
Sentiment-Aware Conversational Agent

Isabel de Lima Henriques Dias

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor(s): Prof. Maria Luísa Torres Ribeiro Marques da Silva Coheur
Prof. Ricardo Costa Dias Rei

Examination Committee

Chairperson: Prof. Manuel Fernando Cabido Peres Lopes
Supervisor: Prof. Maria Luísa Torres Ribeiro Marques da Silva Coheur

Member of the Committee: Prof. Helena Gorete Silva Moniz

November 2021



ii



Acknowledgments

First and foremost, I would like to thank my supervisors, Prof. Luı́sa Coheur and Prof. Ricardo Rei,

for allowing and trusting me to pursue my ideas for this work, and for all the meaningful discussions,

guidance and validation, which were crucial for the development of this thesis.

I would like to thank my friends, who through these weird times have always been by my side. In

particular, I want to thank my friend Rita, for how much we have grown together, from the day we both

started at Técnico to today. I am incredibly proud of us.

I am also thankful to my aunts, uncles, cousins, brother, and grandmother for their unconditional

friendship and support. A special thanks to my cousins Kika and Leonor, for being my surf mates, for

listening to me during stressful times, and for always making me laugh.

To my parents, thank you for being such an inspiration of hardworking and ever-growing people, and

for always believing and steering me in the right direction throughout my life.

Lastly, and most importantly, I want to thank Pedro for bringing out the best in me, teaching me how

to be fearless, cheering me on during the toughest times, and for the constant patience and caring all

these years. I could not have done this without you.

iii



iv



Resumo

Os modelos mais recentes de geração automática de texto no contexto de diálogo dependem de

grandes quantidades de dados para conseguirem implicitamente gerar texto fluente e apropriado. Al-

gumas aplicações, como apoio ao cliente, começaram a usar agentes automáticos para manter e au-

mentar a confiança dos seus clientes, levando a uma resolução mais rápida e eficaz de problemas. No

entanto, existem poucos dados disponı́veis para este tipo de aplicações, o que pode dificultar o seu

treino, resultando em respostas genéricas. Este aspeto é problemático, dado que uma resposta que

não tenha em conta a emoção, pode causar o descontentamento dos clientes.

Neste trabalho propomos abordar estes problemas com um agente conversacional que tem em

conta sentimento. Para o fazer vamos desenvolver três modelos: um modelo de classificação de sen-

timento; um modelo para prever o sentimento da frase seguinte, que considera o contexto do diálogo

para prever um sentimento para o agente expressar na sua resposta; e um modelo de geração, que é

condicionado com a previsão do sentimento e o contexto do diálogo, para conseguir gerar uma resposta

que é apropriada em termos do contexto e do sentimento.

Quer a avaliação humana quer a avaliação automática, mostram que guiar explicitamente o modelo

de geração com um conjunto de frases pré-definido, leva a claras melhorias, em particular para modelos

treinados com conjuntos de dados pequenos. Finalmente, mostramos que o modelo de previsão do

sentimento da frase seguinte é o maior obstáculo do sistema, e discutimos futuras possı́veis maneiras

de o melhorar.

Palavras-chave: Processamento de Lı́ngua Natural; Classificação de Sentimento; Previsão

do Sentimento da Frase Seguinte; Geração de Texto Condicionado.

v



vi



Abstract

Current state-of-the-art dialogue text generation models rely on large amounts of data in order to

implicitly learn how to generate fluent and appropriate text. Some applications, such as customer sup-

port, have started to rely on such systems to retain and increase the confidence of customers with a

fast and effective resolution of possible problems. However, the data available for such applications is

often scarce, which might not allow to properly train these models, leading to automatic generic answers,

which is problematic, since sentiment is often regarded as an important aspect of customer satisfaction.

We propose to tackle these issues by developing an end-to-end sentiment-aware conversational

agent. To do so, we will develop three models: a sentiment classification model, tasked with classifying

the sentences of the dialogue; a reply sentiment prediction model, which leverages the context of the

dialogue in order to predict an appropriate sentiment for the agent to express in its reply; and a text

generation model, which is conditioned on the predicted sentiment and the context of the dialogue, in

order to produce a reply that is both context and sentiment appropriate.

Both automatic metrics and human evaluation show that explicitly guiding the text generation model

with a pre-defined set of sentences leads to clear improvements, in particular for models fine-tuned

with small datasets. Finally, we show that the reply sentiment prediction model is the bottleneck of the

system, and discuss future approaches.

Keywords: Natural Language Processing; Sentiment Classification; Reply Sentiment Predic-

tion; Conditioned Text Generation.

vii



viii



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Document Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5

2.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Multi-Layer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Transformer Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.4 Transformer Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Classic Language Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 N-gram Language Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 MLP-based Language Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Autoregressive Language Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.5 Masked Language Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Word Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 One-Hot Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Dense Static Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Dense Contextual Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Text Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

ix



2.4.3 Transformer-based Generators: GPT . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.4 Perplexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Text Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Sentiment Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Related Work 21

3.1 Available Corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Sentiment Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Sentiment Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Text Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Controllable Text Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.2 Dialogue Text Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.3 Controllable Dialogue Text Generation . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Sentiment Classification and Reply Sentiment Prediction 29

4.1 Base Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Contextual Sentiment Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Sentiment Classification using Retrieval Augmentation . . . . . . . . . . . . . . . . . . . . 32

4.3.1 Retrieve Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.2 Incorporate Sentiment Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Reply Sentiment Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.1 Basic Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.2 Adding Sentiment Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Guiding Dialogue Text Generation with Sentiment 35

5.1 Base Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Condition Model with Sentiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Adding Sentiment Lexicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.2 Next Sentence Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Experimental Analysis 41

6.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1.1 Splits and balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Sentiment Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2.2 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2.3 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2.4 Sentence Embedding Representation . . . . . . . . . . . . . . . . . . . . . . . . . 47

x



6.2.5 Contextual Sentiment Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2.6 Retrieval Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2.7 EmotionPush Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2.8 DailyDialog Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2.9 Results Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Reply Sentiment Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3.2 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3.3 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3.4 Sentence Embedding Representation . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3.5 Contextual Reply Sentiment Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3.6 Retrieval Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3.7 EmotionPush Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3.8 DailyDialog Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.4 Conditioned Text Generation with Sentiment . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4.2 Training and Decoding Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4.3 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4.4 Guide Model With Sentiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4.5 Next Sentence Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4.6 EmotionPush Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.4.7 DailyDialog Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.5 Sentiment-aware Conversational Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Human Evaluation 73

7.1 Evaluation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.1.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.1.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2.1 Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2.2 Inter Annotator Agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.2.3 Correlation with Automatic Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xi



8 Conclusions and Future Work 79

8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.2.1 Sentiment Classification and Reply Sentiment Prediction . . . . . . . . . . . . . . 81

8.2.2 Sentiment-Conditioned Text Generation . . . . . . . . . . . . . . . . . . . . . . . . 81

Bibliography 83

A Annotation Guidelines 93

B Generation Examples 95

xii



List of Tables

2.1 Confusion Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Available customer support, dialogue, and sentiment-labelled corpora. . . . . . . . . . . . 23

4.1 Example of a dialogue from the EmotionPush dataset and the sentence representation

with one sentence as context (x = 1). NEU corresponds to the label neutral, and SUR to

the label surprise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Example of a dialogue from the EmotionPush dataset and the sentence representation

and corresponding label for the response sentiment prediction task, with two previous

sentences as context (x = 2). NEU corresponds to the label neutral, and SUR to the label

surprise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.1 Number of dialogues and sentences of the train/development/test splits of the Emotion-

Push and DailyDialog datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 EmotionPush corpus balancing in both absolute and relative values. . . . . . . . . . . . . 43

6.3 DailyDialog corpus balancing in both absolute and relative values. . . . . . . . . . . . . . 44

6.4 EmotionPush corpus balancing after the changes necessary for text generation in both

absolute and relative values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.5 Description of BERT and RoBERTa models used in two different configurations, base and

large. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.6 Results obtained on four different architectures (BERT-base-cased, BERT-large-cased,

RoBERTa-base, RoBERTa-large) on the development set of the EmotionPush dataset. . . 46

6.7 Results obtained with the RoBERTa large model using seven different pooling techniques. 48

6.8 Results obtained with the RoBERTa large model, with the concat4 pooling technique,

using between zero and four sentences as context. . . . . . . . . . . . . . . . . . . . . . . 48

6.9 Retrieval augmentation results using top-n retrieval method, with n = {1, 3, 5}. . . . . . . 49

6.10 Retrieval augmentation results using three different methods: sum + init, concat + no init,

and concat + init, with different resizings of the sentiment embeddings (64, 128 and 1024). 51

6.11 Comparison between the baseline and our best sentiment analysis model on the devel-

opment and test sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.12 Ablation study on the test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xiii



6.13 Results obtained on the DailyDialog development set. The results on the ablation study

are a comparison with the results obtained for the SA Model. . . . . . . . . . . . . . . . . 53

6.14 Results obtained on the DailyDialog test set. The results on the ablation study are a

comparison with the results obtained for the SA Model. . . . . . . . . . . . . . . . . . . . 53

6.15 Comparison of results found in literature against our model. . . . . . . . . . . . . . . . . . 54

6.16 Results obtained on four different architectures (BERT-base-cased, BERT-large-cased,

RoBERTa-base, RoBERTa-large) on the development set of the EmotionPush dataset. . . 55

6.17 Results obtained with the RoBERTa large model using seven different pooling techniques. 56

6.18 Results obtained for the reply sentiment prediction task using between one and four sen-

tences as context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.19 Results obtained for the response sentiment prediction task with and without adding the

sentiment embeddings to the input of the model. . . . . . . . . . . . . . . . . . . . . . . . 57

6.20 Retrieval augmentation signal results using top-n retrieval method, with n = {1, 3, 5}. . . . 58

6.21 Retrieval augmentation results using three different methods: sum + init, concat + no init,

and concat + init, with different resizings of the sentiment embeddings (64, 128 and 1024). 58

6.22 Comparison between the baseline and our best sentiment analysis model on the devel-

opment and test sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.23 Ablation study on the test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.24 Comparison between the Baseline and RSP Model results obtained, and ablation study

performed on the DailyDialog development set. The results on the ablation study are a

comparison with the results obtained for the RSP Model. . . . . . . . . . . . . . . . . . . . 60

6.25 Comparison between the Baseline and RSP Model results obtained, and ablation study

performed on the DailyDialog test set. The results on the ablation study are a comparison

with the results obtained for the RSP Model. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.26 Description of the GPT-2 and DialoGPT models. The GPT-2 is used in two different config-

urations: GPT2, and GPT2-medium. The DialoGPT is used in two different configurations,

small and medium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.27 Results obtained on four different architectures (GPT2, GPT2-medium, DialoGPT-small,

DialoGPT-medium) on the development set of the EmotionPush corpus. . . . . . . . . . . 64

6.28 Sentences used to represent each sentiment in the EmotionPush corpus. . . . . . . . . . 65

6.29 Results of concatenating sentiment lexicon to the input of the DialoGPT-small text gener-

ation model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.30 Percentage of sentences using the gold and predicted sentiment that include at least one

keyword part of the pre-defined set of sentences sentiment lexicon building technique. . . 66

6.31 Number of sentences generated by the baseline, Tag and sentiment sentences approaches

that were correctly classified by the sentiment classifier. . . . . . . . . . . . . . . . . . . . 66

6.32 Results obtained with the use of a double head Transformer model trained for the tasks of

language modelling and next sentence prediction. . . . . . . . . . . . . . . . . . . . . . . 67

xiv



6.33 Results obtained on the development and test sets of the EmotionPush corpus with three

different models: DialoGPT-small (Baseline); DialoGPT-small + sentiment tag (Tag); and

DialoGPT-small + pre-defined set of sentiment sentences (Sentiment Sentences). . . . . 67

6.34 Results obtained on the development and test sets of the DailyDialog corpus with three

different models: DialoGPT-small (baseline); DialoGPT-small + sentiment tag (Tag); and

DialoGPT-small + pre-defined set of sentences (Sentiment Sentences). . . . . . . . . . . 68

6.35 Results obtained on the development and test sets of the EmotionPush corpus. . . . . . . 70

6.36 Results obtained on the development and test sets of the DailyDialog corpus. . . . . . . . 71

6.37 Examples of sentences generated by the sentiment-conditioned text generation model

using the pre-defined set of sentences given the same context. The words in red represent

words that are present in the pre-defined set of sentences. . . . . . . . . . . . . . . . . . 71

6.38 Example of a dialogue between a user and the proposed sentiment-aware conversational

agent. [SENTIMENT] represents the sentiment predicted by the reply sentiment prediction

model and that is used to condition the reply of the conversational agent on that utterance.

The words in red represent words that are present in the pre-defined set of sentences. . . 72

7.1 Number of examples sampled of each sentiment. . . . . . . . . . . . . . . . . . . . . . . . 74

7.2 Human evaluation average EmotionPush Scores. . . . . . . . . . . . . . . . . . . . . . . . 76

7.3 Human evaluation average DailyDialog Scores. . . . . . . . . . . . . . . . . . . . . . . . . 76

7.4 Fleiss’ Kappa agreement among the annotators. . . . . . . . . . . . . . . . . . . . . . . . 76

7.5 Pearson correlation between the automatic metrics (perplexity, sentence embedding sim-

ilarity, micro/macro-F1 without the majority class) and the human evaluation metrics (ad-

equacy and sentiments) applied to the EmotionPush dataset. . . . . . . . . . . . . . . . . 78

7.6 Pearson correlation between the automatic metrics (perplexity, sentence embedding sim-

ilarity, micro/macro-F1 without the majority class) and the human evaluation metrics (ad-

equacy and sentiments) applied to the DailyDialog dataset. . . . . . . . . . . . . . . . . . 78

B.1 Examples of sentences generated by the sentiment-conditioned text generation model

using the pre-defined set of sentences, fine-tuned on the DailyDialog corpus, given the

same context. The words in red represent words that are present in the pre-defined set of

sentences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

B.2 Examples of sentences generated by the Baseline (DialoGPT-small), Sentiment Baseline

(DialoGPT-small + sentiment tag), Sentiment Sentences (DialoGPT-small + pre-defined

set of sentences), and Full System (proposed sentiment-aware conversational agent, with

the reply sentiment prediction model and the sentiment sentences model), fine-tuned on

the EmotionPush corpus. For the same context from the test set, it is displayed the

generated reply by each of the aforementioned models. . . . . . . . . . . . . . . . . . . . 96

xv



B.3 Examples of sentences generated by the Baseline (DialoGPT-small), Sentiment Baseline

(DialoGPT-small + sentiment tag), Sentiment Sentences (DialoGPT-small + pre-defined

set of sentences), and Full System (proposed sentiment-aware conversational agent, with

the reply sentiment prediction model and the sentiment sentences model), fine-tuned on

the DailyDialog corpus. For the same context from the test set, it is displayed the gener-

ated reply by each of the aforementioned models. . . . . . . . . . . . . . . . . . . . . . . 97

xvi



List of Figures

1.1 Example of a conversation when using the sadness emotion is appropriate. . . . . . . . . 2

1.2 Proposed end-to-end sentiment-aware conversational agent. . . . . . . . . . . . . . . . . 3

2.1 Multi-Layer Perceptron with two hidden layers. . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Simple Recurrent Neural Network with t+1 hidden states. h0 is the initial hidden state. . . 7

2.3 Transformer Model Layer (Encoder). xn represents the inputs, zn the outputs of the self-

attention layer, and rn the outputs of the layer. . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Example of the Transformer Decoder (T-D) generating the sentence “She is a good pianist”. 11

2.5 BERT architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 BERT architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Example of a classification layer with the softmax transformation. . . . . . . . . . . . . . . 31

4.3 Example of the input of the classification layer of the reply sentiment prediction model with

information from the labels of the context sentences. This method involves concatenating

vector representations of the sentiments corresponding to the context sentences. . . . . . 34

5.1 Example of the input and output of the base GPT-2 model adapted for the dialogue task. . 36

5.2 Example of the input and output of the sentiment controlled GPT-2 model through the

concatenation of sentiment lexicon to the input of the model. . . . . . . . . . . . . . . . . 37

5.3 Example of the training of the double head transformer. The first head, the language

model head, is tasked with generating a reply given a history and the sentiment lexicon.

The second head, the next sentence prediction head, given four similar inputs but with

different reply possibilities (the gold and the distractors) is tasked with classifying whether

they are appropriate given the sentiment lexicon and the history. . . . . . . . . . . . . . . 38

6.1 Balancing of the EmotionPush corpus with and without the majority class (neutral). . . . . 43

6.2 Balancing of the DailyDialog corpus with and without the majority class (no emotion). . . 43

6.3 Distribution of the euclidean distances between the closest retrieved training example for

each example in the validation and test sets. . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.4 Distribution of the euclidean distances between the closest retrieved training example for

each example in the development and test sets. . . . . . . . . . . . . . . . . . . . . . . . . 53

6.5 Proposed sentiment-aware conversational agent. . . . . . . . . . . . . . . . . . . . . . . . 69

xvii



xviii



Chapter 1

Introduction

1.1 Motivation

Conversational agents have become popular over the years in various forms, such as personal as-

sistants, or as an automatic way of a company to provide information to its customers, among others.

The first conversational agents that emerged, like ELIZA (Weizenbaum, 1966), had the goal of sim-

ulating a conversation between a human and a machine. These systems were rule based, and “gen-

erated” sentences by pattern matching the input sentences by the user with a pre-defined set of rules.

The ability of the model of engaging in discourse, and of rephrasing the user’s input with its own pre-

defined set of rules, made the users believe they were speaking with an actual person, many claiming the

software was able to understand them and show empathy and intelligence. However, such rule-based

systems are not scalable, since each rule has to be individually defined by a human.

Other approaches took advantage of information retrieval in order to fundamentally change the way

conversational agents interacted with knowledge bases (Leuski et al., 2006; Leuski and Traum, 2011;

Ji et al., 2014). Distance-based similarity metrics, such as Jaccard and Dice distances, and informa-

tion retrieval statistical metrics, such as TF-IDF (Jurafsky and Martin, 2009), allowed these systems to

compare the user’s query with the already known queries stored in its knowledge base, and rank them

in order to answer with the most appropriate reply. These systems work particularly well in specific

domains, such as customer support, where users usually have questions about particular products or

services. An interesting historical overview that goes more in depth on the evolution of conversational

agents is discussed in Pereira et al. (2019).

With the emergence of social networks, which made dialogue data become more available, and the

increase of computational power, Machine Learning and, in particular, Deep Learning approaches, were

able to improve the performance of dialogue conversational agents through the use of neural network

models and word embeddings (LeCun et al., 2015; Vinyals and Le, 2015; Shang et al., 2015). These

methods remove the manual effort of building rules and knowledge bases we have described in the

aforementioned works. In contrast, they require large amounts of data in order to produce grammatically

correct and adequate answers. In particular, Transformer models (Vaswani et al., 2017) and dense con-

1



textual word embeddings (Mikolov et al., 2013; Peters et al., 2018) revolutionized the way models learn

text characteristics, which enables them to produce lexically diverse and context appropriate answers.

For example, Rashkin et al. (2019) shows that training these models in a large empathetic corpus en-

ables them to generate text that expresses emotions. However, Miao et al. (2020) demonstrates that

it is hard to achieve good generation results when fine-tuning current models with small datasets. Fur-

thermore, in Rashkin et al. (2019) it is shown that models trained on “spontaneous internet conversation

data are not rated as very empathetic”. The problem is that for specific-domains, such as customer

support, the amount of data can be scarce or not publicly available due to privacy constraints. Addition-

ally, emotion-labelled corpora, in particular with a more fine-grained set of labels, is difficult to build in

a large scale. Existing works have started to find ways to explicitly condition text generation models in

order to produce certain attributes, such as emotion (Zhou et al., 2018; Huang et al., 2018), personality

traits (Wolf et al., 2019), among others (Dathathri et al., 2019; Keskar et al., 2019). The drawback of

these approaches is that they can not be used in a dialogue setting, given that they do not introduce a

mechanism to automatically predict the next appropriate attribute, as discussed in Xie and Pu (2021),

and thus condition the text generation model. Considering once again the customer support scenario,

nowadays, companies rely on having a good customer support service to retain and increase the confi-

dence of customers, with a fast and efficient resolution of possible problems. Due to these expectations,

some companies have started to rely on conversational agents. This raises a concern: receiving what

seems like an automated and generic reply message might not please most customers. As mentioned

in Davidow (2003), taking into account the emotions and answering accordingly is fundamental for the

improvement of customer satisfaction. However, available conversational agents for customer support

are able to produce answers that are both grammatically correct and useful, but they do not take into

account the emotions expressed by the customer (Hu et al., 2018). Thus, an end-to-end system that

aids such applications by combining informative answers with the appropriate reply emotion that best

suits the customer’s state-of-mind, could help improve user satisfaction by providing a fast, adequate

and non-generic answer. For example, in Figure 1.1, we can observe that, while both answers can be

considered as correct, an answer that expresses an appropriate emotion may be more satisfying for the

user, rather than the generic reply.

My laptop keeps     
malfunctioning!      

I'm sorry. That’s too bad. Why don't
you just return it?

sadness
What's wrong with it?

User

Sentiment-Aware

 Conversational Agent

Figure 1.1: Example of a conversation when using the sadness emotion is appropriate.

2



1.2 Objectives

Following Li and Zhang (2018), which highlights that in human-human conversations the emotions

expressed in two subsequent utterances from different speakers often change and therefore are impor-

tant when predicting the “correct emotion for an upcoming response before generation”, in this work we

propose an end-to-end sentiment-aware conversational agent, which can be observed in Figure 1.2.

Sentiment

Classifier

Reply Sentiment
Prediction

Text Generation

New
User


Message

Generated reply

with sentiment

      Dialogue

Figure 1.2: Proposed end-to-end sentiment-aware conversational agent.

The goal of the proposed conversational agent is to be able to generate sentiment-appropriate sen-

tences during a dialogue through the use of three models:

• A sentiment classification model, which classifies the user’s input sentence;

• A reply sentiment prediction model, which leverages the predictions of the sentiment classification

model, along with previous dialogue context, in order to the predict the appropriate reply sentiment

that should be expressed by the conversational agent;

• A text generation model which receives the previous dialogue context and is conditioned on the

sentiment predicted by the reply sentiment prediction model, in order to generate a sentence that

is context-aware and expresses the predicted sentiment.

1.3 Contributions

The main contributions of this work are the following:

1. We explore an end-to-end conversational-agent approach which is able to: leverage information

about the sentiment of the received input sentence, through a sentiment classification model; con-

sider the most appropriate reply sentiment to that input, through a reply sentiment prediction model;

and generate text conditioned on a given sentiment, through a text generation model;

2. We perform an extensive experimentation cycle for both sentiment classification and reply sen-

timent prediction models. In particular, we explore the possibility of including multiple context

sentences, and the use of retrieval augmentation techniques in order to bias the model towards

the correct sentiment label;

3



3. We adapt the work proposed by Wolf et al. (2019) to the task of sentiment-conditioned text gen-

eration. In particular, we show that this adaptation has clear benefits for models fine-tuned with

small datasets;

4. We conduct a human evaluation that aims to assess the adequacy and sentiment accuracy of

the proposed system. Furthermore, we show that this evaluation correlated well with the used

automatic metrics, which motivates their use during the development of new models.

1.4 Document Outline

The overview of the present document is described as follows:

In Chapter 2 we start by introducing some important topics in order to understand this work, in

particular, neural networks (Section 2.1), language models (Section 2.2), word embeddings (Section

2.3), text generation (Section 2.4), and text classification (Section 2.5).

In Chapter 3 we describe some of the available corpora for the tasks at hand (Section 3.1). Next,

we mention the state-of-the-art models used for the tasks of sentiment classification (Section 3.2), reply

sentiment prediction (Section 3.3) and text generation (Section 3.4).

In Chapters 4 and 5 we present the models that are going to be used in order to build the sentiment-

aware conversational agent.

Chapter 6 consists on an experimental cycle performed for each model, along with support exper-

iments and examples that help validating the obtained results. After obtaining the automatic metrics’

results, we perform a human evaluation, in order to correlate the results obtained with the automatic

metrics, as reported in Chapter 7.

We finalize this document with a conclusion of our findings in Chapter 8, along with future consider-

ations for this work.

4



Chapter 2

Background

In this section we will introduce some key concepts needed for the development of this work. Firstly,

we will present some background on neural networks. Then, we will detail language models and word

embeddings. Finally, we will introduce the tasks of text generation and text classification.

2.1 Neural Networks

2.1.1 Multi-Layer Perceptron

In order to understand more complex neural networks, we will first start by defining the basic percep-

tron, which represents a linear model of its input.

The Perceptron, proposed by Rosenblatt (1958) defines a linear transformation of the input x by

applying the set of weights w and then adding the bias b. The Perceptron is defined below:

y(x;w, b) = w · x+ b. (2.1)

Since not all problems have linearly separable points, this calls for the necessity of extending the

linear model to solve non-linear problems. In order to solve that class of problems the Multi-Layer

Perceptron (MLP) was introduced. This model differs from the basic perceptron by making use of non-

linear activation functions, which allow the model to tackle non-linear problems. Therefore, the MLP is

composed of at least three layers: one input layer, one hidden layer (followed by a non-linear activation

function), and one output layer. Some commonly used activation functions are the sigmoid function, the

hyperbolic tangent and the rectifier activation function (Glorot et al., 2011). This mechanism allows us

to make the model more or less complex by composing multiple hidden layers as described below,

y(x;wn,bn) = θn(...(θ2(θ1(w1 · x+ b1)w2 + b2)...)wn + bn) (2.2)

where θn represents the different activation functions used in each layer.

In Figure 2.1 we can see an example of a MLP with two hidden layers. This model can also be seen

as a network, given how the units in the layers connect to each other, forming an acyclic directed graph.

5



Figure 2.1: Multi-Layer Perceptron with two hidden layers.

A commonly used method to train these kind of networks is the Backpropagation algorithm (Rumel-

hart et al., 1985). In order to implement this algorithm we first need to define a loss function L(ŷ, y),

which calculates the error between the predicted output, ŷ, and the true output, y. The goal of the back-

propagation algorithm is to use this error to adjust the parameters of the model, so that the predictions

become more accurate during training. The execution of this algorithm is divided in two steps:

• Forward Pass: In Figure 2.1 we can observe how each layer propagates its results to the next

layer. In the Forward Pass the objective is to pass the input through all the layers in the network

and output a prediction. Then, we calculate the error using the chosen loss function.

• Backward Pass: In this step, the algorithm propagates backwards the cost from the loss function

through the network, in order to compute the gradients of each weight of the model. The update

of the gradients is done through an optimization method. Some commonly used methods are the

Stochastic Gradient Descent (LeCun et al., 1998) and Adam (Kingma and Ba, 2015).

2.1.2 Recurrent Neural Networks

In this work we will be working with text data, which means we will be dealing with sequences.

Usually, in text, the order in which words appear in a sentence is very important to properly classify a

sentiment, or to generate cohesive text, for example. Furthermore, text samples tend to have different

input sizes, e.g., different sentences can have a different number of words. MLPs, mentioned in Section

2.1.1, are not able to deal with any of the aforementioned particularities of text data. In contrast, Recur-

rent Neural Networks (RNNs) (Elman, 1990) are a family of neural networks that are able to both deal

with sequential data and with examples with a variable number of input sizes. Both these characteristics

make this class of neural networks particularly useful for NLP tasks.

In Figure 2.2, we can observe an example of a RNN. We can think about the RNN as an “unrolled”

MLP, where the result of each hidden state is used as input to the next state. We can also think about it

as repeating the MLP t times, where at each timestep t the calculated information serves as input to the

network state at timestep t+ 1. Furthermore, an input sequence is passed to the model one token at a

6



Figure 2.2: Simple Recurrent Neural Network with t+1 hidden states. h0 is the initial hidden state.

time. For example, if we were in the presence of a sentence as input, x1 would correspond to the first

word, x2 to the second, and so forth. This aspect guarantees the ability of the model to handle sequential

data. The hidden states take into consideration the sequence information, combining at each timestep

both new input information, and the previous sequence representation calculated by the previous states.

