceptable solutions in a one hour time period, when we moved to larger periods of time, there were

very instances that had conclusive results for the district of Lisboa.

On the other hand there were also several instances that represented periods where there were

no emergencies, which do not provide any information, as well as instances that represented single

emergencies where the solution is trivial and is often the real case scenario.

In order to illustrate the analysis we will be describing in the following subsections, we added Figure

5.1 as an example, in which the red crosses represent the Pareto Front solutions found for this example

of the instance created for Faro, in the first of August, 2017, from 18h to 24h. This particular example

we used a thirty minute vehicle inactivity time and a fifteen kilometer range for vehicle action. The black

dot represents the real case scenario.

In this particular scenario, we can see that in the real situation eleven vehicles were used and they

covered a total of 74806 meters to get to all the emergencies. We can also see that there is only one of

our Pareto Front solutions that is better than the real case scenario in both the number of vehicles used
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Figure 5.1: Pareto Front example for Faro, 01/08/2017

and in the distance travelled between them, which let’s us know that even though the real case scenario

was not optimal, it was still rather good when compared to larger examples where it is progressively

harder to approach a near optimal situation.

Our goal with this analysis is to compare solutions between districts and seasons and try to under-

stand whether or not we can allocate the vehicles in a different way in order to try to improve the overall

performance in all of the places we are analysing.

5.2 Vehicle Inactivity

We wanted to see how big the impact was for the overall solutions if we changed the time a vehicle

becomes inactive after it provided aid to an emergency, therefore we tested using a thirty minute inactivity

period and using a one hour inactivity period. We used examples with only a ten kilometer radius of

activity for the vehicles of each emergency. These two values, thirty minutes and one hour, both came

from the analysis of data from previous emergencies, described in Chapter 3.

As expected, the execution of the solver on the instances with the thirty minutes inactivity time took

more time than the instances with the one hour inactivity time due to the amount of vehicles available

for each emergency. This is especially true for larger examples. In Figure 5.2, we see an example from

a two hour period in the district of Lisboa where in the first one we use a thirty minute vehicle inactivity

period, represented by the green crosses, and a one hour vehicle inactivity period, represented by the

red crosses. Since this is a larger example, it is the only one where the solutions differ when we change

the inactivity time. If we look at Figures 5.3 and 5.4 on the other hand, the solutions found are exactly
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Figure 5.2: Comparison between inactivity times in Lisbon. The green crosses represent the thirty
minute vehicle inactivity period and the red crosses represent the one hour vehicle inactivity period.

the same for periods of four hours, hence the green crosses and the red crosses are in the same

positions. Although these are larger time periods, because of the difference in number of emergencies,

the examples in Lisboa are far larger, and give a perspective of the impact the vehicle inactivity period

has on the search of a solution.

Overall, the results in Faro and Guarda did not change when we changed the vehicle inactivity period,

so in these examples, which are considered small compared to Lisboa, we can argue that using the one

hour inactivity time period is better because it reduces the time execution on the solver. However, when

we look at the examples in Lisboa, the general case is that we find better solutions when we use the

thirty minute vehicle inactivity period, and therefore, there needs to be a balance between the optimality

of our solutions and the time it takes for the solver to execute on each instance in particular. Generally,

since we ran our instances with a one hour time limit, it would be better to run the instances with the

thirty minute vehicle inactivity time to achieve the solutions closer to optimality.

In real case scenarios, there may be times where thirty minutes are not enough for a vehicle to be

able to provide aid to a new emergency after having just provided aid to another emergency. If this is

the case, the vehicle inactivity period should be adapted to a value that is compatible with the situation

at hand. One hour and thirty minutes were plausible values in these three situations in particular, hence

the usage of these values.
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Figure 5.3: Comparison between inactivity times in Guarda. The green crosses represent the thirty
minute vehicle inactivity period and the red crosses represent the one hour vehicle inactivity period.

