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reiro for the opportunity and help with the Dissertation.

i





Abstract
In recent years, with the advances made in technology overall, there is a need to modernize the pro-

cesses currently in place, especially in governmental organizations. This increases the number of dif-

ferent blockchain infrastructures that need to interact with each other, this is the reason that blockchain

interoperability is so important and is a problem that needs to be solved for adoption to continue. In

this document, we will study blockchain technology, as a possible fit as a solution for existing issues

in these systems. A comparison between available blockchain infrastructures is shown to evaluate its

applicability in real-world scenarios. We also have a comparison between the different interoperability

solutions available, to be able to come to an appropriate solution regarding blockchain interoperability.

The solution proposed in this thesis leverages blockchain technology to replace the current paper sup-

port model in place for Bills of Exchange with a digital model focused on the integrity and security of the

data handled by the system, which is guaranteed by blockchain technology. Our solution is deployed

using a blockchain infrastructure, Hyperledger Fabric, with nodes representing the multiple institutions

involved. Interoperability between these systems is handled with resort to Hyperledger Cactus creating

a network of relayers between the multiple blockchain infrastructures interacting. During our evaluation,

we achieved a throughput of 114 Transactions per second (TPS) with an average latency of 0.15 seconds

which shows that our solution would be capable of supporting the use of the current bills of exchange

system. Regarding our interoperability solution, we have concluded that Cactus offers great flexibility for

diverse interoperability use cases, and provides a direct way to further improve its compatibility, while in

some niche use cases there might be better solutions that is the trade-off we are committing to by using

Cactus.
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Resumo
Com os recentes avanços tecnológicos feitos no geral, existe uma necessidade de modernizar os

processos actualmente usados, especialmente em organizações governamentais. Isto aumenta o

número de infrastruturas de blockchains diferentes que necessitam de interagir entre si, esta é uma

das razões pela qual a interoperabilidade é um problema tão importante que precisa de ser resolvido

para que a adoção desta tecnologia possa continuar. Neste documento, iremos estudar tecnologia de

blockchain, como uma potencial solução para os problemas existentes nestes sistemas. Apresenta-

mos uma comparação entre as várias infrastruturas de blockchain disponı́veis para avaliar a aplicabili-

dade em cenários reais. Comparamos também as diferentes soluções de interoperabilidade existentes,

com o objetivo de chegar a uma solução de interoperabilidade apropriada. A solução proposta nesta

dissertação tem como objetivo substituir o modelo atual de suporte em papel para Livranças, que é

gerido pela INCM, por um modelo digital focado na integridade e segurança dos dados manipulados

pelo sistema, garantido usando tecnologia blockchain. A nossa solução foi desenvolvida usando uma

infrastrutura de blockchain, Hyperledger Fabric, com nodes a representar as multiplas organizações

involvidas. A interoperabilidade entre estes sistemas será gerida recorrendo ao Hyperledger Cactus,

criando uma rede de relayers entre as várias infrastruturas de blockchain a interagir entre si. Durante a

avaliação conseguimos alcançar uma taxa de transferência de 114 transações por segundo com uma

latência média de 0.15 segundos, o que mostra que a nossa solução será capaz de suportar o uso veri-

ficado no sistema atual de livranças. Em relação à nossa solução de interoperabilidade concluı́mos que

o Cactus oferece uma ótima flexibilidade para diversos casos de uso de interoperabilidade, e fornece

uma forma direta de no futuro aumentar a compatibilidade da solução, em alguns casos de uso mais

nicho existirão melhores soluções mas esse é o compromisso que estamos a fazer ao usar o Cactus.

Palavras Chave

Blockchain; Interoperabilidade; Hyperledger Cactus; Hyperledger Fabric; Livranças;
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Blockchain technology has seen a massive increase in adoption and exposure partly because of being

highly associated with cryptocurrencies, but also because of the promise of providing decentralization

and distribution of trust to systems where a single point of failure is the norm. This has caught the

attention of organizations, especially governmental organizations that can take advantage of blockchain

technology innovation to improve the efficiency, security, availability, and auditability of their systems. As

these systems require interaction between each other, it creates a major concern regarding interoper-

ability and more specifically blockchain interoperability.

Imprensa Nacional - Casa da Moeda (INCM) is the Portuguese mint and national press, owned by the

Portuguese Government and administratively subordinated to the Portuguese Ministry of Finance. It is

also responsible for many projects, where the focus of this thesis and the use case provided by INCM was

to create a digital platform for bills of exchange using blockchain technology to first work alongside the

current paper support model eventually completely replacing it, to explore the interoperability required

for such a system. The need for a system like this became apparent with the recent necessity for

lockdown in Portugal because of COVID preventing the use of the current system for Bills of Exchange

as it required physical dislocation to the appropriate entity to obtain them.

With this in mind, we introduce a bill of exchange blockchain solution implemented using Hyperledger

Fabric[1], a permissioned blockchain designed for enterprise solutions, accompanied by an interoper-

ability solution that takes advantage of Hyperledger Cactus[22] to provide the flexibility and compatibility

required associated with such a system. Our Fabric solution handles all of the life cycle associated with

a bill of exchange asset, taking into account the organizations involved in this respective life cycle and

permissions associated with each organization and member, this solution serves as a way to explore the

multiple interoperability use cases associated with bills of exchange. As there can be several different

implementations of bills of exchange systems, there is a requirement that our solution can seamlessly

interact with those systems, this is provided by leveraging Cactus flexibility and compatibility as an inter-

operability solution.

To provide an initial evaluation of our bills of exchange blockchain solution we are going to be using

Hyperledger Caliper that provides a framework for load-testing blockchain infrastructures. Regarding

the evaluation of our interoperability solution, we are going to be discussing the complexity, flexibility,

and compatibility that Cactus can offer.

1.1 Objectives

As with most governmental processes that have been in place for so long, there is a need to modernize

these processes, in this case, deploy a digital model that serves as a database system throughout the life

cycle of bills of exchange, while facilitating all of the currently supported operations. These operations

3



also require interoperability between other implementations of bills of exchange, as there is no standard

for how these systems are implemented each country might use a different solution. This solution looks

to solve the following problems that are known to affect solutions of this type:

• How can we maintain the interaction that these governmental systems and processes, such as

the interaction between the Portuguese and Spanish bills of exchange platforms, require while

deploying a digital model with the goal of eventually totally replacing the current model?

• What are the risks and concerns associated with these digital transformations and how can we

avoid them, while providing a secure and scalable way to handle these interoperability needs?

While most widely known blockchain applications are known for their decentralized nature, the au-

thority of the organizations involved such as INCM, Banco de Portugal, and Autoridade Tributária e

Aduaneira is taken into consideration, as these require some control and management of the system.

Taking this into account, there is a need to study the various approaches that can be taken and address

their implications in such a system, while identifying the possible problems associated with them.

This thesis explores several diverse interoperability use cases associated with this system to analyze

the flexibility provided by such an interoperability solution to show that it can be applied to multiple

systems similar to the one we are working with. Our goal is to provide a base solution for future works,

to entice other organizations to use blockchain technology for their systems. To do this we are going to

try and answer several questions:

• Is it possible to design a interoperability solution that provides interoperability between heteroge-

neous blockchain infrastructures, this being permissioned and permissionless models?

• Can we provide a solution that does not require adaptation and development in the blockchain

infrastructures interacting in the interoperability use case?

• Are we able to address the interoperability requirements without compromising the security and

robustness of the solution?

These are questions that are crucial not only for the use cases we are going to be exploring but to

also prove that it can be used for other systems, as interoperability is a key requirement for multiple

different systems.

1.2 Document Structure

In this document we start by exploring the existing blockchain technology implementations, introducing

both permissioned and permissionless blockchain infrastructures with resort to examples of both imple-

mentations to present their characteristics, as a way to choose the most suitable infrastructure for our

use case. Then we present the state of the art regarding blockchain interoperability solutions taking into

4



account the context of the use case provided and focusing on solutions that have a proof of concept.

The context of INCM’s use case is then presented and the functional and non-functional requirements

for the solution are set, with this in mind we explain our design decisions and implementation steps taken

for the problem at hand. We then explain our evaluation methodology for our solution, we also present

and discuss the results obtained, and lastly, we explain the following steps for our work and conclude

what we have presented.
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In this Chapter, we explore the required concepts for understanding this thesis, and the already

existing array of solutions, their advantages and disadvantages and how those apply to our specific use

case. We explore the the existing blockchain models those being permissioned and permissionless, and

their respective consensus algorithm. And we then proceed to address the already existing blockchain

interoperability solutions.

2.1 Blockchain

A blockchain is an append-only distributed ledger, focused on decentralization, transparency, and trust

while taking into consideration security, privacy, and control[8].

To explain the core concepts of blockchain technology we use Bitcoin[23] as an example, as it is the

first and most well-known blockchain technology project. A core concept of a blockchain is a transaction

if we are referring to a financial application like Bitcoin or we can also call it a record if we are referring

to a non-financial application, it consists of a collection of data. Records are grouped into blocks and

those blocks form the blockchain. A block consists of the hash of the previous block and a timestamp

that guarantees the append-only feature. For blocks to be appended all records within the block need to

be validated.

A blockchain can also be seen as a network, where the participants are the computing nodes that

communicate with each other in order to complete transactions and agree on the state of the network, but

these nodes can be malicious. The process of agreeing on a state for the network is called consensus

and there can be many consensus algorithms, in the context of Bitcoin the consensus algorithm is Proof-

of-Work (PoW). In PoW we have transaction validators, which are also called miners, miners solve a

difficult cryptographic puzzle to validate the hash of the transaction. Since the process of reaching

consensus is expensive, the network rewards miners that solve the puzzle first. In the case of Bitcoin, the

first miner that appends a valid block to the chain is rewarded with Bitcoin. This makes so attacks, where

attackers attempt to append invalid blocks to the chain, are not worth it because of how expensive the

process is, making the network resistant to such attacks. In Section 2.1.1 we talk about other algorithms

used besides PoW, more in-depth.

Blockchains can follow two different schemes, either permissionless or permissioned, in Section

2.1.2 and Section 2.1.3 respectively we approach these two methods of implementing blockchain tech-

nology more in-depth. Permissionless blockchain might use different consensus algorithms and reward

mechanisms, as in permissionless blockchains miners are not authenticated before they can partake in

the network, so they rely on anonymous nodes to maintain the functionality of the network. For permis-

sioned blockchains, miners are authenticated by a central authority before participating in the network.

These two methods have different use cases depending on the desired properties for the network.

9



2.1.1 Consensus

Consensus algorithms for blockchain are developed as a way to solve two main problems[20], double-

spending and Byzantine General Problems. Double-spending consists of reusing the currency in multiple

transactions, and Byzantine General Problem which is a known problem in distributed systems, where

a node that participates in the network can be attacked and start acting maliciously against the network

while regular nodes need to continue obtaining consistent results regardless of malicious nodes.

PoW is the consensus algorithm used for Bitcoin. In PoW the fastest miner that solves the crypto-

graphic puzzle gets to broadcast the block that will be appended to the chain, and collect their reward.

The success of the solution of the puzzle is dependent on the previous block, the list of pending trans-

actions in the network, and the current difficulty value of the network. The difficulty value is dynamically

updated according to the current hash rate of the whole network. As the resources needed to append a

block to the chain are proportional to the length of the chain and nodes trust the longest chain, this high

workload is used as a way to guarantee the safety of the network. In order to interfere with the network,

the attacker needs to control more than 50% of the hash rate of the network to ensure they are the first

to append a block, this is known as the 51% attack.

As an example for Proof-of-Stake (PoS), we have Casper[6] which was initially designed to overlay

the current PoW blockchain Ethereum, there are several variations of PoS such as Nominated Proof of

Stake (NPoS) and Delegated Proof of Stake (DPoS). Contrary to PoW, in PoS physical resources are

not used to append blocks to the chain, instead, blocks are agreed upon by participants based on their

stake in the network, the voting power of each participant is proportional to their stake. PoS strengthens

the blockchain as the value of the network increases since the process of tampering with the network

becomes increasingly expensive proportionally to the network’s value.

Byzantine Fault Tolerant (BFT) algorithms are another solution, popularized by the Tendermint[5, 15]

project in blockchain technology. A blockchain using traditional BFT algorithms would suffer from poor

scalability while offering better performance and finality than the mentioned PoW consensus algorithms[33].

BFT algorithms also require the nodes to be known by the network before participating in the consen-

sus, needing a central authority to authenticate nodes, thus being more likely to be implemented in a

Permissioned Blockchain.

The 3 consensus implementations are compared in Table 2.2, using the 3 blockchain implementa-

tions which use each consensus mentioned.

2.1.2 Permissionless Blockchains

Permissionless blockchains are public blockchains that require no authentication previous to engaging

with the network. Bitcoin and Ethereum are two of the more widely adopted permissionless blockchains
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and will be used as an example. These are typically self-sustainable networks without any central

authority, with reward-based incentives for valid participation in the network, and normally open-sourced.

In permissionless blockchains, there are certain trade-offs between security, privacy, and perfor-

mance, in most cases choosing security over the rest. For both Bitcoin and Ethereum, the consensus

algorithm used is PoW, and as mentioned this type of consensus, while offering good scalability, lacks

in performance. The ledger storing all the blocks, and thus all the transactions, is also available to be

accessed and verified by anyone, sacrificing privacy.

Being open-source also allows for the network to develop itself through the community, in the case

of Ethereum, while serving as a financial application Ethereum’s goal was to also allow the development

of other non-financial applications in the blockchain. The Ethereum blockchain has solidified itself as a

platform for the development of smart contracts and Decentralized Application (dApp) through the use

of their runtime environment called Ethereum Virtual Machine (EVM). While Bitcoin also allowed for a

very primitive form of smart contracts, Ethereum improved and popularized it by creating a simple and

accessible way to develop and maintain them. Smart contracts can be developed in several languages

with the most common being Solidity, and then deployed to the EVM after being compiled into bytecode,

a low-level programming language that can be run in EVM. Smart contracts allow the creation of certain

conditions to be met for the completion of a transaction to occur, like requiring multiple signatures.

2.1.3 Permissioned Blockchains

Permissioned blockchains are private blockchains that require authentication of nodes before participat-

ing in the network, thus typically requiring a central authority. For this reason, permissioned blockchains

are typically used by organizations that desire to take advantage of blockchain technology while safe-

guarding sensitive information. There is an obvious trade-off between control and decentralization

when comparing permissioned and permissionless blockchains, the biggest advantage of permissioned

blockchains being that the organization or organizations responsible for the management of the blockchain

get to choose the business logic and business rules applied to the blockchain.