The computation done on each hidden state at timestep t is described as,

ht = θ1(whh · ht−1 + whx · xt + bh) (2.3)

where θ1 represents the activation function, ht the hidden layer, whh a transformation between consec-

utive hidden states (Rdh×dh ), whx a transformation between the hidden state and the input (Rdh×dx ), xt

the input, and bh the bias associated with the hidden state. We can observe how the computation is

similar to the one performed in the MLP, but in this case we also take into consideration the value from

the previous hidden state. Furthermore, the output of each hidden state at timestep t is given by,

ŷt = θ2(wyh · ht + by), (2.4)

where ŷt is the predicted output, θ2 the activation function, wyh a transformation between the output

and the hidden state (Rdy×dh ), and by the bias associated with the output. The training of these kind of

networks requires a modification of the backpropagation algorithm, called the Backpropagation Through

Time (Werbos, 1990).

As mentioned before, RNNs can process inputs of arbitrary size. Moreover, previous hidden states’

information is propagated across the network in order to take into consideration the input sequence.

However, Pascanu et al. (2013) mentions that RNNs are prone to the vanishing gradient problem, which

is particularly relevant for long sequences where the backpropagation algorithm results in small gradient

values which can lead the network to eventually stop training. A more complex architecture that is

able to tackle this issue is the Long Short-Term Memory (LSTM) model (Hochreiter and Schmidhuber,

1997). LSTMs have a similar structure to the RNNs, where the hidden states hold information about the

previous states, but introduce the following aspects to tackle the vanishing gradient problem:

• Cell State: The cell state, Ct, is an additional state vector used by the LSTM to calculate the

hidden state, ht, at each timestep t.

7



• Gates: The purpose of the gates is to change the information in the cell state. There are three

different kinds of gates:

– Forget Gate Layer: The forget gate, ft, selects which portions of the Cell State are going to

be deleted. It does so by applying the sigmoid function, whose output is 1 or 0, and results in

which parts are kept or removed, respectively,

ft = σ(wf · (ht + xt) + bf ). (2.5)

– Input Gate Layer: The input gate, it, updates the cell state and it is divided in three parts. In

Equation 2.6 it selects which portions of the cell state are going to be updated. In Equation

2.7 it creates an input vector of new values, C̃t, which is used to update the selected portions.

Finally, in Equation 2.8, both steps are combined in order to update the cell state, Ct.

it = σ(wi · (ht−1 + xt) + bi), (2.6)

C̃t = tanh(wC · (ht−1 + xt) + bC), (2.7)

Ct = ft · Ct−1 + it · C̃t. (2.8)

– Output Gate Layer: The output gate, ot, decides which parts of the updated cell state we

want to output. The value of the hidden layer is finally given by ht,

ot = σ(wo · (ht−1 + xt) + bo), (2.9)

ht = ot · tanh(Ct). (2.10)

Having described RNNs as a model that can process sequential data and then LSTMs as a model

that helps mitigate the vanishing gradient problem, we can observe how both these models only take

into consideration the context of the input sentence from left to right. Bidirectional RNNs (bi-RNN) were

proposed by Schuster and Paliwal (1997) as a means to also consider the future context of the input

sentence (from right to left). In this model we have two RNNs, one processing the input sentence as

described before, and the other processing the same input sentence but backwards. This means that

each state has two different representations that are concatenated. This architecture can also be applied

to the LSTMs, resulting in an approach called the Bidirectional LSTM (bi-LSTM).

2.1.3 Transformer Encoder

Despite the success achieved by recurrent bidirectional models in various NLP tasks, for instance,

in neural machine translation (Cho et al., 2014), language modelling (Peters et al., 2018), or sentiment

analysis (Socher et al., 2013), the current model architecture that achieves state-of-the-art results is

the Transformer (Vaswani et al., 2017). In this section we will describe the Encoder portion of the

Transformer model. An example of one layer of a Transformer encoder can be observed in Figure 2.3.

8



Each Transformer layer is composed of two sub-layers. The first sub-layer corresponds to the self-

attention mechanism which can be interpreted as how the model builds the context of the sequence, as

further detailed below. The output of the first sub-layer serves as input to the second sub-layer, a MLP.

An important aspect to notice is that the outputs of the self-attention are fed independently to the MLP,

which means the computation can be done in parallel.

Figure 2.3: Transformer Model Layer (Encoder). xn represents the inputs, zn the outputs of the self-
attention layer, and rn the outputs of the layer.

As mentioned before, the self-attention layer is how the model builds the context of the sequence. In

another words, for a given token, we are calculating how relevant the other tokens in the sentence are

with regard to the one we are evaluating. To do so, the model creates three matrices: Query (Q), Key

(K), and Value (V ) matrices, by computing the dot product between the input sequence matrix, X, and

the three weight matrices learned in the training phase, WQ, WK and WV ,

Q = X ·WQ (2.11)

K = X ·WK (2.12)

V = X ·WV (2.13)

where Q,K, V ∈ RN×dmodel , X ∈ RN×dmodel and WQ,WK ,WV ∈ Rdmodel×dmodel , with N equal to the

number of tokens, and dmodel equal to the size of the model output.

Next, it calculates a vector of attention scores, i.e., how related each token in the sequence is with

regard to all other tokens. This computation is described as:

Attention(Q,K, V ) = softmax
(
Q×KT

√
dmodel

)
· V, (2.14)

where first we start by calculating the dot product between the Q and K matrices. Then, in order to

help keeping the gradients stable, we divide this result by dmodel. Finally, the Softmax transformation is

9



applied so that we have a probability score for each token in the sequence, and we multiply the V matrix

by the obtained values. This results in matrix Z ∈ RN×dmodel , which corresponds to a representation of

dimension dmodel for each of the tokens in the sequence.

In order to further improve the attention layer, the authors of the Transformer model introduced a

multi-head attention mechanism, described by Equation 2.15. This was done so that the attention score

vector for a given token would not exclusively give a high probability score to the token itself, lowering

the attention scores given to the other tokens in the sequence. This mechanism involves having multiple

sets, i.e. “heads”, of weight matrices and therefore outputting that many attention score matrices, each

following the approach previously described. These matrices are then concatenated and multiplied by

an extra weight matrix, WO, yielding the final output of the self-attention layer, Z. WO guarantees that

the output of the layer has the same dimensions of the Z matrix without multi-head attention, in order to

use it as input to the MLP layer.

MultiHead(Q,K, V ) = concat(head1,head2, ...,headk) ·WO

where headi = Attention(QWQ
i ,KW

K
i , V WV

i ),
(2.15)

with WQ
i ,W

K
i ∈ Rdmodel×dk , WV

i ∈ Rdmodel×dv , WO ∈ Rhdv×dmodel , with dk = dv = dmodel/h and h equal

to the number of heads.

2.1.4 Transformer Decoder

The Transformer Decoder, also introduced in Vaswani et al. (2017), has two key differences when

compared to the Transformer encoder. First, instead of a self-attention layer, it has a Masked Self-

Attention Layer. In the Transformer encoder subsection we saw how the model receives the full sequence

as input and how the self-attention layer builds the full context for each input token. The main idea of

the masked self-attention is that when the model is predicting the token xi, it only receives as input

the sequence (x1, ..., xi−1), which requires masking the remainder of the sequence. The second key

difference between the Transformers encoder and decoder is an extra layer between the masked self-

attention and the MLP, called the Encoder-Decoder Self-Attention Layer. This layer performs the same

self-attention previously described for the Transformer encoder, following Equations 2.14 and 2.15, with

the only difference being that K and V matrices come from the output of the encoder, while the Q matrix

comes from the output of the decoder’s masked self-attention layer. This step helps the decoder know

which parts of the encoder’s input should be focused, and has the same goal as the encoder-decoder

attention mechanism used in traditional Sequence-to-Sequence models (Cho et al., 2014; Sutskever

et al., 2014; Bahdanau et al., 2016). The encoder-decoder approach uses two neural network models,

one as the encoder, and the other as the decoder, taking advantage of the attention mechanism by

feeding each decoder step with an extra context vector based on the encoder states. This vector helps

guiding the decoder’s output by making it aware of the input sequence’s contextual information built by

the encoder. The final layer is a MLP, similarly to the Transformer encoder.

In Liu et al. (2018) the Transformer decoder was explored as a self-sufficient model, that can be used

10



(a) Model execution.
(b) Model input.

Figure 2.4: Example of the Transformer Decoder (T-D) generating the sentence “She is a good pianist”.

without an associated Transformer encoder. The main difference is that this model has only two layers,

the masked self-attention and the MLP.

An example of the execution of the Transformer Decoder proposed in Liu et al. (2018) can be ob-

served in Figure 2.4a. In the example the model is generating the sentence “She is a good pianist”. The

model generates one token at a time and uses the previously generated tokens as input to the model

(in Section 2.2 this idea will be further explored when we introduce autoregressive language models). In

Figure 2.4b we can observe what the input matrix looks like. The masked elements of the sequence are

set to -inf, so that they do not influence the output scores of the self-attention mechanism.

2.2 Language Models

In this Section we will start by describing the task of language modelling, followed by some of the

theories behind simpler language models that led to autoregressive and masked language models, the

current state-of-the-art for this task.

2.2.1 Classic Language Model

Language Modelling is a task that results in a model that is able to calculate the probability of a

sequence of words in a given corpus. A simple approach to this task can be represented by,

p(w1, ..., wn) =
count(w1, ..., wn)

N
(2.16)

where the probability of a sequence of words (w1, ..., wn) is given by the number of times we have seen

that sequence over the total number of sequences in a given corpus. The problem with this approach is

that a sequence that is not part of the corpus will yield a probability of zero.

11



2.2.2 N-gram Language Model

In order to support unseen examples, the n-gram language model relies on the Markov Assumption,

which states that “the future is independent of the past given the present” (Goldberg, 2017). This means

that, in order to assign a probability to a sequence, we can opt to observe only a number words before

it,

p(w1, ..., wn) =

n∏
i=1

p(wi|w1, ..., wi−1)

= p(w1)p(w2|w1)p(w3|w1, w2)...

(2.17)

This way, the n-gram model can calculate the probability of a sequence given any number of words.

For example, for bigrams we compute the probability of the word wi given the word wi−1, so we are only

using as context the previous word,

p(wi|w1, ..., wi−1) = p(wi|wi−1) =
count(wi−1, wi)

count(wi−1)
. (2.18)

Since we are not considering the full sentence at once, we are able to give a non-zero probability

to sentences that are not present in the corpus. Furthermore, in order to deal with counts of zero

for unseen N-grams it is also possible to use smoothing techniques such as the Laplace Smoothing

(Lidstone, 1920) which adds one to all counts.

2.2.3 MLP-based Language Model

Even though N-gram language models solve some of the problems of the classic language model,

Bengio et al. (2003) highlights two shortcomings of N-gram language models. First, N-gram models

can only capture a small context “window” of words. Second, they do not take into account the “simi-

larity” between words. For that matter, Bengio et al. (2003) proposes the MLP-based language model,

which uses the multi-layer perceptron neural network (described in Section 2.1.1) in order to calculate a

probability distribution over all words in the vocabulary,

p(wi|w1, ..., wi−1) = MLP(w1:i−1). (2.19)

2.2.4 Autoregressive Language Model

As discussed in Section 2.1.2, MLPs are not able to take into consideration the recurrent structure

of text data. By using RNNs or a Transformer decoder we can use the left-wise context of a sentence

in order to compute the probability of a word wi (Kombrink et al., 2011; Radford et al., 2018). Both

RNNs and Transformer decoders, at each timestep, calculate a probability distribution over all words in

the vocabulary, which is then used to select the output word. These models have the particularity of

being autoregressive. This means that the previous output words are used as input when generating

subsequent outputs. This way, the model predicts new words based on the previously predicted ones.

12



2.2.5 Masked Language Model

As mentioned before, autoregressive language models use the left-wise context of a sentence to

compute the probability of new words. Nonetheless, it would be desirable to take into account the full

context of the sentence. An example where this can be seen is the following: “The bat flew towards

the beetle.”. The word “bat” can have different meanings. It can be “bat” the animal or “bat” the sports

equipment. Predicting the word “flew” with only “The bat” as the context can be confusing given the two

meanings of the word. If the model had access to the full context of the sentence it would be easier to

understand that the sentence is referring to the animal. As mentioned in Devlin et al. (2019), autoregres-

sive language models can only be trained exclusively using left-to-right or right-to-left sequences, given

that bidirectional models would allow the word being predicted “to see itself”. In order to address this

problem, Devlin et al. (2019) makes use of the masked language modelling approach, first proposed in

Taylor (1953). This approach enables the training of the language model to be done in a bidirectional

manner, by “masking” a percentage of words in the text. The goal of this language model is then to

correctly predict those masked words, restoring the original input sentence.

In Section 2.3 we will see how training models with the task of language modelling can be used to

generate word embeddings that can be applied to different tasks. This process is referred to as Transfer

Learning, i.e., leveraging representations learned in a different, and usually more generic, task than the

one we are trying to solve. Moreover, a more direct use of language models is text generation. In Section

2.4 we will see how autoregressive language models can be used to generate text token by token.

2.3 Word Embeddings

In order to process text through the models mentioned in Section 2.1, we need to transform the words

into a suitable numeric representation. In this section we will briefly describe the origin and evolution of

word embeddings followed by the current state-of-the-art in calculating these word representations.

2.3.1 One-Hot Embeddings

The first basic representation of a word embedding we will describe is the One-Hot Encoding, which

generates a sparse representation of a word. This representation is obtained directly from the corpus

being used. Each word is expressed by a vector with dimension equal to the length of the vocabulary of

the corpus, with each position of the vector representing a word from the vocabulary. All the positions

in the vector are 0 except the position correspondent to the word being embedded. This representation

also allows to have other features such as the part-of-speech of the word (e.g., whether it is a name,

determinant, etc.). One downside of this representation is that it can become computationally expensive

when dealing with large vocabularies.

13



2.3.2 Dense Static Embeddings

Dense Embeddings aim to reduce the dimension of each word’s embedding by encoding it into a

smaller dimension vector, which is part of an embedding space shared by all words. Furthermore, it

also allows the representation of words to capture semantic relationships between them, something

that we could not achieve with one-hot embeddings. Some of the first models that introduced Dense

Embeddings were Word2Vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014). These models

have the particularity of being static, i.e., they do not take into consideration the context of the word

when generating its embedding. This means that each word has only one representation regardless

of its context. In order to obtain word embeddings, the Word2Vec model is trained as a MLP-based

language model (as described in Section 2.2). It starts by making samples of the corpus, using either the

Continuous Bag of Words (CBOW) architecture, or the Skipgram architecture. In the CBOW approach

we sample a “window” of text at a time, obtaining for a window of three words for example, the first and

the last words as input and the second word as target. In another words, the model should to be able

to predict the target word given its two surrounding words. In the skipgram architecture, using the same

window of three words as example, the input of the model is the second word, and the targets are the two

surrounding words. In this task, the goal of the model is to predict the surrounding words. After training,

this model allows us to obtain an embedding matrix, i.e., a unique fixed word embedding representation

for each word in the vocabulary. The GloVe model obtains a similar embedding matrix by first creating a

matrix of occurrences of each word given a context. Then it factorizes it into two matrices, being one of

them the embedding matrix. As in the Word2Vec approach, the embedding matrix of GloVe can also be

used as a unique fixed word embedding representation for each word in the vocabulary.

By analyzing the obtained word embeddings matrices for either Word2Vec or GloVe, we can observe

that semantically similar words will be close to each other in the embedding space.

2.3.3 Dense Contextual Embeddings

As previously mentioned, dense static embeddings allow each word to have only one representation

regardless of its context. In order to tackle this limitation, Peters et al. (2018) introduced the Embeddings

from Language Models (ELMo) approach. ELMo is based on the bi-LSTM architecture, and akin to

Word2Vec and GloVe, is also trained on the task of language modelling. As mentioned in Section 2.1.2,

the bi-LSTM architecture is composed of two LSTMs, one receiving the original input sequence, and the

other the same input sequence but backwards. This guarantees that the model takes into consideration

the context of a word when generating its embedding. Furthermore, this approach is able to leverage

the full context of a word within a sentence and not only a window surrounding it. With the introduction of

the Transformer model, Devlin et al. (2019) introduced the Bidirectional Encoder Representations from

Transformers (BERT). This model is also trained on the task of language modelling, more specifically

masked language modelling, described in Section 2.2.5, and next sentence prediction. In the masked

language modelling task, the model has to predict the masked words in a sentence. To do so, it masks

15% of the words in the input given to the model, by replacing the words with the token [MASK]. In the

14



next sentence prediction task, the model has to predict whether two sentences appear consecutively

in the text. In order to do so, it starts by sampling sequence pairs, balancing them so that half of the

samples appear consecutively in the text and the other half do not. BERT is built using a Transformer

encoder stack (described in Section 2.1.3). The model’s architecture can be observed in Figure 2.5.

Figure 2.5: BERT architecture.

The input given to the Transformer is the sum of three different embeddings: token, segment and

position embeddings. First, the token embeddings correspond to the input sequence. The vector starts

with a [CLS] token, and if there is more than one sentence in the input, they are separated with a [SEP]

token. The segment embedding contains information on which sentence each token belongs to. Finally,

the position embedding, which is learned when the model is trained, represents the position of each

token in the sequence and the distances to the other tokens. This last embedding guarantees that the

model takes into account the order of the sequence. As observed in Devlin et al. (2019), the model can

be used for different tasks such as classification, question answering, or sentence tagging. Other works

have explored the Transformer architecture in order to obtain word embeddings and further improved

upon BERT scores, such as RoBERTa (Liu et al., 2019), which differs from BERT by training with more

data for longer, different hyperparameter values, and only for the task of masked language modelling,

among others. It is important to notice that the word embeddings obtained from either ELMo or BERT

can be computed as any combination of the layers in the model, for example, using only the last layer or

the concatenation/average/sum of any number of layers. A possible drawback of contextual embedding

models is that since they rely on the sentence for context for each word it is necessary to run the full

model for each new input, which is computationally expensive, while for static embedding models each

15



word has only one embedding regardless of its context.

Given that the goal of word embedding models is to have a good representation of a vocabulary and

the relationships among words in it, it is important to pre-train these models using large volumes of data.

This allows the model to generate embeddings with a better understanding of semantics that would not

be possible with smaller corpora.

2.4 Text Generation

In Section 2.2 we explored language models that predict the probability of a sequence in a given

corpus. As mentioned in Goldberg (2017), any language model can also be used to generate random

sentences using the following process:

1. Begin with a <start> symbol;

2. Calculate the probability of all words in the vocabulary conditioned on the <start> symbol,

p(w1|<start>), yielding a probability distribution;

3. Choose a word from the probability distribution using the chosen decoding method, such as the

greedy search or the beam search approaches;

4. Calculate the probability distribution conditioned on the chosen word,

p(w2, <start>, w1);

5. Repeat steps 3 and 4 until the model outputs the end of sentence symbol.

In this section we will mainly focus on autoregressive language models, which make use of architec-

tures such as the RNN or the Transformer in order to tackle the task of computing the next token in a

sequence. In particular, in Section 2.2.4, we mentioned how the tokens that are being generated by the

model are used as input to generate the next tokens, making the models autoregressive.

2.4.1 Training

An important detail with regard to the training of text generative models is a technique called teacher

forcing (Williams and Zipser, 1989). In simple terms, during training the new tokens are always gener-

ated conditioned on the gold sequence, i.e., the correct sequence present in the corpus. This means

that when generating a new word, even if the model makes a wrong prediction, the next word will be

generated using the expected one. The goal of this method is to teach the model to predict the correct

words given the best possible context.

2.4.2 Decoding

Throughout this work we have described how language models compute a probability distribution

for all the words in the vocabulary at each timestep. What is is left to explain is how to select a word

16



from the probability distribution. The simplest decoding approach is the Greedy Search, which simply

chooses the most probable word according to the calculated probability distribution. The problem with

this method is that by assuming a greedy strategy at each timestep, the final sequence can end up not

being optimal because we are not searching subsequent paths. An alternative method to deal with this

lack of optimality is the Beam Search, which is a more generic version of the greedy search method. In

order to implement this method we start by defining a parameter b, which states how many paths the

algorithm keeps at each timestep. When all paths reach the end of sentence token, the algorithm selects

as the output sequence the path with the highest average token probability, 1
N

∑N
i=0 p(i), where N is the

sequence length. Moreover, if we set b = 1, at each timestep the algorithm keeps only one path, and

thus beam search behaves as the greedy search.

2.4.3 Transformer-based Generators: GPT

In Section 2.1.4 we described the Transformer decoder introduced by Liu et al. (2018), which can

act as a standalone Transformer decoder and is trained as an autoregressive language model (Section

2.2.4). The decoder outputs one token at a time, using the previously generated tokens as input to

generate subsequent ones, which makes it ideal for the task of text generation. The Generative Pre-

trained Transformer (GPT) model (Radford et al., 2018) is a stack of Transformer decoders which is

trained in two stages. The first stage corresponds to an unsupervised pre-training of a language model.

In the second stage the model is fine-tuned in several datasets of four supervised tasks: classification,

textual entailment, question-answering and natural language inference. GPT-2 (Radford et al., 2019) is

a model built based upon GPT with the key differences being that it is a larger model trained on a larger

dataset and that it is no longer fine-tuned on additional tasks. Furthermore, the authors of the paper

highlight the “zero-shot” capabilities of the model. GPT-3 (Brown et al., 2020) further improves on GPT-2,

using an even larger number of parameters and being trained on a larger dataset. The idea behind GPT-

2 and GPT-3, and why they outperform GPT is that they are larger models trained on larger datasets,

and therefore are able to model different tasks without the need of additional supervised training.

2.4.4 Perplexity

In order to evaluate the quality of text generation models, one of the commonly used metrics is the

Perplexity, which is a metric used to compare language models. It works by evaluating the quality the

model’s predicted samples, and is described by the following equation,

Perplexity = 2−
1
n

∑n
i=1 log2 LM(wi|w1:i−1). (2.20)

The intuition behind this metric is that, when comparing two models, the one with the lowest perplexity

has the highest probability of correctly generating an unseen example from a test set.

17



2.5 Text Classification

Text classification is a supervised machine learning task, which means that it relies on a model that

is first trained using annotated data. Given an unseen example, the model is able to classify it based on

what it learned during the training step. Classification can be binary (e.g., positive or negative sentiment)

or multi-labelled. The goal of this is to model output a probability for each of the labels.

2.5.1 Sentiment Classification

Sentiment classification is the task of classifying text with regard to its sentiment. The majority of

sentiment classification appropriate corpora are commonly classified with three sentiments: positive,

negative and neutral. With the necessity of developing more detailed classification models, works such

as Hsu et al. (2018) and Demszky et al. (2020) have explored larger taxonomies. The selected emotions

usually follow psychological theories about the fundamental sentiments expressed by humans. In par-

ticular, Plutchik (1980) proposed a wheel of eight primary emotions (joy, trust, fear, surprise, sadness,

disgust, anger, and anticipation), which when combined can express other emotions. Ekman (1992)

proposed the six basic emotions (joy, anger, fear, sadness, disgust, and surprise).

According to Zhang et al. (2018) we can consider three different levels of granularity in sentiment

analysis: Document, Sentence and Aspect Level Sentiment Analysis. In this work we will be focusing

on sentiment analysis at a sentence level, which is adequate in dialogues, where users tend to express

themselves in single sentences.

2.5.2 Evaluation Metrics

In order to evaluate the quality of text classification models after training, it is important to analyse

how the model classifies unseen examples. To do so, it is useful to visualise a confusion matrix (Table

2.1). The True Positives (TP) are the examples the model classified correctly, the False Postives (FP)

are the examples the model classified as positive but were in fact negative, the False Negatives (FN) are

the examples the model classified as Negative but were in fact Positive, and finally, the True Negatives

(TN), are the examples the model classified as Negative correctly.

Predicted Class
+ -

Actual + TP FN
Class - FP TN

Table 2.1: Confusion Matrix.

Some of the evaluation metrics that require these values are the following:

• Accuracy: measures the percentage of examples the model classified correctly,

Accuracy =
TP + TN

TP+ TN+ FP + FN
(2.21)

18



• Precision: measures the percentage of examples the model classified correctly out of the exam-

ples that it classified as positive,

Precision =
TP

TP + FP
(2.22)

• Recall: also referenced as True Positive Rate, measures the percentage of examples the model

classified correctly out of the total number of examples that are positive,

Recall =
TP

TP + FN
(2.23)

• F1: harmonic average of the Precision and the Recall. This value varies between 0 and 1. A low

value of F1 is indicative of poor Precision and Recall values, while a high value indicates that the

Precision and the Recall are both achieving good values,

F1 =
2 · Precision · Recall
Precision + Recall

(2.24)

The aforementioned metrics can only be applied to binary classification problems. In order to calcu-

late the accuracy for a multi-label classification problem the average accuracy is used. Regarding the

precision, recall and F1 metrics there are two solutions: macro and micro level metrics.

• Macro Level Metrics: calculates an average of the metric being evaluated. For example, the sum

of the precision for all labels is calculated, and then divided by the number of labels. In this case,

all classes weigh the same for the calculation of the metrics.

• Micro Level Metrics: calculates the sum of the TP, TN, FP and FN for all classes. These values

are used to calculate the metrics using the formulas mentioned previously. It is important to notice

that the micro level metrics give different weights to the classes, depending on the number of

examples of each class. This means that classes with a larger number of examples will have a

stronger weight when using this metric.

19



20



Chapter 3

Related Work

In this chapter we will start by describing the available customer support and sentiment corpora. Fur-

thermore, we will describe the current most relevant state-of-the-art regarding sentiment classification,

reply sentiment prediction, and dialogue and conditioned text generation.

3.1 Available Corpora

As described in Section 1.1, the goal of this work is to develop an end-to-end sentiment-aware

conversational agent. In particular, we want to overcome the difficulties of using small datasets for fine-

tuning state-of-the-art Transformer models (Vaswani et al., 2017), which typically require large amounts

of data and capacity to be able to generate fluent and adequate text (Wolf et al., 2019). Therefore,

we will focus on small datasets in order to validate our hypothesis, considering dialogue corpora that is

labelled on every dialogue turn.

In Section 1.1 we also introduced as an example the domain of customer support, as it would be an

application that would greatly benefit from such systems, given the importance of automatic conversa-

tional agents in order to fulfil the growing customers’ requests in a timely manner. The problem is that

the generated messages by these systems is often generic and does not consider the user’s emotion

(Hu et al., 2018). As mentioned in Davidow (2003), taking into account the emotions of the customer

and answering accordingly, is fundamental for the improvement of customer satisfaction.

Considering the aforementioned goals, throughout this section we will describe some of the available

customer support, dialogue, and sentiment-labelled corpora.

Customer Support on Twitter

The “Customer Support on Twitter” dataset1 is a corpus of over three million tweets with interactions

between customer support accounts on Twitter of twenty companies, such as Apple and Amazon, and

their customers. This aspect makes it ideal for tasks like dialogue text generation since we can simulate

1https://www.kaggle.com/thoughtvector/customer-support-on-twitter

21

https://www.kaggle.com/thoughtvector/customer-support-on-twitter


multiple interactions between an agent (the customer support account) and a user. However, this dataset

is not labelled with sentiment.

Twitter US Airline Sentiment

The “Twitter US Airline Sentiment” dataset2 is a corpus containing tweets of users who mention one

of six different US airlines. The tweets are labelled with either the positive, negative or neutral label, and

the annotators were also required to categorize the reason for labelling them that way. This corpus is

useful for analysing customer satisfaction, but since it does not contain interactions, it can not be used

for dialogue text generation.

