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Abstract—This work aims to develop a quantitative model,
using eye-gaze information, to evaluate the attention-response of
children with Autism Spectrum Disorder (ASD), during thera-
peutic sessions with Social-Assistive Robots (SARs). ASD children
show severe attention-deficits that hamper their ability to learn
new skills. The automatic assessment of their attention-response
would provide the therapists with an important biomarker to bet-
ter quantify their behavior and monitor their progress/evolution.
Previous attempts to quantify the attention-response of autistic
subjects have focused on human-computer interactions tasks,
with screen-based devices, that would distract the subject in
therapeutical protocols with SARs. The work approach combines
gaze extraction with the definition of context-dependent Areas-
of-Interest (AOISs), to characterize periods of attention during the
session. The methodology was tested with ASD children. Since
extracting eye-gaze from optical-images is quite challenging,
different methods were benchmarked. The Gaze360, which relies
on image face-datasets and machine-learning, proved to be the
most robust. For each target (therapist, subject, robot), the AOI
(angular) horizontal/azimuth size was defined with two alterna-
tives: a geometrical-approach combining the target’s dimensions
and the estimated Gaze360 noise, and a learning-approach. Once
each target is associated to a range of fixation-angles, the eye-
gaze estimates are used to classify the subject’s focus-of-attention.
Our experiments show that the learning-approach outperforms
the geometrical-approach, achieving an accuracy above 82.0%.
Finally, it is worth mentioning that the therapists understood
the proposed attention-indices and found them aligned with their
own evaluation of those subjects, an encouragement towards the
future clinical use of the proposed system.

Index Terms—Autism Spectrum Disorder, Social-Assistive
Robots, Attention, Gaze tracking.

I. INTRODUCTION

UTISM Spectrum Disorder (ASD) is a neurodevelop-

mental condition with an increasing prevalence in the
last years, affecting 1 in 64 children aged 4 years old, globally
[1]. It is characterized by impairments in the social and
communication domains, along with the presence of repetitive
patterns of behaviors and interests. The symptoms and their
severity vary significantly between children. Without clear
causes for this condition, a cure is still to be found [2]. In order
to improve the social and motor abilities of the ASD children,
several therapeutic approaches have been used. Recently, it
has been studied the introduction of Social-Assistive Robots
(SAR) in the therapies [3]. SAR are usually able to attract the
children’s attention and interest, due to their simple and repet-
itive movements [4]. Studies on robot-mediated intervention
have demonstrated positive outcomes in different social skills,
such as communication, attention and imitation [5].
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An important factor to assess the quality of the therapies
with SAR is the engagement of the participants [6]. Assessing
the children engagement during the therapies is important,
since it provides a more complete and clear notion of the ther-
apy sessions, supplementing the therapist feedback. According
to the children engagement, the protocols can be updated and
adapted, in order to improve them and achieve better outcomes
[7]. One of the main engagement features is the attention,
which is often compromise in ASD children, namely the on-
task attention. This type of attention represents the willingness
to acquire and to develop new skills during a task, being
a major prerequisite for a good performance in the therapy
sessions [8]. Therefore, it is important to develop assessment
tools for this capability.

To assess the children behavior and evaluate both the social
and motor training, qualitative measures of the attention have
been used extensively in research and clinical practice, mainly
through manual video coding [9], [10]. However, this process
is time consuming. Therefore, recent studies have focused on
obtaining reliable, objective and quantitative measures of the
attention based on the head orientation [11], the detection
of facial landmarks [12] and/or the eye gaze [13]. Never-
theless, this is a hard task given the requirement of using
non-intrusive devices, since ASD children can find physical
sensors uncomfortable and distracting [14]. Recently, multiple
methods for non-intrusive quantitative analysis of the attention
of ASD children have been proposed. Some works used
screen-based eye trackers, such as Tobii, in human-computer
interactions, which is not feasible in robotic therapy. Although
in a sparse number, some studies focused on assessing the
autistic subjects’ attention in 3D spaces, during human-robot
interaction, by using non-intrusive cameras, able to record the
procedures.

In [13], the attention was quantified through the eye gaze
estimation, based on a geometrical approach to define the
Areas of Interest (AOIs) around the targets. Each teenager
performed one trial, which consisted of two consecutive con-
versations: with a female human and a female-type android
robot. To obtain the gaze estimation, a small Tobii eye-tracker
device, similar to the Microsoft Kinect (referred as Kinect
from now on) was used. This device was able to calculate
when each subject was looking to the interlocutor face, by
manually defining AOIs around their faces, with an augmented
elliptic form to overcome the eye-tracker noise. In this study,
the ASD group showed lower attention towards social targets
than the Typically Developed (TD) group and both groups
showed more interest in the robots’ faces than in the human
faces. However, the use of Tobii is difficult to implement in



unconstrained environments, therefore other approaches were
studied.

In [11], [15], the attention was quantified through the head
pose, based on a machine learning approach. NAO was placed
on top of a chair in front of the child and two stimulus were
placed on each side of the child. To capture the trials, in [15],
4 web cameras were placed around the child, while in [11],
1 Kinect camera was used. Since the targets were placed in
locations that required head movements when changing the
focus of attention, the attention was assessed based on the head
pose, which was estimated using a supervised machine learn-
ing method. To classify the attention, the k-Means algorithm
was used, to find n clusters in the 2D head pose estimations.
In [15], the model achieved an accuracy of 73.5% and, in [11],
the ASD group showed less Joint Attention (JA) than the TD
group.