While permissioned blockchains can usually offer better performance, these are usually smaller net-

works which can result in a bigger risk for the network but also allow for easier identification of the

malicious nodes involved.

A great example of a permissioned blockchain is Hyperledger Fabric[1], which will be addressed in

more detail in Section 2.2. In Table 2.2 we compare both Permissioned and Permissionless projects,

using the 3 blockchain implementation previously mentioned, which are the principal blockchains asso-

ciated with these models.
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Hyperledger Fabric Bitcoin Ethereum

Consensus Pluggable (PBFT typically) Proof of Work Proof of Worth (Ethash)
Proof of Stake (Casper)

Accessibility Private Public Public or Private
Permission Mode Permissioned Permissionless Permissionless
Decentralization Partially Yes Yes
Compute-intensive No Yes Partially
Network-intensive Yes No No
Scalability Low High High
Throughput High (for low scale) Very Low Low
Latency (Avg.) 100 ms (fow low scale) 10 minutes 12 seconds
Immutability Low High High
Adversary Tolerance 33.33% Faulty Replicas <25% Computing Power <51% Stakes
Privacy High Low Low
Smart Contract Yes Limited Yes
Currency/Tokens None but Tokens are possible Bitcoin (BTC) Ether (ETH) and Tokens are possible

Table 2.1: Comparison between Blockchain Implementations by Consensus/Permission Mode

2.2 Hyperledger Fabric

Figure 2.1: Hyperledger Fabric execute-order-state architecture

Hyperledger Fabric is an open-source blockchain platform, a project between the Linux Foundation

and International Business Machines (IBM), which serves as a distributed operating system for the

creation of customized permissioned blockchains[1] focused on enterprise solutions. Fabric is designed

with a modular architecture that allows the use of pluggable implementations of several functions[7]

offering a high degree of flexibility, confidentiality, scalability, and resiliency.

A distributed application in Fabric consists of 2 core components, the chaincode which is a smart

contract that is program code implementing the application logic and runs during the execution phase,

Fabric also has a system chaincode, which is run in the configuration channel. The endorsement pol-

icy is evaluated during the validation phase and is used for transaction validation. It can specify the

endorsers for a certain transaction as a subset of peers.

The configuration channel stores the definition of the Membership Service Provider, consensus con-

figurations, ordering service parameters, and rules for altering the channel’s configuration. Each chan-

nel has a different ledger, as each channel enforces chaincode and data isolation. Channels allow the

creation of a communication network between participants, giving these participants access to the trans-

actions they have permissions to visualize. Besides channels, Fabric offers a solution for private data,

where an organization or a group of organizations isolate their data from others. Organizations with

permissions to access this data can endorse, commit, and query this data which is isolated from the
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channel ledger. Hashes of the private data are used to go through the orderer, and it is disseminated

via the peer gossip protocol instead of via blocks.

Client Client Client Client

O
rdering

Service
Transaction Proposal

Transaction Proposal

Transaction Endorsement

Transaction Endorsement

Endorsement Collection

Validation

Commit

Validation

Commit

Ordering Delivery

Validation

Commit

Specified in the 

endorsement policy

Figure 2.2: Hyperledger Fabric possible Transaction Flow from Androulaki et al. [1]

As Fabric follows an execute-order-validate architecture (Fig. 2.1), consensus in Fabric is broken into

3 phases as seen in Fig. 2.2, endorsement, ordering, and validation. A transaction proposal is created

by a blockchain client, representing a member of an organization, and sent to endorsement peers, as de-

fined in the endorsement policy. During the endorsement phase, the endorsers simulate the transaction

proposal, producing a write-set, with the modified values and correspondent keys, and a read-set. This

simulation is run in an isolated environment. With the endorsement created, it is sent back to the client

which upon receiving enough endorsements creates the transaction and sends it to the ordering ser-

vice. In the ordering phase, orderers check if the client who submitted the transaction proposal has the

required permissions and produced blocks that contain the endorsed transaction ordered. The ordering

allows the network to achieve consensus. The ordering service then broadcasts the blocks to peers who

maintain the state of the ledger, through the ordering service or the peer gossip protocol. After this, we
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get into the validation phase where peers firstly check if the transactions follow the endorsement policy.

Then, for each transaction, the versions of the keys in the read-set are compared with the keys currently

in the shared ledger. Transactions with non-matching versions are discarded from the block and the

block is then appended to the head of the ledger[11].

Fabric supports pluggable consensus for all 3 phases. This allows applications with different require-

ments to use different endorsement, ordering, and validation plugins to satisfy those needs. It also does

not require an associated cryptocurrency to serve as an incentive for the mining process by leveraging

BFT consensus mechanisms, but a token can be implemented using chaincode, to represent an asset

or value that can be exchanged between participants in the network.

The Fabric network, which is shown in Fig 2.3, is maintained by a group of peers, as Fabric is a

permissioned blockchain, these are provided an identity by the modular membership service provider,

this identity is created using a public key infrastructure to generate certificates which are tied to members

or organizations. Each organization issues identities to its members.

Peers can take up 3 different roles, Clients, Endorsers, Orderers. Clients are those who submit

transactions for execution, help in the execution phase, and broadcast transactions for the ordering

phase, while also keeping a snapshot of the current state of the ledger. Client peers are not able

to invoke chaincode functions. Endorser peers have access to chaincode, and when they receive a

transaction proposal, they simulate the execution of the transaction in an isolated environment and

based on that simulation’s results they prepare a transaction endorsement to send to Orderer peers.

Orderer peers receive endorsed transactions and assemble them into blocks while establishing the

total order of all transactions, as each transaction contains state updates and dependencies computed

during the execution phase. Orderers do not participate in the execution or validation of transactions,

they propagate such blocks to Client peers, where the blocks are validated and committed to the shared

ledger. Besides these 3 main roles peers can assume, Fabric also defines anchor and leader peers.

Anchor peers act as an intermediary between their organization and an external organization. Leader

peers assume the responsibility of distributing the transactions from the orderer peers to the client peers.

Fabric makes use of a key protocol for communication between peers, known as the Peer Gossip,

which is responsible for broadcasting the results of the ordering phase for unsynched peers, which are

peers that might have recently joined the network, or peers who had downtime. This data dissemination

protocol ensures consistency and data integrity across all the nodes in the network.
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Figure 2.3: Hyperledger Fabric possible network from Androulaki et al. [1]

2.3 Blockchain Interoperability

In this Section first we define the core concepts of blockchain interoperability required to then explore

the 3 different categories of solutions offering Blockchain Interoperability, these being Cryptocurrency-

directed Approaches, Blockchain Engines, and Blockchain Connectors. In each of these categories,

there is a different subset of solutions, this document tries to focus on those which had a proof of

concept for a practical use case at the time of writing. The goal in this section is to explain how each

solution attempts to solve the problem of interoperability, and its impact when it comes to interoperability

to permissioned and permissionless blockchains, focusing on permissioned blockchains as that is the

most common approach for blockchain infrastructure in enterprise applications of the technology.

This section explores the existing solutions while exposing the advantages and disadvantages of

each solution in general and understand how certain solutions can be adequate for enterprise systems

using blockchain technology, which require blockchain interoperability.

To define blockchain interoperability we first need to introduce some core terms which are required

to understand and define blockchain interoperability.

Cross-blockchain communication, which involves two blockchains, a source blockchain where the

transaction is initiated, and a target blockchain where the transaction will be executed. To define this

process we have a Cross-chain Communication Protocol (CCCP) or a Cross-blockchain Communica-

tion Protocol (CBCP), the difference between the two protocols is that the first specifies how two ho-

mogeneous blockchains interact to synchronize cross-chain transactions, and the latter focus on the

interaction between two heterogeneous blockchains.

From this, we can define a Cross-chain Transaction (CC-Tx) and therefore a Cross-blockchain Trans-

action (CB-Tx), where a CC-Tx is a transaction between homogeneous blockchains, such as transac-

tions between EVM-based blockchains, and a CB-Tx is a transaction between heterogeneous blockchains

for example a transaction between Hyperdledger Fabric and Ethereum as defined in Belchior et al. [4].
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We also have Cross-chain Decentralized Application (CC-dApp) or Cross-blockchain Decentralized

Application (CB-dApp), which leverage CC-Tx or CB-Tx to implement its business logic.

An Internet of Blockchains (IoB) is a system ”where homogeneous and heterogeneous blockchains

can communicate to facilitate cross-chain transactions of value, data, and state transition”, a definition

from Vo et al. [32].

A Blockchain of Blockchains (BoB) is a system in ”which a consensus protocol organizes blocks

that contain a set of transactions belonging to CC-dApps, spread across multiple blockchains. Such a

system should provide accountability for the parties issuing transactions on the various blockchains, as

well as providing a holistic, updated view of each underlying blockchain”, a definition from Belchior et al.

[4].

Interoperability has several different layers, in blockchain interoperability, we are focused on technical

and semantic interoperability. IoB uses CBCP to deliver transactions, enabling CC-dApps, thus grant-

ing technical interoperability, while the BoB approach allows CC-dApps to provide interoperability at the

value level, by using cross-blockchain dApp protocols to provide consensus over a set of cross-chain

transactions, granting semantic interoperability. We will then use the definition of Blockchain Interoper-

ability from Belchior et al. [4] as follows: ”The ability of a source blockchain to change the state of a target

blockchain, enabled by cross-chain or cross-blockchain transactions, spanning across a composition of

homogeneous and heterogeneous blockchain systems, the IoB.”

2.3.1 Cryptocurrency-directed Approaches

In this section, we explore several approaches that are commonly applied to blockchains with an as-

sociated token, cryptocurrency. There are three main solutions in this area, being sidechains, notary

schemes, and hashed timelocks.

Sidechains are typically a secondary chain that is connected to a blockchain, normally called the Main-

chain, using a cross-chain communication protocol, for example, a two-way peg that allows for the ex-

change of assets between the mainchain and the sidechain. Sidechains are normally an approach with

the goal of interoperability and scalability for the mainchain, a good example being Bitcoin and RSK1,

where Bitcoin is the mainchain and RSK the sidechain. RSK is a sidechain that not only improves scal-

ability but also adds smart contracts to Bitcoin. RSK has its own token named RBTC which is pegged

one to one to Bitcoin.

There are 3 different types of a two-way peg protocol, a Simplified Payment Verification (SPV), a

centralized two-way peg, and a federated or multi-signature two-way peg[4, 30]. A two-way peg con-

sists of sending tokens from the mainchain to a specific address, those same tokens are locked up in

1https://www.rsk.co/
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the mainchain and the same amount is then created on the sidechain, which can now be used in the

sidechain. In order for the tokens in the mainchain to be released, the tokens in the sidechain need to

either be locked up or destroyed. In SPVs, the transactions correspondent to the whole exchange of

assets between the mainchain and sidechain are verified by a lightweight client[27] without the need for

a global state of the chain, instead, it only requires the block headers and provides proof through the

use of Merkle trees. This solution eliminates the need for a central authority providing decentralization.

Contrary to SPVs, Centralized two-way pegs trust a central authority to verify those same transactions

and the facilitation of the funds exchanged between chains. These are typically used by centralized Ex-

changes such as Binance2, which facilitate the buying and selling of cryptocurrencies for fiat currencies

or other cryptocurrencies, such as Bitcoin. While this solution benefits from efficiency it also introduces

a single point of failure and centralization. Exchanges can also be seen as Notary schemes, which will

be addressed later.

Federated or multi-signature two-way pegs are an attempt to reduce the centralization that comes

from centralized two-way pegs by having a group responsible for the process of locking and unlocking

the tokens, instead of a single central authority. This still benefits from similar efficiency as centralized

two-way pegs but still has the downside of centralization, even if reduced.

As mentioned, RSK is one of the solutions in this area. In order to obtain the token associated

with RSK, RBTC, a user would need to lock up the same amount of BTC in Bitcoin’s chain. It makes

use of federated two-way pegs, where the federation is composed of multiple respected members of

the RSK community. RSK also uses a consensus protocol known as DECOR+ and a technique called

merge mining, which aims to solve a conflict known in Bitcoin as forks, where miners are mining different

blocks at the same chain height. DECOR+ solves these conflicts in a way that maximizes revenue for

all miners, regardless of whether they were involved or not in the conflict. In merge-mining, rewards are

shared between miners which are mining the correct block, to reduce competition between miners.

Notary schemes opposed to sidechains are not attached to a certain blockchain. A notary or group of

notaries monitor several blockchains and act as an intermediary for users who wish to transact between

chains. Notaries monitor events that occur on a chain in order to trigger transactions on another chain,

so users rely on notaries for exchanging assets between chains. While notary schemes can’t be seen

as fully decentralized solutions, as notaries are typically centralized entities, different notary schemes

have different degrees of decentralization, depending on the number of entities acting as a notary.

Notary schemes are technically a simple solution to implement but the security of this solution is

dependent on the trustworthiness of the notaries involved[27]. Centralized cryptocurrency exchanges

are one of the most common applications of notary schemes, like Binance or Coinbase3. In these ex-

2https://www.binance.com/en
3https://www.coinbase.com/
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changes, users can purchase cryptocurrencies with fiat currencies or other cryptocurrencies. Buyers

and sellers create transactions associated with the token being sold or bought and the exchange pro-

vides a matching service between buying and selling transactions, known as arbitrage services. Users

of a centralized exchange have a wallet in the exchange which is owned by the exchange itself, this is

a custodial wallet, which will hold the funds bought by a certain user. While decentralized exchanges

exist, such as Uniswap4, centralized exchanges still hold most of the market share, as they provide a

higher degree of comfort and liquidity which decentralized exchanges still can’t provide. Decentralized

exchanges can be implemented using hashed timelocks, but currently, decentralized exchanges lack the

adoption necessary to have liquidity levels similar to centralized exchanges. Adoption and development

are in part driven by past events that occurred in centralized exchanges, resulting in the loss and robber

of an enormous amount of funds from exchanges[9].

Hashed timelocks or Hashed Timelock Contracts (HTLC) use hashlocks and timelocks to require cryp-

tographic proof from the user before an established deadline. The required proof isn’t necessarily tied

to 1 specific blockchain which enables cross-chain atomic swaps[12, 21]. Hashlocks can also trigger

different actions, it can for example enable multiple payment outputs from a single hashlock. Hashed

timelocks were initially designed for use in decentralized exchanges but it has also enabled other applica-

tions, such as Lightning Network[25], which is a second layer application that provides faster throughput

and improved scalability to Bitcoin. In lightning network transactions happen off-chain and are later bun-

dled into one transaction that is broadcast to Bitcoin’s chain. This is possible by using hashed timelocks

to create micropayment channels between nodes that take part in the network, funds are tied up in these

channels until the correspondent transactions are broadcast.