Figure 5.4: Comparison between inactivity times in Faro. The green crosses represent the thirty minute
vehicle inactivity period and the red crosses represent the one hour vehicle inactivity period.
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Figure 5.5: Comparison between distance times in Guarda. The green crosses refer to a ten kilometer
radius and the red crosses refer to a fifteen kilometer radius

5.3 Distance from the emergency

Analogously, we wanted to test the impact of the radius of activity for the vehicles of each emergency,

or in other words, how far away from the emergency a vehicle can be to be taken into account as a

possible vehicle to provide aid to an emergency. When we first started this test we had three values for

this distance, however, upon several tests, we decided to rule out the distance of five kilometers because

a lot of emergencies were getting no available vehicles to provide aid to them. Therefore we ended up

with the values of ten and fifteen kilometers and running the tests on these two values.

In some cases, making the radius of search bigger allows the solver to find more solutions that

normally use less vehicles but increase the distance travelled by these vehicles overall. These additional

solutions are usually cases in which the distance traveled is larger than the real case scenario, and

therefore are not interesting when we have other solutions that can both reduce the number of vehicles

used and the distance traveled. In Figure 5.5 we can see that the usage of fifteen kilometers adds

two solutions, respectfully using three and four vehicles and combined distances of 49348 and 66176

kilometers, but these represent cases that we do not want to consider exactly because the two solutions

that we already had from the ten kilometer radius case, respectfully using five and six vehicles and

combined distances of 35239 and 34673 kilometers, reduce both the distance travelled and the number

of vehicles used when compared to the real case scenario which used eight vehicle and with a combined

distance of 43197 kilometers.

On top of this, using a fifteen kilometer radius also largely increases the execution time of the solver

for the same scenarios, especially for larger examples. In most cases for Lisboa, the solutions found

by the solver were not even close to being optimal as they were worse than the real case scenario.

This happened because adding five kilometers means that there are a lot more vehicles to consider for

each emergency, and since Lisboa has a larger number of emergencies than the Faro and Guarda and

the complexity of this problem makes it grow exponentially fast, the solver could not provide acceptable
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solutions in the established amount of time of one hour.

Practically, this means that the ten kilometer range is more appropriate in most scenarios, since it

grants enough vehicles to reach optimal solution and also because it reduces the universe of vehicles we

would have to consider using, making the decision of which vehicle to assign less complex. We could not

infer how the Emergency Medical System decided which vehicles were considered for each emergency

from the data we had, however, if like us, they use a radius around the emergency, we would suggest

the usage of a ten kilometer range as the standard from the three hypothesis we tested. Eventually,

if the population density drops heavily there might be a need to use the fifteen kilometer range since

there should be less vehicles in that area. Among our three districts, Guarda is the one with the least

population density and we did not find any example time period in which there was a need for the fifteen

kilometer range, so we infer this is a very unlikely scenario.

Ultimately, it is better to use a radius of ten kilometers as opposed to fifteen, because although we

got more solutions from the fifteen kilometer radius examples, these were not solutions that bring any

interest in the search for minimization of both our criteria.

5.4 Seasonal Variations

Given the results obtained from the previous sections, all the results presented in this and further sec-

tions will be using a vehicle inactivity period of thirty minutes and a radius of ten kilometers.

Provided that Portugal has a big affluence of tourists towards the South in the summer, we wanted

to see if this had an influence on the number of occurrences when compared to other times of the year,

especially between Faro and Lisboa.

The first thing to note about the examples shown in Figures 5.6 and 5.7, which represent periods

of one hour and four hours from the same time period of the day in the year 2019, in Lisboa and Faro

respectively, is that the seasonality is present in both districts. This means that both districts account for

a consistently different number of emergencies during the month of August as opposed to the month of

January. However, in Lisboa January is the month with more emergencies as opposed to Faro, where

August is the month with more emergencies. We present only the results for the year 2019, because in

the remaining two years of 2017 and 2018, the results were analogous.