Lastly, in [16], the attention was quantified through the eye
gaze and the head pose estimations. The study was conducted
in a therapy environment using 3 robots, side by side, in
front of the child and 3 cameras positioned around the room.
Using the cameras’ outputs, the eye gaze and the head pose
were estimated by the OpenFace [17]. It uses Convolutional
Neural Networks to detect several facial landmarks. It can
also identify landmarks in the eyes area, using a Constrained
Local Neural Field, and thus, calculate the associated gaze
angles (azimuth and elevation). In [16], the attention angle was
obtained by doing the average between the gaze and head pose
estimations. To obtain an attention classification, the angle was
compared with the manually defined AOIs, corresponding to
3 ranges of azimuth angles, one for each robot. However, the
OpenFace is not able to estimate the gaze when a part of the
eyes is occluded. Therefore, other algorithms were developed,
such as Gaze360 [18].

The Gaze360 model [18] is a method for robust 3D gaze es-
timation able to predict the gaze without visible eyes, through
the inclusion of temporal information in the gaze estimations.
The proposed model receives, as input, multiple cropped head
frames, which are passed through a backbone network. To
obtain the cropped head frames, the Densepose [19] facial
detector algorithm is suggested by the authors. Afterwards,
the output of each frame passes through bidirectional Long
Short-Term Memory cells, which are neural networks that
model sequences where the output for one frame is dependent
on past and future frames. In the Gaze360 model, 7 frames
are used, corresponding to the current frame, the 3 previous
frames and the 3 following frames. Consequently, even if
the gaze is occluded, it is possible to calculate the gaze
angles (azimuth and elevation) based on the previous and
following frames. This allows to estimate the gaze, even if
a person turns his/her back to the camera. Thus, it is a full
range gaze estimator, covering 360° [18]. The Gaze360 model
outputs gaze angles relative to the camera view, using spherical
coordinates (azimuth and elevation). This means that if the
subject looks directly to the camera, independently of the
subject’s position, the output is Orad for the azimuth and Orad
for the elevation [18].

Considering the proposed quantitative attention estimation
models in a physical human-robot interaction environment,

the number of studies focused in unconstrained spaces is still
sparse. Regarding the setups, NAO is the most used robot.
For some studies [15], [16], multiple cameras were used
in order to estimate the gaze and head pose, which is not
ideal, since it means a more complex setup and consequently,
more distractions for the ASD subjects. In [11], the authors
showed the feasibility of using only one Kinect to measure the
attention. From the different AOIs definitions, it is possible to
conclude that both geometrical and learning approaches have
been proposed when analysing the attention based on the gaze
or head pose estimations. In the geometrical approaches, the
AOIs have an increased shape of the target or they are defined
as a range of azimuth angles. In the learning approach, the
method used was the k-Means algorithm to cluster the data.

Overall, considering the specificities of an ASD therapy,
the best method corresponds to the one capable of estimating
the gaze, since it is the main source of attention, using only
one camera, while adopting either a geometrical or a learning
approach for the AOIs definition.

Therefore, this work focuses on the development of an
accurate quantitative model, able to evaluate the ASD chil-
dren’s attention during therapeutic sessions. This problem is
complex especially due to the children and therapy intrinsic
characteristics. The use on non-intrusive devices can make
the attention assessment harder, since the distance between
a subject face and the tracking device is higher. Furthermore,
considering the therapeutic environments, which are uncon-
strained, the people are able to move freely, making tracking
and attention assessment extremely challenging. Using the
data extracted from these devices, a secondary goal of this
work is that the attention assessment model should comply
with the Explainable Artificial Intelligence (AI) concept, thus,
producing results which can be interpreted and understood by
therapists and reflect their own opinions.

In the rest of the paper, first, the clinical study is de-
scribed, afterwards, it is presented the gaze and head pose
estimators benchmarking, followed by the proposed attention
assessment framework. The framework is composed by a data
pre-processing, a scene geometry analysis and the definition
of AOISs. Lastly, the results obtained for the proposed attention
assessment framework are presented, along with their discus-
sion.

II. METHODOLOGY
A. Clinical study

In order to evaluate the ASD children’s gaze in robotic
therapy, one clinical study was done and analysed. The main
goal of the therapy was to train gestures during triadic inter-
action sessions between the therapist, the ASD patient and the
robot NAO. To instigate this kind of interaction, a setup and a
protocol for an imitation game were defined based on clinical
knowledge [20].

The clinical study corresponds to a school study done
between May and July of 2021 in Escola Bésica Bernardim
Ribeiro in association with APPDA Lisboa, the main Por-
tuguese association of autism. The participants were six ASD
children, 5 males and 1 female, with ages between 7 and 11



years old. Five children were diagnosed with level 3 of ASD,
while one child was diagnosed with level 1, according to the
Diagnostic and Statistical Manual of Mental Disorders V [21].
Level 1 is the less severe, indicating that the child requires
relatively little support, while level 3 is the most severe,
meaning that the child requires very substantial support. The
study lasted 7 weeks, with each child getting one session of 30
minutes each week. However, the number of sessions carried
out by each child varied between 2 and 7 depending on their
school attendance during the acquisition days.

The protocol consisted of an imitation game with several
levels to train gestures [20]. The setup consisted of a triangle
between the three entities, with NAO robot placed in the
middle of the therapist and the child. A non-intrusive Kinect
sensor was placed behind NAO to extract 25 3D joints from
the therapist and child skeletons and to record the sessions.
The therapist was responsible for the robot control, through a
computer placed near him/her. In this way, the therapist was
able to choose the best exercises for each child, personalising
the therapy.