Cryptocurrency-directed approaches like Sidechains mainly focus on improving the scalability of the

main network by offloading and batching transactions, reducing the resources required on the main-

chain. If oriented for permissioned blockchains, this approach can help to improve the scalability prob-

lems associated with private blockchains, and also isolate the mainchain from attacks to the sidechain.

Sidechains provide limited interoperability and are dependent on certain configurations of the blockchains

involved such as the consensus mechanism used, this limits the development of more complex applica-

tions. There is also a significant trade-off between security, performance, and decentralization, as which

increased decentralization, we get better security but lower performance.

These solutions can also have undesired problems for instance centralization in the case of notary

schemes increasing the security risks associated with blockchains, as acquiring the private keys of the

notaries endangers the funds they are responsible for. In the case of sidechains that require a different

4https://uniswap.org/
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consensus mechanism, the network is constrained by the slowest consensus between chains, thus

stalling assets and lowering liquidity.

Notary schemes while easier to implement and providing higher levels of interoperability are typically

associated with centralized applications such as centralized exchanges. Hashed timelocks of these

3 solutions are the first to provide full asset exchange between chains while keeping a higher level of

decentralization. HTLCs allows for the creation of trustless payment channels and do not require a direct

connection between trading nodes, as there can be chained channels acting as the middleman between

source and destination nodes. In HTLCs there is the risk of fund retention and unfair trade as the nodes

that act as a channel can choose to not provide proof of payment tying the funds for a certain amount

of time. Cross-chain transactions using HTLCs can also incur high cost as it might require multiple

transactions, with each having fees associated.

For enterprise systems, cryptocurrency-directed approaches are not the best solutions as these

mainly focus on interoperability between homogeneous systems, and on providing interoperability for

financial systems, with associated cryptocurrencies.

2.3.2 Blockchain Engines
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Figure 2.4: Comparison between Cosmos and Polkadot architecture
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Blockchain engines focus on providing interoperability to heterogeneous systems contrary to the

approach explored before which focuses on homogeneous systems, in this case, cryptocurrency-related

use cases[4]. Blockchain engines such as Cosmos and Polkadot have different approaches but both aim

to provide a framework for the creation of customizable blockchains and deployment of decentralized

applications, which can interoperate with each other.

Cosmos[16] uses a token called Atom, and the network works with 2 main components, hubs, and

zones. Zones are independent blockchains using Tendermint as the consensus algorithm, which was

already explored in this document, and the hub is the first zone of the Cosmos network, called Cosmos

Hub, which provides a connection between different zones[26]. All communication between zones and

hubs is made using an inter-blockchain communication protocol similar to a virtual User Datagram Pro-

tocol (UDP)/Transport Control Protocol (TCP) adapted to blockchains. Cosmos Hub keeps a record of

the tokens and token type in each zone, with token transfers between connected zones being required

to go through the hub. In Cosmos participants can act as Validators or Delegators, validators use their

stake in the network to process blocks, validators also act on behalf of delegators in this process, both

earning transaction fees.

Polkadot[34] uses a token called Dot and is built on top of Substrate. The network has 3 core com-

ponents, the Parachains, Relay chains, and Bridges. Parachains are independent blockchains, Re-

lay chains manage transaction consensus and delivery, while Bridges connect parachains and relay

chains[26]. In the Polkadot network, participants can have 4 different roles these being Validators, Nom-

inators, Collators, and Fishermen. Validators are responsible for ratifying blocks for a certain nominated

parachain and subsequently ratifying relay chain blocks, validators are rewarded by acting correctly and

as they are bonded to the network, acting maliciously puts their bond at risk. Nominators hold a stake

in the network and contribute to the security bond of a validator, thus depositing their trust in a certain

validator or group of validators, they are rewarded or penalized based on the actions of the respective

validator. Collators are ”full-nodes” of a certain parachain and are in charge of proposing new blocks

to validators responsible for that specific parachain. Fishermen oversee validators and report illegal

activity to the network, being rewarded by the bond reduction of the malicious validator or validators.

Polkadot offers a hybrid consensus that decouples the finality gadget and block production mechanism,

using GRANDPA as the finality gadget algorithm and BABE as the block production algorithm[34]. It

also uses a cross-chain message-passing protocol for communication between different parachains and

relay chains.
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Blockchain engines focus on interoperability between instances of the same platform, in the case of

Cosmos, between Tendermint based platforms, and in the case of Polkadot between Substrate-based

platforms. These solutions act as a router, processing outputs from a source blockchain into inputs of

another blockchain, as different chains have different configurations such as consensus mechanisms,

communication protocols, and so on. Both Cosmos and Polkadot use similar mechanisms to pegged

sidechains or hashed timelock contracts.

Although blockchain engines offer a simple way to achieve a certain level of interoperability, blockchain

engines do not interoperate with each other, requiring users to choose between existing solutions. In

the case of Cosmos, there is some flexibility in the way a zone is configured, for Polkadot this is more

restricted. Blockchain engines also rely on transaction fees as an incentive to keep the network oper-

ating, which in the case of enterprise solutions these are 2 undesirable problems that out weight the

accessibility of these solutions. While further research could be made to find a solution that allows inter-

operability between blockchain engines this would require splitting the efforts of interoperability research

and development, which is not the goal.

2.3.3 Blockchain Connectors

Blockchain connectors can be divided into 4 different sub-categories, Trusted Relays, Blockchain Ag-

nostic protocols, Blockchain of Blockchains, and Blockchain Migrators[4]. Trusted relays are an ap-

proach that requires a trusted party to relay transactions between source and target blockchain, similar

to how Cosmos Hub, which was discussed previously. Blockchain agnostic protocols offer interoperabil-

ity regardless of the blockchain-technology involved, but typically do not provide backward compatibility,

meaning that existing blockchains might require changes. Blockchains of blockchains aim to offer a

way to create cross-chain dApps that operate on multiple blockchains. Blockchain migrators allow the

migration of data across blockchains, usually requiring a centralized party.

Trusted Relays redirect transactions from a source blockchain to a target blockchain, requiring trusted

parties to do so. Hyperledger Cactus[22] is a project in this domain that works by allowing a trusted

party or parties to publish transactions on several ledgers, using a network of validators to monitor and

validate cross-chain transactions, and trusted escrow parties to realize transactions. Validators, in this

case, are participants in both source and target blockchains that facilitate cross-chain transactions, for

these transactions to be deemed valid they must be signed by a quorum of validators. For this solution

to have a higher degree of decentralization, the trusted parties could be replaced with decentralized

parties.
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Besides centralization, there are also several concerns regarding trusted relays as these require

a priori knowledge of interoperating network’s identities and configurations, and these solutions don’t

fully solve the concern of a relay service acting maliciously, apart from replication which doesn’t fully

solve the risks associated. Some of these concerns could be solved by implementing a decentralized

blockchain registry service and replacing the trusted parties by a decentralized party possibly achieving a

trustless relay. In enterprise systems, where typically we are using centralized applications, the concerns

with this type of solutions regarding decentralization and the requirement of a priori knowledge of the

participants of the network wouldn’t apply as we are typically working with permissioned blockchains

where participants are already previously identified by the network.

Blockchain Agnostic protocols enable cross-blockchain communication between multiple different blockchains,

regardless of their configurations. The Interledger Protocol (ILP)[31] was initially designed as a decen-

tralized peer-to-peer payment network, working similarly to hash locking schemes discussed before,

using escrow accounts to facilitate cryptocurrency transactions between chains. The current implemen-

tation of the Interledger is a blockchain agnostic protocol, inspired by the Internet, the ILPv4 protocol,

which uses packets to send payment information between a network of connectors to ease cross-chain

transactions5. Participants in the network can act as a sender, those who originate the payment, as

a receiver, those who receive the payment, and as a connector, trusted by the sender and receiver to

act as an intermediary for their payment. Accounts in ILP are shared between 2 participants, with the

respective balance record between those 2 participants, the underlying ledgers correspondent to the

blockchains which use ILP are only used for funding and rebalancing of the ILP accounts. Accounts in

ILP are maintained by the owners of the account.

The ILPv4 has 3 packet types, these being Prepare, Fulfill, and Reject similar to request, response,

and error messages. Connectors forward a Prepare packet from the sender to the receiver, and then

they also relay Fulfill or Reject packets from the receiver to the sender depending on the outcome of the

payment. A sender initiates a payment by sending a Prepare packet to the receiver. When the receiver

obtains the Prepare packet, it sends a Fulfill packet to the sender, if the transaction was successful, or a

Reject packet otherwise. All these packets are relayed by the connectors between sender and receiver.

There are currently several implementations of the Interledger Protocol, Hyperledger Quilt6 is an im-

plementation of the protocol using Java. Quilt implements several Interledger primitives such as payment

pointers, interledger addresses, ILP-over-HTTP, simple payment setup protocol, STREAM protocol, and

ILPv4. Quilt also offers interoperability between other Interledger implementations.

While blockchain agnostic solutions are a great approach in regards to offering interoperability to

existing and to-exist blockchains, they still require adaptation from the blockchain’s side, not granting

5https://interledger.org/rfcs/0027-interledger-protocol-4/
6https://wiki.hyperledger.org/display/quilt/Hyperledger+Quilt
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backward compatibility. As the current Interledger Protocol is inspired by web communication protocols,

efforts could be made to provide backward compatibility to existing blockchains, positioning blockchain

agnostic protocols as a great solution for interoperability. Interledger mainly focuses on providing ex-

change of value between blockchains, this is a limitation that has very specific use cases, mostly in the

area of financial systems.

Blockchain of Blockchains are solutions that aim to provide a platform for the development of CC-dApp,

which operate on multiple blockchains. While providing accountability for those issuing transactions

of various blockchains, as well as providing a comprehensive, and updated view of the underlying

blockchains[4].

Hyperservice[19] is an open-source project which provides a programming framework to develop

CC-dApp across heterogenous blockchains, thus working with permissioned and permissionless blockchains.

Hyperservice consists of 4 core components, the dApp Clients which allow interaction between dApps

and the Hyperservice platform, and the Verifiable Execution Systems (VESes) which compile the dApps

given by the dApp client into blockchain executable transactions. Clients and VESes run the underlying

Universal Inter-Blockchain Protocol (UIP) to record actions as proof in order to enforce accountability.

The Network Status Blockchain, a blockchain of blockchains, that keeps a record of blocks from target

blockchains that contain transactions related to a cross-chain application. The Insurance Smart Con-

tracts act on those records to verify correctness or violation of dApp executions in a trust-free manner.

The programming framework comprises the Unified State Model (USM) and the Hyperservice Pro-

gramming Language (HSL). The USM is a blockchain-neutral model that abstracts the underlying com-

patible blockchains, and the HSL is the hyperservice domain-specific language in which cross-chain

dApps are written.

Block Collider[14] is another open-source project to ease cross-chain application development and

enables cross-chain communication by bridging the latest blocks of participant chains into one block,

called the base tuple. Thus, block collider acts as a decentralized unifying chain between bridged

chains.

Block collider uses a different approach similar to Proof of Work as a consensus algorithm, called

Proof of Distance, which uses string edit distances between obtained hashes, a miner is required to find

a hash that is within a minimum edit distance between the hashes of member chains, its transactions,

and its blocks.

Blockchains of blockchains are a novel approach to facilitating the development of cross-chain ap-

plications, in the case of Hyperservice advances are made to abstract cross-chain dApps from the

consensus layers of blockchains in which those dApps partake. Currently, these solutions do not fully

solve potential forks on the underlying blockchains.
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Blockchain Migrators currently allow for the migration of the state of a blockchain to another, this is still

limited to moving data across blockchains, but smart contracts are predicted for the future.

Frauenthaler et al. [10] is a solution that provides a framework for blockchain interoperability, with

3 core components, the Monitoring Component which surveys compatible blockchains for calculation

of metric values. The Blockchain Selection Algorithm uses the calculated metric values to select the

most beneficial blockchain and the Switchover Component which provides the possibility of switching

blockchains in runtime. These metrics are weighted and both metrics and weights are defined by the

end-user, with a specific objective in mind, that being either cost or performance. This solution is open-

source and it is run by the end-user as a centralized application.

Scheid et al. [29] proposes a policy-based blockchain agnostic framework that relies on an Application

Programming Interface (API) based on OpenAPI and a Policy-based Management model to provide ag-

nostic and transparent cross-chain communication. Policies can be defined to optimize the cost associ-

ated with storing data to another blockchain or to optimize performance. The blockchain used for storing

data will be chosen based on these policies, in the case of optimizing costs, the blockchain with the

cheapest cost for writing data is chosen. In the case we are giving priority to performance, a max cost

can also be defined as a limit.

Blockchain migrators offer a good solution for data backup for applications that require redundant

systems, such as enterprise applications. A blockchain view would help when it comes to migrations

between blockchains[2]. A problem with these solutions is that, as mentioned, while they provide data

migration across a small number of blockchains, they do not allow the reproduction of the events that

lead to the current state of the blockchain through the use of smart contracts as that would require a

smart contract translator[4].

Overall the blockchain connector category has one critical limitation as most solutions in this category

do not support forks, and lack a solution for potential forks. This is a more severe problem for public

blockchains as in private blockchains forks are less common. This can affect the dependability of cross-

chain dApps, as with forks it can lead a cross-chain application to be in an inconsistent state. In the

case of blockchain-agnostic protocols, building an API that works similarly to how web protocols like

Hypertext Transfer Protocol (HTTP) work, could lead to a good interoperability solution while offering

backward compatibility.