EmotionLines

EmotionLines (Hsu et al., 2018)3 is an emotion dialogue dataset labelled on each utterance. This

dataset has two different corpus: “Friends TV Scripts”, where 1000 different scenes are treated as dia-

logues; and “EmotionPush Chat Logs”, which is composed of 1000 private conversations from Facebook

Messenger. Both corpora use as labels the six Ekman’s basic emotions (Ekman, 1992), and neutral.

DailyDialog

The DailyDialog corpus (Li et al., 2017)4 was built from websites that are used to practice English

in a daily life scenario. It contains 13118 multi-turn dialogues, divided in 10 different themes such as:

Finance, Politics, Health, Work, etc. It is labelled with the six Ekman’s basic emotions, and neutral.

GoEmotions

The GoEmotions corpus (Demszky et al., 2020) is a compilation of approximately 58000 English

comments collected from popular Reddit5 subforms and manually annotated with one of 27 different

sentiment categories or neutral. Given the large number of emotions in its taxonomy, it is a good fit for a

more fine-grained analysis of customer feedback.

ScenarioSA

The ScenarioSA (Zhang et al., 2020) is a corpus of 2214 English conversations (with over 24000

utterances) over various domains, retrieved from various websites that provide online communication

services. Each utterance is labelled according to its polarity (positive, negative or neutral). Moreover,

the final emotion of each participant in the dialogue is also labelled. This dataset is ideal for the task of

interactive sentiment analysis.

2https://www.kaggle.com/crowdflower/twitter-airline-sentiment
3http://doraemon.iis.sinica.edu.tw/emotionlines/index.html
4http://yanran.li/dailydialog.html
5https://www.reddit.com

22

https://www.kaggle.com/crowdflower/twitter-airline-sentiment
http://doraemon.iis.sinica.edu.tw/emotionlines/index.html
http://yanran.li/dailydialog.html
https://www.reddit.com


EmpatheticDialogues

The EmpatheticDialogues corpus (Rashkin et al., 2019) contains 25000 dialogues, which were re-

trieved from a crowdsourcing platform by letting participants communicate while constrained to one of

32 emotions. In this corpus the speakers describe one or more events associated with one of the 32

emotions, and the listeners respond according to 8 empathetic intents (questioning, agreeing, acknowl-

edging, sympathizing, encouraging, consoling, suggesting, and wishing), and neutral.

Twitter Emotional Customer Care

Herzig et al. (2016) produced a corpus of 2413 conversations retrieved from two customer support

Twitter accounts. Each customer sentence is labelled with one of eight emotions (confusion, frustration,

anger, sadness, happiness, hopefulness, disappointment, gratitude, and politeness), while each agent’s

sentence is labelled with one four emotions (empathy, gratitude, apology, and cheerfulness). These

labels are a result of a research survey performed by Gelbrich (2010).

Dataset Sentiment
Label

Dialogue Customer
Support

Publicly
Available

Customer Support on Twitter ×
√ √ √

Twitter US Airline Sentiment
√

×
√ √

EmotionLines
√ √

×
√

DailyDialog
√ √

×
√

GoEmotions
√

× ×
√

ScenarioSA
√ √

×
√

EmpatheticDialogues
√ √

×
√

Twitter Emotional Customer Care
√ √ √

×

Table 3.1: Available customer support, dialogue, and sentiment-labelled corpora.

In Table 3.1 we can observe a summary of the previously introduced corpora. The EmotionLines,

DailyDialog, and ScenarioSA datasets satisfy the requirements we have for our work: being a dialogue

corpus labelled with sentiment at sentence-level. These kinds of datasets will enable us not only to

train generative models, but also to make predictions about the appropriate reply sentiment in an ongo-

ing conversation and to train sentiment classifier models. Additionally, the “Twitter Emotional Customer

Care” corpus also fulfilled the requirements, and would allow us to test our proposed model in a customer

support setting. Unfortunately, we were not given access to the data by the authors due to privacy con-

straints. Nonetheless, the approaches we will be following in this work can easily be applied to a dataset

in a specific scenario, such as customer support, that fulfills the previously mentioned requirements.

3.2 Sentiment Classification

The current state-of-the-art for text classification tasks, and particularly sentiment classification,

is making use of dense contextual word embedding models, such as BERT (Devlin et al., 2019) or

23



RoBERTa (Liu et al., 2019), via transfer learning, i.e., using the embeddings obtained from a pre-trained

model to train a classification model. The motivation for using pre-trained models is that the embed-

dings learned by larger models and datasets can encode meaningful features for the task at hand that

we would not be able to obtain by learning the embeddings from scratch.

As described in Devlin et al. (2019) and Sun et al. (2020), fine-tuning such models for the task of

sentiment classification involves using the final hidden state of the embedding model corresponding to

the first input token (the [CLS] token, as described in Section 2.3.3) as the sentence representation,

o[CLS]. Then, an extra linear layer with the softmax transformation is used to predict the probability of the

sentence belonging to label l,

p(l|o[CLS]) = Softmax(W · o[CLS]), (3.1)

where W represents the learned weights by the classification model. Peters et al. (2019) further sep-

arates transfer learning into two different approaches: feature extraction and fine-tuning. Feature ex-

traction is done by “freezing” all the weights learned by the pre-trained model. This means that the pre-

trained embedding model will not be further trained and only the weights corresponding to the added

classification model require training. On the other hand, fine-tuning involves “unfreezing” some of the

learned weights, i.e., re-training some, or all, of the layers of the pre-trained embedding model. Despite

being more computationally expensive, it expands the capabilities of the pre-trained model by allowing

it to better adapt to the target dataset.

Other works on sentiment classification made use of contextual, speakers, speech acts and topics

information (Kim et al., 2020), further pre-trained BERT with a dataset similar to the target sentiment-

labelled dataset (Huang et al., 2019), or made use of acyclic graph networks as a way to “model the in-

formation flow between long-distance conversation background and nearby context” (Shen et al., 2021).

3.3 Sentiment Prediction

One critical aspect of systems that deal with sentiment-aware text generation in a dialogue context

is how to define the appropriate sentiment for the upcoming reply. A possible way to do so is to auto-

matically learn the sentiment that should be expressed through the use of sentiment prediction models.

Herzig et al. (2016) makes use of a support vector machine model (Cortes and Vapnik, 1995) in order

to predict the sentiment of an upcoming agent sentence in a customer support scenario. In particular,

dialogue and textual features, such as the time between interactions, or the emotion of previous sen-

tences, are used as additional information to aid the model. In Bothe et al. (2017) an LSTM is used to

classify the sentiment of the next utterance. To do so, the network is trained on a dataset where each

example corresponds to two consecutive utterances from two different speakers (in a dialogue style)

and the target is the sentiment of the sentence that follows. Li and Zhang (2018) explores a similar

approach, using a bi-LSTM as the classification model, but instead of using a pair of utterances, it uses

multiple examples of possible answers to the first utterance in order to capture the next reply emotion.

24



Wen et al. (2021) aims to simulate the emotion transition of humans in a dialogue. To do so, it makes

use of the Valence-Arousal-Dominance emotion space (Mehrabian, 1996), which encodes the emotion

of words in a 3-dimensional vector space, to calculate the “emotion transition as the variation between

the preceding emotion and the response emotion”. It is interesting to observe that the reported scores

for the aforementioned approaches fall short of expectations, which shows how difficult it is to predict

the correct sentiment of the next sentence with current approaches.

3.4 Text Generation

In this section we will start by presenting works that leverage two different alternatives of conditioning

text with a given attribute: controllable text generation (Section 3.4.1) and dialogue text generation (Sec-

tion 3.4.2). The key difference between the two is that controllable text generation involves pre-defining

an attribute that is used as an extra input to condition the generated text, while dialogue text generation

consists of an end-to-end system that is able to implicitly learn from the data how to generate the desired

properties. In particular, since controllable text generation models depend on the conditioning attribute

to defined explicitly, they require a mechanism to predict the attribute of the upcoming sentence in order

to be used as an end-to-end dialogue system. The sentiment-aware conversational agent proposed in

Section 1.1 tackles this issue by introducing a reply sentiment prediction model as part of the system’s

pipeline, thus, explicitly conditioning the text generation model automatically. We will explore existing

approaches to solving this problem in Section 3.4.3.

3.4.1 Controllable Text Generation

In Zhou et al. (2018), “the problem of generating emotional responses in open-domain conversational

systems” is addressed through the use of emotion embeddings based on an external vocabulary mem-

ory, which are used to condition a sequence-to-sequence (Seq2Seq) (Sutskever et al., 2014) model. Hu

et al. (2018) proposed a “Tone-aware Chatbot for Customer Care on Social Media” based on a Seq2Seq

architecture with LSTMs. It concatenates an extra tone vector to the input word vector in each step of the

decoder with information related to three tones: empathetic, passionate and neutral. These tones are

the ones the authors found to be the most significant for customer support satisfaction and therefore are

used when responding to customers. Zhou and Wang (2018) builds a collection of dialogues from Twitter

that include emojis and assumes the emojis as the underlying emotion in the sentence. Then, it trains

a Seq2Seq model on this corpus, and conditions the decoding with an embedding corresponding to the

target emoji. Colombo et al. (2019) improves Zhou et al. (2018) by, besides using emotion embeddings

to condition a Seq2Seq model, also penalizing neutral words and forcing the model to generate words

related with the desired emotion. Santhanam and Shaikh (2019) proposes a similar idea, also using an

emotion embedding to condition the language model with a target sentiment, but using a Transformer

model (Vaswani et al., 2017), in particular, the GPT-2 language model (Radford et al., 2019). Also using

the same GPT-2 model, Dathathri et al. (2019) proposes the “Plug and Play Language Model” (PPLM)

25



for controllable language generation, in which a pre-trained language model is combined with attribute

models, allowing for conditional text generation without fine-tuning the language model any further. In

order to control the generation, PPLM uses attribute models that compute p(a|x), where x is the gen-

erated sequence and a are the attributes we want to model, e.g., a topic or a sentiment. The attribute

models can be Bag-of-Words (BoW) or simple classifiers. The way the attribute models work is, at each

timestep it performs a forward pass in order to predict p(a|x), i.e., how close is the generated sentence

thus far to the desired attributes. Next, it performs a backward pass and uses the obtained gradients

in order to update the probability distribution of the generative model, so that the generation of the new

token is conditioned to be closer to the desired attributes. Other works on controllable text generation,

such as Keskar et al. (2019) propose a conditional language model which is trained from scratch with

several control codes to guide generated text. The control codes, which can be topics, URLs, etc., allow

a user to control the generated text by choosing a code that can specify content or style of text, for

example.

3.4.2 Dialogue Text Generation

The state-of-the-art literature in dialogue text generation mainly consists in data-driven end-to-end

models which are capable of generating fluent, appropriate, and meaningful responses in a dialogue

setting, by using previous context sentences as input to text generation models. One of the first suc-

cessful approaches was proposed in Vinyals and Le (2015), which leverages the Seq2Seq architecture

and recurrent neural networks to predict an upcoming sentence by using as input to the model the pre-

vious context of the conversation, thus, allowing the model to be used in a dialogue scenario. Wolf

et al. (2019), applies this idea to the Transformer architecture, and fine-tunes the GPT-2 model using

two additional special tokens that are used to separate the sentences belonging to different speakers in

the model’s input. Regarding implicit text generation with sentiment, Rashkin et al. (2019) fine-tunes a

GPT-2 model with the EmpatheticDialogues dataset, proposed in the same work, and concludes that a

large-scale empathetic corpus enables the models to express appropriate emotions in dialogue.

3.4.3 Controllable Dialogue Text Generation

Controllable dialogue text generation approaches make use of a mechanism that is able to condition

the text generation model automatically, thus allowing the system to work as an end-to-end model. In

this section we will consider works that have done this in two ways: using a pre-defined set of rules or

heuristics; and through the use of data-driven language models.

Asghar et al. (2018) proposed a conversational model which embeds words using the Valence-

Arousal-Dominance (VAD) emotion space (Mehrabian, 1996), and explores decoding by using different

Beam Search techniques that aim to incorporate affective diversity in candidate outputs. Furthermore, it

designs “training loss functions to explicitly train an affect-aware Seq2Seq conversation model”, follow-

ing three heuristics: minimizing affective dissonance (the generated text emotion should be similar to

the input’s emotion); maximizing affective dissonance (the generated text emotion should not be aligned

26



with the input’s emotion); and maximizing affective content (the generated text emotion should avoid

being neutral). Huang et al. (2018) adopts an “emotion mining from text” classifier, developed in Yadol-

lahi et al. (2017), to classify the emotions expressed in previous conversation context, and uses this

information, together with pre-defined mapping rules defined by the authors, to decide which emotion

should be expressed in the reply. This emotion is then either concatenated to the input of the model, or

injected into the decoder. Li and Sun (2018) uses a neural network to predict which emotion keyword,

selected from a pre-defined lexicon dictionary (Xu et al., 2008), should be used in the response, which,

similarly to Huang et al. (2018), is then introduced in the decoder. In Zhong et al. (2019a), the VAD

emotion space is used to understand the emotion expressed in previous context. The model’s response

is then conditioned by following a similar or opposite emotion to the speaker’s assessed emotion.

Xie and Pu (2021) argues that approaches that rely on a pre-defined set of rules or heuristics,

such as the previously mentioned, are not supported by psychology literature, and therefore emotional

interactions in human-human conversations should be explored instead with a large-scale emotional

corpus by using data-driven language models. In order to acheive that, some works leverage a multi-

task approach that jointly trains an emotion encoder and the text generation model, which is conditioned

on the emotional state assessed by the emotion encoder (Lubis et al., 2018; Rashkin et al., 2018). On

the other hand, Xie and Pu (2021) incorporates a emotion/intent predictor, which is separately trained

from the text generation model, with the goal of deciding the emotion/intent for the reply to be generated.

That emotion is predicted based on previous context, and is then encoded and fed to the text generation

model. An interesting aspect to notice about the aforementioned works is that the evaluation done

focuses on whether the generated texts are empathetic, and not whether they are generating a specific

emotion. During our work we will also be evaluating whether the developed models are capable of

generating specific sentiments.

Other existing works focus on dialogue text generation but conditioned on different properties, such

as a persona. One such example is Wolf et al. (2019), which is based on the GPT-2 model and fine-

tuned for the dialogue task. The agent generates new sentences making use of a pre-defined knowledge

base, which includes sentences about a persona, and a dialogue history with sentences from both the

agent and the user. This is achieved by passing as input to the GPT-2 model a concatenation of multiple

sentences of the persona, and a portion of the conversation history.

27



28



Chapter 4

Sentiment Classification and Reply

Sentiment Prediction

The goal of this thesis is to create a conversational system that is sentiment aware. In order to

achieve that, it is not only important to understand the sentiment behind each sentence in the dialogue,

but also the appropriate reply sentiment in the context of the conversation. To do so, we propose to use

two models: a sentiment classification model, responsible for classifying the sentences with a sentiment;

and a reply sentiment prediction model, which is able to predict the appropriate reply sentiment given

the conversation’s context.

The importance of the sentiment classification model is twofold, as it will become clear in Chapter

5: first, it is used to classify messages sent by the customer, as we will see in Section 4.4; secondly,

it is a key automatic metric to evaluate the performance of the text generation model with regard to the

expressed sentiment, as it is our goal to condition the generated text on a desired sentiment. On the

other hand, the reply sentiment prediction model is key to guide the conversational agent towards an

appropriate sentiment, as its predictions are used by the generation model to condition the answers

delivered to the user of the conversational system.

In this chapter, we will start by describing the base model we are going to use. In particular, we are

going to make use of pre-trained Transformer models, such as BERT (Devlin et al., 2019), which have

been shown to provide strong baselines for the task of sentiment classification. Then, we will describe

the improvements made to the baseline, such as, using previous dialogue context and the sentiment

labels of similar examples retrieved from the train corpus as input to the model. Finally, we will describe

the reply sentiment prediction classifier and how, given a dialogue context, it can be used to predict the

appropriate sentiment that should be conveyed by the reply of the conversational system.

4.1 Base Model Description

As mentioned in Section 3.2, the state-of-the-art for sentiment classification models are dense con-

textual word embedding models (Section 2.3.3) based on a Transformer Encoder (Section 2.1.3), such

29



as BERT (Devlin et al., 2019) or RoBERTa (Liu et al., 2019), with a classification layer on top. In this

section we will specify how these models can be used to classify a sentence: from obtaining the em-

beddings output by the model; to using those embeddings to create a suitable representation of the

sentence; and, finally, using this representation as input to the classification layer.

Encoder0

Encoder1

Encoderk

E[CLS] E[SEP]E[MASK] E[SEP]Ex1 Ex5 Ex6

o[CLS] ox1 ox2 o[SEP] ox5 ox6 o[SEP]

+
E1 E1 E1 E1 E2 E2 E2E1

Ex3 Ex7

E2

+
E0 E1 E2 E4 E5 E6 E8E3 E7

ox7

Token 

Embeddings


Segment 

Embeddings


Position 

Embeddings


. . .

ox3

xk
0 xk

1 xk
2 xk

3 xk
5 xk

6 xk
7 xk

8

x1
0 x1

1 x1
2 x1

3 x1
5 x1

6 x1
7 x1

8

x0
0 x0

1 x0
2 x0

3 x0
5 x0

6 x0
7 x0

8

Figure 4.1: BERT architecture.

In Figure 4.1, we can observe the basic architecture of the BERT model, which we will use as an

example throughout this section. In particular, each token has a given representation after each layer,

represented in Figure 4.1 as xik, where k corresponds to a layer and i to a token position within layer k.

These representations are updated throughout the training of the model. As we have seen in Section

3.2, the standard sentence representation is given by the embedding of the [CLS] token from the last

hidden layer. Nonetheless, as described in Devlin et al. (2019), we can use multiple combinations of the

embeddings of the model, for example, averaging all the embeddings obtained in the last hidden layer,

or even making use of token representations of intermediate layers.

After choosing a suitable sentence representation, we need to input it to a classification layer in

order to obtain the prediction of the model. The usual setup is to use a linear layer with the softmax

transformation to predict the probability of a sentence being classified with the label l. This can be

described by Equation 4.1, where W represents the learned weights by the classification model.

p(l|o[CLS]) = Softmax(W · o[CLS]), (4.1)

This classification layer receives the aforementioned sentence embedding, and outputs a probability

distribution over the possible labels. Choosing the label that represents the sentiment of the sentence is

30



then a matter of finding the label with the highest probability. For example, in Figure 4.2, we can observe

that the model is giving 34% probability of the sentence being of the red label, and 66% of the sentence

being classified as the green label, which means the sentence will be classified with the green label.

Figure 4.2: Example of a classification layer with the softmax transformation.

4.2 Contextual Sentiment Classification

Given that one of the goals of this work is to develop a dialogue conversational system, we have

explored the possibility of using the previous context of the dialogue to further improve the performance

of our classification model.

In order to add context to the input of the model, we will take advantage of a particularity of the BERT

architecture, the [SEP] token, described in Section 2.3.3. Since both BERT and RoBERTa models are

limited to 512 input tokens, similarly to Huang et al. (2019), we consider that the first sentence after the

[CLS] token is the sentence we are trying to classify, and it is followed by its context. This way, if the

input surpasses 512 tokens none of the tokens belonging to the sentence will be cut (provided that the

sentence on its own does not exceed the maximum number of input tokens). Thus, given a dialogue

D = (s1, s2, ..., sn), with n equal to the number of sentences in the dialogue, in order to classify the

sentence si with x sentences as context, the input to the model is, concat(si, si−1, ..., si−x).

Sentence Label Representation
Does it cost anything? NEU [CLS]Does it cost anything?[SEP]

Yeah 20$ per month. NEU [CLS]Yeah 20$ per month.[SEP]Does it cost anything?[SEP]

Ohh! SUR [CLS]ohh![SEP]Yeah 20$ per month.[SEP]

Table 4.1: Example of a dialogue from the EmotionPush dataset and the sentence representation with
one sentence as context (x = 1). NEU corresponds to the label neutral, and SUR to the label surprise.

In Table 4.1 we can observe an example of a dialogue from the EmotionPush dataset. On the

leftmost column we have sentences from the dialogue along with their labels, which are the examples

the model is going to classify. On the right column we have the corresponding sentence representation

considering x = 1. The first sentence, s1, does not have any context so we end the representation with

a [SEP] token. The second sentence, s2 has s1 as context, so after the first [SEP] token, we put s1,

followed by another [SEP] token. The same happens for subsequent sentences in the dialogue.

31



4.3 Sentiment Classification using Retrieval Augmentation

Due to the recent success of retrieval augmentation approaches in NLP tasks (Dinan et al., 2018;

Moghe et al., 2018; Lewis et al., 2020), including for sentiment classification (Ramos et al., 2021), we

will explore a mechanism that relies on nearest neighbors to aid classification. In particular, the work

by Ramos et al. (2021) uses this logic for approaches that are based on the LSTM model. Since we

are dealing with Transformer models, whose architecture is significantly different, we will adapt their

approach to this model, with a focus on how to provide the retrieved labels as input.

4.3.1 Retrieve Nearest Neighbors

The first part of this method involves finding the nearest training example for each train/validation/test

example. To do so, we use the Sentence Transformer (Reimers and Gurevych, 2019)1 library to create

sentence representations of all examples using the paraphrase-distilroberta-base-v1 model. Next,

we make use of the FAISS (Johnson et al., 2019)2 library to build an index with the sentence embeddings

that belong to the train set, and also to find the closest training examples. In particular, we chose

the Euclidean distance to calculate the distances between the examples. For each example in the

train/validation/test sets, we want to find the closest example in the training set, which is described by,

j = argmini||x− xi||, (4.2)

with xi being the set of embeddings in the index, and x the new embedding from one of the three sets.

Finally, each training/validation/testing example is assigned a label corresponding to the label of the

closest training example (or the second closest training example for the training data, to avoid retrieving

the examples’ own label). The goal is to incorporate this information into the Transformer model in order

to guide it towards the corresponding retrieved label.

4.3.2 Incorporate Sentiment Embeddings

After retrieving the nearest neighbors information, we need to apply it to the Transformer, which is

where our method differs from Ramos et al. (2021), that, as previously mentioned, applies it to LSTM

models. In order to do so, we first initialize an extra set of embeddings, which we will call Sentiment

Embeddings (SE), one for each sentiment label, which are trained alongside the model. Then, for each

example, we incorporate the embedding corresponding to the nearest training example label in the

Transformer model. To do so, we explored two distinct approaches:

• sum: As described in Section 2.3.3, the input of the BERT architecture is the sum of three dif-

ferent sets of embeddings: the token embeddings, the segment embeddings, and the position

embeddings. In this approach, we sum the aforementioned extra set of embeddings, the senti-

ment embeddings, to the input of the model, according to the label of the retrieved example.

1https://www.sbert.net
2https://faiss.ai

32



• concat: In this approach, the embedding corresponding to the label of the nearest training example

is concatenated to the output of the Transformer model, which we will represent by Out. The

resulting vector is the input to the classification layer which is defined as,

concat
(
Out; SEi

)
, (4.3)

with i being the index of the label corresponding to the nearest training example.

Regarding the initialization of the sentiment embeddings we experimented with two approaches:

• no init: the sentiment embeddings are initialized randomly, following a normal distribution, N (0, 1).

• init: we were inspired by the initialization of the memory state of the LSTM described in Ramos

et al. (2021), where different initialization approaches were experimented with. Since the Trans-

former model does not have a memory state, we initialize instead the embedding of each sentiment

in SE with the average of the sentences’ corresponding to that given sentence. E.g., the sentiment

embedding for joy will be initialized with the average of the embeddings corresponding to the sen-

tences labelled with the sentiment joy in our training set. For this use case, we use the average of

the token embeddings of the last hidden layer as the embedding of a given sentence.

4.4 Reply Sentiment Prediction

Having defined the sentiment classification model and how context and retrieval augmentation can

be used to improve it, next, we will explore how to choose an appropriate sentiment to guide the text

generation model. To do so, we introduce the Reply Sentiment Prediction model, which is the second

model in our proposed system’s pipeline. This model receives as input the previous context of a dialogue

in order to predict the appropriate sentiment to be expressed in the conversational agent’s next reply.

This aspect makes it crucial for the usage of the system, given that it will be the model that will allow the

conversational agent to be sentiment-aware.

4.4.1 Basic Input

In Section 3.3 we described some approaches to implement the reply sentiment prediction model,

and, in particular, how the input for this model is built. Similarly to the contextual sentiment classification

described in Section 4.2, we will also make use of the [SEP] token to separate the different sentences

that are part of the input. However, there are two main differences: first, the input of the reply sentiment

prediction model is only the previous context sentences; secondly, the gold label is the sentiment of the

upcoming sentence. In Table 4.2 we can observe the same sentences we saw in Section 4.2, but with

the changes on the representations this task requires. The gold label of each representation will now

be the sentiment of the upcoming sentence. The last sentence in a dialogue will not be considered

as a valid example, given that there are no sentences that follow it. In this task we can also use an

33



arbitrary number of sentences as context. We will use as default setup two sentences, one from the

conversational agent and one from the user. The goal is then to predict the sentiment that should be

expressed by the conversational agent in the upcoming message.

Sentence Label Representation Label
Does it cost anything? NEU [CLS]Does it cost anything?[SEP] NEU
Yeah 20$ per month. NEU [CLS]Yeah 20$ per month.[SEP]Does it cost anything?[SEP] SUR
Ohh! SUR - -

Table 4.2: Example of a dialogue from the EmotionPush dataset and the sentence representation and
corresponding label for the response sentiment prediction task, with two previous sentences as context
(x = 2). NEU corresponds to the label neutral, and SUR to the label surprise.

4.4.2 Adding Sentiment Context

Now that we described the basic input for the reply sentiment prediction model, we can explore

additional methods to add more information to the input of the model. In addition to the retrieval aug-

mentation, described in Section 4.3, which will be used in a similar manner for this task, we can also

add to the input of the classification layer the sentiment of the sentences from the context.

[CLS] + +[Neutral] [Neutral]Yeah 20 $ per month . [SEP] Does it cost you anything [SEP]?

Figure 4.3: Example of the input of the classification layer of the reply sentiment prediction model with
information from the labels of the context sentences. This method involves concatenating vector repre-
sentations of the sentiments corresponding to the context sentences.

In Figure 4.3, we can observe an example of the input of the classification layer reply sentiment

prediction model using the second sentence representation from Table 4.2. As we saw before, the

labels of the context sentences are both the label neutral. This method involves concatenating a vector

representation of the context labels to the embeddings output by the contextual model, similarly to what

was done in the concat method of the retrieval augmentation described in Section 4.3.2.

4.5 Summary

In order to guide the task of conditioned text generation and be able to apply it to a dialogue con-

versational agent, we proposed using a sentiment classifier and a response sentiment prediction model

as a way to feed the text generation model information about the appropriate sentiment to generate.

Additionally, the sentiment classifier model is key to automatically evaluate the quality of the sentiment-

conditioned text generation model. In this section we started by defining the task of sentiment classifi-

cation. Next, we explored methods to improve the baseline models such as taking advantage of being in

a dialogue context by adding previous context sentences, and using retrieval augmentation approaches

to bias the models towards the correct sentiment labels. Finally, we defined the task of reply sentiment

prediction which, given contextual information, such as previous sentences and its sentiment labels,

aims to predict the sentiment of an upcoming sentence.

34



Chapter 5

Guiding Dialogue Text Generation

with Sentiment

Traditionally, state-of-the-art dialogue conversational agents rely on large amounts of conversational

data to train text generation models, which are able to generate human-like responses, both regarding

the context of the conversation and having lexical diversity (Zhang et al., 2020). In particular, Rashkin

et al. (2019) show that state-of-the-art text generation models can be fine-tuned with appropriate dia-

logue empathetic data, and express emotions. However, when there is not enough data (Miao et al.,

2020), or the data is not appropriate (Rashkin et al., 2019), these approaches might lead to models

which are unable to implicitly generate text with the aforementioned characteristics. Our goal is to de-

velop a system which is able to have those characteristics, in particular, by taking advantage of explicit

sentiment information.