The data acquired through the Kinect camera was saved,
frame by frame, during the sessions. This data is constituted
by the video, the calculated skeletons and the times of each
frame expressed in the Unix timestamp.

Since the therapy was done in the school atrium, multiple
people passed through the space during the sessions. These
people have to be considered in the analysis, not only because
they are a distraction for the therapist and children attention,
but also because some of them passed inside the Kinect camera
range, being their skeletons detected by it. To keep only the
data of interest to the study, the two skeletons with a higher x
coordinate of the left shoulder are kept. To distinguish between
the therapist and the child skeleton, the therapist used a red
scarf which was tracked during the sessions.

B. Benchmarking Gaze and Head Pose Estimators

To estimate where a person was looking at, a model that out-
puts the people’s gaze or head pose is needed. Thus, gaze and
head estimators were studied and compared. Only the azimuth
is analysed in this work, since it is sufficient to discriminate
the targets in our application, which are positioned in different
horizontal directions during the sessions.

To validate and compare the Gaze360 [18] (gaze) and
WHENet [22] (head) estimators, 3 controlled experiments at
long distance were done. They are both full range (360°)
estimators, able to perform even when the face features are
not visible in the video.

The first experiment consisted of 4 fixation points around
the subject (including one in the back). The second experiment
consisted of 4 fixation points located on the sides or front of
the subject. The third experiment consisted of 3 fixation points
located in front of the subject and only eye movements were
performed, keeping the head pose still. The obtained Root
Mean Squared Errors (RMSEs) between the estimations and
the expected signal are shown in Table I.

Given the results for the first experiment, it was concluded
that the WHENet model is more accurate than Gaze360

TABLE I
AVERAGE RMSE [PX] OF THE AZIMUTH ESTIMATIONS OF THE WHENET
AND GAZE360 MODELS FOR THE 3 LONG DISTANCE EXPERIMENTS,
WHERE THERE IS THE MOVEMENT OF: EXPERIMENT 1- WHOLE BODY;
EXPERIMENT 2 - HEAD AND EYES; EXPERIMENT 3 - JUST EYES

Experiment 1
0.64
1.02

Experiment 2
0.42
0.46

Experiment 3
0.43
0.22

WHENet
Gaze360

estimating the azimuth for the point in the back, when all facial
features are occluded. However, when there is no fixation point
in the back, both models performed similarly (Experiment 2).
The results for Experiment 3 prove that the WHENet model is
not suited for our setup, since it is not able to follow the eye
gaze when the head pose is the same. Concluding, the Gaze360
model had a good performance which mainly depended on the
visibility of facial features, usually visible during the therapy
sessions, since the targets were located in front or to the sides
of the people. Therefore, the Gaze360 model was implemented
in the proposed framework.

C. Data Analysis

In this work, it is proposed a system that estimates where
the people were looking at during the sessions. This system is
composed by a gaze extractor (Gaze360) and it is based on the
definition of AOIs to obtain the range of angles that correspond
to looking at the different targets (Figure 1). To define the
AOISs, 2 approaches (geometrical and learning) were studied.
Having both the gaze estimation and the AOIs, the gaze was
classified and the attention-indexes obtained for the clinical
study described before.

NAO
: o\
WO P
gaze
direction
Therapist z
A5 Ix_'l
o<
=
ASD

Subject

Fig. 1. Representative setup, along with the Therapist (green) and NAO robot
(red) AOIs and the subject gaze estimation (black arrow)

Data Preprocessing

The Kinect camera was not able to detect both skeletons cor-
rectly for all the frames. There were moments where the child
and therapist bodies crossed and overlapped. Furthermore,
people often sat and in some sessions the space had a poor
illumination. In this way, the Kinect decreased its skeleton
computation capability and tracking performance. Thus, the
data needed to be preprocessed.

First, a symmetry relative to yz was applied to the reference
frame, (z,y,z) — (—z,y,%), since the Kinect obtained
symmetrical images. After, the frames in which the Kinect
did not detect both skeletons were discarded. The remaining



data was filtered using a median filter with a window of seven
frames to extract the outliers.

Since the percentage of data lost from the Kinect restrained
the analysis of some sessions, an interpolation of the remaining
data was explored. The skeletons were reconstructed by doing
a linear interpolation to the therapist and child keypoints.
Assuming that the participants did not move considerably
during a session, if the first and last keypoints missed, a
constant interpolation was done to set them to the closest
value, corresponding to the first and last detected keypoints,
respectively.

To relate the Gaze360 output with each person, the Kinect
2D head joints were compared with the Densepose head boxes,
outputted by the Gaze360 model. Both were represented in
pixels and in the same coordinate system. However, they were
obtained in different scales: 1920 x 1080px for the Kinect and
960 x 720px for the Densepose. Thus, the Densepose bounding
boxes were scaled to the Kinect scale. Then, they were
increased to compensate the errors from the Kinect skeletons
detection by size * (1 + p), with p = {0.25,0.50,0.75}.

After, it was checked which head joint (therapist or ASD
child) was inside each Densepose bounding box, for each
frame. If it was impossible to have both head joints inside
two different Densepose head boxes, the frame was discarded.
In this way, only frames with both skeletons and the cor-
responding Densepose bounding boxes were kept. This step
also ensured that the frames in which the interpolation had a
considerable error were discarded.