24



Approach Leading Projects Strong Points Weak Points Summary

Cryptocurrency-directed
Sidechains RSK[18] Simple solution, relying on verifying

block headers Limited functionality These solutions are focused in providing
performance improvements to homogeneous
systems with interoperability coming as a
consequence

Notary Schemes Binance,
Coinbase

Simple way to facilitate cross-chain
transactions Limited applications, centralization

Hashed Timelocks Lightning
Network[25] Increases Bitcoin performance Susceptible to timelock expiration exploits

Blockchain Engines Polkadot[34],
Cosmos[16]

Simple way to provide interoperability
between instances of the same platform
(different systems within the same organization)

Restrictive and limited interoperability
Solutions focused on enterprise systems but
do not provide interoperability between
different blockchain engines or other blockchain infrastructures

Blockchain Connectors

Trusted Relays Hyperledger
Cactus[22]

Effective in facilitating cross-chain transactions
(including smart contracts)

Centralization, a priori knowledge of
participants required Most of the solutions lack do not address

potential forks, which can lead to applications
being stuck in an inconsistent state, affecting
the dependability of these solutionsBlockchain Agnostic

Interledger7,
Hyperledger
Quilt8

Provide decentralized payment channels
implemented in common programming
languages

Lack of backward compatibility, designed
for exchange of value

Blockchain of
Blockchains

Hyperservice[19],
Block Collider[14]

Environment for development of cross chain
dApps Lack solutions for potential forks

Blockchain Migrator Scheid et al.,
Frauenthaler et al.

Good solution for data backup for redundant
systems

Do not allow migration of smart contracts,
and reproduction of events that led to the
current state of the blockchain

Table 2.2: Comparison between existing blockchain interoperability solutions

2.4 Hyperledger Cactus

In this section we are going to define Hyperledger Cactus core components which provide a way to

achieve interoperability between multiple blockchain infrastructures.

2.4.1 Cactus Core Components

The core components of Cactus include the connectors, which allow establishing a connection between

the blockchain infrastructures, which in this case is Hyperledger Fabric and Ethereum. The validators

are effectively a node in both of the involved blockchains with permissions to publish transactions in

both networks. The business logic plugin defines the logic of the interoperability use case between

both infrastructures, such as the transaction flow and asset changes. We also have the verifier which is

responsible for verifying and accepting results from validators.

Cactus offers a core framework for achieving interoperability between multiple Distributed Ledger

Technology (DLT), which include blockchains and other more traditional DLT. To this core framework,

by using the mentioned components cactus offers a pluggable way to achieve interoperability between

heterogeneous system architectures. The plugins in cactus are effectively an abstraction layer on top of

Cactus core source code.

This offers an enormous amount of flexibility, while new DLTs will require more development, that will

only require additive development to what Cactus already offers to support interoperability use cases

across those DLTs. This is important for backward compatibility purposes.[22]

2.4.1.A Validators

For each specific ledger Cactus consortium associates a group of validators, which effectively act as

a secondary network that actively monitors the state of the underlying ledger network. Validators run

a consensus algorithm separate from the connected ledgers to agree on the state of the underlying
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network. Upon agreement on the state, the proof of state is produced and signed by several validator

nodes according to the consensus in use.

Validator nodes depend on ledger-specific plugins, consequently, a smart contract on the connected

blockchain can enable the ledger-specific functionalities necessary for a validator node to observe the

ledger state to finalize a proof of state. When providing the results, validators associate their digital

signature, by using their key, with the results for verifiers to be able to certify the produced results.

2.4.1.B Verifier

Verifiers are responsible for verifying the results and produced proof of state provided by validators.

Verifier nodes can request and register the public keys of the validator nodes of a blockchain network

that they want to connect to. Therefore, they can verify the signed proofs of the state of the blockchain

since they have the public keys of the validator nodes. This implies that the verifier nodes trust the

validator nodes and consequently they trust the Cactus consortium operating the validator nodes.

2.4.1.C Business Logic Plugin

The business logic plugin executes business logic and provides integration services that are connected

with multiple blockchains. It is composed of web applications or smart contracts on a blockchain. It is a

single plugin and is required for executing Hyperledger Cactus applications.

It should be developed with a specific use case in mind, by implementing the business logic associ-

ated with such use case to interact with ledger plugins respective to each involved ledger.

It offers multiple interactions with the ledger plugins, such as submitting a transaction request at

the targeted ledger, querying the targeted ledger, or receiving event messages associated with those

transactions requests and queries.

Cactus offers several business logic plugin samples that implement multiple different use cases

which can be used as guidance or even adapted for new use cases, these include implementations

with Graphical User Interface (GUI) and non-GUI implementations which is what we have chosen to

use.

2.4.1.D Connectors

Cactus connectors are ledger-specific plugins that are composed of validators and verifiers, to commu-

nicate the previously mentioned business logic plugin with each involved ledger. By using validators

and verifiers, connectors provide a way for the business logic plugin to operate and monitor the ledger

behind them.
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There are several connectors already developed for more common blockchain technologies such as

Hyperledger Besu, Corda, Fabric, Iroha, Quorum, Ethereum, and several others are being developed.

The more existing connectors available more blockchains can be included in interoperability use cases

using Cactus.

2.5 Bills of Exchange

Bills of Exchange are a paper-written contract that involves 3 parties, the drawer which is the party that

is in debt, the payee to whom the drawer is in debt, and the drawee which accepts the payment of

the drawer’s debt. Once the bill of exchange is approved by all parties, the drawee is legally bound to

pay the drawer’s debt to the payee on behalf of the drawer within a set deadline, so the debt between

the drawer and the payee is extinguished[24]. This paper-based model doesn’t work in the current

situation of a global market where suppliers and customers aren’t next-door neighbors, rendering Bills

of Exchange unpractical to use. As creating a digital model for such a process has certain requirements,

such as ensuring that such a document has legal validity and a non-tampering warranty, distributed

ledger technologies such as blockchain technology is seen as a good fit.

Traditional distributed ledger technologies can also be used to implement a bills of exchange solution,

which has its problems. Taking into account that bills of exchange data is sensitive it should not be

handled by a single entity, which in solutions implemented using such technologies decentralization is

not the focus.

As blockchain has seen improvements in recent years, different solutions regarding a digital bills of

exchange model have been in development. These solutions, such as Billex 9 and DigiBoE [24] resort

to blockchain technology and more specifically smart contracts to implement the whole life cycle of bills

of exchange. The core operations regarding the bill of exchange life cycle include the issuing of the bill

by the drawer, the acceptance of such bill by the drawee, the payee receiving the bill, and redeeming

it receiving the payment from the drawee. The current life cycle of a bill of exchange varies between

countries, that is one of the reasons that blockchain interoperability is a requirement for such a system.

By using smart contracts it facilitates the creation of a digital platform that handles the life cycle of

the bills, as the platform is able to keep a record of issuing the smart contract and its current owner, the

issue can also fill the details of the bill such as the payee’s public key, the amount to be paid, its maturity

date and then sign it with his private key providing the required non-tampering warranty. For certain

platforms such as Billex redeeming the bill can even be automated by the account associated with the

smart contract if its balance allows.

9https://billex.club/bill-of-exchange/
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To explore existing blockchain interoperability technologies, we propose a blockchain implementation

for Bill’s of Exchange to replace the current paper model in use in Portugal, which allows us to explore

a specific blockchain interoperability use case between different Bill’s of Exchange implementation pro-

viding interoperability among heterogeneous blockchains. The solution for this use case provides a

database system capable of issuing, signing, registering, and executing all transactions and operations

related to Bill’s of Exchanges securely, using a permissioned blockchain.

Hyperledger Fabric provides the underlying permissioned blockchain functionality, which provides

some of the features that we associate with blockchain technology, such as data integrity and non-

repudiation(where an entity cannot refuse its participation in transactions related to a bill). To manage the

required operations supported by Bill’s of Exchange we are using the Chaincode provided by Fabric, this

includes registering an asset that represents the bills on the blockchain with a standard data structure.

As a blockchain is append-only and bills of exchange operations require updating certain attributes of the

bill, each update requires a new state with the result of the updated asset, this also means that we keep

the history of changes made to a certain bill on-chain. This system will be used jointly with the Portal

de Letras de Créditos Digitais (PLCD) platform which handles the user interface for the end-user from

which the Bill’s of Exchange blockchain ingests data and execute the transactions associated with each

operation. Users have their authentication in the PLCD platform linked to the authentication credentials

from Fabric’s on-chain cryptographic identity management service.

The Bill’s of Exchange blockchain solution is crucial to evaluate the central questions regarding

blockchain interoperability in this thesis: how can we enable interoperability between permissioned and

permissionless blockchains and what is the main problem with providing blockchain interoperability? In

this chapter, we are only addressing the blockchain solution which allows us to explore the interoper-

ability use case. Starting by introducing the requirements for the Bill’s of Exchange system and then

presenting the implementation and design choices for Bill’s of Exchange blockchain.

3.1 Requirements

The solution was developed and implemented as a database system capable of issuing, signing, reg-

istering, and executing all transactions and operations contemplated by the law for parties who rely on

bills of exchange to obtain and provide funds. The solution should be able to interact with solutions from

other countries, regardless of the infrastructure and technologies used in different implementations of

this system. INCM has several non-functional requirements for this system:

1. Availability: The solution developed should be available 99.9% of the time.

2. Scalability: The solution should be able to support both a high and low number of users or nodes

in the network.
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3. Security: The solution should provide a robust system for safely issuing, signing, and execute

transactions or operations throughout the bills of exchange life cycle.

4. Testability: The solution should provide the possibility of being tested in a non-production en-

vironment. (i.e., an environment where operations such as issuing, signing, and execution of

transactions can be simulated using similar characteristics to the production system).

5. Privacy: Information regarding bills of exchange should only be accessible to those who have the

proper privilege rights to access that information.

6. Auditability and Traceability: The solution should provide ways for authorities (such as the Tax

Authority, the Central Bank, and the Justice Sector) to have access to logs of the system in order

to trace, prevent or act upon malicious or illegal activity.

7. Interoperability: The solution requires interaction with other bills of exchange systems to be able

to support the current operations.

As for functional requirements, the solution is supposed to be integrated within the domain of INCM’s

projects and should facilitate all of the features currently allowed by the original model in use. This

includes several operations regarding bills of exchange, such as:

• Issuance of bills of exchange

• Signature of bills of exchange

• Registration of bills of exchange

• Execution of all transactions and operations regarding bills of exchange

• Offer interoperability between other blockchain implementations handling bills of exchange

The system ingests data generated by each transaction executed by the users in the PLCD platform,

which is the platform that gives access to the user to all operations contemplated by the applicable

legislation in the life cycle of bills of exchange, among others, issuance, acceptance, endorsement,

discount, payment, and more. It should also take into consideration other environmental data required

for the execution of the business logic and reports.
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Figure 3.1: Bills of Exchange Use case Diagram

3.2 Preliminaries on Bills of Exchange Blockchain

In this section, introduce the conditions and environment in which the bills of exchange system operates

by exploring the existing solution that is currently in use in Portugal, this allows us to leverage this

knowledge to be able to develop and implement a solution that works in these same conditions and still

meets the mentioned requirements.

The use case discussed in this thesis presents several characteristics:

1. Participants are willing to cooperate but have limited trust in each other

2. Bill’s of Exchange assets are a responsibility of all stakeholders (this includes INCM, Autoridade

Tributária e Aduaneira (ATA), Banco de Portugal (BP), and the participant banks)

3. Multiple organizations should be able to have an administrative role in the network (such as INCM,

ATA and BP)

4. End users only have permission to access bill’s related to them (where they are one of the entities

represented in the bill)

Regarding the first two characteristics, consensus mechanisms used in blockchains already provide

the needed decentralization to ensure that no single entity controls the blockchain, for permissioned

blockchains such as Fabric, this remains true. For the third point, Fabric also allows for decentralized
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management of the network, allowing for multiple administrators. While 3 different organizations were

mentioned, even if INCM was the only administrator, we could represent it using several nodes, one for

each team interacting with the ecosystem. Lastly, for the fourth point, Fabric allows for the delegation

of different levels of access to specific participants using a traditional Attribute-Based Access Control

(ABAC) system.

Besides these characteristics, there are problems associated with blockchains, such as the possibility

of not all of the participating entities conscientiously collaborating during the consensus protocol, which

can lead the network to an erroneous state. While this risk is much higher in public blockchains, with

the possibility of leading to a 51% attack, these are reduced by using a permissioned, private blockchain

such as Fabric, where participating entities are known. As mentioned previously, Fabric also allows for

modular consensus protocol, essentially leading to the decoupling of the consensus algorithm and the

security model, as Fabric utilizes an endorsement policy to validate transactions, the stricter this policy,

the more resilient the network is.

A Blockchain participant represents an entity that participates in the blockchain. As mentioned, we

assume that participants have limited trust in each other and participate in the same channel. Partic-

ipants control peer nodes that maintain the ledger and may endorse transactions. We also assume

that at least one participant is capable of running a blockchain client to commit transactions to the

blockchain-based on the information present in the PLCD platform and that machines running nodes

are physically separated, meaning that an organization has no access to another organization’s node.

In case of attack, it is assumed that one or more nodes, which compose the minority, are colluding to

make alterations to a bill. It is given that, communications within the blockchain ecosystem are done

using secure channels such as SSL/TLS.

There are 3 actors who take part in the network:

• Network Administrator. Network Administrators are responsible for managing all of the blockchain

configurations. They also create identities and manage the participants in the network. The orga-

nization responsible for the network is in most cases the Administrator (in this case INCM), if there

are several Administrators, a quorum will make the decisions instead.

• Forwarder. Forwarders are oracles responsible for interpreting operations related to bills of ex-

change executed in the PLCD platform and committing the respective transactions associated with

those operations to the blockchain. These act as a blockchain client and oracle.

• Auditor. Auditors audit the life cycle of bills of exchange, such as the operations executed through-

out its lifespan. In this use case, ATA and BP, would be the auditors.

The authentication of all network participants relies on public-key cryptography (PKI) [28], and public-

private key pairs, by leveraging Fabric’s Certificate Authority (CA). We assume that the private key is
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only known by their owner, and that participant’s public key is known by everyone in the network.

3.3 Bills of Exchange Data Model

In this section, we explain the data model that addresses the business concerns about issuing and

handling bills of exchange. While handling bills of exchange, different operations require a different set

of permissions, in this section, we define what permissions are associated with each participant in the

network. We also define the asset and its attributes, and how each operation makes alterations to that

asset.

As this use case is being used mainly to explore blockchain interoperability solutions, the main goal

is to keep the implementation of the operations and assets representing bills of exchange as simple as

possible, while still being able to achieve the requirements. The asset representing a bill of exchange is

stored as a JSON Object which is composed of several attributes:

• ID. ID is a unique identifier composed by the keyword ”boe” followed by an identifier created

according to the Universally Unique Identifier (UUID) standard [17] that is used to easily identify

each bill of exchange. It is represented using a String type attribute.

• Expiration Date. Expiration Date represents the date on which the bill becomes invalid for use, this

is also used for certain operations and is represented using a Date type attribute.