In Chapter 4, we proposed two models that can be part of a guided dialogue text generation pipeline,

which allow to understand the sentiment of the context sentences, and predict the appropriate sentiment

that should be expressed next. What is left is to describe the text generation model we are going to

use in order to incorporate the sentiment information. During a dialogue, this model will receive the

sentiment predicted by the reply sentiment prediction model. Then, it will use this information, as well

as the previous context of the conversation, to generate a sentence that is not only appropriate given a

context, but that expresses the predicted sentiment.

In this chapter, we will begin by describing the base model (Section 5.1). We will make use of

pre-trained Transformer language models, such as the GPT-2 (Radford et al., 2019), which have been

shown to provide strong baselines for text generation. Next, we will describe how we will improve upon

the baseline. In particular, we are going to adapt the work by Wolf et al. (2019), which proposes a model

that is able to leverage a set of sentences that describe a given persona in order to generate text that

is coherent with the persona. We will adapt this concept and develop a sentiment lexicon knowledge

base, which will be used to make the conversational agent sentiment-aware (Section 5.2). In addition to

this, we will also describe how we are going to adapt the next sentence prediction approach, proposed

by Devlin et al. (2019) and used to fine-tune the model proposed by Wolf et al. (2019), through the use

35



of distractors, for our specific use-case (Section 5.2.2).

5.1 Base Model

In Section 2.4.3, we described one of the current state-of-the-art text generation architectures, the

Generative Pre-trained Transformer (GPT), which has had three iterations: GPT-1 (Radford et al., 2018),

GPT-2 (Radford et al., 2019), and GPT-3 (Brown et al., 2020). Since the original GPT-3 model is still not

publicly available, and due to the computational costs of similar implementations (Black et al., 2021),

we will use the GPT-2 model for our work. In this section, we will describe in more detail the GPT-2

architecture, and explain how it is used for dialogue text generation.

In Figure 5.1, we can observe the input and output of the GPT-2 model. In order to make a language

model such as the GPT-2 suitable for the dialogue task, as described in Wolf et al. (2019), we concate-

nate previous context of the dialogue (history) to the input of the model. This is possible by introducing

two extra special tokens to the model, <speaker1>, which indicates the beginning of a sequence from

the user, and <speaker2>, which indicates the beginning of a sequence from the bot, in addition to the

existing special tokens <BOS>, which indicates the beginning of a sequence, and <EOS>, which indicates

the end of a sequence. Furthermore, in this figure, we can also observe the autoregressive property

of this model. As described in Section 2.2.4, autoregressive language models use the left-wise context

of a sentence in order to calculate the probability of the next word. This means that this model uses

previously generated words as input to generate new ones. At each timestep t, the input of the model

is concat(h;w0:t−1), with h representing the history, and w0:t−1 representing a sequence of generated

words from timestep 0 until t− 1. The output is wt, which is the word generated at timestep t.

Figure 5.1: Example of the input and output of the base GPT-2 model adapted for the dialogue task.

36



5.2 Condition Model with Sentiment

In order to condition the text generation base model with a desired sentiment, we follow the work of

Wolf et al. (2019) which proposes two increments to the base model: the first, at the input level, where

sentences that describe a persona are concatenated to the input of the model; and the second, at the

fine-tuning level, which uses a double-head Transformer model for multi-task learning that jointly fine-

tunes the model for two tasks, language modelling (the original task) and next sentence prediction. The

next sentence prediction task, proposed by Devlin et al. (2019), is implemented in this work through the

use of distractors. To do so, between two and six randomly selected sentences (distractors) for each

example in the corpus are concatenated to that input’s history, creating two to six extra examples. The

goal of the next sentence prediction head is to classify whether the sentence appended to the input is

correct. In this section, we will describe how we are going to adapt these two approaches to build a

generation model that is conditioned on a given sentiment.

5.2.1 Adding Sentiment Lexicon

We will start by improving the base model by introducing information from a knowledge base in order

to guide the generation. Instead of a persona, we will input lexicon that represents the desired sentiment.

This is done by concatenating the lexicon to the beginning of the input of the model. An advantage of

this model is that we can experiment with various sentiment lexicons, which can consist of a single word

for each sentiment (for example, the name of the sentiment), expressions, or full sentences. In Figure

5.2 we illustrate how concatenating sentiment lexicon to the input of the GPT-2 model might guide the

generation model to output a sentence that expresses the desired sentiment. For instance, by adding the

sentiment lexicon of the anger emotion, we expect the model to produce a more sentiment appropriate

sentence (“I am annoyed”), than the base model (“Fine, thank you”), given the same history.

GPT-2

Hi !<speaker2><BOS> <speaker1> Hi , how are you ? <speaker2> I am

History Reply

Output

<anger>

Sentiment Lexicon

<speaker2> I am annoyed

Figure 5.2: Example of the input and output of the sentiment controlled GPT-2 model through the con-
catenation of sentiment lexicon to the input of the model.

37



5.2.2 Next Sentence Prediction

The work by Wolf et al. (2019) also describes a training particularity regarding the loss that is cal-

culated to update the weights of the model. The model used is called a double head Transformer and

is trained for two different tasks. First, the language model head, is tasked with generating the tokens,

from which a language model loss, LLM, is calculated. Second, the next sentence prediction head, task

proposed in Devlin et al. (2019), is evaluating whether the reply is appropriate given a history and a sen-

timent lexicon. From this task, a next sentence prediction loss, LNSP, is calculated. Then, the model’s

weights are updated conditioned on the weighted sum of the language model loss, and the next sen-

tence prediction loss, L = αLLM + βLNSP, with L representing the total loss, and α and β the weights

given to each of the losses.

Double Head Transformer

Hi !<speaker2><BOS> <speaker1> Hi , how are you ? <speaker2> I am

History Reply

<anger>

Sentiment Lexicon

annoyed <EOS>

<speaker2> I am happy <EOS>

<speaker2> I am scared <EOS>

<speaker2> I am sad <EOS>

Distractors

Classifier
Yes
No

DecoderLanguage Model Head
Next Sentence 

Prediction Head

Joy

Fear

Sadness

Figure 5.3: Example of the training of the double head transformer. The first head, the language model
head, is tasked with generating a reply given a history and the sentiment lexicon. The second head, the
next sentence prediction head, given four similar inputs but with different reply possibilities (the gold and
the distractors) is tasked with classifying whether they are appropriate given the sentiment lexicon and
the history.

The next sentence prediction task is trained through the use of distractors, as exemplified in Figure

5.3. During training, the model is not only learning to generate sentences, but also to classify whether

the provided training sentences are appropriate given the history and the desired sentiment. The goal

of this architecture is to teach the model which sentences are appropriate to answer, but in particular,

which are not. To do so, in addition to the gold example, which includes the sentiment lexicon, history,

38



and the gold reply, we also provide the model three additional examples, where instead of concatenating

the gold reply, we concatenate a random sentence from the training set that is labelled with a different

sentiment than the one the model is supposed to generate. For example, in Figure 5.3, the goal is

to generate the sentence “I am annoyed”, which expresses the anger sentiment. As distractors, three

sentences labelled with the sentiments joy, fear, and sadness are used.

5.3 Summary

Having the reply sentiment prediction model as a way to inform the text generation model of the

appropriate reply emotion, we proposed a text generation model that is able to leverage this information

to condition its output on the desired sentiment. In particular, we adapted the work by Wolf et al. (2019),

that is able to express a given persona, to our use-case. We started by introducing the base model,

which uses four new special tokens in order to make the text generation model suitable for the dialogue

task. Next, we saw how we can concatenate sentiment lexicon to the input of the model in order to guide

it towards the desired sentiment. Finally, we adapted the next sentence prediction task, with the use of

sentiment distractors, as a way to teach the model which sentences are not appropriate to answer given

the desired sentiment and a history.

39



40



Chapter 6

Experimental Analysis

In this chapter we will develop and present the results of the approaches proposed in Chapters

4 and 5 applied to the EmotionPush (Hsu et al., 2018) and the DailyDialog (Li et al., 2017) corpora.

Throughout the experimental cycles, we will follow an incremental method comparing models’ scores

using the validation set. The first step of each model’s experimental cycle will be to choose a baseline

model, followed by exploring the impact of one increment to the model at a time. We will use the

EmotionPush corpus to test the increments, and later apply our findings to the DailyDialog corpus.

We will start this chapter by introducing the datasets we are going to use, along with some useful

statistics that are going to help us understand the results during the experimental cycles of each model.

Next, we will explore the task of sentiment classification, in particular, we will take advantage of being

in a dialogue scenario and use previous context sentences as extra input to our model. We will also

experiment with retrieval augmentation methods, as a way to further improve the results. Similar tech-

niques will be applied during the reply sentiment prediction experimental cycle. Then, we will present

the experimental cycle of the text generation model, which consists on adapting the work by Wolf et al.

(2019), described in Chapter 5, to our specific use-case. The best setups found for each model will be

used in order to build the sentiment-aware conversational agent proposed in Chapter 1, and showcase

its results. Furthermore, in Section 6.2.9 we compare the performance of the developed sentiment clas-

sifier versus other recent works that use the same datasets as we do. In particular, we only do so for

the task of sentiment classification since, to the best of our knowledge, the datasets we are going to

experiment with have only been used for that task out of the tasks we are working with.

6.1 Datasets

Transformer based models have been shown to perform well when trained and fine-tuned with large

amounts of data (Devlin et al., 2019; Liu et al., 2019; Radford et al., 2019), but it is time and resource

consuming to build quality corpora. Namely, for specific domains, such as customer support, there are

constraints to retrieving data, such as clients’ privacy and data protection. As mentioned in Section 3.1,

we were not able to find any publicly available customer support corpora that was both in a dialogue

41



setting and labelled on every sentence, thus, we will not be able to apply our work to the customer

support scenario. Nonetheless, we found other dialogue corpora labelled with sentiments, but in an

open-domain setting. In particular, we will focus the development of this work on small datasets that

use larger emotion taxonomies, such as the Ekman emotions (Ekman, 1992). Such characteristics will

allow us to simulate the difficulty of creating and labelling these kinds of datasets, which tend to be small

and not well balanced, thus reflecting our goal: to build a quality sentiment-aware conversational agent,

using Transformer-based models, when the amount of data is limited.

In order to evaluate our work, we will use the EmotionPush portion of the EmotionLines (Hsu et al.,

2018) corpus, a corpus with 10733 training examples, to represent a small and unbalanced corpus, and

the DailyDialog (Li et al., 2017) corpus, with 87170 training examples, to see how our models behave on

a scenario where more data is available. Throughout the experimental analysis we will be developing

and testing our models using the EmotionPush corpus, given that it is the closest corpus to the real

scenario we are aiming for. Furthermore, given that this work has a very extensive experimental cycle,

using a smaller corpus also results in faster training times, allowing us to make more experiments.

Both datasets are labelled with the six Ekman emotions (Ekman, 1992) (fear, anger, joy, sadness,

disgust, and surprise). The EmotionPush corpus has two additional labels: non-neutral, to represent

sentences the annotators could not find agreement on; and neutral. The DailyDialog corpus has only

one additional label, no emotion. Furthermore, the joy sentiment is called happiness in this dataset.

EmotionPush DailyDialog
Train Dev Test Train Dev Test

Number of dialogues 720 80 200 11118 1000 1000
Number of sentences 10733 1202 2807 87170 8069 7740

Table 6.1: Number of dialogues and sentences of the train/development/test splits of the EmotionPush
and DailyDialog datasets.

In Table 6.1 we can observe some basic statistics about the EmotionPush and DailyDialog corpora.

As mentioned before, we chose one small dataset and one larger to develop our work. The EmotionPush

is composed of 1000 dialogues and 14742 sentences in total. The DailyDialog is larger: it has 13118

dialogues and 102979 sentences. In order to further simulate a customer support setting, in a given

dialogue, we will always assume that the first speaker is the chatbot and the second speaker, the user.

6.1.1 Splits and balancing

In Figures 6.1 and 6.2 we can observe the balancing of the EmotionPush and DailyDialog corpora,

respectively. Similarly to Kim et al. (2020) and Hazarika et al. (2021), we will consider both datasets with

and without the majority class (neutral/no emotion) for evaluation purposes.

The first observation we can make, by analysing Figures 6.1a and 6.2a, is that the majority class

(neutral /no emotion) largely surpasses the remaining classes in number of examples in all sets. This

can be further observed in Tables 6.2 and 6.3, where we show the datasets’ balancing in both absolute

and relative values. In the EmotionPush dataset, the neutral and non-neutral sentiments make up

42



(a) With the majority class. (b) Without the majority class.

Figure 6.1: Balancing of the EmotionPush corpus with and without the majority class (neutral).

(a) With the majority class. (b) Without the majority class.

Figure 6.2: Balancing of the DailyDialog corpus with and without the majority class (no emotion).

almost 80% of the whole corpus. In the DailyDialog dataset, the sentences labelled with no emotion

also represent around 80% of the corpus.

Furthermore, Figures 6.1b and 6.2b show us that, even among non majority classes, the datasets

are unbalanced, with the joy /happiness sentiments having the most examples in all sets.

Neutral Non-neutral Disgust Surprise Joy Sadness Fear Anger

Train Abs. 7148 1064 85 435 1482 389 36 94
% 66.6 9.91 0.79 4.05 13.81 3.62 0.34 0.88

Dev Abs. 825 121 6 39 160 38 4 9
% 68.64 10.07 0.5 3.24 13.31 3.16 0.33 0.75

Test Abs. 1882 233 15 93 458 87 2 37
% 67.05 8.3 0.53 3.31 16.32 3.1 0.07 1.32

Table 6.2: EmotionPush corpus balancing in both absolute and relative values.

The information of the balancing of the corpora is very important to understand and correctly evaluate

our models. In particular, for the sentiment classification and reply sentiment prediction tasks, the fact

that some classes are poorly represented, will influence the results obtained. For instance, as observed

in Table 6.2, on the EmotionPush corpus we only have two examples of the fear label in the test set. This

means that if one model is able to classify both examples and another model is unable to classify one

of them, the fear -F1 will be drastically different between both models. Because of this, the macro-F1,

43



No emotion Anger Disgust Fear Happiness Sadness Surprise

Train Abs. 72143 827 303 146 11182 969 1600
% 82.76 0.95 0.35 0.17 12.83 1.11 1.83

Dev Abs. 7108 77 3 11 684 79 107
% 88.09 0.95 0.04 0.14 8.48 0.98 1.32

Test Abs. 6321 118 47 17 1019 102 116
% 81.67 1.52 0.61 0.22 13.17 1.32 1.49

Table 6.3: DailyDialog corpus balancing in both absolute and relative values.

which is obtained by averaging the F1 score of all labels, will be greatly impacted. This behavior impacts

both datasets for other labels such as disgust, sadness, or anger. This is not an issue for micro-F1,

since this metric considers all individual examples as equal.

It is important to notice that, despite the macro-F1 metric not being trustworthy to compare models

because of the aforementioned problems, we still optimized the sentiment classification and reply senti-

ment prediction models to maximize it. This is because, for our use-case, it is important to have a model

that is able to classify examples of all classes rather than to have one that classifies correctly the most

examples, particularly because of the poor datasets’ balancing.

Regarding the experimental analysis, in order to evaluate the classification tasks, and considering

the fluctuation of the macro-F1, we will prioritize the micro-F1 metrics (with and without the majority

class). What we will notice in our experimental analysis is that a high micro-F1 does not necessarily

translate to a high quality model that classifies correctly examples of all classes. Therefore, we will also

leverage the macro-F1 metrics (with and without the majority class) and F1 metrics of each sentiment,

in order to take into consideration whether the model is being able to classify examples of all classes.

Text Generation Pre-processing

The EmotionPush dataset has a particularity that needs to be addressed for the task of text gener-

ation. The behavior of the dialogue chatbot we are developing only expects a message from the user

at each turn, and only replies with a single message as well. In the EmotionPush dataset we noticed

that some subsequent sentences are of the same speaker, which poses a problem for text generation.

In order to deal with this, we performed the following changes:

• If the speakers on subsequent sentences are the same, join the sentences;

• If the labels of the sentences are the same, then the new example will have that label;

• If the labels of the sentences are different, we choose the least common label.

This process results on a smaller corpus of around 8000 examples in total. The EmotionPush bal-

ancing after the changes done can be observed in Table 6.4.

44



Neutral Non-neutral Disgust Surprise Joy Sadness Fear Anger

Train Abs. 3555 432 80 370 1116 322 34 82
% 59.34 7.21 1.34 6.18 18.63 5.37 0.57 1.37

Dev Abs. 409 49 5 35 125 34 4 7
% 61.23 7.34 0.75 5.24 18.71 5.09 0.6 1.05

Test Abs. 969 97 15 78 355 71 2 26
% 60.07 6.01 0.93 4.84 22.01 4.40 0.12 1.61

Table 6.4: EmotionPush corpus balancing after the changes necessary for text generation in both abso-
lute and relative values.

6.2 Sentiment Classification

In this section we will focus on finding the best possible sentiment classification model for our corpora.

The default sentence embedding representation and classification layer we are going to use are the

same as the ones used in Devlin et al. (2019). We will make use of the [CLS] token of the last hidden

layer of the Transformer model as the embedding representation, and a linear layer as the classification

model, both described in Section 4.1. Finally, we will perform an ablation study on the best model

obtained in order to validate our results using the test set.

6.2.1 Metrics

In order to evaluate the sentiment analysis models, we will focus on the F1 metric. In particular,

because of the poor balancing of the datasets used, we will calculate the micro (m) and macro (M)

averages, described in Section 2.5.2. The macro-F1 evaluates whether the model is able to classify

examples of all labels equally, while the micro-F1 evaluates the number of examples classified correctly.

Furthermore, given the distribution of examples labelled as neutral (the majority class) vs. all other labels

(Section 6.1.1), we will also evaluate our models both with the majority class and without the majority

class (micro/Macro-No Majority Class metric which we will refer to as m/M-NMC). This will allow us to

have a better understanding of how the models are performing on less represented sentiments. Finally,

if needed, we will also take into consideration the F1 metric of each individual sentiment.

6.2.2 Training Details

The work described in Chapter 4 was implemented using PyTorch Lightning (Falcon and The PyTorch

Lightning team, 2019) and the HuggingFace Transformers (Wolf et al., 2020) library. In particular, we

modified the code base of the HLT-MAIA Emotion-Transformer repository1.

The models were trained for a maximum of 40 epochs, using the cross entropy loss, with four vali-

dation steps per epoch, stopping the training after 10 consecutive validation steps without improvement.

The checkpoint used to evaluate the model was the one that achieved the highest validation macro-F1

value. We follow the work by Howard and Ruder (2018) and use the Adam optimizer (Kingma and Ba,

1https://github.com/HLT-MAIA/Emotion-Transformer

45



2015) with a discriminative learning rate of 1×10−3, except for the Transformer model that has a learning

rate of 5× 10−6. For the Transformer model we apply a layer-wise learning rate decay of 0.95 after each

training step. We apply a dropout (Srivastava et al., 2014) of 0.4 to the sentence embeddings during

training. The checkpoint used to evaluate the model was the one that achieved the best macro-F1 result

on the development set. The models were trained on a GeForce GTX 1080 GPU, with a real batch size

of 16 whenever the GPU’s memory allowed it, but we used gradient accumulation to always simulate a

batch size of 32. All the other hyperparameters were kept with their default values.

6.2.3 Baseline

In order to develop our classification models we used two pre-trained Transformer models, BERT

(Devlin et al., 2019) and RoBERTa (Liu et al., 2019) in two different configurations, base and large. We

chose the BERT and the RoBERTa models because both have been shown to perform well when further

fine-tuned to solve different classification tasks (Du et al., 2020; Chen et al., 2020). All models are cased,

meaning, they can differentiate between upper and lowercase characters. The BERT model is trained

for the tasks of masked language modelling, described in Section 2.2.5, and next sentence prediction,

described in Section 2.3.3. The RoBERTa model differs from BERT by being trained with more data

for longer, different hyperparameter values, and only for the task of masked language modelling. The

models we are going to experiment with are obtained from the HuggingFace Transformers library and

are the following: BERT-BASE-CASED; BERT-LARGE-CASED; ROBERTA-BASE; and ROBERTA-LARGE.

Further details of the models’ configurations can be observed in Table 6.5.

Model Nr. of Layers Hidden Size Total Parameters
BERT-base-cased 12 768 110M
BERT-large-cased 24 1024 340M

RoBERTa-base 12 768 125M
RoBERTa-large 24 1024 355M

Table 6.5: Description of BERT and RoBERTa models used in two different configurations, base and
large.

F1 F1
Model m m-NMC M M-NMC ANG DIS FEA JOY NEU NNEU SAD SUR

BERT-base-cased 76.4 49.5 39.0 32.1 19.2 0 0 61.3 86.8 31.1 53.5 59.0
BERT-large-cased 76.3 52.9 43.2 37.0 52.9 0 0 64.9 86.5 31.9 53.9 62.3
RoBERTa-base 75.9 51.4 51.0 45.9 35.3 50.0 40.0 65.7 86.7 31.4 44.5 54.6
RoBERTa-large 76.8 51.9 47.5 41.8 28.6 25.0 33.3 66.5 87.2 29.6 29.6 55.7

Table 6.6: Results obtained on four different architectures (BERT-base-cased, BERT-large-cased,
RoBERTa-base, RoBERTa-large) on the development set of the EmotionPush dataset.

The results obtained for the baseline approach using the aforementioned Transformer models on

the development set can be observed in Table 6.6. Regarding the micro-F1 metric, the RoBERTa-large

model achieves the highest score of 76.8. If we consider the same metric without the majority class, the

model that achieved the highest score is the BERT-large-cased. Despite this, we can observe that both

BERT models resulted in scores of 0 in both disgust and fear -F1, contrarily to the RoBERTa models,

46



which were able to classify examples belonging to all labels. Due to that, we will not choose the BERT

models. We are left with a choice between RoBERTa’s base and large versions. We will use the latter,

since it performs better on the micro-F1 scores.

6.2.4 Sentence Embedding Representation

In order to classify an input sentence, we need to choose a suitable representation of the embeddings

output by the Transformer model. Lets consider E ∈ Rhidden size×sentence size×number of layers as the total set

of embeddings output by the model. As described in Section 4.1 the standard embedding representation

technique was proposed in Devlin et al. (2019) and it consists on using the embedding corresponding

to the [CLS] token of the last hidden layer, which we will refer to E−1[CLS], as the representation of a given

sentence. In addition to this, we will also experiment with the following options:

• avg: calculates an average of all embeddings of the last hidden layer of the model, from the [CLS]

token to the last [SEP] token,

avg
(
E−1[CLS]:[SEP]

)
(6.1)

• cls+avg: sums the [CLS] token with the average of all embeddings of the last hidden layer,

E−1[CLS] + avg
(
E−1[CLS]:[SEP]

)
(6.2)

• cls avg: concatenates the [CLS] token and the average of all embeddings of the last hidden layer,

concat
(
E−1[CLS];avg(E−1[CLS]:[SEP])

)
(6.3)

• biLSTM: all the embeddings of the last hidden layer are input into a biLSTM,

biLSTM
(
E−1[CLS]:[SEP]

)
(6.4)

• concat n: concatenates n [CLS] tokens belonging to the last n hidden layers,

concat(E[−1:−n]
[CLS] ). (6.5)

For this method we experimented with n = {2, 4}

The results obtained can be observed in Table 6.7. The pooling methods that achieve the best

micro-F1 scores are the biLSTM and the cls avg, but both achieve scores of 0 in the anger, disgust, and

fear -F1, which affects the ability of the model to generalize to all sentiments. The next best performing

models are the cls+avg and concat4 models, achieving 77.4 and 77.2 micro-F1 scores respectively, and

53.0 and 53.3 micro-F1 without the majority class scores. Given that the results are so similar, we will

consider the macro-F1 metrics. We can observe that the concat4 model achieves the best scores in both

47



F1 F1
Pooling m m-NMC M M-NMC ANG DIS FEA JOY NEU NNEU SAD SUR

cls 76.8 51.9 47.5 41.8 28.6 25.0 33.3 66.5 87.2 29.6 29.6 55.7
avg 76.5 52.2 47.9 42.2 15.4 25.0 57.1 68.0 87.3 22.7 51.4 56.0
cls+avg 77.4 53.0 47.7 42.0 28.6 25.0 33.3 67.9 87.3 28.6 54.8 56.0
cls avg 77.9 54.1 37.4 30.2 0 0 0 66.3 87.7 37.9 54.8 52.2
biLSTM 77.3 55.2 38.3 31.2 0 0 0 68.2 87.5 39.5 55.0 56.1
concat2 75.3 52.3 48.7 43.4 42.9 26.7 33.3 67.2 86.3 30.0 51.0 52.5
concat4 77.2 53.3 49.2 43.8 30.7 28.6 44.5 69.3 87.4 27.6 53.1 52.5

Table 6.7: Results obtained with the RoBERTa large model using seven different pooling techniques.

macro-F1 metrics out of all variants, and also improves all metrics when compared to the cls version, so

we will choose the concat4 as our preferred pooling method.

6.2.5 Contextual Sentiment Classification

As described in Section 4.2, we will take advantage of being in a dialogue setting to also use context

sentences, belonging to both the user and the conversational agent, as input to our model in order to give

it additional information about the dialogue. To do so, we will experiment adding 1, 2, 3 and 4 sentences

as context to the previous model (RoBERTa-large with concat4 pooling). We did not experiment with

more than four sentences as context due to computational constraints.

F1 F1
Context m m-NMC M M-NMC ANG DIS FEA JOY NEU NNEU SAD SUR

x = 0 77.2 53.3 49.2 43.8 30.8 28.6 44.5 69.3 87.4 27.6 53.1 52.5
x = 1 75.8 53.1 53.1 48.3 40.0 54.6 40.0 67.5 86.6 31.0 55.0 50.0
x = 2 78.5 52.4 51.0 45.6 53.3 66.7 0 65.8 88.2 25.3 53.8 54.6
x = 3 75.3 51.8 51.3 46.2 40.0 50.0 33.3 67.1 86.5 28.3 54.4 54.5
x = 4 77.5 53.2 48.7 43.2 41.7 54.6 0 67.4 87.4 21.7 59.7 57.1

Table 6.8: Results obtained with the RoBERTa large model, with the concat4 pooling technique, using
between zero and four sentences as context.

The results can be observed in Table 6.8. The models that achieve the best micro-F1 metrics are the

ones with no context (x = 0), with two sentences as context (x = 2), and with four sentences as context

(x = 4). Regarding the x = 2 and x = 4 models, both have a score of 0 in the fear -F1 metric, which

is not desirable. Next, we will compare the x = 0 model with the next best performing model, which

is the one with one sentence as context (x = 1). Even though the micro-F1 metric is 1.4 points lower

than the obtained on the x = 0 model, if we consider the m-NMC metric, then the difference is only 0.2

points, which makes it hard to choose a model only considering the micro-F1 metrics. If we look at the

macro-F1 metrics, the difference is more expressive, with the x = 1 model scoring 3.9 points above on

the M metric and 4.5 on the same metric if we do not consider the majority class. Given the improvement

on these metrics, plus the fact that this model is able to get non-zero scores for all sentiment-level F1,

we will choose the x = 1 as the best model.

48



6.2.6 Retrieval Augmentation

The final method we experimented was to use retrieval augmentation to aid the classification. This

method is described in Section 4.3, and is based on the work by Ramos et al. (2021), where information

from the nearest training example is used to initialize the memory state of an LSTM. Our approach uses

this idea and applies it to the Transformer model. We incorporate the nearest training example of a given

sentence to aid its classification, using two approaches: sum, where the embedding corresponding to

the label of the nearest training example is added to the input embeddings of the Transformer model;

and concat, where the same sentiment embedding is concatenated to the output of the Transformer

model, to be used only on the classification step. Furthermore, we also experiment both approaches

with and without the initialization of the sentiment embeddings. The initialization is done using the

average sentence embedding representation for a given sentiment, using the training data.