Given the higher percentage of lost data without interpola-
tion (Table II), it was decided to incorporate the interpolation
in the data preprocessing.

TABLE 11
PERCENTAGE OF LOST DATA IN SESSION 4: WITH AND WITHOUT DATA
INTERPOLATION. THE RED CELLS REPRESENT THE SESSION IN WHICH
MORE THAN 2/3 OF THE DATA WAS LOST [%]

Child 10 | Child 15 | Child 19
No Interpolation 28 81 82
Interpolation 1 20 17

Scene Geometry Analysis

To estimate where the people were looking at during the
therapy sessions, the angles corresponding to looking at the
different targets were calculated. From now on, these angles
will be called standard angles.

The targets corresponded to NAO, the Other Person (Ther-
apist for the Child and Child for the Therapist) and the
Computer. The Computer was considered, since it attracted the
ASD children’s attention, when the therapist interacted with it
to choose which exercises to perform and when the scenarios,
from level 4, appeared on it. Thus, during levels 1, 2 and 3 the
computer was considered a distraction, while in level 4 was a
focus of attention.

The standard angles for looking at the different targets were
calculated based on geometry and were relative to each person
(therapist and ASD child). Since the angles varied according
to the people’s positions, they were calculated for each frame.
The therapist and child positions were obtained using the head
joints extracted by the Kinect camera.

Considering that NAO was the closest entity to the camera,
only one equation was needed to calculate the standard angles
for looking at it. The angle was given by Equation 1, where x
and z are the 2D positions of the therapist or the child, in the
Kinect coordinate system. xq;ry and zq;ry are the difference
between the 2D coordinates of the person and the target, given
by Equations 2. An example is presented in Figure 2.
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Fig. 2. NAO standard angle (an 40) representation. The red circumference
represents NAO, while the blue square represents the person from which the
standard angle is calculated. The referential is located in the center of the
Kinect

To obtain the standard angles for looking to the other person
and at the computer, four different conditions were used,
according to the person and the target positions:

a) Tdif f Xxx>0

If the person and the target were on different sides of the
camera (T X Tyqrget < 0) or if they were at the same side, but
the target was closer to the camera in the x axis (z X Tiqrger >
0 and |z| > |2¢target|), the angle corresponding to looking at
the target was given by Equation 3.

Qigrget = — arctan (i) + arctan (Zdlff) 3)
x Tdiff
b) xgipr X ¥ <OA zgipr >0
If the person and the target were at the same side of the
camera and the person was closer to the camera in the x axis
and further in the z axis (z X Tiarger > 0 and |z| < |Tiarget
and |z| > |ziarget|). Equation 4 was used.

x T
Atarget = arctan (*) — arctan (dsz) (4)
z 2dif f

©) Taipf X ¥ < O0Azgipp <0

If the person and the target were at the same side of the
camera and the person was closer to the camera both in the
x and z axis (T X Ziarger > 0 and |z| < |Ziarger| and |z| <
|Ztarget|), the angle for looking at the target was given by
Equation 5, using n = 1 if arctan( ) > arctan (M>,

z
T Ttarget

and n = —1 if arctan( ) < arctan (M)

z
x Ttarget
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Analysis of Gaze(360) Angles Distribution

The gaze estimations, calculated by the Gaze360, were
filtered to reduce the noise, using a mean filter with a window
of 7 frames. Then, the Gaze360 estimations were centralized
to each target, according to Equation 6, using the calculated
standard angles (aarget)-

Ucentralized — AGaze360 — Qtarget (6)

After, the histograms of the angles distribution were ob-
tained for each centralization and for each person in each
session. Analysing the angles distribution, it was possible to
observe that the maximum of the histogram was deviated from
the expected target angles. Therefore, the effect of correcting
these offsets for looking at each target was evaluated.

According to the histogram bar widths, the number of
maximums and their positions varied. In this way, several
bar widths were tested, using one of the sessions. Since the
targets had different azimuth locations for the children and
the therapist, the best bin widths were computed separately
for each group (ASD and Therapist). Since there were 3
targets, the best widths were the ones where most histograms
from each group had 3 maximums. The obtained results were
0.35rad for the Therapist and 0.25rad for the Children.

To obtain the offsets, an automatized extraction of the
histogram maximums was studied. For each centralized his-
togram, the position, in the x-axis, of the closest maximum
to the center (Orad) is used as the offset of that target. The
obtained results are shown in Figure 3.

Child: Centralized to NAO
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Fig. 3. Histogram of the Gaze360 estimations centralized to NAO for Child
10 in Session 2. The green line represents the center of the histograms (Orad)
and the red line the computed offset. Pdf: Probability distribution function

The obtained offsets were later added to the calculated
AOIs.

Areas of Interest Definition

According to the literature review, it was decided to define
AOIs around each target (NAO, other person and computer),
in the horizontal direction (azimuth), as previously explained,
with the final goal of finding the range of angles corresponding
to looking at each target. To reach this goal there were 7 stages:

1. Each AOI was centered in the 2D coordinates of the target
and defined in the normal to the line connecting the person
and the target. The AOI slope was obtained using the equation
in Figure 4, where x4, and zg; s, represented the difference
between the 2D coordinates of the person and the target.