• Initial Amount. Initial Amount represents the initial amount the bill was issued with, this means the

value that the entities owe or are owed, and is represented using a Float type attribute.

• Remainder Amount. Remainder Amount represents the amount that is still to be fulfilled, as bills

can be paid in multiple installments, this value will always be below the Initial Amount. Similar to

the Initial Amount attribute it is represented using a Float type attribute.

• Drawer, Drawee, Payee. These similarly to the ID attribute are a unique identifier composed by

the keywords ”drawer”, ”drawee”, ”payee” followed by an identifier created according to the UUID

standard. It is represented using a String type attribute. These should be linked to the PLCD

platform and could be changed to use something such as the Chave Móvel Digital which is used

in Portugal for digital authentication as a Portuguese citizen, but this is not handled in this thesis.

• Previous Drawers, Drawees, Payees. These are a list storing the Strings corresponding to the

previous entities associated with the bill.

• State. State corresponds to a String type attribute that stores a value associated with the current

State of the bill of exchange.
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All of the operations that are to be executed in the life cycle of a bill of exchange make the necessary

updates to the asset representing that bill, modifying the respective attributes associated with the opera-

tion in question. For each operation, there are changes made to certain attributes, this includes in most

cases updating the Remainder Amount or State, or change the entities referred to in the bill, such as the

Drawer, Drawee or Payee and by consequence of that updating the list for Previous Drawers, Drawees

and Payees. The Expiration Date and Initial Amount attributes are mostly used for certain verifications

during the bill’s life cycle.

We are using a ABAC system to guarantee that only participants with the required permissions can

commit certain operations, for each organization or user there are the following permissions:

• INCM. As INCM is acting as a forwarder between the PLCD platform and the blockchain network,

they have permissions to issue transactions corresponding to every operation contemplated for

Bills of Exchange.

• ATA and BP. ATA and BP are acting similarly to an auditor, so they have permissions to view data

related to the full length of bills of exchange in the network.

• Banks. Banks are allowed to issue transactions for the Discount operation, as they are a required

entity for this operation.

The entities listed on a bill of exchange, or the end-user, are not contemplated in this list as they don’t

directly interact with the blockchain, they interact with the PLCD platform and the connection between

the platform and the blockchain is then handled by INCM.

3.4 Technologies

In this section, we address why we are using blockchain to implement the Bill’s of Exchange digital

solution, instead of other alternative existing technologies such as traditional or distributed databases.

Traditional databases, like MySQL, rely on roles to define a set of users who can insert or update

data within the database. Furthermore, Administrative roles can modify the contents of the database

independently of their decentralization. So, due to its nature, it is expected that compared to a permis-

sioned, private blockchain such as Fabric, traceability, verifiability, transparency, security, and privacy

are usually more fragile.

As distributed databases, we have Amazon’s DynamoDB or Azure’s CosmoDB as an example, which

are cheaper and allow support for multiple non-trusting writers. Blockchains still allow achieving what

distributed databases cant offer, such as the distribution of trust, with the transparency and auditability

between involved parties that blockchain can offer. Distributed databases also rely on other technologies

to achieve the proper configuration of nodes between the network for specific functionalities, which
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blockchain can achieve on its own. For our use case, as mentioned, we have multiple restraints regarding

the organizations:

1. Participants have limited trust between each other.

2. Trust and responsibility to maintain the proper flow of transactions in the network belongs to every

organization.

3. INCM should be able to administer the network.

As bills of exchange involve multiple organizations, participating entities are not willing to delegate

full control of the system, as the information carried in a bill can affect multiple entities, avoiding its

manipulation is essential. For that reason, each entity should be able to monitor the network and ensure

the proper flow of transactions. The requirements mentioned match the features offered by a blockchain.

Consensus mechanisms ensure that no single entity holds control over the blockchain, and a blockchain

such as Hyperledger Fabric allows the delegation of specific levels of control to each different participant.

This shows that a blockchain solution is suitable to address the bills of exchange problem.

We should also consider the trade-offs between a permissionless and a permissioned blockchain. As

there is information that should be accessible by certain organizations or certain entities, a Permission-

less blockchain solution raises some privacy concerns due to information leakage. While it is possible

to restrict access to information, there will always be the possibility of information leakage. As we are

storing information regarding users’ bills of exchange, this problem is also scaled when we take into

account the more recent General Data Protection Regulation (GDPR) laws. This system’s main goal is

to provide a secure digital solution for the life cycle of bills of exchange for both the user and the organi-

zations responsible for maintaining that same life cycle. Information regarding bills should only concern

the entities involved in their life cycle and their administration. When mentioning public permissionless

blockchain solutions, we also have to mention that these were designed with cryptocurrency in mind and

that these blockchains are maintained by miners who collect transaction fees as an incentive to maintain

the network.

By using a permissionless blockchain INCM would incur those same transaction fees, which is not

intended for our use case. This shows that public blockchains are not a suitable solution to address the

proposed problem.

With the requirements from Section 3.1 in mind, a permissioned blockchain is a promising infrastruc-

ture for our use case. Permissioned blockchains offer not only reduced risk of participants intentionally

introducing malicious code through smart contracts, or acting maliciously against the system, but also

offer more control over the network. This comes from permissioned blockchains requiring participants

to be authenticated being attributed an identity within the network before being able to participate. In

Hyperledger Fabric, transactions also follow several rules which help ensure the security of the network,
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such as following the endorsement policies defined by the consortium for the network. It also keeps track

of all transactions committed, valid or invalid. This helps auditors identify offenders or possible offenders

and use preventive measures in future occurrences.

Taking all this into consideration we opt to use Hyperledger Fabric as our blockchain infrastructure,

which as mentioned before is a permissioned blockchain focused on enterprise solutions.

3.5 Bills of Exchange Blockchain Architecture

In this section, we introduce the architecture for the bills of exchange blockchain solution. The assets

being stored in the blockchain are the bills of exchange generated by the PLCD platform, which is the

information system that allows the end-user to issue operations on their bills. This proposed solution

provides scalability in terms of the participating organizations. The information system mentioned and

the blockchain for the bills of exchange are independent, this is possible due to the modularity offered

by Hyperledger Fabric. This thesis doesn’t address the information system and assumes it is already

in place, instead we focus on the blockchain infrastructure which will be used to explore the interoper-

ability use case. The blockchain component includes the ledger, permission management, transaction

validation and definition, and the data model. This architecture is represented in Figure 3.2, our thesis

focuses mainly on the blockchain side of it, and addresses the different types of clients required.

Figure 3.2: Architecture of the Blockchain Platform for Bills of Exchange

The blockchain component store all the data associated with the assets respective to each bill of ex-

change, while also enforcing the defined blockchain configurations regarding each different organization
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and participant in the network. The blockchain client ensures that participants can issue operations on

the network concerning bills of exchange. In the following Sections, we approach both the Blockchain

Component and Clients with more detail, Section 3.5.1 and Section 3.5.2.

3.5.1 Blockchain Components

Implementing Fabric’s blockchain infrastructure requires different types of nodes or how they are called

in Fabric, peers: Orderer peers (orderers), Endorser peers (endorsers), Committing peers (peers). Or-

derers are assigned in the configuration file which can be deployed by the network administrators, and

provide delivery guarantees of blocks containing transactions while assuring atomic communication,

consensus. A node can be both an endorser and a peer node at the same time, endorsers host and

execute instances of the chaincode to run simulations of transactions, peers host instances of the ledger.

Apart from these 3 we also have Anchor peers which are responsible for inter-organization communica-

tion, within the blockchain, to ensure peers from different organizations are known to each other [1]. For

simplification, anchor peers are not present in our solution, as they are not essential for our use case.

It is important to note, that in Fabric, there is the possibility to attribute different levels of trust to each

peer using roles. Each different role has different permissions on the operations that can be applied

by participants on the ledger, this includes having limited operations on bills of exchange depending on

your role. And as mentioned before, Fabric offers a modular system that decouples the trust system

from the consensus algorithm, this is done using endorsement policies that can assign a higher or lower

degree of trust to specific subsets of endorsing peers in the network.

For our specific use case, and to keep it simple as our main goal is to explore the interoperability

solutions, we have a single instance of chaincode which defines all of the life cycle of the bills of ex-

change, this includes all of the operations contemplated in the law regarding bills. Both endorsing peers

and committing peers are required to have this chaincode installed.

Regarding the authentication of participants, Hyperledger Fabric offers a built-in CA to issue identities

to each participant, but a custom CA could be used if INCM chooses to do so. These certificates are

important as they are used by participants to sign transactions, ensuring non-repudiation of transactions.

In our use case, there is limited trust between participants, and INCM is acting as the network

administrator, so a single orderer is being used. For decentralization purposes, the network could be

deployed with orderers from multiple organizations.

In this scenario, the organizations interested in auditing the network, such as BP and ATA, should

maintain at least a peer node holding an instance of the ledger, also called a committing peer, allowing

for these organizations to assure bills are not being tampered and retrieve data associated with bills

of exchange for auditing purposes. The organization responsible for the network, INCM, should have

an endorser peer, as endorsers are responsible for assuring the validity of transactions, so in this case,
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assuring transactions associated with bills of exchange are valid. Banks which participate in the network

should help to maintain the network by running a committing peer as they are a crucial part of the bills

of exchange life cycle, and are responsible for the discount operation. Regarding the privacy associated

with accessing data concerning bills of exchange, we have to define permissions for each auditor if that

is the case, which can be done by the network administrator.

With respect to data privacy between different organizations, Fabric offers multiple solutions which

all have their advantages and disadvantages. Banks for example shouldn’t be able to access the same

data INCM, BP, or ATA can access. We have 3 possible solutions:

1. Creation of multiple Channels, one for each organization

2. Using private data, a Fabric’s feature

3. Using the previously mentioned ABAC system

We could create 2 separate channels, one for INCM, BP, and ATA, and one where banks would be

included. By creating different channels we are also effectively creating different ledgers as ledgers are

shared within channels, which would ensure data privacy, but would also prevent all participants to see

all the transactions in the network. Fabric offers a private feature where certain organizations are given

the ability to endorse, commit, and query private data without having different ledgers. This solution

adds a significant amount of overhead to transactions. Lastly, by tuning the ABAC[13] system through

chaincode we can define which organizations have permissions to access data. For our solution, we

have chosen the last option as it offers the best performance and ease of implementation while being

able to address the restrictions in our use case.

In the end, as the goal was a simple and easy to implement solution, the architecture we end up

with has a single channel where we have the 3 main organizations, being INCM, BP, and ATA, in the

future Banks should be represented as they are crucial for the bills of exchange life cycle. We also have

a single applicational chaincode that implements the logic behind all of the operations regarding bills of

exchange. Lastly, to address the privacy concerns we end up tuning an ABAC system to meet our needs

as mentioned before. There are already solutions to address the problems associated with a traditional

ABAC system regarding the centralization concerns and limitations, such as the Self-Sovereign Identity

Based Access Control (SSIBAC)[3].

3.5.2 Blockchain Clients

While our solution does not focus on a full-stack application, as the goal is to have a simple prototype to

help explore the interoperability solutions, it is important to address the goal of the blockchain clients, as

they are important to establish the connection between INCM’s front-end application and the blockchain.
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Blockchain clients allow organizations to request operations to the blockchain, for different needs we

should have different clients as each different client is able to request different operations depending on

their permissions and roles.

In our use case, we require 3 different blockchain clients, as we have INCM acting as a network

administrator and forwarder between the PLCD platform and the blockchain, we have ATA and BP acting

as auditors requiring access to data respective to bills of exchange, and lastly, we have banks which

directly interact with a specific operation in the bills of exchange life cycle. These 3 blockchain clients

are defined as follow:

1. Forwarder Client: After receiving transaction requests from the PLCD platform, those are pro-

cessed and verified before a blockchain transaction being committed to the network, triggering the

updates necessary on the respective asset.

2. Audit Client: Responsible for committing transactions on behalf of the auditors, ATA and BP, these

transactions are in fact requests from the auditors to query the blockchain ledger regarding data

from bills of exchange assets in the blockchain network.

3. Bank Client: This will give banks the capability to commit transactions in respect to the Discount

operation in which banks are directly involved, to make the necessary changes to the bills of

exchange asset.

In addition to acting as a bridge between the PLCD frontend application and the blockchain, blockchain

clients also provide authentication in the blockchain network. Members of the participant organizations

can link their credentials inside the organization with the client to have their blockchain identity and or-

ganization identity linked, this provides a way to keep track of who requests certain operations, allowing

for traceability.

3.6 Bills of Exchange Blockchain Implementation

For the implementation of the blockchain architecture mentioned, we used a modified version of Fabric’s

samples to meet the needs for our specific use case. This implementation includes establishing the

blockchain infrastructure and configuration regarding the participant organizations, defining the ABAC

system rules and attributes for access control, and the chaincode for transactions and queries associated

with the blockchain.

3.6.1 Blockchain Components

As mentioned Fabric uses a certificate authority to generate the necessary cryptographic information,

such as the key pairs, to enroll different participants in the network. The CA server can be configured
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to define what implementations are used for the generation of the certificates, we have opted to use

Fabric’s default implementation.

We have implemented the solution with 3 default organizations which represent INCM, ATA and BP.

Each node representing a different organization has different specific permissions regarding which data

can be accessed and which operations can be requested, using the ABAC system. Nodes from INCM,

the network administrator, have a higher level of permissions allowing them to validate and execute smart

contracts and transactions, ATA and BP nodes can validate transactions and access the ledger as an

auditor. These configurations and permissions allow enforcing the necessary privacy and confidentiality

of data.

The chaincode responsible for all of the operations in a bill of exchange life cycle, and its auditing

were implemented using NodeJS and following the data model previously mentioned in Section 3.3.

3.6.2 Blockchain Client

The blockchain client is written in NodeJS, it allows communication with the blockchain, providing an en-

try point to the developed chaincode mentioned before. Taking into account the permissions defined for

the authenticated client, the chaincode will then access the distributed ledger and execute the requested

operations: such as register a bill of exchange, protest a bill of exchange, or audit the network.

While possible to develop a graphical user interface, the clients made were used through the com-

mand line. A script was used to simulate the population of the blockchain with bills of exchange assets.
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In this section, the goal is to explore interoperability solutions between heterogeneous blockchains

such as a permissioned blockchain like Fabric which we used for our bill of exchange solution as it was

outlined in the previous Chapter 3, and a permissionless blockchain which in this case we have chosen

Ethereum.