Retrieved Labels Evaluation

Before using the nearest neighbors information in our models we are first going to evaluate the quality

of the bias we are passing to the model. This means that we first want to assess how good the labels

we retrieve are.

The retrieval was done using a top-n method: using the FAISS index, described in Section 4.3.1,

for each train/development/test example we retrieve the n most similar sentences from the training set,

and assign the target example the majority voting among the n examples. If is it not possible to reach a

quorum, we use n = 1, which means we assign it the label of the most similar example from the training

set. In our experiments we used n = {1, 3, 5}.

F1 F1
Retrieval m m-NMC M M-NMC ANG DIS FEA JOY NEU NNEU SAD SUR

Best model 75.8 53.1 53.1 48.3 40.0 54.6 40.0 67.5 86.8 31.0 55.0 50.0
n = 1 61.5 31.6 27.8 20.9 21.1 0 0 45.0 76.2 15.3 36.4 28.3
n = 3 67.5 34.4 31.4 24.3 19.1 16.7 0 45.0 81.0 11.6 40.0 37.8
n = 5 71.5 38.0 30.9 23.4 18.2 0 0 50.5 83.4 17.2 33.9 43.8

Table 6.9: Retrieval augmentation results using top-n retrieval method, with n = {1, 3, 5}.

In Table 6.9, we can observe the results of the retrieval using the different methods. We can start by

observing that the majority voting methods are superior to the n = 1 method in all metrics reported. If

we only consider the majority voting methods, the m metrics are superior in the n = 5, but the M metrics

are superior in the n = 3. Furthermore, the n = 3 method is able to classify examples from more classes

than the n = 5 method. For that matter, we will use the n = 3 majority voting as our retrieval method.

In Table 6.9 we can also observe the results of our best model thus far (RoBERTa large + concat4 +

context1). All reported metrics have a lower performance using only retrieval, with the neutral-F1 having

similar results, but in the remaining classes having a lower performance. This is particularly noticeable

in the M/m-NMC metrics, where the results are substantially lower. Given that the goal of the retrieval is

to aid the classification model with bias towards the correct label, this could be an indication that using

this approach might not work well towards our goal. Furthermore, in Figure 6.3 we can observe the

49



(a) Validation set. (b) Test set.

Figure 6.3: Distribution of the euclidean distances between the closest retrieved training example for
each example in the validation and test sets.

distribution of the euclidean distances between the closest retrieved training example (with n = 1) and

the examples on the development and test sets. Intuitively, closer examples would be more relevant to

find correct labels. In both sets we can observe how most examples are not part of the first bins, which

could also indicate uncertainty in finding the correct retrieved label for the examples. Regardless, we are

not able to conclude this only from these results. For that matter, we will next incorporate the information

of the retrieval using the n = 3 retrieval majority voting.

Results

In this section we will analyze the results of the methods previously described. The models we are

going to experiment with are the following:

• sum + init: sum method with the sentiment embedding matrix initialized.

• concat + no init: concat method with the sentiment embedding matrix not initialized. In this

method, the embeddings in the sentiment embedding matrix can have size = {64, 128}.

• concat + init: concat method with the sentiment embedding matrix initialized. As previously men-

tioned the sentiment embedding matrix is initialized with the average of the sentence embeddings

of each sentiment. The RoBERTa large model embeddings’ size is 1024. In this method we will

have two options: either concatenate the embedding of size 1024, or resize it to a smaller dimen-

sion of size 128 using a linear layer, before concatenating.

We can see the results obtained in Table 6.10. First, we can observe that the sum method performs

very poorly, and classifies all sentences as neutral. For that matter, we did not do anymore experiments

using this method and focused solely on the concat method.

Regarding the remaining models using the concat method, the ones that performed best based on

the micro scores are the no init (128) and the init (1024). The micro-F1 metrics are similar between

them, with the no init (128) performing 0.8 points above on the micro-F1 and 0.2 on the m-NMC metric.

50



F1 F1
Ret Aug. m m-NMC M M-NMC ANG DIS FEA JOY NEU NNEU SAD SUR

None 75.8 53.1 53.1 48.3 40.0 54.6 40.0 67.5 86.8 31.0 55.0 50.0
sum + init (128) 68.6 0 10.2 0 0 0 0 0 81.4 0 0 0
concat + no init (64) 76.9 52.8 52.0 47.0 38.1 54.6 33.3 66.7 87.4 27.9 54.6 53.8
concat + no init (128) 77.8 53.8 48.6 43.0 40.0 44.5 0 65.9 87.6 32.1 57.9 60.9
concat + init (1024) 77.0 53.6 52.8 47.9 38.1 66.7 25.9 66.1 87.2 28.9 54.1 56.4
concat + init (128) 76.8 51.8 48.6 43.0 52.2 44.5 0 65.2 87.7 31.8 52.5 55.0

Table 6.10: Retrieval augmentation results using three different methods: sum + init, concat + no init,
and concat + init, with different resizings of the sentiment embeddings (64, 128 and 1024).

If we observe the macro-F1 metrics, the init (1024) achieves a score of 52.8 on the macro-F1 (4.2 points

above the no init (128)) and 47.9 on the M-NMC (4.9 points above the no init (128)), mainly due to the

fact that this model has a non-zero score on the fear -F1 metric. Furthermore, the init (1024) model

improves the micro-F1 metrics, when compared to the version with no retrieval augmentation, scoring

1.2 points above on the micro-F1 and 0.5 on the m-NMC metric. Regarding the macro metrics, both

models with and without retrieval augmentation are very similar. For that matter, we will choose the

concat + init (1024) model as the best model.

6.2.7 EmotionPush Results

Having developed our approach to the sentiment classification problem, we will start by comparing

the performance of the final model (SA Model) with the baseline, for both development and test sets.

The results can be seen in Table 6.11. It can be observed that our model improves all major metrics,

except the micro-F1 on the test set where it maintains the same value. More notably, it is able to

improve the macro-F1 metric by 5.3 points on the development set, and 8.7 points on the test set.

These improvements are also noticeable on the M-NMC metric, where our model improves 6.1 points

on the development set and 10 points on the test set. On both sets, our model is also able to classify

examples belonging to all classes, unlike the baseline.

F1 F1
m m-NMC M M-NMC ANG DIS FEA JOY NEU NNEU SAD SUR

Dev Baseline 76.8 51.9 47.5 41.8 28.6 25.0 33.3 66.5 87.2 29.6 29.6 55.7
SA Model 77.0 53.6 52.8 47.9 38.1 66.7 25.9 66.1 87.2 28.9 54.1 56.4

Test Baseline 78.9 57.6 45.4 39.2 36.0 21.1 0 73.1 88.5 30.1 58.7 55.5
SA Model 78.9 58.2 54.1 49.2 45.6 27.3 66.7 72.5 88.4 21.3 55.6 55.8

Table 6.11: Comparison between the baseline and our best sentiment analysis model on the develop-
ment and test sets.

In order to further validate our results we will perform an ablation study on the best model (RoBERTa-

large + concat4 pooling + one sentence as context + linear classification layer + retrieval augmentation

initialized with no resizing of the embeddings) using the test set. We will remove/substitute each method

one at a time with the ones used in the baseline. We performed four experiments in the ablation study.

They are defined as follows:

• + RoBERTa-base: We replace RoBERTa-large by RoBERTa-base;

51



• + CLS: we replace the concat4 pooling by the CLS pooling;

• - Context 1: we no longer use context as input to our model;

• - Ret. Aug.: we remove the retrieval augmentation from the model.

F1 F1
m m-NMC M M-NMC ANG DIS FEA JOY NEU NNEU SAD SUR

SA Model 78.9 58.2 54.1 49.2 45.6 27.3 66.7 72.5 88.4 21.3 55.6 55.8
+ RoBERTa base -0.7 -0.8 -4.2 -4.7 -4.9 -16.8 -16.7 -0.3 -0.4 +6.4 +2.2 -3.5
+ CLS -0.9 -0.9 -1.6 -1.7 -6.3 +4.3 -16.7 +0.8 -0.3 +6.7 -1.5 0
- Context 1 -2 -2.6 -8.8 -9.9 -16.4 +9.1 -66.7 -1.6 -1.3 +8.2 +0.7 -2.7
- Ret. Aug. -0.7 +0.3 +3.1 +3.6 +6 +12.7 0 +1.4 -0.6 +5.6 +3.4 -4.2

Table 6.12: Ablation study on the test set.

The results obtained on the ablation study can be observed in Table 6.12. Removing the context

sentences from the input is what impacts the model the most, which tells us it was the most signifi-

cant addition to our model. Furthermore, replacing the RoBERTa-large by the RoBERTa-base and the

concat4 by the CLS pooling option, also worsens all major metrics. Interestingly, using the retrieval

augmentation methods worsened our results on the test set. Another interesting remark is that, in the

model with no retrieval augmentation, the fear -F1 metric is the only one that remained the same when

compared to the SA Model. If we look at Table 6.9, where we evaluated the quality of the bias passed

to the model, this was the only label that was not captured by retrieval in the development set. We

also computed the bias results for the test set, and the fear label is also not captured, which might help

explain this observation.

6.2.8 DailyDialog Results

In this section we will evaluate how the setup behaves for the DailyDialog corpus. To do so, we

will compare the baseline (RoBERTa-large) with the best setup found on the EmotionPush corpus

(RoBERTa-large + concat4 pooling + one sentence as context + linear classification layer + retrieval

augmentation initialized with no resizing of the embeddings). Since on the ablation study done on the

EmotionPush corpus (Section 6.2.7) we found that removing context and retrieval augmentation had the

most impact on the model, we will only focus on those changes.

A summary of the results obtained on the development set can be seen in Table 6.13. First, we can

start by noting that our model does not improve the baseline on most major metrics, except the micro-

F1 metric that improves 0.3 points. Secondly, we can observe that removing the context or retrieval

augmentation, has a minimal impact on the metrics.

In Table 6.14, we have the results on the test set. Contrarily to the results obtained on the devel-

opment set, on the test set, all major metrics results’ improve when compared to the baseline. The

micro-F1 metric improves by 0.5 points, and the m-NMC by 1.6 points. Regarding the macro-F1 metric,

it improves by 2.9 points and the M-NMC by 3.4 points. Interestingly, on the test set both removing the

context and retrieval augmentation worsen the results, which tells us that both methods are helping in

the classification.

52



F1 F1
Model m m-NMC M M-NMC ANG DIS FEA HAP NO-EMO SAD SUR

Baseline 89.3 59.4 47.5 39.8 53.6 0 28.6 63.2 94.1 40.5 52.9
SA Model 89.6 59.3 47.4 39.5 51.8 0 30.8 63.5 94.3 42.1 49.1
- Context 1 -0.3 0 0 +0.1 -3.7 0 -2.2 +0.2 -0.2 +2.0 +4.3
- Ret. Aug. 0 +0.2 +0.3 +0.4 +3.0 0 0 +0.8 0 -0.4 -1.1

Table 6.13: Results obtained on the DailyDialog development set. The results on the ablation study are
a comparison with the results obtained for the SA Model.

F1 F1
Model m m-NMC M M-NMC ANG DIS FEA HAP NO-EMO SAD SUR

Baseline 84.5 56.5 48.1 41.0 41.6 18.2 33.3 61.7 91.0 38.1 53.0
SA Model 85.0 58.1 51.0 44.4 41.5 31.3 34.3 62.8 91.1 41.0 55.2
- Context 1 -0.6 -1.6 -2.5 -3.0 -2.0 -11.0 +2.7 -0.3 -0.2 -4.8 -2.2
- Ret. Aug. -0.6 -1.3 -1.0 -1.2 -5.3 +3.5 -4.7 -0.9 -0.3 +1.2 -0.6

Table 6.14: Results obtained on the DailyDialog test set. The results on the ablation study are a com-
parison with the results obtained for the SA Model.

(a) Development set. (b) Test set.

Figure 6.4: Distribution of the euclidean distances between the closest retrieved training example for
each example in the development and test sets.

In Section 6.2.6 we mentioned how our intuition was that in retrieval augmentation methods, finding

closer examples would be more relevant to finding correct labels. Contrarily to the results obtained on

the EmotionPush corpus, on the DailyDialog the retrieval augmentation methods seemed to have a more

positive impact on the results. In Figure 6.4 we have the distribution of the euclidean distances between

the closest retrieved training example and the examples in the development and test sets from the

DailyDialog corpus. When compared to the same analysis done on the EmotionPush corpus, in Figure

6.3, we can observe how in the DailyDialog more examples are part of the first bins, which indicates a

higher certainty when retrieving examples.

6.2.9 Results Comparison

In this section we will compare our results with other published works. Regarding EmotionPush,

we will use the most recent result we have found that used the same train/development/test splits as

53



we did. In particular, we will compare our models’ performance with the best model of the SocialNLP

2018 EmotionX Challenge shared task (Hsu et al., 2018). The metric reported for this shared task is

the Unweighted Accuracy (UWA), which we calculated for comparison purposes. Additionally, due to

the low number of examples for some classes, Hsu et al. (2018) proposes to use only four classes

during evaluation: joy, anger, sadness, and neutral. Therefore, for this dataset, we also report the score

considering this constraint. Regarding the DailyDialog corpus, we compare the micro-F1 without the

majority class and the macro-F1 metrics.

In Table 6.15 we can observe our models’ performance versus other works found in literature. We

can start by observing that our model is able to improve the performance on the EmotionPush corpus by

8.5 points. We hypothesise this is due to the fact that Khosla (2018) makes use of GloVe embeddings,

which have a subpar performance when compared to the Transformer-based contextual embeddings we

use. On the DailyDialog corpus, our model outperforms all approaches except Ghosal et al. (2020), even

though the performance is similar. However, we would like to highlight that Ghosal et al. (2020) makes

use of an additional large knowledge base that captures certain aspects such as personality, or emotion

interactions. We do not make use of such attributes, which albeit useful, are not readily available for

most practical use-cases.

EmotionPush DailyDialog
Model UWA m-NMC M
CNN-BiLSTM (Khosla, 2018) 62.2 - -
KET (Zhong et al., 2019b) - 53.4 -
ELECTRA with Contextual Augmentation (Kim et al., 2020) - 57.9 -
COSMIC (Ghosal et al., 2020) - 58.5 51.1
SA Model (ours) 70.7 58.1 51.0

Table 6.15: Comparison of results found in literature against our model.

6.2.10 Conclusion

Throughout this section we have explored the problem of sentiment classification applied to two

datasets, EmotionPush and DailyDialog, in a dialogue context. In particular, we resorted to an extensive

experimentation cycle to show the impact, not only of different model/architecture choices, but also the

addition of dialogue-specific inputs, such as the context of a sentence, and the usage of labeled exam-

ples to improve performance. In particular, we have shown the impact of using context, which highlights

the importance of considering the previous context when classifying the sentiment of a sentence within

a dialogue. With regard to the retrieval-based approaches, the results were not as conclusive, which

we attribute to the different degrees of similarity between development/test splits and the corresponding

training splits (used as support data) of different datasets.

Considering the results obtained, for our final system we will be using the full model (RoBERTa-

large + concat4 pooling + one sentence as context + linear classification layer + retrieval augmentation

initialized and with no resizing of the embeddings) on the DailyDialog corpus, and the same model but

without retrieval augmentation on the EmotionPush corpus, given that we showed that retrieval worsened

54



our test results.

6.3 Reply Sentiment Prediction

In this section we will develop the reply sentiment prediction model. As defined in Section 4.4, the

default input of the reply sentiment prediction model is to use two sentences, one from the conversational

agent, and one from the user. The goal is to predict the label of the upcoming sentence. Given that the

BERT and RoBERTa model proved to be strong baselines for the task of sentiment classification, we will

use them as a starting point for reply sentiment prediction model as well. Furthermore, we will make use

the [CLS] token of the last hidden layer as the sentiment embedding representation, and a linear layer

as the classification model for the baseline.

6.3.1 Metrics

Given that reply sentiment prediction is a classification task and our goal is to evaluate the number

of examples being classified correctly, we will be using the same metrics used in the sentiment classi-

fication evaluation (Section 6.2), which are the following: micro-F1 (m); micro-F1 with no majority class

(m-NMC); macro-F1 (M); macro-F1 with no majority class (M-NMC); and sentiment-F1 metrics.

6.3.2 Training Details

The training of the reply sentiment prediction models follows the same details described in Section

6.2.2.

6.3.3 Baseline

The first step is to choose a baseline model. Given that the BERT and RoBERTa models performed

well for the task of sentiment classification, we will perform baseline experiments with the same models,

in two different sizes, base and large. A description of the models can be found in Section 6.2.2.

F1 F1
Model m m-NMC M M-NMC ANG DIS FEA JOY NEU NNEU SAD SUR

BERT-base-cased 67.8 14.9 15.0 5.5 0 0 0 25.1 81.4 3.2 10.0 0
BERT-large-cased 66.5 17.4 15.4 6.1 0 0 0 27.9 80.8 6.1 8.5 0
RoBERTa-base 68.5 13.3 13.6 3.8 0 0 0 25.2 81.8 1.6 0 0
RoBERTa-large 69.0 18.0 15.0 5.5 0 0 0 31.8 81.7 1.8 5.1 0

Table 6.16: Results obtained on four different architectures (BERT-base-cased, BERT-large-cased,
RoBERTa-base, RoBERTa-large) on the development set of the EmotionPush dataset.

The results obtained are in Table 6.16. We can start by observing how this task is harder for the

baseline models to perform well in. In particular, for the sentiments anger, disgust, fear, and surprise,

none of the models is able to classify any example. Nonetheless, the RoBERTa-large model is the

55



model that performs better in the micro scores, and has similar results to the best performing model in

the macro scores (BERT-large-cased). So, we will choose the RoBERTa-large as our baseline model.

6.3.4 Sentence Embedding Representation

We will explore the same sentence embedding representations we used for the sentiment classifi-

cation model. The methods are described in Section 6.2.4 and are: cls; cls+avg; biLSTM; concat2;

concat4; and cls avg.

F1 F1
Pooling m m-NMC M M-NMC ANG DIS FEA JOY NEU NNEU SAD SUR

cls 69.0 18.0 15.0 5.5 0 0 0 31.8 81.7 1.8 5.1 0
avg 67.1 17.6 15.2 5.9 0 0 0 29.2 80.6 7.6 4.6 0
cls+avg 63.8 18.2 16.1 7.1 0 0 0 27.3 78.9 15.2 9.5 0
biLSTM 67.1 18.7 15.1 5.7 0 0 0 28.9 81.1 11.1 0 0
concat2 65.6 18.3 16.3 7.2 0 0 0 28.6 80.1 12.1 9.5 0
concat4 67.6 19.7 15.9 6.6 0 0 0 33.1 80.9 3.1 10.3 0
cls avg 68.8 0 10.2 0 0 0 0 0 81.5 0 0 0

Table 6.17: Results obtained with the RoBERTa large model using seven different pooling techniques.

The results can be seen in Table 6.17. The cls representation achieves the best result on the micro-

F1 metric, but the concat4 performs 1.7 points above the cls on the m-NMC metric. Furthermore, when

compared with the cls method, the concat4 also improves the macro metrics, scoring 0.9 points above

on the M metric and 1.1 points on the M-NMC metric. Therefore, we will use the concat4 sentence

embedding representation for our model.

6.3.5 Contextual Reply Sentiment Prediction

As mentioned in Section 4.4.2, the default input for the task of reply sentiment prediction is having

two sentences as context, one from the conversational agent and one from the user, in order to predict

the sentiment of the upcoming sentence to be generated by the conversational agent. In addition to this,

we experimented with using between one and four turns as context to see if the model benefited from it.

F1 F1
Context m m-NMC M M-NMC ANG DIS FEA JOY NEU NNEU SAD SUR

x = 1 67.5 12.8 14.5 5.1 0 0 0 21.3 80.8 3.3 5.3 5.4
x = 2 67.6 19.7 15.9 6.6 0 0 0 33.1 80.9 3.1 10.3 0
x = 3 67.2 18.9 16.2 7.0 0 0 0 30.0 80.6 8.8 5.0 5.0
x = 4 66.5 19.6 17.8 8.8 0 0 0 29.2 80.7 8.5 18.9 4.8

Table 6.18: Results obtained for the reply sentiment prediction task using between one and four sen-
tences as context.

The results of the experiments can be observed in Table 6.18. Firstly, for 1, 3 and 4 turns of context

we are able to classify examples of a label we were not previously able to (surprise), so we will focus on

these models. Out of these three setups, the one that performs best on the micro-F1 score is the x = 1,

but its m-NMC is the lowest out of the three. The x = 4 setup achieved the highest macro-F1 scores,

56



1.9 points above the default setup (x = 2) on the M score and 2.2 points above on the M-NMC score.

Furthermore, it performs only 0.1 points lower on the m-NMC metric than the standard x = 2 and 6.8

above than the x = 1 model. Therefore, we will use four context sentences as input for the model.

Adding Sentiment Context

In addition to adding extra context sentences to the input of the model, as described in Section 4.4.2,

we can also add sentiment representations of the emotions expressed in the context sentences. To do

so, we will use an approach similar to the concat method described in Section 4.3.2.

The sentiment embeddings (SE) created for this method have a dimension of 64 and are initialized

at random following a normal distribution, N (0, 1). Given that in the previous section we saw that we

achieved the best results using four input sentences, we concatenate four sentiment vectors to the

sentence representations, each corresponding to the labels of the input sentences.

F1 F1
Context m m-NMC M M-NMC ANG DIS FEA JOY NEU NNEU SAD SUR

x = 4 66.5 19.6 17.8 8.8 0 0 0 29.2 80.7 8.5 18.9 4.8
x = 4 + SE 68.5 15.0 15.8 6.4 0 0 0 24.9 81.5 6.0 14.0 0

Table 6.19: Results obtained for the response sentiment prediction task with and without adding the
sentiment embeddings to the input of the model.

The results can be observed in Table 6.19. Using context sentiment embeddings improves the micro-

F1 score, but all other major metrics lower significantly. In particular, after an informal inspection to the

data, we have observed that most sentences are preceded or followed by sentences labeled as neutral.

Given that observation, our hypothesis is that for this particular dataset it is not possible to obtain useful

information about the next sentence label based solely on the labels of the previous sentences. The

obtained results are interesting, given that the model with the sentiment embeddings actually improved

the neutral-F1 by 0.8 points and lowered all other sentiment-F1 metrics. This could indicate that in a

better balanced corpus with more significant sequences this approach could work. Nevertheless, given

the poor results on this dataset, we will not be using the labels of the context sentences.

An important aspect to notice about this decision is that, since we will not be using the labels of the

context sentences, this means that the proposed sentiment-aware conversational agent will not include

the sentiment classification as a first step. Thus, the sentiment classification model will only be used as

a metric to evaluate the text generation.

6.3.6 Retrieval Augmentation

Given the seemingly hard task to classify the appropriate sentiment of an upcoming sentence, we

will be using the same retrieval augmentation techniques described in Section 4.3 to give some more

context to the model in order to improve performance.

57



Retrieved Labels Evaluation

In the task of sentiment classification the retrieval was done by finding the most similar training ex-

ample to the one we were going to classify. In this task, our inputs are composed of previous sentences.

For that matter, in order to retrieve the nearest neighbors information, for each example we retrieved the

most similar training context and used the label of the upcoming sentence as the retrieved label. For the

retrieval we used two sentences, for computational efficiency reasons.

F1 F1
Retrieval m m-NMC M M-NMC ANG DIS FEA JOY NEU NNEU SAD SUR

Best model 66.5 19.6 17.8 8.8 0 0 0 29.2 80.7 8.5 18.9 4.8
n = 1 51.3 10.5 12.9 5.0 0 0 0 14.0 69.2 13.1 2.5 4.7
n = 3 57.9 9.5 11.8 2.9 0 0 0 15.6 74.4 4.5 0 0
n = 5 63.4 4.4 10.9 1.2 0 0 0 8.6 78.4 0 0 0

Table 6.20: Retrieval augmentation signal results using top-n retrieval method, with n = {1, 3, 5}.

Again, we will start by considering the quality of the retrieved labels using the top-nmethod described

in Section 6.2.6. The results of using only the retrieval methods can be observed in Table 6.20. The

retrieval method that achieves the best micro-F1 is the n = 5, but it is only able to retrieve examples of

the joy and neutral sentiments. When comparing the n = 1 and n = 5 retrieval methods, we can observe

that the n = 1 approach achieves the best overall results, but still lower than the results obtained by the

best model so far. Similarly to what we observed when using this method for sentiment classification in

Section 6.2.6, this can be an indication that adding the retrieval augmentation information will not yield

better results, given that the quality of the retrieval is much lower than the results achieved by the model.

Results

In this section we will show the results of the experiments done by adding the retrieval information to

the model. We will use the same methods described in Section 6.2.6: sum + init, concat + no init, and

concat + init.

F1 F1
Ret Aug. m m-NMC M M-NMC ANG DIS FEA JOY NEU NNEU SAD SUR

None 66.5 19.6 17.8 8.8 0 0 0 29.2 80.7 8.5 18.9 4.8
sum + init (128) 67.0 0 10.0 0 0 0 0 0 80.3 0 0 0
concat + no init (64) 68.5 14.5 14.3 4.7 0 0 0 26.3 81.8 1.7 5.0 0
concat + no init (128) 67.2 15.6 15.2 5.9 0 0 0 27.3 80.6 4.4 9.3 0
concat + init (1024) 68.6 17.1 15.8 6.3 0 0 0 28.8 81.7 6.2 9.3 0
concat + init (128) 68.1 13.0 13.8 4.1 0 0 0 24.0 81.3 0 5.0 0

Table 6.21: Retrieval augmentation results using three different methods: sum + init, concat + no init,
and concat + init, with different resizings of the sentiment embeddings (64, 128 and 1024).

The results obtained can be observed in Table 6.21. Contrarily to the results we obtained in the

development set for sentiment classification, for the reply sentiment prediction, using retrieval augmen-

tation significantly lowers the performance of most metrics. Out of the models that use retrieval, the

setup with the better performance is the concat + init (1024), which actually achieves a higher micro-F1

58



and neutral-F1 than the model with no retrieval augmentation, but has a lower performance in all other

metrics. For this reason, we will not be using retrieval augmentation.

6.3.7 EmotionPush Results

Now that we have a final reply sentiment prediction (RSP) model setup (RoBERTa-large + concat4

pooling + four sentences as context + linear classification layer), in Table 6.22 we can observe the com-

parison of our model versus the baseline in both the development and test sets. In the development set

we can see how the micro-F1 does not improve when compared to the baseline. This can be explained

by our baseline model having a higher bias towards the joy and the neutral sentiments, as can be ob-

served by their higher F1 values. Nonetheless, our model improves all other metrics (m-NMC by 1.6

points, M by 2.8 points, and M-NMC by 3.3 points), which shows how our model is better at general-

izing for less represented sentiments. Regarding the performance on the test set, the conclusions are

similar. The micro-F1 is higher by 1.8 points on the baseline, which can also be explained by the higher

neutral-F1. Despite this, our model also outperforms the baseline in all other metrics (m-NMC by 6.7

points, M by 2.4 points, and M-NMC by 2.9 points), which validates the improvements when compared

to the baseline.

F1 F1
m m-NMC M M-NMC ANG DIS FEA JOY NEU NNEU SAD SUR

Dev Baseline 69.0 18.0 15.0 5.5 0 0 0 31.8 81.7 1.8 5.1 0
RSP Model 66.5 19.6 17.8 8.8 0 0 0 29.2 80.7 8.5 18.9 4.8

Test Baseline 66.0 14.4 13.3 3.8 0 0 0 24.3 79.6 0 2.3 0
RSP Model 64.2 21.1 15.7 6.7 0 0 0 32.0 78.8 8.6 2.1 4.1

Table 6.22: Comparison between the baseline and our best sentiment analysis model on the develop-
ment and test sets.