Z =A0lgjypex + b, With A0l 0y, = — %
Target a,

a,
@)

Person

(1, 21)

Fig. 4. Representative top view of an AOI. The red cross represents the
target, while the blue square represents the person in analysis. The green line
corresponds to the AOI and the area in blue to the range of angles for looking
at that target AOI

2. The width of the AOI was defined [m], using two
approaches (geometrical and learning), as explained below.

3. The 2D coordinates of the borders of the AOI were
calculated [m]. Having the slope, the width and the center
of the AOI, two limits ((z1,21) and (x3,22)), one on each
side of the target, were obtained using Equations 7, where
r=1,2.

. r width aor 1
Ty = Ttarget + (_1) X 2 X 1+AOI;2‘lope

Zr = Ziarget + (—1)" X AOIgope X “’““g*‘m X 1+A011?
7

4. The range of angles corresponding to looking at each
AOI were computed [rad]. To obtain the relative positions
between the person and the two extremities of the AOI,
Equation 2 was used, with (Ziqrget, Ztarget) = (21, 21) and
(Ztarget, Ztarget) = (T2,22). Afterwards, Equation 1 was
applied when NAO was the target, while Equations 3, 4 and 5
were chosen for the remaining targets. At the end, two angles
were obtained, ar; and ap, one for looking at each side of the
AOL

5. The Gaze360 offsets [rad], obtained for each target
through the centralized histograms, were added to the calcu-
lated angles, a; and awo.

6. The obtained angles were associated with the left and
right limits of the AOI, obtaining [3,ignt; Bicft]. To do this
association, the angles ) were corrected to belong to the
interval [—m;7]. Moreover, it was checked if the absolute
difference between the 2 values of 0, was lower than =
(Equation 8).

[ﬁright;ﬁleft] = [emzru emaa:] 5 if ‘01 - 92| <7

. (8)
[ﬁright;ﬁleft] = [emaa:; emzn] s if ‘91 - 92| >

7. At the end, the AOIs which were overlapping, as shown
in Figure 5, were corrected. This process was done frame by
frame and was composed by 2 parts.

First, it was checked if an AOI was totally overlapping other.
In these cases, one of them was deleted, according to the scene
geometry and the targets priority. When the therapist or the
child (other person) AOI were in the same gaze direction as
NAO or the Computer, the AOI from the last target (NAO or

slope



Computer) was discarded. This happened because the scenario
was fixed and both the therapist and child were inside the
scene. Thus, the person was always the one blocking the view
to the other targets. If the AOI of NAO was covering or being
totally covered by the computer AOI, the computer AOI was
deleted, since NAO was a main target in the protocol.

Then, for the instants in which two AOIs partially over-
lapped, a limit between the AOIs was calculated. For each
instant, two Gaussian curves (one for each target) were created,
N(p, o). For each target, the mean, u, was defined as the
mean value of the AOI limits at that instant (Equation 9). The
standard deviation, o, was calculated using an empirical rule.
It was defined that half of the AOI width was equal to ko,
with k£ = {1,2, 3} (Equation 10). In this way, according to the
empirical rule, 68%, 95% and 99.7% of the values lie within
k standard deviations of the mean.

_ Bleft + Bright
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The x-value in which the Gaussians intersected was defined
as the limit between the AOISs.
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Fig. 5. Gaze360 estimation and AOIs limits before correcting the AOIs
overlapping, for the Child 19 during the first 60s of Session 4. The gaps
across time correspond to the frames discarded during the data preprocessing

Geometrical Approach

In the geometrical approach, referred in the step 2 of the
AOQIs definition, the widths of the AOIs were decided based
on the targets dimensions and the Gaze360 noise, which was
added to each side of the target limits to obtain the AOIs
final widths. The widths of NAO and the participants were
decided based on the literature. For the therapist and child it
was considered the average shoulders’ width (bideltoid) of a
male adult, which is 47.6cm, according to [23]. For NAO, the
shoulders’ width, as well as the arms length were taking into
account, since NAO is using the arms to make the gesture
training. In this way, the NAO width was defined as 27.5 +
31.1 x 2 =89.7cm.

The Gaze360 noise was obtained from the controlled exper-
iments for the estimators benchmarking. The obtained signals
were segmented in order to keep only the segments where
there were no changes of gaze direction. Then, the signal
segments corresponding to looking at the same fixation point
were concatenated and the standard deviation between the

expected signal and the Gaze360 estimations were obtained for
each fixation point. At the end, the highest standard deviation
value (0.069rad) was assumed to be the Gaze360 noise.

After step 6 of the AOIs definition, the Gaze360 noise
[rad] was added to the obtained range of angles, according to
Equations 11.

ﬁright = ﬁright — noise

11
Biegt = Biest + noise (n

Learning Approach

In the learning approach, referred in step 2 of the AOIs def-
inition, the best widths for each target were obtained through
ground truth comparison. The data from the 7 sessions was
divided in training, validation and testing sets. The training
set was used to find the best widths for each target. The
validation set was used to make decisions relative to the model
hyperparameters and validate the choice of the best width.
The test set was used to test the model and obtain the model
performance scores.

The proposed model was trained, using the training set, for
multiple configurations of the hyperparameters, thus, for each
configuration a best set of AOI widths was obtained. Each set
of widths consisted of one width for each AOI (NAO, Other
Person and Computer). The values tested for the NAO width
varied between 0.4m and 3.0m, with increments of 0.2m. For
the other person, varied between 0.4m and 2.0m, also with
increments of 0.2m. While the values tested for the computer
width varied between 0.4m and 1.0 with increments of 0.2m.
This means, the model was run for 14*9*4=504 combinations
of widths.