We wanted to see if there was a possibility that these seasonal changes were not being addressed

properly. In order to infer this, we looked ate the difference between the solutions in our Pareto front and

the real case scenarios in both districts and we can see that in both districts, our real case scenario is

closer to the optimal solutions in the month of August as opposed to the month of January. However, this

difference is more evident in the district of Faro, which can mean that there are fewer vehicles available

than there should be for this district at this time of year. This difference could be attenuated if some of

the vehicles that are allocated to Lisboa in the month of August were reallocated temporarily to Faro, in

an attempt to allow for a better response to a month where there are more emergencies at the expense

of a slightly less optimal performance in that month in the district of Lisboa. In the months where the

Faro has less emergencies, these vehicles would then be reallocated to Lisboa again as there will be a
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Figure 5.6: Seasonality comparison in Lisboa. The red figures refer to the month of August and the
green figures refer to the month of January

Figure 5.7: Seasonality comparison in Faro. The red figures refer to the month of August and the green
figures refer to the month of January
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higher need for them there.
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Chapter 6

Conclusions

Firstly, when we first set out to do this project, the main goal was to be able to create a model that

could accurately represent any situation in the context of the ambulance assignment problem and use

it to determine what the optimal situations would be and compare them to the data we had from INEM.

This objective was achieved successfully as we created a working model that can in fact represent every

situation we have idealized.

Apart from the main goal, we discussed several possible smaller possibilities for further research

using the model we had created. Ultimately, we ended up conducting an analysis on three different dis-

tricts of Portugal and inferring information and possible adjustments to the current way the ambulances

are being allocated by the Portuguese Emergency Medical System. This analysis required an analysis

of the records we had access to in a variety of different measures like number of emergencies, number

of vehicles available for each emergency, emergency priority levels, specific vehicle information, as well

as an extensive stage of creation of instances followed by the solving of these same instances. This

allowed us to contextualize each situation and be able to critically analyse and compare the real case

scenarios and the solutions we obtained from running our examples through the solver in order to come

up with possible solutions for less optimal situations we encountered.

Additionally we also perform an aggregate demand analysis where we divide a vehicle allocation

problem from a large time period, for example a full day, into smaller time periods which are easier to

solve with the objective of finding a solution to the bigger problem by combining information from the

solutions to the smaller instances of the problem.

We were hoping to find large inconsistencies in the way the Emergency Medical System works in

Portugal, especially when comparing zones which we expected to have a larger seasonality. However,

we came to the conclusion that the resources are relatively well distributed to account for these seasonal

variances.

Unfortunately, we did not get the chance to pair the application of our model to the results of a

predictive model in order to suggest specific resource allocations in order to improve performance. This

would have also allowed us to further elaborate on possible improvements that we could not have seen

without the use of a predictive model.
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Chapter 7

Future Work

In the development process of our algorithm we always considered a given situation in which the total

number of vehicles available as well as total number of emergencies were known variables. This means

that we have privileged insight when looking for a solution that the operators who choose which vehicles

to assign to each emergency. With this in mind, it would be interesting to develop a real-time vehicle

assignment mechanism that would better emulate the situation in which the operators have to make the

assignment decisions. Afterwards, it would be possible to compare both performances to the solution

given by the model developed in this paper. Furthermore, that real-time vehicle assignment mechanism

could then benefit from information retrieved from various solutions given by our model like identifying

periods of time more prone to a large number of emergencies in a certain area, and trying to preserve

more vehicles in that area, even if at the cost of a more lengthy assignment on some other emergency

beforehand.

Furthermore, we have talked about using a predictive model to predict possible future emergencies

and then apply our model to allocate a higher amount of vehicles in the zones we predict are going

to have more emergencies in a certain time period, and leaving zone we deem to be less likely to

have emergencies with a smaller amount of vehicles. This would serve as an attempt at optimizing

the performance of the Emergency Medical System even further, focusing on probabilities of what will

happen in the future, and not only on data from what has happened in the past.
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