In order to further validate our results, we will perform an ablation study on the test set using a similar

method to the one defined in Section 6.2.7. The ablation study experiments are defined as follows:

• + RoBERTa-base: we replace RoBERTa-large by RoBERTa-base;

• + CLS: we replace the concat4 sentence representation by the CLS;

• + Context 2: we replace the four context sentences by the default two context sentences;

Given that for the sentiment classification task the retrieval augmentation showed different behaviors

in the development and test sets, we will also be showing the results of the best performing retrieval

augmentation setup (concat + init (1024)) on the test set (+ Ret. Aug.).

In Table 6.23, we can observe the ablation study done on the test set. We can start by observing

how all models have a higher micro-F1 than the RSP model. Again, this can be explained by the higher

neutral-F1 values. On the remaining major metrics, all models perform worse than the RSP model.

These results show how our model is doing a trade-off between a lower F1 in the neutral label and

a higher F1 on the less represented sentiments. Another important aspect is the performance of the

59



F1 F1
m m-NMC M M-NMC ANG DIS FEA JOY NEU NNEU SAD SUR

RSP Model 64.2 21.1 15.7 6.7 0 0 0 32.0 78.8 8.6 2.1 4.1
+ RoBERTa base +3.4 -6.8 +2.5 -3.1 0 0 0 -7 +1.7 -8.6 -2.1 -4.1
+ CLS +2.6 -4.9 -1.6 -2.1 0 0 0 -6.3 +1.4 -4.2 +0.2 -4.1
+ Context 2 +0.2 -3.4 -1.3 -1.5 0 0 0 -4.5 0 -4.1 +2.3 -4.1
+ Ret. Aug. +0.6 -3.2 -0.3 -0.3 0 0 0 -5.3 +0.3 -0.8 +7.8 -4.1

Table 6.23: Ablation study on the test set.

model with retrieval augmentation. Similarly to the evaluation done on the development set, adding the

retrieval augmentation methods is not helping our model achieve better results.

6.3.8 DailyDialog Results

In this section we will evaluate how our reply sentiment prediction setup behaves for the DailyDialog

corpus. In particular, we will compare the baseline (RoBERTa-large) with the best setup found on the

EmotionPush corpus (RoBERTa-large + concat4 sentence embedding representation + four context

sentences).

The ablation study performed on the EmotionPush showed that all introduced changes were impact-

ing the final model. For that matter, in addition to showing the baseline and the best model results, we

will also perform the same ablation study done in the previous section to the DailyDialog corpus, for both

development and test sets.

F1 F1
Model m m-NMC M M-NMC ANG DIS FEA HAP NO-EMO SAD SUR

Baseline 86.6 40.9 28.0 17.2 34.1 0 0 45.6 92.6 5.6 18.2
RSP Model 85.4 39.9 27.6 16.9 30.1 0 0 44.7 91.9 13.0 13.5
+ RoBERTa base -0.6 -3 -3.7 -4.3 -12.4 0 0 -2.8 -0.3 -7.2 -3.2
+ CLS +0.8 -0.4 -1.4 -1.7 -3.6 0 0 0 -0.5 -7.4 +0.7
+ Context 2 -0.2 -2.5 -0.9 -1.1 +2.5 0 0 -2.8 0 -5.9 -0.3
+ Ret. Aug. +2 -5.9 +1.2 +1.5 -10.1 0 +36.4 -5.5 +1.3 -13.0 +1.4

Table 6.24: Comparison between the Baseline and RSP Model results obtained, and ablation study
performed on the DailyDialog development set. The results on the ablation study are a comparison with
the results obtained for the RSP Model.

In Table 6.24 we can observe the results obtained on the development set for both the baseline and

our model (RSP Model), as well as the ablation study. Firstly, we can observe that even in a corpus with a

larger number of training examples, the reply sentiment prediction task is still a hard task to perform well

in. Neither the baseline nor the RSP Model were able to classify examples belonging to two sentiments.

Comparing the baseline with the RSP Model, we can observe that this setup did not improve the base

model on most metrics. Furthermore, if we consider the ablation study, we can see that none of the

changes had a very strong impact on the performance either. Interestingly, for this corpus, the retrieval

augmentation improved some of the metrics. As we saw in Sections 6.2.6 and 6.2.8, the distance

between examples on the DailyDialog corpus tends to be lower than on the EmotionPush, which might

explain why the retrieval augmentation improves the results.

60



F1 F1
Model m m-NMC M M-NMC ANG DIS FEA HAP NO-EMO SAD SUR

Baseline 80.7 40.1 33.8 24.6 30.1 9.3 25.0 45.0 88.8 13.8 24.7
RSP Model 80.4 42.8 35.0 26.1 34.6 8.9 33.3 48.5 88.6 10.6 20.5
+ RoBERTa base -1.2 -1.5 -2.9 -3.2 -16 +0.4 +2 -1.6 -0.8 -5.1 +1.1
+ CLS +0.7 -1.3 -0.4 -0.6 -5.4 +0.4 -2 -1.3 +0.5 +0.1 +1.1
+ Context 2 -0.2 -1.7 +0.5 +0.5 -5.5 +8.1 -9.8 -2.6 -0.2 +7.6 +5.9
+ Ret. Aug. +1.6 -6.1 -1.9 -2.4 -8.7 +16.6 -11.1 -6.9 +1.2 -8.5 +4.2

Table 6.25: Comparison between the Baseline and RSP Model results obtained, and ablation study
performed on the DailyDialog test set. The results on the ablation study are a comparison with the
results obtained for the RSP Model.

The results obtained on the test set, which can be observed in Table 6.25, allow for a different set of

conclusions. First of all, our introduced changes improve the baseline. Secondly, on the test set, both

the baseline and the RSP Model are able to classify examples belonging to all classes. Finally, contrarily

to the evaluation performed on the development set, the retrieval augmentation does not improve the

results on most metrics.

In summary, the results obtained for this dataset are inconclusive and lead us to believe that this

corpus required a study of its own to understand which increments are more favorable, which for time

and computational resources constraints we were unable to do. Nonetheless, we were able to observe

that the task of reply sentiment prediction is hard to perform well in even when trained on a larger corpus.

6.3.9 Conclusion

During this section we explored the task of reply sentiment prediction applied to two datasets, Emo-

tionPush and DailyDialog. We started this experimental cycle by observing that despite being a classi-

fication task, the baseline Transformer-based approaches (Devlin et al., 2019; Liu et al., 2019) do not

perform well, which highlights the need for models pre-trained in a different way or for better balanced

and more appropriate data. Furthermore, we saw that we were unable to make a connection between

the sequences of sentiments that precede a given sentiment. Additionally, we saw that on this task,

using retrieval augmentation did not provide conclusive results.

Considering the results obtained, we will use the RoBERTa-large + concat4 sentence embedding

representation + four context sentences setup for both models in the final system. It is important to

notice that this setup does not use previous labels’ knowledge to make predictions. Thus, the proposed

conversational agent will only include the reply sentiment prediction and the text generation models.

Despite the low scores for reply sentiment prediction, we are still missing the text generation experi-

ments, which we will present next. We will see that if we succeed in generating text with sentiment, then

we prove the need for a reply sentiment prediction model, which is key to guide the dialogue conditioned

text generation model.

61



6.4 Conditioned Text Generation with Sentiment

Having developed both the sentiment classification and reply sentiment prediction models, what is

left to do is to develop a sentiment-conditioned text generation model. To do so, as described in Chapter

5, we will adapt the model proposed by Wolf et al. (2019), a dialogue conversational agent that is able

to express a given persona, to our specific use-case. We will start by fine-tuning different pre-trained

text generation models in order to build a baseline. Then, we will explore different sets of sentiment

lexicons to be concatenated to the input of the model, as a way of conditioning generation with the

desired sentiment. Finally, we will explore the task of next sentence prediction (Devlin et al., 2019), by

using sentiment distractors during the fine-tuning of the model. Similarly to the previously described

tasks (Sections 6.2 and 6.3), we will perform these experiments on the EmotionPush corpus, and later

apply our findings to the DailyDialog dataset.

6.4.1 Metrics

The goal of our work is to develop a sentiment-aware conversational agent without compromising

the quality of the generated text. Therefore, our choice of automatic evaluation metrics aims to measure

these two aspects. First, regarding the quality of the generated text, we will focus on two metrics:

• Perplexity (PPL): described in Section 2.5.2, it is a metric used to compare language models. The

model with the lowest PPL has a higher probability of correctly generating an unseen example from

a test set.

• Sentence Embedding Similarity (SES): calculates the cosine similarity between the embeddings

of the generated and the gold examples. Similarly to Xie and Pu (2021), we use the Sentence

Transformer (Reimers and Gurevych, 2019) library to create sentence representations of both

sentences, using the paraphrase-distilroberta-base-v1 model. Then, we calculate the cosine

similarity between the two representations. The SES is the average of the cosine similarities

obtained for all examples in the test set.

Second, to evaluate if the generated text is expressing the appropriate sentiment, we will use the

sentiment classification model described in Section 4 and developed in Section 6.2. In particular, we will

use the best setup we found for each of the datasets. This model will classify the generated sentences

and evaluate them using the micro-F1 (m), micro-F1 with no majority class (m-NMC), macro-F1 (M),

and macro-F1 with no majority class (M-NMC) metrics, described in Section 6.2.1.

It is important to mention that commonly used automatic metrics such as BLEU (Papineni et al.,

2002) or METEOR (Banerjee and Lavie, 2005), can be used for dialogue. However, as mentioned in Liu

et al. (2016), such metrics rely on the word overlap between the gold and the generated sentence, which

is not ideal in a dialogue scenario given the multitude of possible correct answers for a given context. In

particular, given that we will be conditioning the generated text with sentiment, this might lead to even

more diversity in the model’s replies. For the aforementioned reasons, we will not be using these metrics

in the evaluation.

62



6.4.2 Training and Decoding Details

The work described in Chapter 5 was implemented using PyTorch Lightning (Falcon and The PyTorch

Lightning team, 2019) and the HuggingFace Transformers (Wolf et al., 2020) library. Particularly, we

modified the code base of the HLT-MAIA lightning-convai repository2.

The models were trained for a maximum of 40 epochs, using the negative log-likelihood loss, with

four validation steps per epoch, stopping the training after 12 consecutive validation steps without im-

provement. We use the Adam optimizer (Kingma and Ba, 2015) with a learning rate of 5 × 10−6. The

checkpoint used to evaluate the model was the one that achieved the lowest validation negative log-

likelihood loss value. Given the dimension of the models, and due to computational constraints, we

always use the two most recent context sentences from the dialogue as input to the model. The models

were trained on a GeForce GTX 1080 GPU, with a real batch size of 4 whenever the GPU’s mem-

ory allowed it, but we used gradient accumulation to always simulate a batch size of 16. All the other

hyperparameters were kept with their default values.

Decoding was performed using top-p (nucleus) sampling (Holtzman et al., 2019), with p = 0.9, and a

maximum sequence length of 200.

6.4.3 Baseline

We will start by building a baseline model that will be the baseline for both the text generation model,

developed in this section, and the sentiment-aware conversational agent, which will be developed in

Section 6.5. We will experiment with two different pre-trained Transformer models, GPT-2 (Radford

et al., 2019) and DialoGPT (Zhang et al., 2020). We will experiment with two different configurations

from the HuggingFace Transformers (Wolf et al., 2020) library: GPT2; and GPT2-MEDIUM. Regarding

the DialoGPT model, it is a model built upon the GPT-2, but trained with conversation-like exchanges

from Reddit3. We will experiment with two different configurations, also from the HuggingFace Trans-

formers library: DIALOGPT-SMALL; and DIALOGPT-MEDIUM. Further details of the GPT-2 and DialoGPT

configurations can be observed in Table 6.26.

Model Nr. of Layers Hidden Size Total Parameters
GPT2 12 768 117M

GPT2-medium 24 1024 345M
DialoGPT-small 12 768 117M

DialoGPT-medium 24 1024 345M

Table 6.26: Description of the GPT-2 and DialoGPT models. The GPT-2 is used in two different config-
urations: GPT2, and GPT2-medium. The DialoGPT is used in two different configurations, small and
medium.

As mentioned in Section 5.1, the baseline architecture we are going to use is appropriate for dialogue.

It receives as input the previous context of the conversation, and outputs an answer. The results obtained

for the baseline approach can be observed in Table 6.27. First, we can start by observing the high

2https://github.com/HLT-MAIA/lightning-convai
3https://www.reddit.com

63



perplexity values, which could be related with the small size of the corpus we are using. As described in

2.5.2, a high perplexity value means that the model is not very sure of the text it is generating. The model

that achieves the lowest perplexity is the DialoGPT-medium. This model also outperforms the others in

all metrics, which would make it the ideal choice among the evaluated models. Unfortunately, due to

computational constraints, we are unable to use the medium sized models when we add sentiment

knowledge or the distractors mechanism. For that reason, we will use the next best performing model,

the DialoGPT-small, as a baseline for our experiments.

F1
Models PPL SES m m-NMC M M-NMC
GPT2 107.7 16.6 45.6 16.0 13.4 6.2
GPT2-medium 81.8 16.5 44.3 15.7 13.7 6.2
DialoGPT-small 92.4 16.8 42.5 15.6 13.2 6.4
DialoGPT-medium 62.2 17.3 45.9 20.5 18.1 11.5

Table 6.27: Results obtained on four different architectures (GPT2, GPT2-medium, DialoGPT-small,
DialoGPT-medium) on the development set of the EmotionPush corpus.

6.4.4 Guide Model With Sentiment

In order to guide the model towards an appropriate sentiment, as described in 5.2, we will con-

catenate the desired sentiment’s lexicon to the input of the model. During this set of experiments, the

provided sentiment for the generation step will be the same as the sentiment of the gold sentence. We

will build sentiment lexicon for each sentiment using the following techniques:

• Tag: use the sentiment’s name. We will use this model as a baseline for the sentiment conditioned

text generation model;

• TF: retrieve the 40 most frequent n-grams from the set of training sentences of each sentiment.

We will assume 1 ≤ n ≤ 3;

• TFU: the same as the TF approach, but removing n-grams that are not unique to each sentiment.

We will assume 1 ≤ n ≤ 3;

• TF-IDF: retrieve 40 n-grams with the highest TF-IDF score. We will assume 1 ≤ n ≤ 3;

• Random Sample: select at random a sentence from the training set labelled with the sentiment

we want to generate;

• Sentiment Sentences: use a pre-defined set of sentences representative of each sentiment. The

set we are going to use for the EmotionPush corpus can be observed in Table 6.28. This set of

short sentences was created using always the same sentence structure (“I am...” and “That is...”).

For the DailyDialog corpus the same set is used, except we do not include the non-neutral label.

The results of concatenating the different types of sentiment lexicon can be observed in Table 6.29.

Regarding the perplexity, we can observe that all approaches, except the TF-IDF and the Sentiment

64



Sentiment Sentence 1 Sentence 2
Anger I am angry. That is so annoying!

Disgust I am disgusted. That is repulsive!
Fear I am frightened. That is scary!
Joy I am happy. That is delightful!

Neutral I am ok. That is ok.
Non-neutral I am not ok. That is not ok.

Sadness I am sad. That is so upsetting.
Surprise I am surprised. That is so amazing!

Table 6.28: Sentences used to represent each sentiment in the EmotionPush corpus.

F1
Sentiment Lexicon PPL SES m m-NMC M M-NMC
None 92.4 16.8 42.5 15.6 13.2 6.4
Tag 90.1 17.7 45.6 16.8 14.2 7.2
TF 91.2 16.4 45.5 14.4 12.6 5.6
TFU 90.7 16.3 45.0 14.7 13.8 6.7
TF-IDF 120.9 16.4 41.7 13.6 12.6 5.7
Random Sample 94.3 16.8 44.7 20.1 15.0 8.3
Sentiment Sentences 86.3 18.0 62.7 42.3 29.1 22.4

Table 6.29: Results of concatenating sentiment lexicon to the input of the DialoGPT-small text generation
model.

Sentences, perform similarly to the baseline (None). When compared to the baseline, the TF-IDF ap-

proach worsens the perplexity by 28.5 points, while the Sentiment Sentences approach improves this

metric by 6.1, which is considerable. Furthermore, the Sentiment Sentences approach also improves

the SES metric by 1.2 points. More interestingly, this approach improves significantly the metrics that

are evaluating the expressed sentiment. When compared to the baseline, the m metric improves by

20.2 points, the m-NMC by 26.7 points, the M by 15.9 points, and the M-NMC by 16 points. These re-

sults show us how this model is generating better sentences, due to the improvements on the perplexity

and the sentence embedding similarity, and expressing the correct sentiment more times, which can be

concluded by the improvements on the metrics without the majority class (m/M-NMC).

Generation Analysis

Given the major improvements on the metrics, particularly on the sentiment metrics, achieved with

the Sentiment Sentences approach, we will analyse whether the model is simply copying the sentences

provided and using them in the generated reply, and if that is what is causing the improvement on the

sentiment metrics. To do so, we will evaluate each generated sentence from the development set and

check whether any of the keywords on the set of sentences is present on the generated sentence. We

perform stemming on each token, both from the keywords and from the generated sentences, using the

NLTK (Bird et al., 2009) implementation of the Porter stemming algorithm (Porter, 1980).

The outcome of this experiment can be observed in Table 6.30. The Gold columns show the results if

we consider the sentiment of each sentence to be the corresponding gold label. The Predicted columns

show the results if we consider the predicted labels by the sentiment classification model. We can start

65



Gold Predicted
Sentiment Nr. of Sentences % with keywords Nr. of Sentences % with keywords
Anger 7 0 2 0
Disgust 5 0 1 0
Fear 4 0.25 0 0
Joy 103 0.03 128 0.02
Neutral 362 0.10 341 0.11
Non-neutral 47 0 30 0
Sadness 28 0.14 54 0.07
Surprise 29 0.03 29 0.03

Table 6.30: Percentage of sentences using the gold and predicted sentiment that include at least one
keyword part of the pre-defined set of sentences sentiment lexicon building technique.

by observing that the percentage of sentences with keywords is very low across all sentiments which

leads us to believe that the model is not learning to copy the keywords of the provided set of sentiment

sentences. Furthermore, in Table 6.31 we gather the number of generated sentences by the Baseline,

Tag, and Sentiment Sentences models, that were correctly classified by the sentiment classifier. Since

the number sentences that include at least one keyword adds up to 45 (calculated from Table 6.30),

and that the Sentiment Sentences approach has 366 sentences that were classified correctly, which

corresponds to an improvement of 118 sentences regarding the Baseline model, and 100 sentences

regarding the Tag model, we can conclude that the increased sentiment scores shown in Table 6.29 are

not exclusively explained by the presence of keywords.

Model Nr. of sentences classified correctly
Baseline 248
Tag 266
Sentiment Sentences 366

Table 6.31: Number of sentences generated by the baseline, Tag and sentiment sentences approaches
that were correctly classified by the sentiment classifier.

6.4.5 Next Sentence Prediction

The final experiment performed was to use a double head transformer model and apply the next

sentence prediction task through the use of sentiment distractors, as described in Section 5.2.2. Ideally

we would use sentences labelled with every other sentiment as distractors. Due to computational con-

straints this was not possible, therefore, for each gold reply labelled with a given sentiment, we choose

three other sentiments at random, and sampled random sentences labelled with those sentiments from

the training set to use as distractors. As mentioned in Section 5.2.2, the model’s weights are updated

conditioned on the weighted sum of the language model loss, and the next sentence prediction loss,

L = αLLM + βLNSP, with L representing the total loss, LLM, the loss of the language model, LNSP, the

loss of the next sentence prediction model, and α and β the weights given to each of the losses. We will

consider α = 2 and β = 1.

The results of this experiment can be observed in Table 6.32. Training the model for the next sentence

prediction task worsens all metrics considerably. We hypothesize this is due to the amount of data being

66



F1
Models PPL SES m m-NMC M M-NMC
Sentiment Sentences 86.3 18.0 62.7 42.3 29.1 22.4
Sentiment Sentences + Distractors 135.0 16.9 48.1 26.5 19.9 13.6

Table 6.32: Results obtained with the use of a double head Transformer model trained for the tasks of
language modelling and next sentence prediction.

used to fine-tune the model, given that this approach worked in Devlin et al. (2019) and Wolf et al.

(2019), which used much larger datasets than ours. Given the poor results, we opted for not using the

double head transformer model.

6.4.6 EmotionPush Results

In order to evaluate the improvements achieved by the best developed model (DialoGPT-small +

pre-defined set of sentiment sentences) we will consider two baseline models: the baseline (DialoGPT-

small); and the tag model, as a sentiment conditioned baseline (DialoGPT-small + sentiment tag). The

results obtained by the three models, for both development and test sets, can be observed in Table

6.33. As we saw in Section 6.4.4, the Sentiment Sentences model performs exceptionally well on

the development set when compared to both the Baseline and the Tag approaches. Regarding the

performance on the test set, despite the improvements not being as expressive, in particular, we achieve

a better perplexity score on the Tag model, nonetheless, the Sentiment Sentences is the model that

performs better on this set as well, showing clear improvements on the sentiment related metrics.

F1
PPL SES m m-NMC M M-NMC

Dev
Baseline 92.4 16.8 42.5 15.6 13.2 6.4
Tag 90.1 17.7 45.6 16.8 14.2 7.2
Sentiment Sentences 86.3 18.0 62.7 42.3 29.1 22.4

Test
Baseline 85.0 17.3 47.6 22.6 17.1 10.3
Tag 78.9 16.7 61.4 43.9 24.2 17.4
Sentiment Sentences 79.4 18.0 64.3 45.5 33.0 26.6

Table 6.33: Results obtained on the development and test sets of the EmotionPush corpus with three
different models: DialoGPT-small (Baseline); DialoGPT-small + sentiment tag (Tag); and DialoGPT-small
+ pre-defined set of sentiment sentences (Sentiment Sentences).

6.4.7 DailyDialog Results

Following what was done in the previous section, we will analyse the results obtained on the Base-

line, Tag, and Sentiment Sentences models applied to the development and test sets of the DailyDialog

corpus. The results can be observed in Table 6.34. Contrarily to the results obtained for the Emotion-

Push corpus, the Tag and the Sentiment Sentences models perform more similarly on this dataset. On

the development set, it is relevant to mention that the Tag model outperforms the Sentiment Sentences

model in the macro-F1 score by 4.5 points, and in the macro-F1 without the majority class by 6.8 points.

On the test set, the Sentiment Sentences model outperforms the Tag model on the sentiment related

67



metrics, more significantly on the macro metrics, but scores worse results on the generation metrics.

F1
PPL SES m m-NMC M M-NMC

Dev
Baseline 9.7 28.5 82.7 25.7 20.9 9.4
Tag 9.3 29.2 88.4 50.5 42.5 34.0
Sentiment Sentences 9.3 29.5 88.5 50.6 38.0 28.8

Test
Baseline 9.9 26.7 77.9 30.6 24.9 14.5
Tag 9.5 28.5 83.6 51.2 42.6 34.6
Sentiment Sentences 9.6 27.3 84.6 53.1 48.5 41.4

Table 6.34: Results obtained on the development and test sets of the DailyDialog corpus with three
different models: DialoGPT-small (baseline); DialoGPT-small + sentiment tag (Tag); and DialoGPT-small
+ pre-defined set of sentences (Sentiment Sentences).

As mentioned in Section 3.1, the EmotionPush corpus is retrieved in an online chat context, which

means the text is very informal, while the DailyDialog corpus was built from websites that are used

to practice English, which makes the corpus more formal and fluent. This aspect could influence the

quality of the generation models. In particular, the fact that the Tag and Sentiment Sentences models

fine-tuned with the DailyDialog corpus perform similarly could be an indication that the quality of the data

used makes the models fine-tuned for this corpus not as dependent on the provided set of sentences,

and a more simple option, such as a sentiment tag, is enough to guide the models. In contrast, the lower

text quality of the EmotionPush corpus could be making the models fine-tuned for this dataset more

reliant on full sentiment sentences in order to generate text conditioned on a sentiment.

6.4.8 Conclusion

Throughout the sentiment conditioned dialogue text generation experimentation cycle we showed

the impact of dialogue appropriate pre-trained Transformer models on our problem, concluding that

models that are pre-trained for the dialogue task in fact perform better. Unfortunately, for computational

constraints, we were not able to use the best performing model, and had to resort to the smaller one.

Next, we explored various methods to build a sentiment lexicon knowledge base as a way to guide

the text generation model towards a generated sentence that better expresses a desired sentiment.

Given the good results obtained when compared to the baseline model, we performed an experiment

to show that the model is not simply copying the lexicon concatenated to the input. Furthermore, it

was noticeable how adding sentiment information improves the performance substantially in terms of

generating the desired sentiment, without compromising the quality of the generated text. Finally, we

adapted the task of next sentence prediction for our use-case, through the use of sentiment distractors,

which worsened all metrics considerably.

Considering the results obtained, we concluded that for both corpora the best text generation setup

is the DialoGPT-small + pre-defined set of sentiment sentences, which is what we will be using on the

sentiment-aware conversational agent.

68



6.5 Sentiment-aware Conversational Agent

With the experiment cycles of the sentiment classification (Section 6.2), reply sentiment prediction

(Section 6.3), and text generation (Section 6.4) models complete, we are left with the task of joining the

models into the proposed sentiment-aware conversational agent, first described in Chapter 1. In this

section we will describe the setup of each model we are going to use, along with the results obtained on

the development and test sets of the EmotionPush and DailyDialog corpora.

6.5.1 Setup

As mentioned in Section 6.3.5, given that using the sentiment of context sentences did not improve

the reply sentiment prediction model’s performance, the sentiment classification model is not part of

the conversational agent, and it is only used as a metric to evaluate whether the generated sentences

express the desired sentiment. The proposed sentiment-aware conversational agent system can be

observed in Figure 6.5. The full setup includes: the reply sentiment prediction model that receives

the previous context of a conversation (including the new user message) and outputs the appropriate

sentiment for the conversational agent to express; and the text generation model that, given the predicted

sentiment and the dialogue context, outputs a suitable reply. For each model, the setups we are going

to use are the following:

Reply Sentiment
Prediction

Text Generation

New
user


message

Generated reply

with sentiment

      Dialogue

Figure 6.5: Proposed sentiment-aware conversational agent.

• Sentiment Classifier: RoBERTa-large + concat4 pooling + one sentence as context + linear clas-

sification layer + retrieval augmentation initialized and with no resizing of the embeddings (no

retrieval augmentation for the EmotionPush corpus);

• Reply Sentiment Prediction: RoBERTa-large + concat4 sentence embedding representation +

four input sentences;

• Text Generation: DialoGPT-small + set of sentiment sentences.

In order to evaluate the sentiment-aware conversational agent, we will consider three systems:

• Baseline: the DialoGPT-small model developed in Section 6.4.3, which is not conditioned on

sentiment;

69



• Sentiment Sentences: the DialoGPT-small + Sentiment Sentences model developed in Section

6.4.4. Since this model is conditioned on the gold sentiment label, it represents the proposed

sentiment-aware conversational agent if the reply sentiment prediction model was perfect;

• Full System: the proposed sentiment-aware conversation agent which includes the reply senti-

ment prediction and text generation models.

During the development of this work, Xie and Pu (2021) proposed an approach with a similar goal

to ours. It also uses a reply sentiment prediction model, built with a Transformer Encoder, but the text

generation model used is based on the original Transformer (Vaswani et al., 2017), which uses the

sequence-to-sequence architecture. The predictions output by the reply sentiment prediction model

are added to the input of the decoder part of the Seq2Seq model. However, contrarily to us, Xie and

Pu (2021) focuses on larger datasets than the ones we used. Interestingly, their analysis on the reply

sentiment prediction model, reaches similar conclusions to ours, which shows that the answer to achieve

a better performance in the reply sentiment prediction task might not be directly related to the amount of

data used to train the models, and other methods should be explored.