To compute the best combination of widths, the Receiving
Operating Characteristic (ROC) curve was computed for each
set of hyperparameters. The best set of widths corresponded
to the one with the ROC curve value closer to the upper left
corner of the graph, as given by Equation 12.

bestROC'score = min(+/(1 — Recall)? + FPR?) (12)

Then, the best combination of AOI widths, for each hyper-
parameters configuration, was implemented in the proposed
model. In order to choose the best configuration, the model
was run in the validation set for each configuration and the
performance scores were compared. At the end, the best
configuration of hyperparameters was implemented in the
model and it was applied in the test set. To evaluate the
generalization model capacity, the performance scores were
obtained.

Fixation Signal

The attention metrics were obtained based on the fixa-
tions. To obtain the fixations, the Gaze360 estimations were
quantified and a binary signal for looking at each target was
generated (NAO, Other Person and Computer). For each frame,
the binary signal was set to 1, if the Gaze360 estimation was
inside the AOI range of angles, and 0, otherwise. To facilitate
the computation of the attention metrics, the final Gaze360



signal was obtained by summing the 3 signals, using different
factorization values for each target.

Then, it was considered that a person was looking at a target
if a fixation occurs. According to literature, a fixation was
defined as at least 400ms looking to an AOI [24]. In this way,
to remove most of the non-fixations, the final gaze signal was
filtered with a median filter with a window of 800ms.

III. EXPERIMENTAL RESULTS AND DISCUSSION
A. Data and Metrics

Given that some sessions were not recorded, the data to
analyse had to be selected. There were 7 sessions, from which
the first one was not recorded and the second one consisted
mainly of familiarization levels. Since the familiarization was
not the main goal of the Protocol, the attention was only
analysed for Sessions 3 to 7. Moreover, since one Child was
only present in Session 1 and 2, he/she was excluded from the
analysis.

To evaluate proposed model performance, the data was split
randomly in three sets. Session 4 was used as train set, Session
6 as validation set and the remaining sessions as test set.

To obtain the ground truth, the videos from the therapy
sessions were labelled by two annotators. The labelling was
done by selecting where the therapist and the ASD child
were looking at in the selected frame (NAO, Other Person,
Computer or Elsewhere). Since more than 25 videos were
acquired, with some having more than 15000 frames, their
label for both the therapist and the patient is a cumbersome
task. Therefore, the videos were labelled every 3 seconds, a
period which reflects the main changes in terms of fixations at
the different targets. At the end, only the labels from frames,
with both annotators totally agreeing were kept, resulting in
more than 75% of the labels being kept for all the sessions,
confirming the good inter-annotator agreement.

To evaluate the proposed model, a confusion matrix for
each session was obtained to compute the evaluation metrics.
Therefore, a 2 x 2 confusion matrix was calculated for each
person (Therapist and Subject) looking at each target (NAO,
Other Person and Computer) and Elsewhere. This was done
by comparing the ground truth classification with the classi-
fication estimated by the proposed model. For each session,
8 X Ngypbjects confusion matrices were computed (4 for each
person), where ngypjects is the number of subjects that were
present in that session day. At the end, all the confusion
matrices from each session were summed in order to obtain a
final one.

Since the ASD patients may have different behaviors from
the therapist, the performance metrics were also obtained by
group to study the effect of using the same AOI widths for
all the people or by groups (Therapist and ASD group), in the
learning approach.

B. Proposed System

After establishing the whole framework, the system hyper-
parameters were validated by computing the accuracy of the
proposed model through the comparison of the gaze classifica-
tion estimations with the ground truth classification. The main

hyperparameters were the Densepose bounding boxes ratio
(p = {0.25,0.50,0.75}), the Gaze360 offsets and variable
k = {1,2,3}, from Equation 10, used to define the standard
deviation of the Gaussians when 2 AOIs overlap.

Geometrical Approach

The results for the several hyperparameters configurations
using the validation set in the geometrical approach are shown
in Table III, with the best configuration in bolt. Observing
the results, the accuracy is higher in all the tests without the
offsets correction than in the tests with the offsets correction.
In general, the best increase of the Densepose bounding boxes
is p = 50% and the best value of k depends on the correction
of the Gaze360 offsets.

TABLE III
GEOMETRICAL APPROACH ACCURACY OF THE PROPOSED MODEL
CLASSIFYING THE GAZE AS LOOKING AT THE DIFFERENT TARGETS AND
ELSEWHERE FOR THE DIFFERENT HYPERPARAMETERS CONFIGURATIONS
USING THE VALIDATION SET [%]

Without Offsets Correction | With Offsets Correction
ko \p | 25% 50% 75% 25% 50% 75%
30 78.5 78.7 78.6 76.6 76.6 76.4
20 79.0 79.1 79.1 764  76.5 76.4
1o 80.0 80.1 80.1 76.2 76.1 76.1

After implementing the best hyperparameters configuration,
the model performance scores were computed for the test set,
as shown in Table IV. The model has a good performance
for all the sessions, with high and consistent scores for all
the metrics, proving that it generalizes well for the chosen
hyperparameters.

TABLE IV
GEOMETRICAL APPROACH MODEL PERFORMANCE SCORES, CLASSIFYING
THE GAZE, USING THE CHOSEN HYPERPARAMETERS CONFIGURATION [%]

Session
6 (Validation) 7
80.1 83.9

3 4 5
81.1 | 80.8 | 79.2

[ Accuracy

Learning Approach

The results for the several hyperparameters configurations
using the validation set in the learning approach are shown
in Table V, with the best configuration in bold. Observing
the results, the accuracy increases for all the hyperparameters
configurations when the Gaze360 offsets are not corrected and
the widths are used by group.