4.1 Interoperability Use Case Implementation

In this section, we address the interoperability use cases explored and their respective implementation,

as well as mention the advantages and disadvantages of cactus during our implementation. As far as the

architecture used, as mentioned, we are using our Bills of Exchange solution outlined in Chapter 3 and

an Ethereum Testnet Network sample provided by Cactus as shown in 4.1. Apart from these networks

required to explore the interoperability use case, we are using a validator to monitor both networks

and commit transactions associated with the different interoperability use cases being explored which

are implemented using a business logic plugin, for this the connectors respective to each network are

required.

Bills of Exchange

Fabric Network

Bills of Exchange

Ethereum Network

Cactus 

Validators

Hyperledger Cactus Network

Business Logic

Plugin

Fabric

Connector

Validators use
the connectors
to monitor the

networks

Ethereum 

Connector

 Implements the
logic associated

with the
interoperability

use case

Figure 4.1: Architecture of the Cactus interoperability solution

While it would be of interest to explore interoperability use cases with already existing Bills of Ex-

change solutions that were mentioned previously such as Billex, it is hard to have access to these

solutions in a test environment that suits our needs. The Ethereum Testnet solution offers a lower de-

gree of complexity to explore several interoperability use cases, as we can mold the network to suit our
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needs. To note that Cactus already offers connectors for both Fabric and Ethereum which helps to focus

only on the interoperability use cases being explored without needing to develop a whole new connector,

which would be the case if we were using Billex’s network to explore interoperability, as it would require

a connector for Stellar.

When it comes to bills of exchange, there are several interoperability use cases that can be explored

with Hyperledger Cactus. These include replicating the assets between multiple implementations of

bills of exchange, replicating transactions based on a specific trigger such as having a bill of exchange

being registered in the Portuguese network for bills of exchange that involves an entity from Spain, you

can replicate the transactions associated with this specific asset on the Spanish network for bills of

exchange. We could also use a foreign currency or even a cryptocurrency to liquidate a bill of exchange,

which would require interoperability between our solution and that cryptocurrency blockchain.

While there is no standard for how to implement a bill of exchange blockchain solution, every bill of

exchange implementation, regardless of the country it is associated with, requires a core set of opera-

tions such as registering or paying the bill. Taking this into account we define the required transaction

flow associated with each interoperability use case to achieve the needs for that specific use case, which

we will go more in-depth throughout this Chapter.

Most of the work being done is associated with designing business logic plugins that define the

transaction flow for each interoperability use case. We will outline that work for each interoperability use

case explored, while also mentioning the difficulties and where it could have been improved.

4.1.1 Network Replication

The goal with this specific use case is to replicate every transaction requested in one of the involved

networks, we have our solution developed on Hyperledger Fabric and a sample solution using Ethereum,

whenever a transaction is requested on one of the networks it should trigger Cactus to request the

corresponding transaction on the other network as presented in Fig 4.2.

For this to happen, on the business logic plugin we need to associate transactions from the solution

which uses Fabric and the solution using Ethereum, for the business logic plugin there is complete

abstraction from how these blockchains work, it is not required for them to behave similarly. While both

solutions might have different operations for Bills of Exchange, both should have the core operations

required for their life cycle, in this case, if a register operation is requested in Fabric’s solution, the

respective register operation should be triggered by cactus on Ethereum’s solution.

As mentioned cactus has nodes monitoring the blockchain’s state, using this we can react to updates

to this state, such as new transactions being committed, which in this case helps us replicate the same

state of each asset on the blockchain to other solutions, working similarly to an oracle. In figure 4.3 we

can see exactly how this behavior happens between the different blockchains involved, their users, and
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Figure 4.2: Cactus Use Case 1 Diagram

the cactus auxiliary network.

A user commits a transaction to Fabric’s network, in this case, registers a bill of exchange, the trans-

action gets processed in Fabric’s network which triggers a new state of the network. Cactus validators

network by monitoring the network are aware of this new state and publish the respective transaction to

the Ethereum network which then similarly to Fabric ends up creating a new state of the network. We

have to be aware of this because new states are what triggers Cactus validators, so we need to have

a condition where transactions committed by Validators do not trigger a transaction request on Cactus

end.

For this specific use case, there are simpler solutions if the goal is only the replication of the network

for the purpose of redundancy which we went over before. One of the problems of solutions that focus

on replication only is that it is hard to achieve the transaction history that led to that specific replicated

state of the network, Cactus offers a way to accomplish that by actually replicating each transaction

requested individually.

4.1.2 Cross-country Asset Replication

As pictured in Fig 4.4 this use case works somewhat similarly to the previous use case explored in the

sense that we are effectively reproducing certain transactions between the involved networks. Similarly,

we have our solution previously outlined in Chapter 3 using Fabric, and an Ethereum sample solution,
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Figure 4.3: Cactus Business Logic Plugin transaction flow for Use case 1

both running implementations of the bills of exchange use case.

The goal in this use case is to replicate transactions for assets that involve entities from different

countries, lets say our Fabric solution and the Ethereum sample solution are running implementations

for Portugal’s and Spain’s respective bills of exchange systems, if a certain bill involves entities from Por-

tugal and Spain, we want to reproduce transactions associated with this specific asset in both networks.

Comparably to the previous solution, we still have to associate corresponding transactions between

both networks. The difference in this use case is that instead of replicating every transaction that pro-

duces a new state in the ledger, we are being more restrictive by only reproducing transactions for

specific assets. In addition to cactus validators nodes to react to changes in the blockchain state, this

state update will trigger a verification process to assess if the assets being changed involve entities from

each network, in this case, if there are entities from Portugal and Spain associated with this asset. If this

is the case then the validators will request a transaction in the opposite network to replicate the state of

this asset. In figure 4.5 we can see the flow between the actors in this use case, in both cases, where

48



Figure 4.4: Cactus Use Case 2 Diagram

an asset involves entities from both countries, and when it does not.

In the case where the transaction does not involve entities from both networks’ respective countries,

the validator still detects a state update, since the validator network is always monitoring the networks,

but after verifying the entities associated with the asset it will not trigger any transaction request on the

opposite network.

When the transaction does update an asset that has entities from multiple countries associated with,

after detecting an updated state and verifying the entities involved in the transaction the validators will

then request the respective transaction in the opposite network, effectively replicating the same life cycle

for this specific asset in both networks.

Similarly to the previous use case, cactus offers a way to replicate the exact transactions that led

to a specific asset current state, keeping its transaction history, in this case, we are not going for full

replication of the network but focusing on single assets that respect certain constraints, which in this

case Cactus offers a very good solution as the verification for those constraints occurs in the validator

nodes without any need for changes in the blockchains interoperating.

4.1.3 Cross-blockchain Payment

With countries starting to accept cryptocurrencies as legal tender, such as El Salvador, and allowing

cryptocurrencies to be seen as a country’s currency, this use case becomes more interesting to ex-
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Figure 4.5: Cactus Business Logic Plugin transaction flow for Use case 2

plore as this could be a potential need in the future. The goal of this use case is to use an existing

cryptocurrency to liquidate a bill of exchange asset.

As far as the architecture used, similarly to the previous use cases we are still using our Fabric
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Figure 4.6: Cactus Use Case 3 Diagram

solution outlined in Chapter 3, but in this use case the Ethereum network used is not running a sample

implementation for bills of exchange, it is simply being used to run Ethereum transactions as a payment

option for bills of exchange to show that if in the future more countries start to accept cryptocurrencies

as a currency, this is a possibility.

For this use case instead of having to match the transactions representing operations respective to

bills of exchange, we have to find a way to associate, in this case, an Ethereum address to a certain bill

of exchange asset or an entity related to this specific bill. The simplest way for this to be done is in the

case where the bill of exchange solution is developed with this in mind, and the asset itself can have an

Ethereum address associated with it for payment purposes.

Another problem with this use case is the need for an escrow account as shown in Fig 4.6, as the

payment operation on the Fabric network can only be processed after confirmation of payment, but

the payment can only be sent after the payment operation has been processed. In this case, Cactus

validators can act as escrow where they receive the payment from the Ethereum network and hold it

until the payment operation in Fabric’s network has been processed, finally, they send the payment to

the final address associated with the bill.

In figure 4.7 we can see the whole transaction flow which differs from the 2 previous use cases where

Cactus validators were reacting to changes in the networks, wherein this use case a request to Cactus

to act as a middleman is being made. The figure shows both a case where the payment operation on

Fabric’s network succeeds and a case where it fails, where the validators escrow account is important.
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To see the importance of using Cactus validators as an escrow in this use case, we can see the

difference in the transaction flow between the first set of transactions and the second, where the first

one ends up failing, with the second one succeeding. If for any reason the transaction for the payment

of the bill fails in Fabric’s network, the Ethereum that had already been provided as payment is returned

to the original address it was sent from instead of being sent as payment to the Fabric’s user address

associated with the bill being liquidated. This keeps the funds safe until there is confirmation that the

bill’s payment succeeded, it also prevents the bill from being paid without the funds being secured for

the owner of the bill.

It is important to explore such a use case as the future seems to be approaching a state where
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cryptocurrencies might be seen as an actual currency and start being adopted as such, this also shows

that Cactus can be quite flexible in terms of the problems it can solve in a somewhat simple way. It also

shows how future-proof Cactus is. While we explored this use case using Ethereum as the cryptocur-

rency being used, multiple other ones could have been used as long as Cactus already has a connector

developed for it, otherwise, a connector could also be developed.
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In this chapter we are going to evaluate both the Bills of Exchange Blockchain solution, developed

using Hyperledger Fabric, and the Hyperledger Cactus solution for the interoperability use cases ex-

plored. As far as evaluating the blockchain solution, we are going to describe the environment used

for testing the system, the metrics used, and the methodology. We also define how this evaluation is

performed, by defining the metrics and goals, which are then collected, analyzed, and discussed. Re-

garding the interoperability solution, we are not evaluating its performance as the solution’s performance

is bottlenecked by the 2 interoperating systems, in this case, our Hyperledger Fabric blockchain solution

and an Ethereum network used for the examples provided. We evaluate and discuss the complexity of

the solutions, their limitations, and advantages.

5.1 Evaluation Methodology

In this section we define our evaluation methodology and approach regarding our Bills of Exchange

solution, explaining how we are going to measure its performance.

The focus of our evaluation is the costs of assuring that the assets representing bills are protected,

as that is the main goal of our solution. We are going to evaluate the performance of all operations

regarding bills of exchange as all of them directly interact with the asset, producing a new state in the

network by requiring an update to the asset. While a new state is produced by every operation, some

operations require changes to more attributes, having a heavier impact in terms of performance.

The goal of this evaluation is to answer 3 main questions regarding our solution: i) What is the max-

imum throughput it can achieve, this includes how many bills of exchange operations can be executed

per second?, ii) What is the latency at the maximum throughput achieved, what is the time window be-

tween an operation being processed, and its results being secured?, and lastly iii) In terms of storage,

and protection, what is the cost associated with our solution, compared to the existing solution, is our

solution scalable? By answering such questions we can conclude if our solution suits the needs of our

use case or not.

5.1.1 Metrics

Regarding the evaluation of a blockchain solution, there are certain fundamental concepts. For evalu-

ating a blockchain’s performance a typical configuration is composed of the test harness which is the

software and hardware, including clients that can introduce or invoke work from the system, mainly this

client can be a load-generating client which will be addressed in the following Section. It is also com-

prised of the System Under Test (SUT) which is the hardware, software, networks, and respective con-

figuration of the blockchain solution being tested, in our case, the bills of exchange blockchain solution.
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This configuration and the key performance metrics are highlighted by the Hyperledger Foundation1.

Regarding the key performance metrics, the ones outlined are the following:

• Read Latency.

Read Latency = Time When Response Received – Submit Time

Read latency is the time between when the read request is submitted and when the reply is re-

ceived.

• Read Throughput.

Read Throughput = Total Read Operations / Total time in seconds

Read throughput is a measure of how many read operations are completed in a certain time period,

expressed Reads per second (RPS). While this is an important measure, Transaction Throughput

is typically more important, as there can be external systems facilitating reads to the blockchain

network.

• Transaction Latency.

Transaction Latency = (Confirmation time @ network threshold) – submit time

Transaction Latency is the time between the point where a transaction is submitted to the point it is

usable across the network. This is the time it takes for a transaction to not only be processed and

confirmed but also the time to spread it across the network reaching a certain threshold of nodes

that guarantee the finality of a transaction according to the consensus mechanism being used.

• Transaction Throughput.

Transaction Throughput = Total committed transactions / total time in seconds @ #committed nodes

Transaction Throughput is the rate at which valid transactions are committed by the blockchain in

a certain time period. This includes transactions being spread across the network, and not only

being confirmed, as previously explained. To note that the invalid transactions that may occur

during testing should be subtracted from the total transaction number to obtain the transaction

throughput, expressed as Transactions per second (TPS).

1https://www.hyperledger.org/wp-content/uploads/2018/10/HL_Whitepaper_Metrics_PDF_V1.01.pdf
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Figure 5.1: Testing Bill of Exchange solution with Hyperledger Caliper

5.1.2 Hyperledger Caliper Load-generating client

As mentioned in the previous section we are going to study performance metrics, additionally, we are

also going to measure resource consumption, which includes mainly the storage requirements for storing

bills of exchange assets. To obtain data regarding these metrics we need a client to serve as a workload

input.

We are going to use Hyperledger Caliper2 as our load-generating client, Calipers framework goal

is to facilitate the evaluation of multiple blockchains solutions built on different infrastructures such as

Hyperledger Technologies blockchains, which include Fabric, and others such as Ethereum. Caliper

serves as a load-generating client by running tests based on configuration files, which helps to replicate

the architecture of the solution’s network, to run tests.

As seen in Figure 5.1 Caliper has several layers, the Network layer, Core layer, and Benchmark

layer, with each layer having its own purpose. The network layer allows the framework to integrate and

connect with different blockchain infrastructure, which in our use case is our bills of exchange Fabric

solution. The following layer, the Core layer, provides an abstraction between the adaptor and caliper’s

2https://www.hyperledger.org/use/caliper
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framework by using Northbound Interfaces (NBI) which are common blockchain interfaces that facilitate

the interaction with the backend of blockchains, such as querying the ledger or deploy smart contracts.

This layer also includes the report generator which produces the reports with the data obtained from

the tests, and the resource monitor, which can both be tuned by the configuration files. The Benchmark

layer contains the tests that Caliper will use to test the SUT in question, in this case, it includes the tests

we developed for our solution.