6.5.2 Results

The results obtained for the development and test sets of the EmotionPush and DailyDialog corpora,

can be observed in Tables 6.35 and 6.36, respectively. For both datasets, the introduction of the re-

ply sentiment prediction on the full system seems to be the bottleneck, given the lower performance

achieved, namely on the sentiment related metrics. This tells us that the sentiment being predicted by

the reply sentiment prediction model is steering the model towards the wrong emotion, as expected by

the results obtained in Section 6.3. This proves the need for a better reply sentiment prediction model,

which is key for the proper functioning of the proposed conversational agent. However, the full system

still improves the perplexity when compared to the baseline, which shows that it is the set of sentences

that is being concatenated to the input that is improving the perplexity, and not whether the model is

receiving the correct sentiment or not. Regarding the SES, on the EmotionPush corpus, it is noticeable

that the SES is better when the sentiment related metrics and the perplexity achieve better results. On

the DailyDialog corpus this is not as perceptive, given the low fluctuation of the metrics between the

evaluated models.

F1
PPL SES m m-NMC M M-NMC

Dev
Baseline 92.4 16.8 42.5 15.6 13.2 6.4
Sentiment Sentences 86.3 18.0 62.7 42.3 29.1 22.4
Full System 88.1 16.0 49.2 21.1 15.6 8.2

Test
Baseline 85.0 17.3 47.6 22.6 17.1 10.3
Sentiment Sentences 79.4 18.0 64.3 45.5 33.0 26.6
Full System 80.3 16.6 49.8 21.6 15.7 8.4

Table 6.35: Results obtained on the development and test sets of the EmotionPush corpus.

70



F1
PPL SES m m-NMC M M-NMC

Dev
Baseline 9.7 28.5 82.7 25.7 20.9 9.4
Sentiment Sentences 9.3 29.5 88.5 50.6 38.0 28.8
Full System 9.5 28.4 83.7 25.6 20.4 8.7

Test
Baseline 9.9 26.7 77.9 30.6 24.9 14.5
Sentiment Sentences 9.6 27.3 84.6 53.1 48.5 41.4
Full System 9.7 27.6 77.9 30.8 26.0 15.8

Table 6.36: Results obtained on the development and test sets of the DailyDialog corpus.

An example of the sentences generated by the developed sentiment-conditioned text generation

model (Sentiment Sentences) can be observed in Table B.1. For the same context sentences (in Exam-

ple 1 “How do you feel?” and in Example 2 “What do you think of this shirt?”) we present the sentences

generated by the model conditioned on each of the target sentiments. Additionally, we also show the

sentence generated by the baseline, which is not conditioned on any sentiment. We can observe that

the model is capable of generating fluent and adequate answers for all sentiments. Furthermore, most

sentences generated express the desired sentiment. Only on Example 2, the fear sentiment does not

seem to be represented, however, the model was able to generate a sentence with a negative emotion.

Another interesting aspect about the generated sentences is that the model only repeated keywords from

the pre-defined set of sentiment sentences (presented in Section 6.4.4) twice on a sentence generated

conditioned on the fear emotion. Other examples are available in Appendix B.

Example 1
Context How do you feel?

Baseline I feel great, thanks.
Anger I’m sick of this city.
Disgust I’m very nauseous. I’ve never felt so nauseous.
Fear I’m scared. I’m scared of the future.
Joy I like it very much.
Sadness I’m really sorry, I’m really not feeling well.
Surprise Oh, my god! My eyes are burning!

Example 2
Context What do you think of this shirt?

Baseline It’s beautiful.
Anger Oh, it’s hideous.
Disgust I don’t like it. It’s too plain.
Fear I don’t like it. It’s too plain. How about a darker one?
Joy I love it. I have the same shirt in black.
Sadness I’ve never seen a shirt like this before. I don’t like it.
Surprise What a terrible idea!

Table 6.37: Examples of sentences generated by the sentiment-conditioned text generation model using
the pre-defined set of sentences given the same context. The words in red represent words that are
present in the pre-defined set of sentences.

An example of a generated dialogue between the proposed sentiment-aware conversational agent

and a user can be observed in Table 6.38. On all sentences generated in this example, the reply

sentiment prediction model gave a higher probability to the neutral sentiment. In order to display a more

interesting conversation, we chose the second best sentiment to condition the text generation model.

71



The text generation model seems to be able to generate the sentiments it is conditioned to. Further-

more, choosing the second best sentiment also resulted in a sentiment-appropriate conversation. The

generated sentences also seem to consider the past context, with the only mistake being on the second

chatbot sentence, where the model confused who called the police. Again, the sentence generated with

the fear emotion repeated a keyword from the pre-defined set of sentiment sentences. Interestingly, as

shown in Section 6.1, the fear label is the most underrepresented sentiment in the corpus, which might

have made the model rely more on the provided set.

Dialogue Example
User: I just called the police, I think someone broke into our home

while we were at work
Chatbot: [FEAR] I am really scared.
User: Me too! What do we do now?
Chatbot: [JOY] I’m really glad that I called the police. I really wanted to go home.
User: I just want this nightmare to be over.
Chatbot: [ANGER] Oh, it’s not over. We are going to have to go home now.

Table 6.38: Example of a dialogue between a user and the proposed sentiment-aware conversational
agent. [SENTIMENT] represents the sentiment predicted by the reply sentiment prediction model and that
is used to condition the reply of the conversational agent on that utterance. The words in red represent
words that are present in the pre-defined set of sentences.

6.6 Summary

Throughout this chapter we explored the tasks of sentiment classification (Section 6.2), reply sen-

timent prediction (Section 6.3), and dialogue text generation (Section 6.4) applied to the EmotionPush

and DailyDialog corpora, in order to build a sentiment-aware conversational agent. During the senti-

ment classification experimental cycle we took advantage of being in a dialogue setting and used past

dialogue context to enrich the input of the model, which improved the performance of our model. We

also experimented with retrieval augmentation, and concluded that in the datasets we are working with,

there are not enough similar sentences for this approach to be impactful. Regarding the reply sentiment

prediction model, our results highlighted the difficulty of performing well in this task, and how due to that,

it is the bottleneck of the conversational agent. In particular, we have concluded that using information

about the labels of the context sentences for reply sentiment prediction has a negative impact on the

model’s performance. This means that the sentiment classification model is not part of the final pipeline

of sentiment-aware conversational agent, and is only used as a metric to evaluate the sentiment of the

sentences generated by the text generation models. Finally, our proposed conditioned dialogue text gen-

eration model achieved results that outperformed significantly the baseline model, through the use of a

pre-defined set of sentences that represent each sentiment. The final results obtained for the sentiment-

aware conversational agent fell short of our expectations, mainly due to the low results obtained on the

reply sentiment prediction model. Nevertheless, the high scores obtained by the text generation model

when compared to the baseline, both on the generation and the sentiment metrics, motivate the use of

sentiment-guided text generation as a way of building a sentiment-aware conversational agent.

72



Chapter 7

Human Evaluation

As mentioned in Xie and Pu (2021), automatically evaluating empathetic conversational agents is

a challenging task given the limitations of automatic metrics. In particular, the most common text gen-

eration metrics evaluate the word/lexical overlap between the gold and generated sentences, and in a

dialogue setting there can be many correct answers. Furthermore, the experiment reported in Section

6.4.7 further motivates the challenge of relying on these metrics to evaluate sentiment-aware conver-

sational agents: giving to the model the exact same context and conditioning it on different sentiments

drastically changes the outcome of the generated sentences. For that matter, human evaluation became

a popular method to evaluate conversational agents. The limitation of the human evaluation is that it is

a time consuming and expensive evaluation. For this evaluation we were able to gather answers from

seven annotators with a proficient English level.

7.1 Evaluation Method

The goal of this work is to build a sentiment-aware conversational agent without compromising the

quality of the generated text. With this in mind, the most important aspects to evaluate regarding the

generated text were the fluency, the adequacy given the previous context, and whether it expressed the

desired sentiment.

7.1.1 Sampling

This evaluation was done by sampling at random 40 inputs from the test set of each corpus and

retrieving the corresponding replies generated by four of the developed architectures:

• Baseline: which consists on the DialoGPT-small model;

• Sentiment Baseline: which consists on the DialoGPT-small + tag setup. This model allows us to

have a baseline that is conditioned on a sentiment;

• Sentiment Sentences: which consists on the DialogGPT-small + pre-defined set of sentences

73



defined in Section 6.4.4. This model represents the sentiment-aware conversational agent if the

reply sentiment prediction model was perfect.

• Full System: which consists on the proposed sentiment-aware conversational agent, with the

reply sentiment prediction and text generation models.

One relevant detail about the chosen architectures is that both the sentiment baseline and the set

of sentences approaches use the gold sentiment label to condition the sentiment of the generated sen-

tence. In that sense, these approaches can be considered as being in the sentiment-aware conversa-

tional agent scenario, where the reply sentiment prediction model works perfectly.

The number of examples sampled of each sentiment can be observed in Table 7.1. The sampling

was done with the goal of balancing the number of examples of each sentiment. For the EmotionPush

corpus this was not possible given that for some sentiments we did not have enough examples available.

Nr. of Examples
Corpus Anger Disgust Fear Joy Sadness Surprise
EmotionPush 7 6 1 9 9 8
DailyDialog 7 7 7 6 7 6

Table 7.1: Number of examples sampled of each sentiment.

7.1.2 Evaluation Metrics

As mentioned before, the metrics we found interesting to evaluate were the fluency, the adequacy of

the reply given the previous context, and whether the generated text expressed the desired sentiment.

We considered a sentence to not be fluent if it had grammatical errors or repetitions. Through an

informal inspection of the sampled sentences, there were no such cases on the DailyDialog corpus

sample. On the EmotionPush sample we found three replies with repetitions and one reply with a

grammatical error out of the 160 replies retrieved (40 generated by each considered model). In order

to make the evaluation easier and less time consuming for the annotators, and considering that through

the informal inspection we did not find a considerable number of examples with fluency problems, we

did not ask the annotators to evaluate the fluency of the generated texts.

In order to evaluate the adequacy of the reply we asked the annotators the following question: “Do

the replies sound appropriate considering the context of the dialogue?”. We use a 2-point Likert scale

for this question. A similar process was followed to evaluate the sentiment of the sentences. Our

goal with this evaluation was to assess if the model was able to generate sentences with a desired

sentiment. The question asked to the annotators was “Do the replies represent the <sentiment name>

emotion?”. In this evaluation we asked the annotators specifically not to consider the previous context

of the replies. Additionally, given the multitude of sentiments present that often can be interchanged, we

also asked them to consider whether the sentence being evaluated could express the asked sentiment.

For example, “What?” could be used to express anger or surprise, depending on the tone used. We

also use a 2-point Likert scale of for this question.

74



An important aspect to notice regarding the questions made is our choice of evaluation scale. Van

Der Lee et al. (2019) performs an analysis on how human evaluations were conducted in recent works.

This work concludes that the 5-point Likert scale is the most common choice, followed by preference

ratings and the 2-point Likert scale. We chose a 2-point Likert scale in our work due to the following

reasons: each annotator has to analyze 40 dialogues for each dataset, which makes using a larger

scale cumbersome; we were concerned that using a larger scale could make the annotators compelled

to choose middle-of-the-scale values, making it harder to take conclusions from this evaluation.

Another interesting detail to consider was the feedback we got from the annotators regarding the

sentiment metrics. Different annotators considered some expressions differently. An example of this

is the expression “lol”. Some annotators considered this expression as joy, while others, who use

this expression sarcastically, considered it as “anger”. This aspect shows some of the difficulties of

annotating corpora with sentiment, particularly on a more fine-grained level.

7.2 Results

In this section, we will present the results obtained for the human evaluation. We will start by show-

ing the scores obtained on the evaluated metrics, followed by a study on the annotators’ agreement.

Finally, we will analyze how the human evaluation metrics correlate with the automatic metrics reported

in Chapter 6.

7.2.1 Scores

The results obtained for the human evaluation performed on the dialogues sampled from the Emo-

tionPush corpus can be observed in Table 7.2. Given that we are using a Likert scale of 2-points the

reported scores correspond to the ratio of positive answers to a given question. E.g., an adequacy

score of 0.6 for the Baseline model means that 60% of the generated sentences by this model were

considered adequate. The sentiments score corresponds to the ratio of positive answers considering all

sentiments. It is clear that the model that achieves the best performance was the Sentiment Sentences

model. In particular, we highlight how this model improved the adequacy of the replies when compared

to all other models. It also achieves the highest sentiment scores, except on disgust sentences, where

it is outperformed by the Sentiment Baseline model. It is also interesting to observe that, despite the

accumulated error of the Full System due to the reply sentiment prediction model, the Full System still

outperforms the Baseline by 0.0292 points on the sentiments metric. Nonetheless, it achieves a worse

performance on the adequacy metric. There also seems to exist a correlation between the sentiments

metric and how adequate the replies are. The models that achieved a higher sentiment metric also tend

to be more adequate.

The results obtained on the evaluation done on the DailyDialog corpus are presented in Table 7.3.

Both Sentiment Baseline and Sentiment Sentences approaches perform very similarly, with the Sen-

timent Baseline model scoring higher on the adequacy metric, and the Sentiment Sentences model

75



Model Adequacy Sentiments Anger Disgust Fear Joy Sadness Surprise
Baseline 0.4292 0.325 0.3095 0.1667 0.1667 0.2778 0.4074 0.4375
Sentiment Baseline 0.5042 0.5167 0.2381 0.5278 0 0.7963 0.5926 0.4167
Sentiment Sentences 0.6167 0.6583 0.4762 0.4167 0.8334 0.8889 0.6481 0.7292
Full System 0.3917 0.3542 0.3810 0.4167 0.1667 0.5556 0.2223 0.2292

Table 7.2: Human evaluation average EmotionPush Scores.

scoring higher on the sentiments metric. The improvements of both models when compared to the

Baseline are considerable on all metrics.

Model Adequacy Sentiments Anger Disgust Fear Joy Sadness Surprise
Baseline 0.4958 0.3708 0.3095 0.2381 0.3571 0.6945 0.3571 0.3056
Sentiment Baseline 0.6542 0.7084 0.5714 0.6190 0.4762 0.9723 0.7381 0.9445
Sentiment Sentences 0.6292 0.7625 0.7619 0.4762 0.6667 0.9167 0.8334 0.9723
Full System 0.5667 0.3292 0.3334 0.1905 0.2857 0.5556 0.3810 0.2500

Table 7.3: Human evaluation average DailyDialog Scores.

It is relevant to mention that a common complaint among the annotators was that the dialogues’ con-

text present in the EmotionPush corpus evaluation were often times confusing and hard to understand.

As mentioned in Section 6.1, this corpus was retrieved in an online chat setting which made some of the

dialogues very informal.

7.2.2 Inter Annotator Agreement

In order to evaluate the agreement among the annotators we chose the Fleiss’ Kappa (Fleiss and

Cohen, 1973) statistical test, which allows to measure the agreement between two or more annotators.

The agreement results obtained can be observed in Table 7.4. According to the Kappa’s interpre-

tation scale proposed by Viera et al. (2005), the Fleiss’ Kappa can assume values between 0 (poor

agreement) and 1 (almost perfect agreement). In our study there is either a slight (0.01-0.2), fair (0.2-

0.4), moderate (0.41-0.60), or substantial (0.61-0.80) agreement. In particular, we can observe that,

even though the agreement is generally higher on the DailyDialog corpus, in both models the annotators

achieve a moderate agreement on the sentiments and a fair agreement on the adequacy.

Metric EmotionPush DailyDialog
Adequacy 0.2877 0.3617
Avg. Sentiments 0.4378 0.5257
Anger 0.1901 0.3190
Disgust 0.3234 0.4043
Fear 0.3950 0.3786
Joy 0.4918 0.3998
Sadness 0.5797 0.7122
Surprise 0.3905 0.7470

Table 7.4: Fleiss’ Kappa agreement among the annotators.

76



7.2.3 Correlation with Automatic Metrics

The automatic evaluation performed on these models in Sections 6.4 and 6.5 showed that on the

EmotionPush corpus the model that performed better was the Sentiment Sentences model. Regarding

the DailyDialog, we observed that the Sentiment Sentences model also achieved the best performance.

However, for the DailyDialog corpus, the Sentiment Baseline model had a similar performance to it,

which led us to believe that a simpler approach already achieved interesting results.

We use the Pearson correlation to measure the linear relationship between the automatic and the

human evaluation metrics. The Pearson correlation ranges from −1 to 1. A correlation −1 indicates a

perfect negative correlation, 1 a positive correlation, and 0 no correlation. In particular, we correlate four

points, corresponding to pairs of the automatic and human metrics obtained for each evaluated model.

It is important to mention that we should take into consideration that a correlation using four points is not

ideal, and might not lead to statistically significant results.

We can observe the correlation between the automatic metrics (perplexity, sentence embedding

similarity, and micro/macro-F1 without the majority class) and the human evaluation metrics (adequacy

and average of the sentiments) for the EmotionPush and DailyDialog corpora in Tables 7.5 and 7.6,

respectively. As previously mentioned, the annotators had some complaints regarding the sentences

of the dialogues on the EmotionPush corpus. This uncertainty can be seen in the correlation between

the human evaluation metrics and the perplexity which is very low. Regarding the same correlation on

the DailyDialog corpus, we can observe that the correlation between the perplexity and the sentiments

metric is high, while between the perplexity and the adequacy is close to perfect. This highlights the

difference in the quality of the text in both datasets. Regarding the correlation between the human

evaluation metrics and the sentence embedding similarity, on the EmotionPush corpus is close to perfect

on both metrics, while on the DailyDialog the correlation between the SES and the adequacy is high,

but between the SES and the sentiments metric is lower. This could be related to the fact that on this

evaluation the Sentiment Sentences performs better on the sentiments metric, while on the automatic

evaluation performed in Section 5.2 we saw that the Sentiment Baseline model performed better on the

SES metric. Finally, we can observe that the correlation between the sentiment automatic metrics and

the human evaluation metrics is also high for both corpora.

It is relevant to highlight that, as discussed in Section 6.4.7, models fine-tuned with formal and fluent

data, such as the DailyDialog corpus, seem to perform well with simpler sentiment-conditioning ap-

proaches. In contrast, models fine-tuned with informal data, such as the EmotionPush corpus, seem to

rely more on full sentiment sentences in order to perform well. This hypothesis is further validated with

these experiments, since we have seen that the annotators gave higher scores to the Sentiment Sen-

tences model fine-tuned for the EmotionPush corpus, while the annotations gathered for the DailyDialog

corpus showed similar results for the Sentiment Sentences and Sentiment Baseline approaches.

We can conclude that the correlation between the automatic metrics and the human evaluation met-

rics is generally high and the results obtained on the automatic metrics are trustworthy given that we

achieve similar results on the human evaluation. This encourages the use of these automatic metrics

during the development of these models.

77



PPL SES m-NMC M-NMC
Adequacy 0.18 0.9524 0.8015 0.8522
Sentiments 0.01 0.9519 0.7992 0.8328

Table 7.5: Pearson correlation between the automatic metrics (perplexity, sentence embedding sim-
ilarity, micro/macro-F1 without the majority class) and the human evaluation metrics (adequacy and
sentiments) applied to the EmotionPush dataset.

PPL SES m-NMC M-NMC
Adequacy -0.981 0.7992 0.8852 0.8589
Sentiments -0.7345 0.4475 0.9966 0.9839

Table 7.6: Pearson correlation between the automatic metrics (perplexity, sentence embedding sim-
ilarity, micro/macro-F1 without the majority class) and the human evaluation metrics (adequacy and
sentiments) applied to the DailyDialog dataset.

7.3 Summary

Throughout this chapter we described the human evaluation performed on the generated sentences

by four developed models: a baseline, a sentiment-aware baseline, the proposed sentiment-aware con-

versational agent, and the same agent if the reply sentiment prediction model was perfect. Similarly

to what was concluded in Sections 6.4 and 6.5, we saw that, on the EmotionPush corpus, the model

that achieves the best performance is the text generation model that uses a pre-defined set of senti-

ment sentences, which corresponds to the sentiment-aware conversational agent if the reply sentiment

prediction model was perfect. Once again, this serves as motivation to work on the reply sentiment pre-

diction model and try to improve its performance as much as possible. On the DailyDialog we achieved

similar conclusions, and could observe that similarly to the results obtained on the automatic metrics,

the sentiment-aware baseline already achieved interesting results. In particular, as discussed in Section

6.4.7, and further validated in the human evaluation experiments, models fine-tuned with corpora with

formal and fluent data, such as the DailyDialog corpus, seem to perform well with simpler sentiment-

conditioning approaches. In contrast, more informal corpora, such as the EmotionPush corpus, seem

to rely more on full sentiment sentences in order to perform well. Finally, we observed the correlation of

the human experiments with the automatic metrics and concluded that for most metrics the correlation

is high, which means that the results obtained on the automatic metrics are trustworthy and validated

by this human experiment. However, we should take into consideration that a low number of points was

used for the correlation, which is not ideal.

78



Chapter 8

Conclusions and Future Work

8.1 Contributions

In Section 1.1 we proposed an end-to-end sentiment-aware conversational agent to help mitigate the

constraints of current text generation models, which rely on large volumes of data in order to implicitly

learn specific text characteristics, such as sentiment. This system consists on three models: a sentiment

classifier, a reply sentiment predictor, and a conditioned text generation model. We applied the proposed

system to the EmotionPush (Hsu et al., 2018) and the DailyDialog (Li et al., 2017) corpora.

We started by describing the state-of-the-art for sentiment classification and reply sentiment pre-

diction models, in particular, we explored contextual sentiment classification, as a way to give previ-

ous dialogue context to the classification model. We found that for sentiment classification, using one

previous context sentence resulted in considerable improvements on the evaluated metrics. For reply

sentiment prediction, since the goal of the model was not to classify any sentence in the input, but in-

stead, predict an appropriate reply sentiment after a given dialogue context, using four previous context

sentences as input displayed the best results. Through experimentation we also found that, for the task

of reply sentiment prediction, using information regarding the labels of past context sentences did not

improve the results. We hypothesize that this might be due to the label unbalancing of the used cor-

pora, and the fact that there are not significant patterns when it comes to sequences of sentiments.

For that matter, we removed the sentiment classification model from the originally proposed pipeline,

and only used this model to classify the sentences generated by the text generation model in order to

obtain sentiment-related metrics. Additionally, we also explored retrieval augmentation techniques to aid

both the sentiment classifier and the reply sentiment prediction models. In particular, we adapted the

work of Ramos et al. (2021), that explores a mechanism based on finding the nearest neighbors among

the training set of the evaluated development/test splits to aid classification using LSTM models, to the

Transformer model architecture. We concluded that this approach worsened the sentiment classification

and the reply sentiment prediction models fine-tuned for the EmotionPush corpus, and slightly improved

the models fine-tuned for the DailyDialog corpus. We attributed this to the different degrees of similar-

ity between the evaluated development/test splits and the training splits. For the EmotionPush corpus,

79



we found that the similarities between the validation/test splits and the nearest training examples were

generally lower than the similarities observed for the DailyDialog corpus.

Regarding the conditioned text generation model, we followed Wolf et al. (2019), that develops a

text generation model able to express a given persona, and adapted it to our use-case. In particular,

conditioning the text generation model with sentiment by concatenating a pre-defined set of sentences

related to the desired sentiment, resulted in significant improvements when compared to the baseline,

both in the quality of the generated text and the expressed sentiment. We also found that for corpora

with a smaller number of training instances, such as the EmotionPush, this approach showed expressive

improvements, while for larger corpora, such as the DailyDialog, a simpler approach, such as concate-

nating a sentiment tag, already exhibits interesting results. In order to justify these improvements, we

performed extra experiments that aimed to verify if the text generation model was simply copying the

provided sentences, and if that was what was causing the improvement in the sentiment metrics. We

found that, even though some keywords were present in the generated sentences, they did not fully

explain the sentiment metrics’ improvements.

With the three models developed, we were able to build the proposed sentiment-aware conversa-

tional agent. The results using the full system fell short of our expectations, given the low results ob-

tained by the reply sentiment prediction model, which we identified as the bottleneck of the proposed

system. However, when we compare the text generation model that makes use of a “perfect” reply senti-

ment prediction model, with an end-to-end baseline that uses only a text generation model, our approach

shows significant improvements both in the quality of the generated text, and the expressed sentiment.

Moreover, we empathize the ability of our conditioned text generation model of generating sentences

conditioned on the different target sentiments, using same context. Furthermore, we also showed ex-

amples of dialogues between a user and the proposed system and verified that the generated sentences

by the system were both context aware and sentiment appropriate.

We finalized this work by conducting a human evaluation on the developed models. To do so, we

asked annotators to evaluate sentences generated by four text generation models: a baseline that is not

conditioned on sentiment; a baseline that is conditioned on sentiment, through the concatenation of a

sentiment tag; a conditioned text generation approach, through the concatenation of a pre-defined set

of sentences that represent each label; and the proposed sentiment-aware conversational agent. We

highlight that both models conditioned on sentiment represent the proposed agent if the reply sentiment

prediction model was perfect. We concluded that the results obtained on the human evaluation are well

correlated with the automatic results, and therefore the conclusions are similar.

8.2 Future Work

In this section we will describe some future directions for the developed work. In particular, given that

the proposed system is composed of three models, we will first describe possible improvements for the

sentiment classification and reply sentiment prediction models, and then for the sentiment-conditioned

text generation model.

80



8.2.1 Sentiment Classification and Reply Sentiment Prediction

During this work, the techniques applied to the sentiment classification and the reply sentiment pre-

diction tasks were similar. The reason behind this is that there is little research on the task of reply senti-

ment prediction as a data-driven task and, therefore, we used the sentiment classification approaches as

a starting point. Even though the results obtained for the reply sentiment prediction task fell short of ex-

pectations, we believe that a data-driven approach for this task should be further explored. In that sense,

future approaches that could be investigated for both tasks could further explore retrieval augmentation

as a way to better contextualize the embeddings for classification/prediction. In particular, instead of

using the labels as a hint to the classification model, we could use similar contexts, similarly to what

Wang et al. (2021) does for token-level classification tasks. Another approach that has shown promising

results for text classification is prompt-based learning. Prompt-based learning consists on augmenting

the dataset’s examples with a given template, as showcased in Han et al. (2021). Instead of classifying

the example directly, the example is augmented with a template that includes a masked entry. Then, a

masked language model is tasked with predicting the masked entry, which is then classified with a given

sentiment, for instance. Such approaches allow the classification model to focus on specific parts of the

sentence, thus, aiding the classification. Additionally, it is possible to explore different templates which

can be more appropriate depending on the task.

Regarding specifically the reply sentiment prediction model, it could be interesting to explore hybrid

approaches, with both data-driven models and pre-defined rules. In particular, some heuristics applied

to the prediction’s confidence could be adopted in order to improve the model.

8.2.2 Sentiment-Conditioned Text Generation

Adapting the work by Wolf et al. (2019) for our specific problem proved to perform well in conditioning

the text generation model to express sentiment. Nonetheless, further improvements could be explored

on the decoding side. An advantage of exploring the decoding part of the text generation model is that it

does not require any further training. In particular, several works have used retrieval augmentation in the

decoding to improve tasks such as machine translation (Khandelwal et al., 2020), and text generation

(Lewis et al., 2020; Khandelwal et al., 2019). The goal of such an approach would be to interpolate the

probability distribution yielded by text generation model with information from a knowledge base, which

can include example sentences of multiple emotions.

81



82



Bibliography

Joseph Weizenbaum. Eliza—a computer program for the study of natural language communication

between man and machine. Communications of the ACM, 9(1):36–45, 1966.

Anton Leuski, Ronakkumar Patel, David Traum, and Brandon Kennedy. Building effective question an-

swering characters. In Proceedings of the 7th SIGdial Workshop on Discourse and Dialogue, pages

18–27, 2006.

Anton Leuski and David Traum. Npceditor: Creating virtual human dialogue using information retrieval

techniques. Ai Magazine, 32(2):42–56, 2011.

Zongcheng Ji, Zhengdong Lu, and Hang Li. An information retrieval approach to short text conversation.

arXiv preprint arXiv:1408.6988, 2014.