TABLE V
LEARNING APPROACH ACCURACY OF THE PROPOSED MODEL
CLASSIFYING THE GAZE AS LOOKING AT THE DIFFERENT TARGETS AND
ELSEWHERE FOR THE DIFFERENT HYPERPARAMETERS CONFIGURATIONS
USING THE VALIDATION SET [%]

Offets Correction
Without With
Widths [ ko \p | 25% | 50% | 75% [ 25% [ 50% | 75%
30 82.0 82.0 82.1 79.1 78.7 79.3
Group 20 82.1 82.2 82.1 78.5 78.6 78.5
1o 81.4 81.5 81.4 79.3 79.4 79.4
30 80.8 81.0 80.9 78.0 78.3 78.3
Total 20 81.1 81.3 81.2 77.9 78.2 78.2
1o 79.3 79.3 79.3 78.4 77.9 78.5




Analysing the hyperparameters effect, the Gaze 360 offsets
correction is the main source of change of the performance
scores. The accuracy is higher without the offsets correction,
for all the other hyperparameters configurations. This occurs
because the Therapist and the Computer targets (for the Child)
are shifted to the same position when correcting the offsets,
due to their close location, which imply the existence of only
one maximum in the centralized histograms. Thus, one of the
following two situations happens frequently: (1) the AOIs have
a small range of angles or (2) one of them is totally overlap-
ping the other. The last situation results in the exclusion of
the Computer AOI. Consequently, the performance decreases
for these two targets, leading to lower performance scores.

The parameter k, from Equation 10, seems to affect the
model differently depending whether the Gaze360 offsets are
corrected or not. Without the offsets correction, the best value
is always k£ = 2, while using the offsets correction, this is usu-
ally the value with the worst performance. Thus, no conclusion
can be taken about the effect of this hyperparameter.

The parameter p, regarding the Densepose bounding boxes
increase, does not affect the model significantly. Without doing
the offsets correction, the results seem better for p = 50%),
while using the offsets correction, the performance is better
for p = 75%. Since the results are better for higher increases,
it is proved that augmenting the Densepose boxes, allows to
keep useful and reliable keypoints that improve the system
performance.

Analysing the model performance scores, shown in Table
VI, it is concluded that the proposed framework is generalizing
well, having high and consistent performance metrics for all
the sessions, including accuracy values always above 80%.
Overall, the scores are very good, given the study conditions
and the wrong keypoints detection from the Kinect.

TABLE VI
PERFORMANCE SCORES OF THE LEARNING APPROACH MODEL USING THE
CHOSEN HYPERPARAMETERS CONFIGURATION [%]

Session
3 (Training) 4 5
83.8 82.0 | 84.6

6 (Validation) 7
82.2 89.1

[ Accuracy

Comparing the model performance scores (Tables IV and
VI), it is visible that the learning approach outperforms the
geometrical approach.

C. Attention Analysis

To understand the on-task attention of each child, an atten-
tion analysis of the ASD subjects was done using the best
approach and hyperparameters. The Total Fixation Duration
(TFD), expressing the time fixating each target along sessions,
was obtained for each child (Figure 6), as well as the individual
accuracies in each session (Table VII), in order to relate with
the therapist qualitative feedback of the sessions (Table VIII).
The attention was only studied for children with more than 2
analysed sessions (Child 9, 10 and 15).

For all children, in all sessions except for the green one,
Level 4 was performed. Since in this level the computer is
considered a focus of attention, it is expected that the interest

in the Computer is higher, which is verified for Child 10
(Figure 6b). For Children 9 and 15 (Figures 6a and 6c¢), the
gaze towards the computer increases from the green to the light
blue session, however, it is not kept. Thus, these children only
present a slightly higher interest in the computer when Level
4 is presented for the first time.

Despite the different behaviors between children, for all
of them, the interest in the NAO robot decreases along the
sessions, while the attention towards the therapist increases.
This proves that the protocol has to be updated/adapted in
order to keep the children engaged and stimulated.

Concerning the TFD towards elsewhere, it is higher than
the expected for some of the children, which can be partially
justified by the people passing in the scene during the sessions.
These people attracted the children’s attention and thus, the
study should be done in a private space.

D. Further Insights

To take conclusions about the agreement between a quantita-
tive and a qualitative analysis, the proposed system results and
the qualitative therapist feedback were compared. Observing
the model accuracy for each child, the model performs worse
for Child 9, followed by Child 6 and 15 (Table VII).

TABLE VII
MODEL ACCURACY FOR EACH CHILD IN EACH SESSION
Child 6 | Child 9 | Child 10 | Child 15 | Child 19
Session 3 80 76 84 84 93
Session 4 — — 76 69 83
Session 5 81 75 82 — —
Session 6 —_— 78 82 70 —_—
Session 7 — — 87 — —

Comparing with the qualitative analysis of the therapist
for each session, presented in Table VIII, and the attention
analysis, presented in Figure 6, some conclusions can be taken:

o Child 6 likes to touch the robot and offers resistance to
the work. Consequently, he/she moves a lot, which causes
Kinect detection problems and deteriorates the proposed
framework performance;

e Child 9 interacts well with the robot, however likes to
touch it and uses the scenarios to play. Thus, he/she
also moves considerably, which causes Kinect detection
problems and deteriorates the performance of the pro-
posed framework. Due to the toys, the duration of looking
elsewhere is also higher than for the other children, as
shown in Figure 6a.