The context in which the tests are run is specified in a Yet Another Markup Language (YAML) con-

figuration file, used by the benchmark engine to initialize the test environment and run the tests. In

this configuration file, you can tune Caliper to suit the needs for each different test, by using rate con-

trollers that allow us to control the transaction flow of the system for each test. The 3 most common

rate controller types, fixed rate controller, fixed feedback controller and fixed backlog controller. A fixed

rate controller will keep the transaction flow constant depending on the specified flow in TPS, a fixed

feedback controller works similarly to a fixed rate controller but it takes into account the unfinished trans-

actions per client, if a certain threshold is reached it stops submitting transactions for a certain period of

time, with these controllers you can emulate the regular use of the system. A fixed backlog controller will

keep a certain number of transactions in backlog, this means that you specify a number of unfinished

transactions per client and the controller will try to keep that value constant, this effectively achieves the

maximum TPS value.

5.2 Bills of Exchange Blockchain Solution Evaluation

5.2.1 Setup and Test Environment

To emulate a real production environment where we have several distributed nodes, we are using a

Google Cloud Engine (GCE) machine set up in Amsterdam, Netherlands with a 16vCPU and 256GB of

memory. This helps to keep the hardware used for the test environment used to run the tests consistent

across every round of tests.

As far as configuring the test environment, we are using an Hyperledger Fabric version 2.2.1 running

a simplified network with a single channel with 3 organizations representing INCM, ATA and BP each

with one peer and 1 CA. The consensus algorithm being used is solo orderer which is designed for

testing purposes where it effectively bypasses the consensus process. We are also using the default

network configuration provided, with a maximum block size of 128MB, a batch timeout of 250ms and the

number of transactions per block is 10.

The peers, orderers and CA are being run on top of Docker containers running Docker version

20.10.8, running the base image of Hyperledger Fabric. The state database used is the database

provided by Fabric, LevelDB.
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5.2.2 Throughput and Latency

As previously mentioned we are going to use throughput and latency metrics to understand scalability,

this means how many transactions per second can our solution handle and how fast are they considered

valid. These are important measures to assess the suitability of our solution for the use case INCM

provided.

While there is not enough data regarding the use of the system that is currently in place, according

to the small amount of data we have the system achieves a peak use of 7000 operations monthly, which

is a really small amount of transactions per month for such a system. Taking this into account if we can

achieve an average TPS of 5, we should be able to cover much more than the current use of the system

that we currently see.

In the following tests, we are going to issue transactions at a constant rate of 5 TPS. We are also go-

ing to vary the number of transactions issued in total between 1000, 2000, 4000, and 8000 transactions.

Furthermore, we are going to vary the number of blockchain clients between 1, 2, 4, 8, and 16 clients

submitting transactions, in our context these clients act as our forwarders. We did test all operations

but for the data used, as every operation is somewhat similar in terms of performance we are using the

average of the data for all operations.
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Figure 5.2: Throughput variation with different number of clients, using a fixed-feedback controller

The above graphic (Figure 5.2) shows the variation of the throughput with the number of clients,

which in our tests we can see that for a number of clients of 1 or 2 the throughput is equal independent

of the number of transactions, but we see more variation with increasing numbers of clients which is a

more likely scenario in regular use of the system.
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Figure 5.3: Average latency variation with different number of transactions, using a fixed-feedback controller

In the above graphic (Figure 5.3) the variation of the average latency per number of clients is shown,

with transactions being submitted at a constant rate of 5 TPS similarly to the previous graph. Usually

the more clients the bigger the latency as the peer nodes have to return answers to more clients before

a transaction is considered valid, in our testing that is not what we have verified as we have 16 clients

with the lowest average latency.

During these tests, something seems to have occurred when we were testing with 1 and 2 clients

submitting transactions as the results from those cases seem to be too far apart from what is expected

in both throughput and average latency.

5.2.3 Storage

In regards to Storage evaluation, the goal is to estimate how much digital storage such a solution would

take, as the current system uses a paper-based solution and there is not enough data to estimate how

much storage would be required for the current system in terms of digital storage.

To estimate the storage required the transactions being issued consist on the registration of a defined

amount of bills of exchange assets, as the rest of the operations do require updates to the asset but does

not increase the storage required for that asset, the only operations which would add to this requirement

would be the discount and endorse operation but it would be negligible. Bills of Exchange assets in these

tests are still generated randomly which can still create some difference between those same tests.

Apart from data regarding storage, using Caliper we also obtain data regarding CPU usage, disc

writes and reads, and network traffic which could be of interest. These tests, similarly to the throughput
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and latency tests have 2 variables, being the number of transactions issued (with all of them being

register transactions as mentioned) and the number of clients.

Name CPU%
(max)

CPU%
(avg)

Memory
(max) [MB]

Memory
(avg) [MB]

Traffic In
[MB]

Traffic Out
[MB]

Disc Write
[MB]

Disc Read
[B]

peer0.org3.example.com 6.87 3.09 151 146 13.0 3.92 22.1 0.00
peer0.org2.example.com 10.06 3.31 234 229 18.0 12.0 22.1 0.00
peer0.org1.example.com 10.02 3.38 213 209 18.1 12.0 22.1 0.00
orderer.example.com 3.43 0.36 205 198 10.4 29.0 24.9 0.00
dev-peer0.org2.example.com 2.31 0.20 60.1 59.9 4.25 2.12 0.00 0.00
dev-peer0.org1.example.com 2.31 0.19 59.4 58.9 4.26 2.12 0.00 0.00

Table 5.1: Bills of Exchange Storage Testing: Issuing 1000 register operation respective transactions with 1
blockchain client

While all this data was collected, for this specific use case the only crucial data is the data regarding

memory usage as that is what concerns digital storage costs, from the 2 metrics shown regarding

memory usage we are going to focus on the average memory usage instead of the maximum one,

and we are going to use the mean value between the 3 peers to produce the graphics and further on an

estimate from the data we have what is the storage cost per bill of exchange asset.
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Figure 5.4: Average memory usage variation with different number of transactions

While there is some discrepancy between the storage requirements depending on the number of

clients used seen in the graphic above (Figure 5.4), we can see that across all clients the variation of

the memory usage according to the number of transactions follow a similar curve.

We are going to explore what would be the best case scenario being the 2 clients curve, the worst

case scenario which would be the 8 clients curve, and the average between all of the clients. This should

give us enough information regarding what would be the resources usage and cost associated with it on
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the most likely scenario which would be somewhere between these 3 scenarios we are going to explore.
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Figure 5.5: Logarithmic regression trendlines for the retrieved data for memory usage

To be able to estimate the cost of storage we need to be able to estimate how much memory it would

cost past the values used during our testing, for that we are using logarithmic regressions to define the

function that better describes our data, from that we can effectively estimate how much memory would

be used at a certain number of transactions, in this at a certain number of registered bills of exchange

assets. For the 3 scenarios, we are going to explore we obtained the following equations:

• Best case scenario - 2 Clients.

S2Clients = −41.8 + 28.1 ∗ ln(x)

• Worst case scenario - 8 Clients.

S8Clients = −120 + 69.4 ∗ ln(x)

• Average of all clients.

SMean = −39.7 + 41.5 ∗ ln(x)

To estimate the cost for these 3 scenarios we need to associate the storage we are using with

a defined price, for that we could use some distributed cloud storage solution such as Amazon Web

Services (AWS) or Google Cloud Services (GCS), for this specific use case since we were already

using GCE for our testing environment we are going to estimate the storage costs using GCS.
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The average price for a standard storage bucket in GCS using an European located server is around

$0.021 per GB, this price comprises only the storage cost and does not include operations made on

top of the stored data such as updates to data points for each operation there is added costs which are

negligible, if we estimate the price using the peak operations achieved in the current system monthly

and we assume all those operations are a register operation, we would have 7,000 register operations

monthly, resulting in 84,000 assets being stored early.

Using the previous equations we can estimate how much storage would be required in our current

solution for our 3 scenarios, and consequently what is the cost associated with it:

• Best case scenario - 2 Clients. We would have a storage requirement of 276 MB for the 84,000

assets, which would amount to roughly $0.006 monthly per Peer used in the network

• Worst case scenario - 8 Clients. We would have a storage requirement of 667 MB for the 84,000

assets, which would amount to roughly $0.014 monthly per Peer used in the network

• Average between all clients. We would have a storage requirement of 431 MB for the 84,000

assets, which would amount to roughly $0.009 monthly per Peer used in the network

The storage costs associated with this solution are effectively negligible, which can be due to the fact

we are using quite a simple data structure to represent the assets as we are mainly using this solution to

explore interoperability use cases associated with such a system. If the solution were to become more

complex it would certainly have a bigger impact on the costs associated with it.

5.2.4 Discussion

It is important to note that this specific solution was developed with the main goal of exploring the

interoperability use cases associated with such a system, there are multiple decisions made throughout

the implementation of the solution with this in mind. The goal was to keep the development of such a

solution with as little complexity as possible, which makes some compromises in terms of the overall

solution.

Regarding our performance evaluation, we have achieved a peak TPS of 113.4 with a latency of 0.15

seconds in the same test, this peak occurred for a test where 2000 transactions were submitted and 16

clients were being used, while it is likely that fewer clients will be used on a real scenario, during our

tests we can see that for any number of clients above 4, we can achieve decent performance without

compromising latency. Tests were run multiple times to assure that the results were correct.

One of the places where there are improvements to be made is Fabric’s blockchain configuration, this

includes several performance improvements in terms of TPS. We could have tested several parameters

such as the batch size which includes the size of the block in terms of data and also includes the number
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of transactions per block, which if we used a higher value in both parameters we could possibly achieve

higher values of TPS. Besides this we could also experiment with different values for the batch timeout

which is the time for a block to be deemed invalid if not processed in a certain time frame, a higher value

would give more time for blocks to be processed.

Fabric modularity also allows experimenting with another parameter that influences its performance,

which is the consensus algorithm used. Depending on the algorithm used, the number of replicas used

to form the network directly affects its performance as the messages exchanged during the consensus

scale are based on the number of replicas participating in the consensus.

In relation to our storage costs assessment, one consequence of keeping the solution so simple

is that it is hard to evaluate the storage costs associated with a real production scenario, as the data

structure used to store the bills of exchange assets is quite simple. Due to this, the data we received from

our testing results associated with the low amounts of data available to estimate what a real production

scenario use would be. During our testing, using the average between all clients scenario as an example

we obtained a cost of $0.009 per Peer monthly using GCS assuming we would have 84,000 bills of

exchange assets registered in a year.

We did not explore the difference of using multiple cloud storage services as the value we obtained

is already negligible for what would be expected. However, there are always trade-offs when it comes

to choosing a cloud storage solution, this trade-off will often be between the cost associated with the

storage required, the security, and the distribution of trust between, the evaluation of these trade-offs

should be done by INCM.

It was expected that the number of clients submitting transactions during the tests would not affect

the storage required, as the transactions respective to registering an asset do not influence the amount

of information stored. During our tests, there were some discrepancies that can be associated with the

fact that the assets are generated randomly which can lead to assets of different sizes. They do however

affect the traffic as there are more clients connections, but that was not evaluated.

Throughout the years the storage costs will obviously scale, as each Peer has to store a copy of

the blockchain ledger, with more bills of exchange assets being registered each month the storage

requirements to store the ledger will keep increasing. It also increases the search complexity associated

with locating an asset in the ledger, which for Fabric, similarly to most permissioned blockchains it is

O(n).

5.3 Interoperability Solution Evaluation

In this section, we are going to address our evaluation for our interoperability solution implemented

using the Hyperledger Cactus technology. There was no performance evaluation performed as the
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performance bottleneck for an interoperability solution such as this one is associated with the blockchain

infrastructures used in the explored use cases, in this case with our Bills of Exchange Hyperledger Fabric

solution, and the Ethereum testnet networks used. This is due to the fact that Cactus uses a network of

validators to process interoperability requests on both blockchains, which effectively act as a participant

in those networks and are consequently restricted to that network’s performance.

We mostly address the complexity associated with implementing an interoperability solution using

Cactus, the compatibility Cactus offers when it comes to the multiple blockchain infrastructures it sup-

ports for developing interoperability solutions, and the flexibility of use cases where Cactus can be used

to implement such solutions.

It is important to understand that Cactus is still in development and is not production-ready at this

moment, it should be production-ready in version 1.0, and it is currently in version 0.4.2. This means

that there is still development being made in the core framework, and there are still connectors to be

released, this will improve the usability of Cactus as an interoperability solution.

5.3.1 Compatibility

Regarding the compatibility that Cactus offers, it is first important to understand how Cactus can im-

plement interoperability solutions between different blockchains, this includes both permissioned and

permissionless blockchains. It is also relevant that interoperability between blockchains is an urgent

problem with the increasing number of different blockchain infrastructures being developed without an

existing standard.

Cactus relies on validators to perform transactions on multiple blockchains to facilitate interoperability

between those respective blockchains. These validators in turn require a connection to the respective

blockchain in order to submit transactions, this is where Cactus connectors come into play. As each

blockchain infrastructure implements a different consensus algorithm, Cactus requires a different con-

nector for each different blockchain infrastructure.

In our specific use cases, we are using connectors that Cactus already has developed, these being

connectors for Hyperledger Fabric and Ethereum. Cactus already has other connectors available such

as connectors for most Hyperledger Distributed Ledger technologies such as Hyperledger Besu and

Hyperledger Sawtooth with existing business logic plugins samples that show these connectors working.

In terms of compatibility the only development necessary to be done in Cactus is effectively the

connectors, and with the current number of different blockchain infrastructures available it is hard to

develop connectors for every existing one. However, Cactus should be able to support interoperability

between most existing blockchain technologies both permissioned and permissionless, as shown in

our use cases where we are using both with that being Hyperledger Fabric and Ethereum respectively.

Effectively, Cactus offers backward compatibility, by not requiring extra development to the blockchain
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technologies being used.

5.3.2 Flexibility

Concerning the flexibility of the solution, what we are trying to evaluate here is if the solution can be used

to implement a wide variety of use cases, in our case we explored 3 different scenarios each with its

own goal. This was done effectively by developing 3 different Business Logic Plugin (BLP), as explained

before the BLP is what allows the logic behind a specific interoperability use case to be implemented.

They define the transaction flow associated with the interoperability use case being explored, respective

to each blockchain infrastructure involved in the use case defined by the BLP.

As a consequence of requiring a BLP for each different use case, it means there will be development

associated with each new interoperability use case being implemented. Cactus unlike other interoper-

ability solutions requires that whoever is implementing a specific use case has knowledge regarding the

multiple applications involved.