Daniel Jurafsky and James H. Martin. Speech and Language Processing (2nd Edition). Prentice-Hall,

Inc., USA, 2009. ISBN 0131873210.

Maria João Pereira, Luisa Coheur, Pedro Fialho, Ricardo Ribeiro, et al. Chatbots’ greetings to human-

computer communication. In CEUR Workshop Proceedings, volume 2390, pages 61–66, 2019.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.

Oriol Vinyals and Quoc Le. A neural conversational model, 2015.

Lifeng Shang, Zhengdong Lu, and Hang Li. Neural responding machine for short-text conversation.

In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the

7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages

1577–1586, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz

Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations

in vector space. arXiv preprint arXiv:1301.3781, 2013.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke

Zettlemoyer. Deep contextualized word representations, 2018.

83



Hannah Rashkin, Eric Michael Smith, Margaret Li, and Y-Lan Boureau. Towards empathetic open-

domain conversation models: A new benchmark and dataset. In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, pages 5370–5381, 2019.

Ning Miao, Yuxuan Song, Hao Zhou, and Lei Li. Do you have the right scissors? tailoring pre-trained lan-

guage models via monte-carlo methods. In Proceedings of the 58th Annual Meeting of the Association

for Computational Linguistics, pages 3436–3441, 2020.

Hao Zhou, Minlie Huang, Tianyang Zhang, Xiaoyan Zhu, and Bing Liu. Emotional chatting machine:

Emotional conversation generation with internal and external memory. In Thirty-Second AAAI Confer-

ence on Artificial Intelligence, 2018.

Chenyang Huang, Osmar R Zaiane, Amine Trabelsi, and Nouha Dziri. Automatic dialogue generation

with expressed emotions. In Proceedings of the 2018 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short

Papers), pages 49–54, 2018.

Thomas Wolf, Victor Sanh, Julien Chaumond, and Clement Delangue. Transfertransfo: A transfer learn-

ing approach for neural network based conversational agents. arXiv preprint arXiv:1901.08149, 2019.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosinski,

and Rosanne Liu. Plug and play language models: a simple approach to controlled text generation.

arXiv preprint arXiv:1912.02164, 2019.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and Richard Socher. Ctrl: A

conditional transformer language model for controllable generation. arXiv preprint arXiv:1909.05858,

2019.

Yubo Xie and Pearl Pu. Generating empathetic responses with a large scale dialog dataset. arXiv

preprint arXiv:2105.06829, 2021.

Moshe Davidow. Organizational responses to customer complaints: What works and what doesn’t.

Journal of service research, 5(3):225–250, 2003.

Tianran Hu, Anbang Xu, Zhe Liu, Quanzeng You, Yufan Guo, Vibha Sinha, Jiebo Luo, and Rama Akki-

raju. Touch your heart: A tone-aware chatbot for customer care on social media. In Proceedings of

the 2018 CHI Conference on Human Factors in Computing Systems, pages 1–12, 2018.

Xiang Li and Ming Zhang. Emotion analysis for the upcoming response in open-domain human-computer

conversation. In Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint

International Conference on Web and Big Data, pages 352–367. Springer, 2018.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the

brain. Psychological review, 65(6):386, 1958.

84



Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In Proceed-

ings of the fourteenth international conference on artificial intelligence and statistics, pages 315–323,

2011.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations by

error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science,

1985.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International Con-

ference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference

Track Proceedings, 2015.

Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE,

78(10):1550–1560, 1990.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural

networks. In International conference on machine learning, pages 1310–1318, 2013.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–

1780, 1997.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE transactions on

Signal Processing, 45(11):2673–2681, 1997.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger

Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for sta-

tistical machine translation, 2014.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and

Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.

In Proceedings of the 2013 conference on empirical methods in natural language processing, pages

1631–1642, 2013.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.

Advances in neural information processing systems, 27:3104–3112, 2014.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning

to align and translate, 2016.

Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam

Shazeer. Generating wikipedia by summarizing long sequences. arXiv preprint arXiv:1801.10198,

2018.

85



Yoav Goldberg. Neural network methods for natural language processing. Synthesis Lectures on Human

Language Technologies, 10(1):1–309, 2017.

George James Lidstone. Note on the general case of the bayes-laplace formula for inductive or a

posteriori probabilities. Transactions of the Faculty of Actuaries, 8(182-192):13, 1920.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic language

model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

Stefan Kombrink, Tomáš Mikolov, Martin Karafiát, and Lukáš Burget. Recurrent neural network based

language modeling in meeting recognition. In Twelfth annual conference of the international speech

communication association, 2011.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understand-

ing by generative pre-training, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirec-

tional transformers for language understanding, 2019.

Wilson L Taylor. “cloze procedure”: A new tool for measuring readability. Journalism quarterly, 30(4):

415–433, 1953.

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for word represen-

tation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 1532–1543, Doha, Qatar, October 2014. Association for Computational Linguistics.

doi: 10.3115/v1/D14-1162. URL https://www.aclweb.org/anthology/D14-1162.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,

Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach,

2019.

Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent neural

networks. Neural computation, 1(2):270–280, 1989.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language

models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot

learners. arXiv preprint arXiv:2005.14165, 2020.

Chao-Chun Hsu, Sheng-Yeh Chen, Chuan-Chun Kuo, Ting-Hao Huang, and Lun-Wei Ku. EmotionLines:

An emotion corpus of multi-party conversations. In Proceedings of the Eleventh International Confer-

ence on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, May 2018. European

Language Resources Association (ELRA). URL https://www.aclweb.org/anthology/L18-1252.

86

https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/L18-1252


Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo Ko, Alan Cowen, Gaurav Nemade, and Sujith

Ravi. Goemotions: A dataset of fine-grained emotions, 2020.

Robert Plutchik. A general psychoevolutionary theory of emotion. In Theories of emotion, pages 3–33.

Elsevier, 1980.

Paul Ekman. An argument for basic emotions. Cognition & emotion, 6(3-4):169–200, 1992.

Lei Zhang, Shuai Wang, and Bing Liu. Deep learning for sentiment analysis: A survey. Wiley Interdisci-

plinary Reviews: Data Mining and Knowledge Discovery, 8(4):e1253, 2018.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang Cao, and Shuzi Niu. Dailydialog: A manually labelled

multi-turn dialogue dataset, 2017.

Y. Zhang, Z. Zhao, P. Wang, X. Li, L. Rong, and D. Song. Scenariosa: A dyadic conversational database

for interactive sentiment analysis. IEEE Access, 8:90652–90664, 2020. doi: 10.1109/ACCESS.2020.

2994147.

Jonathan Herzig, Guy Feigenblat, Michal Shmueli-Scheuer, David Konopnicki, Anat Rafaeli, Daniel Alt-

man, and David Spivak. Classifying emotions in customer support dialogues in social media. In

Proceedings of the 17th annual meeting of the special interest group on discourse and dialogue,

pages 64–73, 2016.

Katja Gelbrich. Anger, frustration, and helplessness after service failure: coping strategies and effective

informational support. Journal of the Academy of Marketing Science, 38(5):567–585, 2010.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. How to fine-tune bert for text classification?, 2020.

Matthew E. Peters, Sebastian Ruder, and Noah A. Smith. To tune or not to tune? adapting pretrained

representations to diverse tasks, 2019.

Jonggu Kim, Hyeonmok Ko, Seoha Song, Saebom Jang, and Jiyeon Hong. Contextual augmentation

of pretrained language models for emotion recognition in conversations. In Proceedings of the Third

Workshop on Computational Modeling of People’s Opinions, Personality, and Emotion’s in Social Me-

dia, pages 64–73, 2020.

Yen-Hao Huang, Ssu-Rui Lee, Mau-Yun Ma, Yi-Hsin Chen, Ya-Wen Yu, and Yi-Shin Chen. Emotionx-

idea: Emotion bert–an affectional model for conversation. arXiv preprint arXiv:1908.06264, 2019.

Weizhou Shen, Siyue Wu, Yunyi Yang, and Xiaojun Quan. Directed acyclic graph network for conversa-

tional emotion recognition. arXiv preprint arXiv:2105.12907, 2021.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.

Chandrakant Bothe, Sven Magg, Cornelius Weber, and Stefan Wermter. Dialogue-based neural learning

to estimate the sentiment of a next upcoming utterance. In International Conference on Artificial Neural

Networks, pages 477–485. Springer, 2017.

87



Zhiyuan Wen, Jiannong Cao, Ruosong Yang, Shuaiqi Liu, and Jiaxing Shen. Automatically select emo-

tion for response via personality-affected emotion transition. In Findings of the Association for Com-

putational Linguistics: ACL-IJCNLP 2021, pages 5010–5020, 2021.

Albert Mehrabian. Pleasure-arousal-dominance: A general framework for describing and measuring

individual differences in temperament. Current Psychology, 14(4):261–292, 1996.

Xianda Zhou and William Yang Wang. Mojitalk: Generating emotional responses at scale. In Proceed-

ings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), pages 1128–1137, 2018.

Pierre Colombo, Wojciech Witon, Ashutosh Modi, James Kennedy, and Mubbasir Kapadia. Affect-driven

dialog generation. In Proceedings of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short

Papers), pages 3734–3743, 2019.

Sashank Santhanam and Samira Shaikh. Emotional neural language generation grounded in situational

contexts. In Proceedings of the 4th Workshop on Computational Creativity in Language Generation,

pages 22–27, 2019.

Nabiha Asghar, Pascal Poupart, Jesse Hoey, Xin Jiang, and Lili Mou. Affective neural response gener-

ation. In European Conference on Information Retrieval, pages 154–166. Springer, 2018.

Ali Yadollahi, Ameneh Gholipour Shahraki, and Osmar R Zaiane. Current state of text sentiment analysis

from opinion to emotion mining. ACM Computing Surveys (CSUR), 50(2):1–33, 2017.

Jingyuan Li and Xiao Sun. A syntactically constrained bidirectional-asynchronous approach for emo-

tional conversation generation. In Proceedings of the 2018 Conference on Empirical Methods in

Natural Language Processing, pages 678–683, 2018.

Linhong Xu, Hongfei Lin, Yu Pan, Hui Ren, and Jianmei Chen. Constructing the affective lexicon ontol-

ogy. Journal of the China society for scientific and technical information, 27(2):180–185, 2008.

Peixiang Zhong, Di Wang, and Chunyan Miao. An affect-rich neural conversational model with biased

attention and weighted cross-entropy loss. In Proceedings of the AAAI Conference on Artificial Intelli-

gence, volume 33, pages 7492–7500, 2019a.

Nurul Lubis, Sakriani Sakti, Koichiro Yoshino, and Satoshi Nakamura. Eliciting positive emotion through

affect-sensitive dialogue response generation: A neural network approach. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 32, 2018.

Hannah Rashkin, Eric Michael Smith, Margaret Li, and Y-Lan Boureau. I know the feeling: Learning to

converse with empathy. 2018.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela Fan, Michael Auli, and Jason Weston. Wizard of

wikipedia: Knowledge-powered conversational agents. arXiv preprint arXiv:1811.01241, 2018.

88



Nikita Moghe, Siddhartha Arora, Suman Banerjee, and Mitesh M Khapra. Towards exploiting background

knowledge for building conversation systems. In Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing, 2018.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Hein-

rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented generation for

knowledge-intensive nlp tasks. arXiv preprint arXiv:2005.11401, 2020.

Rita Parada Ramos, Patrı́cia Pereira, Helena Moniz, Joao Paulo Carvalho, and Bruno Martins. Retrieval

augmentation for deep neural networks. arXiv preprint arXiv:2102.13030, 2021.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.

In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. As-

sociation for Computational Linguistics, 11 2019. URL https://arxiv.org/abs/1908.10084.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE Trans-

actions on Big Data, 2019.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing

Liu, and William B Dolan. Dialogpt: Large-scale generative pre-training for conversational response

generation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguis-

tics: System Demonstrations, pages 270–278, 2020.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale Autore-

gressive Language Modeling with Mesh-Tensorflow, March 2021. URL https://doi.org/10.5281/

zenodo.5297715.

Devamanyu Hazarika, Soujanya Poria, Roger Zimmermann, and Rada Mihalcea. Conversational trans-

fer learning for emotion recognition. Information Fusion, 65:1–12, 2021.

William Falcon and The PyTorch Lightning team. PyTorch Lightning, 3 2019. URL https://github.

com/PyTorchLightning/pytorch-lightning.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Perric

Cistac, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama

Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-Art Natural Language

Processing. pages 38–45. Association for Computational Linguistics, 10 2020. URL https://www.

aclweb.org/anthology/2020.emnlp-demos.6.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification. In

Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), pages 328–339, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:

a simple way to prevent neural networks from overfitting. The journal of machine learning research,

15(1):1929–1958, 2014.

89

https://arxiv.org/abs/1908.10084
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6


Chunning Du, Haifeng Sun, Jingyu Wang, Qi Qi, and Jianxin Liao. Adversarial and domain-aware bert

for cross-domain sentiment analysis. In Proceedings of the 58th annual meeting of the Association

for Computational Linguistics, pages 4019–4028, 2020.

Xiao Chen, Changlong Sun, Jingjing Wang, Shoushan Li, Luo Si, Min Zhang, and Guodong Zhou.

Aspect sentiment classification with document-level sentiment preference modeling. In Proceedings

of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3667–3677, 2020.

Sopan Khosla. Emotionx-ar: Cnn-dcnn autoencoder based emotion classifier. In Proceedings of the

sixth international workshop on natural language processing for social media, pages 37–44, 2018.

Deepanway Ghosal, Navonil Majumder, Alexander Gelbukh, Rada Mihalcea, and Soujanya Poria. Cos-

mic: Commonsense knowledge for emotion identification in conversations. In Proceedings of the

2020 Conference on Empirical Methods in Natural Language Processing: Findings, pages 2470–

2481, 2020.

Peixiang Zhong, Di Wang, and Chunyan Miao. Knowledge-enriched transformer for emotion detection

in textual conversations. arXiv preprint arXiv:1909.10681, 2019b.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation

of machine translation. In Proceedings of the 40th annual meeting of the Association for Computa-

tional Linguistics, pages 311–318, 2002.

Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved corre-

lation with human judgments. In Proceedings of the acl workshop on intrinsic and extrinsic evaluation

measures for machine translation and/or summarization, pages 65–72, 2005.

Chia-Wei Liu, Ryan Lowe, Iulian Vlad Serban, Mike Noseworthy, Laurent Charlin, and Joelle Pineau.

How not to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics

for dialogue response generation. In Proceedings of the 2016 Conference on Empirical Methods in

Natural Language Processing, pages 2122–2132, 2016.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degen-

eration. In International Conference on Learning Representations, 2019.

Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python: analyzing text

with the natural language toolkit. ”O’Reilly Media, Inc.”, 2009.

Martin F Porter. An algorithm for suffix stripping. Program, 1980.

Chris Van Der Lee, Albert Gatt, Emiel Van Miltenburg, Sander Wubben, and Emiel Krahmer. Best prac-

tices for the human evaluation of automatically generated text. In Proceedings of the 12th International

Conference on Natural Language Generation, pages 355–368, 2019.

Joseph L Fleiss and Jacob Cohen. The equivalence of weighted kappa and the intraclass correlation

coefficient as measures of reliability. Educational and psychological measurement, 33(3):613–619,

1973.

90



Anthony J Viera, Joanne M Garrett, et al. Understanding interobserver agreement: the kappa statistic.

Fam med, 37(5):360–363, 2005.

Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang, Zhongqiang Huang, Fei Huang, and Kewei Tu.

Improving named entity recognition by external context retrieving and cooperative learning. arXiv

preprint arXiv:2105.03654, 2021.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and Maosong Sun. Ptr: Prompt tuning with rules for text

classification. arXiv preprint arXiv:2105.11259, 2021.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Nearest neighbor

machine translation. arXiv preprint arXiv:2010.00710, 2020.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization

through memorization: Nearest neighbor language models. arXiv preprint arXiv:1911.00172, 2019.

91



92



Appendix A

Annotation Guidelines

You will be provided with one dialogue between a user and a chatbot in an open-domain context, as

well as four possible replies to the previous message. Your task is to compare the answers and evaluate

their reply adequacy and whether they are expressing the supposed sentiment.

Some dialogues may present terms like person 46 or organization 9. You are not supposed to have

any knowledge of these terms and should only consider their broad meaning for your evaluation. In the

end of this document you can find an example of what you will be asked to evaluate. When considering

the context, the grey balloons represent the user, while the blue balloons represent the chatbot.

The evaluation has an estimated duration of 40 to 60 minutes.

During this evaluation you will be asked the same two questions per example displayed:

Do the replies represent the “x” emotion? In this question you will be provided with an emotion and

are asked to consider all replies and answer whether or not they represent the desired emotion.

In the end of this document you can find a description of each sentiment. Please notice that the

same expression could be used to express different emotions depending on the tone given

to it. E.g., “What?” could be used to express anger or surprise depending on the tone.

Do the replies sound appropriate considering the context of the dialogue? This question aims

to evaluate if the reply is appropriate considering the provided context. To answer it, you must

carefully analyse the context and the replies, and answer whether they are appropriate or not.

In the example below you can find examples of inappropriate and appropriate sentences given a

dialogue. The reply options are the possible answers to the last sentence in the dialogue.

Please notice that all metrics are independent and whether the chatbot sounds adequate should not

influence the sentiment evaluation, and vice-versa. Furthermore, all possible replies are independent of

each other, i.e., multiple options can be marked Yes or No.

Please look through these instructions carefully and feel free to reference back to them throughout

the evaluation.

93



Sentiment

Anger: This sentiment is expressed by being frustrated/upset. Some expressions/words that rep-

resent it are: “hate”, “is frustrating”, etc.

Disgust: This sentiment is expressed by being repulsed/annoyed. Some expressions/words that

represent it are: “gross”, “disgusting”, “so annoying”, etc.

Fear: This sentiment is expressed by being scared/fearful. Some expressions/words that represent

it are: “scared”, “acting desperate”, etc.

Joy: This sentiment is expressed by happiness/enjoyment/gratefulness. Some expressions/words

that represent it are: “love you”, “awesome”, etc

Sadness: This sentiment is expressed by sorrow/loss/being apologetic. Some expressions/words

that represent it are: “miss you”, “I’m sorry ”, etc.

Surprise: This sentiment is expressed by reacting to something unexpected. This can be positive

or negative. Some expressions/words that represent it are: “wait what?”, “holy ”, “oh really?”, etc

94



Appendix B

Generation Examples

Example 1
Context I can’t believe the bus is late again today.

Baseline It’s just about time.
Anger Why? What’s wrong?
Disgust I am sick of this bus. The traffic is so bad. Every time I get on the bus I feel ill.
Fear Why?
Joy Yes, I’m glad I got off the bus. I thought it was going to be late.
Sadness I am sorry to hear that. But it’s been a long time since we last saw each other. If you

have any suggestions, I would like to see them. It’s very kind of you to give me some
information. We’re always here for you.

Surprise Why? Are you serious?
Example 2

Context I got a new job.

Baseline What do you think about it?
Anger Why are you angry?
Disgust You are not a good employee. You have to work hard. You should give the boss

a chance.
Fear I think it’s very good. But the problem is, I can’t sleep well. But I feel very tired. So I have

to go to the office. It’s very stressful. But I feel very good.
Joy You are a real winner.
Sadness I am sorry. But my work is not easy.
Surprise I am so happy.

Table B.1: Examples of sentences generated by the sentiment-conditioned text generation model using
the pre-defined set of sentences, fine-tuned on the DailyDialog corpus, given the same context. The
words in red represent words that are present in the pre-defined set of sentences.

95



Example 1 - Anger
Context The girl told her to collect it from neville apt.

Smart decision.

Baseline That’s what she said.
Sentiment Baseline I’m in the same situation. It’s a great decision and you should feel proud.
Sentiment Sentences I feel like you should be mad at her for having to collect it.
Full System Ok, thanks for the offer.

Example 2 - Disgust
Context What? How so?

link 6.

Baseline lol.
Sentiment Baseline Hmm I am not sure how to do that. I’m not sure how to.
Sentiment Sentences I’m so confused.
Full System I just want to get it up and running I don’t think I have a clue.

Example 3 - Fear
Context person 53... eheh.

I’m not, sorry. What’s up?

Baseline I’m just asking for the link of the person 54. A pdf. I don’t want to link it,
just the text.

Sentiment Baseline heh heh heh hehe.
Sentiment Sentences I’m scared.
Full System Oh yeah.

Example 4 - Joy
Context I’m aware.

Me too! I’m so happy for person 9!

Baseline Ok I’ll be here soon.
Sentiment Baseline lol.
Sentiment Sentences I’m so glad you’re happy.
Full System Yeah that’s what I was thinking of the other time I talked to him.

Example 5 - Sadness
Context Ahh I’m talking to my prof. Give me a min I’ll try to run.

I gotta go I’m sorry I’m late for class

Baseline I think I can hear you.
Sentiment Baseline I’m sorry.
Sentiment Sentences I’m sorry.
Full System Ohhh ok I’ll try to find you. I’m in class right now. You’re not in class?

Example 6 - Surprise
Context Oh so the entire staff??! wowwww

In AAA maybe 20%

Baseline oh no what?
Sentiment Baseline And the whole staff?
Sentiment Sentences Oh wow, that’s crazy.
Full System So the whole organization is just a bunch of guys with a bunch of

different people.

Table B.2: Examples of sentences generated by the Baseline (DialoGPT-small), Sentiment Baseline
(DialoGPT-small + sentiment tag), Sentiment Sentences (DialoGPT-small + pre-defined set of sen-
tences), and Full System (proposed sentiment-aware conversational agent, with the reply sentiment
prediction model and the sentiment sentences model), fine-tuned on the EmotionPush corpus. For the
same context from the test set, it is displayed the generated reply by each of the aforementioned models.

96



Example 1 - Anger
Context OK, I promise. What is it?

It’s a kitty.

Baseline What is it?
Sentiment Baseline I’m sorry, but i can’t accept it.
Sentiment Sentences It’s hideous.
Full System Is it white?

Example 2 - Disgust
Context Now what are you doing?

Putting on mascara.

Baseline What’s that?
Sentiment Baseline What a terrible idea!
Sentiment Sentences That’s disgusting!
Full System I’m going to have a look.

Example 3 - Fear
Context Tired and stressed. This wedding is giving me a headache.

Just relax. With me as your maid of honor, everything will be fine!

Baseline I hope so. I will take you on a date.
Sentiment Baseline I know, but I’m just not in the mood.
Sentiment Sentences I am terrified. I have to go to the doctor. I’m scared.
Full System You’re right. I will not forget this.

Example 4 - Joy
Context Great, Mr. Sandals. Your reservation is confirmed. Now all I need

is your phone number.
Of course! It’s area code 626-555-1739.

Baseline I’m sorry, but we have to cancel your reservation.
Sentiment Baseline Thank you for calling, Mr. Sandals. You’ve been very helpful.
Sentiment Sentences Thank you. That’s very kind of you.
Full System Thank you.

Example 5 - Sadness
Context Can I borrow this magazine from you? It’s really interesting and

I can’t put it down.

Baseline Sure. Just take it to the library.
Sentiment Baseline Sorry, I’m afraid I can’t. I’ve already lent it to someone else.
Sentiment Sentences I’m sorry, but I can’t. I don’t have it anymore.
Full System Sure. It’s the best one. I think I’ll buy it.

Example 6 - Surprise
Context Yes, do I have to work a whole year before I can take a vacation?

Yes, after you’ve been here a year, you qualify for a three-day vacation.

Baseline Is that right?
Sentiment Baseline Really? That’s great.
Sentiment Sentences Really? I thought you had to take a three-week vacation every year.
Full System What about for vacation?

Table B.3: Examples of sentences generated by the Baseline (DialoGPT-small), Sentiment Baseline
(DialoGPT-small + sentiment tag), Sentiment Sentences (DialoGPT-small + pre-defined set of sen-
tences), and Full System (proposed sentiment-aware conversational agent, with the reply sentiment
prediction model and the sentiment sentences model), fine-tuned on the DailyDialog corpus. For the
same context from the test set, it is displayed the generated reply by each of the aforementioned mod-
els.

97



98


	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Document Outline

	2 Background
	2.1 Neural Networks
	2.1.1 Multi-Layer Perceptron
	2.1.2 Recurrent Neural Networks
	2.1.3 Transformer Encoder
	2.1.4 Transformer Decoder

	2.2 Language Models
	2.2.1 Classic Language Model
	2.2.2 N-gram Language Model
	2.2.3 MLP-based Language Model
	2.2.4 Autoregressive Language Model
	2.2.5 Masked Language Model

	2.3 Word Embeddings
	2.3.1 One-Hot Embeddings
	2.3.2 Dense Static Embeddings
	2.3.3 Dense Contextual Embeddings

	2.4 Text Generation
	2.4.1 Training
	2.4.2 Decoding
	2.4.3 Transformer-based Generators: GPT
	2.4.4 Perplexity

	2.5 Text Classification
	2.5.1 Sentiment Classification
	2.5.2 Evaluation Metrics


	3 Related Work
	3.1 Available Corpora
	3.2 Sentiment Classification
	3.3 Sentiment Prediction
	3.4 Text Generation
	3.4.1 Controllable Text Generation
	3.4.2 Dialogue Text Generation
	3.4.3 Controllable Dialogue Text Generation


	4 Sentiment Classification and Reply Sentiment Prediction
	4.1 Base Model Description
	4.2 Contextual Sentiment Classification
	4.3 Sentiment Classification using Retrieval Augmentation
	4.3.1 Retrieve Nearest Neighbors
	4.3.2 Incorporate Sentiment Embeddings

	4.4 Reply Sentiment Prediction
	4.4.1 Basic Input
	4.4.2 Adding Sentiment Context

	4.5 Summary

	5 Guiding Dialogue Text Generation with Sentiment
	5.1 Base Model
	5.2 Condition Model with Sentiment
	5.2.1 Adding Sentiment Lexicon
	5.2.2 Next Sentence Prediction

	5.3 Summary

	6 Experimental Analysis
	6.1 Datasets
	6.1.1 Splits and balancing

	6.2 Sentiment Classification
	6.2.1 Metrics
	6.2.2 Training Details
	6.2.3 Baseline
	6.2.4 Sentence Embedding Representation
	6.2.5 Contextual Sentiment Classification
	6.2.6 Retrieval Augmentation
	6.2.7 EmotionPush Results
	6.2.8 DailyDialog Results
	6.2.9 Results Comparison
	6.2.10 Conclusion

	6.3 Reply Sentiment Prediction
	6.3.1 Metrics
	6.3.2 Training Details
	6.3.3 Baseline
	6.3.4 Sentence Embedding Representation
	6.3.5 Contextual Reply Sentiment Prediction
	6.3.6 Retrieval Augmentation
	6.3.7 EmotionPush Results
	6.3.8 DailyDialog Results
	6.3.9 Conclusion

	6.4 Conditioned Text Generation with Sentiment
	6.4.1 Metrics
	6.4.2 Training and Decoding Details
	6.4.3 Baseline
	6.4.4 Guide Model With Sentiment
	6.4.5 Next Sentence Prediction
	6.4.6 EmotionPush Results
	6.4.7 DailyDialog Results
	6.4.8 Conclusion

	6.5 Sentiment-aware Conversational Agent
	6.5.1 Setup
	6.5.2 Results

	6.6 Summary

	7 Human Evaluation
	7.1 Evaluation Method
	7.1.1 Sampling
	7.1.2 Evaluation Metrics

	7.2 Results
	7.2.1 Scores
	7.2.2 Inter Annotator Agreement
	7.2.3 Correlation with Automatic Metrics

	7.3 Summary

	8 Conclusions and Future Work
	8.1 Contributions
	8.2 Future Work
	8.2.1 Sentiment Classification and Reply Sentiment Prediction
	8.2.2 Sentiment-Conditioned Text Generation


	Bibliography
	A Annotation Guidelines
	B Generation Examples