e Child 10 interacts well with the robot, being focused
in the tasks, which justifies the higher performance
scores. According to the therapist feedback, he/she is very
interest in NAO, improving his/her performance along
sessions, which is reflected in the model attention esti-
mations showing a high attention towards NAO (Figure
6b).

e For Child 15, the reasons for the lower performance
scores are not clear. However, he/she interacts with the
robot despite his/her difficulties while performing the
tasks. His/Her performance increases with therapist in-
structions and encouragements.
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TABLE VIII
THERAPIST QUALITATIVE ANALYSE OF THE SESSIONS. T.: LIKES TO
TOUCH; R.: OFFERS RESISTANCE TO; P.: PERFORMANCE; I.: INTERACTION

Session 3  Session 4  Session 5  Session 6
Child 6 T.NAO —_ R. work —
R. work
. T. NAO T. NAO T. NAO
Child 9 Good P. T Good P. Good 1.
. Good 1. Good 1. Good 1.
Child 10 | p Avg P. High P. High P.
. Good 1.
Child 15 Low P. Low P. — Avg P.
Child 19 | High P. High P. [— J—

o Child 19 pays attention and does every task correctly.
He/She is the one with the lowest level of ASD, justifying
the higher performance scores.

Therefore, there is an agreement between the therapist feed-
back, the model performance scores and the model estimations
of attention for each child. Moreover, after showing the Figures
6 to the therapist, she reported that the results obtained were
in accordance with her expectations, specially for the Child
10, which had a level of attention towards NAO much higher
than the other children. Overall, these considerations are a
demonstration of the possibility of using this framework as an
explainable Al tool.

IV. CONCLUSIONS AND FUTURE WORK

ASD children show deficits in attention, which can influence
their ability to learn new skills. Assessing their attention
during triadic therapy sessions with SAR and the therapist
is a major prerequisite to provide a more complete overview
of the therapy and supplement the therapist feedback.

This work presented a pipeline for a quantitative atten-
tion analysis of ASD children based on their gaze during
a robotic therapy. The complexity of this task was dictated
by the characteristics of the environment and of the children
participating in these therapies. Specifically, the need of using
only non-intrusive devices with ASD lead to the selection of
a camera which was placed at a certain distance from the
children, hardening the gaze estimation. The proposed system
was composed by the estimation of the gaze and definition of
the AOIs, followed by a gaze classification into the different

targets. To extract the gaze the Gaze360 model was used. To
define the AOIs, two approaches were analysed: a geometrical
approach and a learning approach. Given the performance
metrics of the model, the learning approach was chosen as
the best, achieving the main goal of this work, with the
proposed model reaching a total accuracy higher than 82.0%
for all the sessions. Comparing with the state of the art, our
system performed better than the one proposed in [15], which
was based on the head pose and achieved an accuracy of
73.5%. Moreover, for all the children in all the sessions, the
model had accuracies between 69.0% and 93.0%. On the other
hand, the qualitative analysis of the therapist was similar to
the quantitative results, demonstrating that these quantitative
measures captured the therapist assessment and could be
used as therapeutic evaluation measures. Furthermore, the
understandability of these metrics by the therapist proved the
capability of this framework to be an explainable Al tool.

Future work could pass first by the development of new
clinical studies, which should include more participants and
sessions, for a better understanding of the children’s atten-
tion patterns. Regarding the proposed model, there are some
problems, mainly concerning the Densepose head bounding
boxes and the Kinect skeletons detection. For the Densepose
bounding boxes, there are two main problems. The model
has a slow processing taking too long to extract the gaze
from the videos, making it impossible to analyse the gaze
online. Moreover, the head detection has errors, outputting
bounding boxes that cover the whole body instead of just the
head, resulting in noisy estimations of the Gaze360 model.
To solve both problems, other head detectors should be stud-
ied. The wrong detection of the skeletons by the Kinect is
related with the incorrect distinction of the red scarf used by
the therapist and with the lower Kinect rate calculating the
skeletons. The first condition can be surpassed by using a
brighter and unusual color to have an easier detection and
by saving all the detected skeletons in each frame, only
distinguishing them offline, comparing the skeletons and the
detected object positions. The Kinect lower rate computing the
skeletons could be due to simultaneously programs running,
namely the NAO control system. Therefore, the performance
of other acquisition cameras should be studied, as well as
offline skeleton detection methods. Moreover, the therapist and



child should be standing during the sessions to improve the
computation of the skeletons by the Kinect.

The model hyperparameters showed to be very important
to increase the model performance, mainly when the Gaze360
estimations present intrinsic errors resulting in offsets for
looking at each target. To solve this problem and improve the
Gaze360 estimations, the camera should be placed at the eyes
level. The attention towards the computer is also higher than
the expected, even in the sessions without Level 4. Therefore,
the computer is considered a distraction and it should be
removed from the scene. Consequently, the scenarios should
be projected behind the camera.

Lastly, the adjustment of the quantitative attention model
to a real-time scenario could be explored for the creation of
protocols that adapt according to the ASD children attention.
These protocols would be customized for each child, engaging
him/her more, consequently, improving his/her performance
and learning process. On the other hand, the cognitive be-
havior, expressed by the attention, could be related with the
affective and behavior engagements. To achieve this goal, new
quantitative models could be created for the evaluation of the
children facial expressions (affective) and of their performance
in the imitation tasks (behavioral) [7]. In this way, it would
be possible to have a complete overview of the effect of these
therapies in the ASD children.
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