This is required because when developing the business logic plugin you are effectively defining what

triggers a certain interoperability function, what transactions will the validator submit to each associated

distributed ledger depending on the function triggered, and in what order should those transactions be

processed. In order for this to be possible, you need to be familiar with the applications involved in the

interoperability solution, and Cactus.

The advantage that this provides is that by using Cactus as an interoperability solution you are not

required to develop your blockchain solution taking into account the possible interoperability use cases

it will require in the future. As all of the work regarding the necessary interoperability can be done when

using Cactus to implement those use cases by developing their respective BLP.

5.3.3 Implementation Complexity

With respect to complexity, we are not going to evaluate if the implementations steps themselves are

complex, we are instead going to evaluate the number of steps required to implement an interoperability

solution using Cactus in the different possible scenarios. It is hard to evaluate if the implementation steps

taken to achieve a certain solution are or not complex as that is subjective to whoever is implementing

them, and how familiar the framework is to them.

There are effectively 2 scenarios when it comes to using Cactus for implementing an interoperability

solution, something common in these scenarios is that you will always have to develop a BLP as that

is specific to each interoperability use case being implemented. In addition to this, your solution may

require the development of a new connector as Cactus does not have connectors available for all existing

blockchain infrastructures.
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In the worst-case scenario, a connector will have to be developed and tested before actually being

available to use in the interoperability solution being implemented. This can be simpler if the respective

blockchain infrastructure uses a similar consensus to current blockchain infrastructures supported by

Cactus which can be used as an example.

5.3.4 Discussion

Cactus can be used as an interoperability solution for a vast amount of different use cases as it doesn’t

require adaptation and development of the blockchain infrastructures associated with those use cases.

This is a problem with multiple interoperability solutions we address in Chapter 2 as they do not offer

backward-compatibility, taking into account that there is already a large number of different blockchain

infrastructures, requiring extra development for those for each interoperability use case they want to

support is not feasible. For Cactus to support a new blockchain infrastructure it only requires a one-time

development of a connector for that respective blockchain, and that development is on Cactus’s side.

One of the focuses of this thesis was to explore the interoperability between permissioned and per-

missionless blockchains, this is a common problem because the implementation of permissioned and

permissionless blockchains diverge in multiple points, which in turn hampers the development of in-

teroperability solutions using heterogeneous blockchains. The way Cactus provides interoperability is

by using an auxiliary network of Validators that respond to triggers and submit transactions on all of

the involved blockchains, them being permissioned or permissionless. So, validators effectively act as

participants in those networks, which solves the problem.

As mentioned, the biggest problem with providing blockchain interoperability is that there is an in-

creasing number of new blockchains being developed, and there is no existing standard that these

blockchains follow, both at the root of the blockchains that are being developed, as well as the applica-

tions which work on top of them.

If we take the 3 scenarios we implemented to show Cactus flexibility as an example, the main concern

is that you are required to have knowledge of all of the applications involved in the interoperability

use case being implemented, take our replication scenario as an example, you are required to know

which operation has the same result in all applications. Taking an example where multiple organizations

are going to develop new applications that will only require interoperability between each other, using

something like Cactus might not be the best solution, something like Cosmos or Polkadot which work

like an ecosystem where every application built on top of it is already able to interoperate between each

other might be a better solution.

The biggest advantage of using Cactus is that it presents itself as a adequate interoperability solution

for cases where your application requires interoperability with an already existing blockchain application.

In general Cactus provides a good solution for interoperability, but for very niche use cases, there might
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certainly be better solutions, such as the case mentioned previously where something like Cosmos or

Polkadot would work better, the example would be an enterprise ecosystem where you would require

interoperability between systems within the same organization.
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This dissertation presents a solution that aims to replace the current Bills of Exchange system which

resorts to paper support by a digital solution using the Hyperledger Fabric blockchain technology, these

solutions require to be able to interoperate with solutions implemented in other countries, that is where

we propose an interoperability solution using Hyperledger Cactus framework. The goal is to provide a

secure and trustworthy digital solution that still achieves the requirements the current system is capable

of achieving. As there is sensitive information being handled, this solution provides distribution of trust

while still depending on a centralized information system.

This thesis aims to provide a way to entice enterprises to look into blockchains as a better solution for

their projects, by providing a solution for the interoperability requirements that such projects require. This

can also show how day-to-day systems could take advantage of blockchain-based solutions to provide

a secure way to make these systems digital.

6.1 Contributions

In this thesis, we developed a proof of concept for a Bills of Exchange system using a blockchain solution

with the goal of working alongside the current paper-based bill of exchange solution in place in Portugal,

for this we used Hyperledger Fabric. We then used this solution to explore multiple interoperability use

cases, by implement 3 different business logic plugins for Hyperledger Cactus. During our evaluation

of our Bills of Exchange blockchain solution, we managed to achieve a peak of 113 bills of exchange

operations per second with an average latency of 0.15 seconds, using 16 clients which ends up being

a slightly more costly solution. By using a lower amount of clients such as 4 we achieve an average

bills of exchange operations per second of 16 to 20 with an average latency of 0.21 to 0.30 seconds. As

far as storage, since our solution uses a very simple implementation of the bills of exchange assets, we

can not provide a proper estimate of how this would impact the costs, but in general, we can conclude

that the storage costs will increase proportionally to the number of peers in the network. There is

a clear trade-off between decentralization and trust which such blockchain-based solutions offer, and

the performance and storage requirements that a traditional system provides. As mentioned by tuning

Fabrics configurations we could achieve better performance but the performance we achieved, according

to the available data, is enough to support the current use the bills of exchange system has.

Regarding the interoperability solution, we implemented 3 different scenarios based on our Bills of

Exchange blockchain solution to explore what Hyperledger Cactus can offer. This allowed us to explore

how flexible such a solution can be by implementing 3 use cases with different goals and different

implementation requirements, and we also explored how Cactus is able to provide compatibility with

already existing and to-exist blockchain solutions as that is a crucial focus point with interoperability

solutions. We concluded that Cactus can be used for a wide variety of use cases, and while for very
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niche use cases there are better solutions, Cactus is able to provide backward-compatibility by not

requiring for there to be extra development to already existing blockchain infrastructures as all the work

is done on Cactus side. This can be done as all the logic associated with the interoperability use case is

implemented as a Cactus plugin. Concerning the compatibility, as Cactus uses a network of validators to

issue transactions on all of the involved ledgers to achieve the required interoperability, which depends

on Cactus connectors. These connectors can be developed for each different blockchain technology

being used, this includes both permissioned and permissionless blockchains.

6.2 Future Work

The work done throughout this thesis shows that blockchain presents itself as a viable solution to com-

plement or improve upon systems that use traditional solutions. Blockchain-based solutions are already

being used in very diverse areas, apart from the most common one which is the financial sector with

cryptocurrencies, such as secure data storage, supply chain and logistics, voting systems, and internet

of things to name a few. The goal of this thesis is to further improve how organizations view blockchain

technology by providing ways around the interoperability problem that is becoming one of the most im-

portant problems when it comes to blockchain technology as there is no standard yet in place and the

number of new blockchain infrastructures is still increasing.

To further improve the existing interoperability solutions with Hyperledger Cactus, one of the main

focuses should be increasing the number of supported blockchain infrastructures, which is work that is

already being done and should be continued. Cactus as an interoperability solution highly depends on

this as more complex interoperability use cases will eventually require that a wider number of different

blockchain infrastructures interoperate. In the 3 scenarios explored in this thesis, we always explored

with only 2 different networks.

Additionally, the work done in this thesis, and the solution provided could be looked into as a base

for future systems in different areas where the decentralization of an information system could erase the

need to use a third-party system. Looking into governmental systems such as the segurança social,

instituto de mobilidade e transporte, serviço de estrangeiros e fronteiras and others which are systems

which in some cases require interoperability between them and where blockchain-based solutions could

help reduce the issues and delays associated with such systems by automatizing some of the processes

where interoperability is required.

By exploring and further improving interoperability solutions similar to the one we explored, we can

demonstrate how other areas which interact with each other at different levels could leverage blockchain

solutions for their own systems without compromising this dependency they have on other systems,

areas such as banking, education, healthcare, insurance, electronic identity, justice, and more.
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Apart from Hyperledger Cactus other solutions should also be explored such as Cosmos which

is a blockchain-focused on scalability and interoperability which aims to aggregate multiple different

blockchains. It presents itself as a great enterprise solution as it effectively provides an ecosystem

focused on interoperability. Cosmos subchains, which were explained before, are able to interoperate

with each other, these subchains could be used as different projects of the same organization or even

projects from different organizations which interact with each other, which could act as an ecosystem for

organizations.

75



76



Bibliography

[1] Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A., Enyeart, D., Ferris,

C., Laventman, G., Manevich, Y., et al. (2018). Hyperledger fabric: a distributed operating system for

permissioned blockchains. In Proceedings of the thirteenth EuroSys conference, pages 1–15.

[2] Belchior, R., Guerreiro, S., Vasconcelos, A., and Correia, M. (2021a). A Survey on Business Process

View Integration. Business Process Management Journal.

[3] Belchior, R., Putz, B., Pernul, G., Correia, M., Vasconcelos, A., and Guerreiro, S. (2020). SSIBAC

: Self-Sovereign Identity Based Access Control. In The 3rd International Workshop on Blockchain

Systems and Applications. IEEE.

[4] Belchior, R., Vasconcelos, A., Guerreiro, S., and Correia, M. (2021b). A survey on blockchain inter-

operability: Past, present, and future trends. ACM Computing Surveys (CSUR), 54(8):1–41.

[5] Buchman, E. (2016). Tendermint: Byzantine fault tolerance in the age of blockchains. PhD thesis.

[6] Buterin, V. and Griffith, V. (2017). Casper the friendly finality gadget. CoRR, abs/1710.09437.

[7] Cachin, C. et al. (2016). Architecture of the hyperledger blockchain fabric. In Workshop on distributed

cryptocurrencies and consensus ledgers, volume 310.

[8] Correia, M. (2019). From byzantine consensus to blockchain consensus. Essentials of Blockchain

Technology, 41.

[9] Dragomiretskiy, S. (2018). The influence of ddos attacks on cryptocurrency exchanges.

[10] Frauenthaler, P., Borkowski, M., and Schulte, S. (2019). A framework for blockchain interoperability

and runtime selection. arXiv preprint arXiv:1905.07014.

[11] Group, H. A. W. et al. (2017). Hyperledger architecture volume 1: Introduction to hyperledger

business blockchain design philosophy and consensus.

[12] Herlihy, M. (2018). Atomic cross-chain swaps. In Proceedings of the 2018 ACM symposium on

principles of distributed computing, pages 245–254.

77



[13] Hu, V. C., Kuhn, D. R., Ferraiolo, D. F., and Voas, J. (2015). Attribute-based access control. Com-

puter, 48(2):85–88.

[14] Jain, A. and Schilz, P. (2017). 2019. Block Collider Whitepaper. https://www.blockcollider.

org/whitepaper.

[15] Kwon, J. (2014). Tendermint: Consensus without mining. Draft v. 0.6, fall, 1(11).

[16] Kwon, J. and Buchman, E. (2019). Cosmos whitepaper: A network of distributed ledgers, 2019.

URL: https://cosmos.network/cosmos-whitepaper.pdf.

[17] Leach, P., Mealling, M., and Salz, R. (2005). A universally unique identifier (uuid) urn namespace.

[18] Lerner, S. D. (2015). Rsk.

[19] Liu, Z., Xiang, Y., Shi, J., Gao, P., Wang, H., Xiao, X., Wen, B., and Hu, Y.-C. (2019). Hyperservice:

Interoperability and programmability across heterogeneous blockchains. In Proceedings of the 2019

ACM SIGSAC Conference on Computer and Communications Security, pages 549–566.

[20] Mingxiao, D., Xiaofeng, M., Zhe, Z., Xiangwei, W., and Qijun, C. (2017). A review on consensus

algorithm of blockchain. In 2017 IEEE International Conference on Systems, Man, and Cybernetics

(SMC), pages 2567–2572. IEEE.

[21] Miraz, M. H. and Donald, D. C. (2019). Atomic cross-chain swaps: development, trajectory and

potential of non-monetary digital token swap facilities. Annals of Emerging Technologies in Computing

(AETiC) Vol, 3.

[22] Montgomery, H., Borne-Pons, H., Hamilton, J., Bowman, M., Somogyvari, P., Fujimoto, S.,

Takeuchi, T., Kuhrt, T., and Belchior, R. (2020). Hyperledger Cactus Whitepaper. Technical report,

Hyperledger Foundation.

[23] Nakamoto, S. (2019). Bitcoin: A peer-to-peer electronic cash system. Technical report, Manubot.

[24] Ponza, A., Scannapieco, S., Simone, A., and Tomazzoli, C. (2020). Envisioning the digital trans-

formation of financial documents: A blockchain-based bill of exchange. In International Congress on

Blockchain and Applications, pages 81–90. Springer.

[25] Poon, J. and Dryja, T. (2016). The bitcoin lightning network: Scalable off-chain instant payments.

[26] Qasse, I. A., Abu Talib, M., and Nasir, Q. (2019). Inter blockchain communication: A survey. In

Proceedings of the ArabWIC 6th Annual International Conference Research Track, pages 1–6.

[27] Qin, K. and Gervais, A. (2018). An overview of blockchain scalability, interoperability and sustain-

ability. Hochschule Luzern Imperial College London Liquidity Network.

78

https://www.blockcollider.org/whitepaper
https://www.blockcollider.org/whitepaper


[28] Salomaa, A. (2013). Public-key cryptography.

[29] Scheid, E., Rodrigues, B., and Stiller, B. (2019). Toward a policy-based blockchain agnostic frame-

work. In 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), pages

609–613. IEEE.

[30] Singh, A., Click, K., Parizi, R. M., Zhang, Q., Dehghantanha, A., and Choo, K.-K. R. (2020).

Sidechain technologies in blockchain networks: An examination and state-of-the-art review. Jour-

nal of Network and Computer Applications, 149:102471.

[31] Thomas, S. and Schwartz, E. (2015). A protocol for interledger payments. URL https://interledger.

org/interledger. pdf.

[32] Vo, H. T., Wang, Z., Karunamoorthy, D., Wagner, J., Abebe, E., and Mohania, M. (2018). Internet

of blockchains: techniques and challenges ahead. In 2018 IEEE International Conference on Internet

of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,

Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pages 1574–1581.

IEEE.
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