
Seamless ticketing SDK
Fábio Rafael Gaudino

Caetano Pereira Pimenta
Instituto Superior Técnico

October 2021

ABSTRACT
The current ticket technologies used in public transportation
revolve around smart cards. These smart cards are widely used
but have some inherent faults associated such as easily being
transferable between users, only being rechargeable in specific
physical locations, and being required to be printed, making
them not environmentally friendly. Hence, it is essential to
develop an alternative. With smartphones being more preva-
lent then ever, it seems fitting to extend their functionalities to
replace the usage of smart cards. In this dissertation, the Seam-
less SDK was developed alongside Card4B Systems, S.A.,
the Seamless SDK was designed to provide functionalities
such as trip management and ticket validation to applications
that integrate the SDK, using technologies like Bluetooth Low
Energy for tracking the user inside the transport, which is cru-
cial for the trip management, and QR code for acquiring the
necessary information for the validation. The Seamless SDK
was developed in a cross-platform framework to be integrated
into applications in the two main mobile platforms, iOS, and
Android.

Author Keywords
Public Transportation; Bluetooth Low Energy; QR code;
Cross-platform development; Trip management; Ticket
validation;

INTRODUCTION
Nowadays, technology is part of how society interacts with
the world, and public transportation is no exception. In Por-
tugal, most public transportation uses smart card technology
to validate a trip. A few examples of this application are the
Metro of Lisbon 1 and Vimeca 2, which operates many of the
buses and the metro in Lisbon.

Smart cards were the right solution for ticketing for several
years, but a more efficient solution is required in our day and
age. Smartphones are more prevalent than ever, making them
the ideal tool for ticketing since they can be used to validate
and purchase a ticket.

Many transportation companies invested in developing mo-
bile applications so that their users would be able to buy and
validate their tickets through their application. By creating
mobile applications with validation and ticketing mechanisms,
the user can timely plan their trip, buy the ticket with their pre-
ferred payment option, and hold the ticket in their smartphone,
ready to be validated.
1https://www.metrolisboa.pt/
2https://www.vimeca.pt/

This dissertation was developed alongside with the company
Card4B Systems, S.A. 3, having the main objective of creating
a Software Development Kit or SDK for short, that allows
transports applications to use it for ticket validation and trip
management in public transportation. This solution has the
goal of providing a set of tools to be integrated into mobile
transport applications. The SDK should facilitate the devel-
opment of these applications by giving access to ready to use
features needed in any ticketing system.

One of the key requirements for the development of this SDK,
was that the SDK had to be usable and easily integrated in
applications in both mobile platforms, Android and iOS. To
this end, this dissertation will also have a substantial amount
of research, analysis, and testing to cross-platforms capable of
developing a shared SDK for both mobile platforms.

Another requirement was that the SDK uses technologies such
as Bluetooth Low Energy, and QR code. This technologies are
built-in on most mobile devices and are widely used in most
transport applications.

With this technologies as foundations, the SDK will provide
ticket validation and trip management in the following way:

The validation mechanism will consist of scanning a QR code
present at the entrance of transport and gathering all the nec-
essary information to be able to forward this information to a
Card4B server to validate a ticket.

The other main functionality is a trip management module
capable of tracking the user within the transport grid by detect-
ing the Bluetooth Low Energy beacons inside the transport, as
well as terminating a trip whenever requested.

STATE OF ART

CROSS-PLATFORM APPLICATION DEVELOPMENT
When developing a mobile application, there are different
device platforms that you must build for, the more notice-
able ones being iOS and Android. Traditionally, applications
for each of these platforms must be constructed separately
since each operating system uses a different code language
not recognized by the others, this is called Native develop-
ment. Cross-Platform Development provides a way to build
an application using a common language, which can be run
on both platforms. There are two possible approaches to
Cross-Platform Development, which are Native and Hybrid
cross-platform development [2]. We will focus on the Native

3https://www.card4b.pt/index.html

https://www.metrolisboa.pt/
https://www.vimeca.pt/
https://www.card4b.pt/index.html


approach since Hybrid development is not suited for our so-
lution. In this approach, the development of the application
uses a framework with a common programming language and
translates this development to the different device platforms
with the use of Native API’s. This results in an application
that runs almost as fast as a Natively developed application
and has access to the same elements but is compatible with
both device platforms.

Frameworks

Cross-Platform App Development Frameworks are tools to
develop applications. It consists of a software library that pro-
vides a fundamental structure to support development. There
are many factors to consider when choosing a Cross-Platform
App Development Framework. These influence the develop-
ment and maintenance of the application. The factors that we
will take into account are programming language, platforms
supported, and longevity. We will also take into account the
specific SDK properties of our project. Before looking closer
into our factors, it is crucial to choose candidates frameworks
to analyze and select the more appropriate one for our project.
After close examination of many cross-platform frameworks,
four primary candidates were selected for final deliberation:
React Native 4, Flutter 5, Xamarin 6, Kotlin Multiplatform
Mobile 7. We will now look individually at our factors and
analyze each framework by them.

Programming language

In terms of programming language, our main criteria will be
time for accommodation to the language and support from the
framework community. React Native is created by Facebook
and uses JavaScript, which is the most used programming
language in the world at the current time [15]. Personally, I
have some experience with JavaScript, which will make the
time for accommodating the language much shorter. React
Native is also the most used framework worldwide. Being
the most used framework also makes for the most significant
community, which in return makes for more support from the
community. Flutter is a reasonably new framework developed
by Google that uses Dart programming language. Dart is a
C style language, making it easier to understand someone
with C style languages experience, as is the case. As Flutter,
Dart is also rather new to the community, making both have
smaller support than the pre-established frameworks. Xamarin
is a framework developed by Microsoft which uses the C#
language. The use of the C# makes for quick accommodation
since its syntax is based on C++ and has influences from
Java. Both of these were used in other projects by me. In
terms of support, Xamarin has been active since 2013 and
has created a respectful community in terms of numbers since
then. Although not as big as the React Native community,
both Xamarin and React Native allow for efficient use of the
community help [9].

4https://reactnative.dev/
5https://flutter.dev/
6https://dotnet.microsoft.com/apps/xamarin
7https://kotlinlang.org/docs/kmm-overview.html

Kotlin Multiplatform Mobile, or KMM for short, is a recent
and promising framework develop by JetBrains that is at the
moment still in Alpha, it uses the Kotlin programing language
that much like the C++ language, is greatly influenced by Java.
Kotlin is also one of the most used languages for native android
development and although KMM is very recent, the Kotlin
language was release in 2011, being a fairly well established
language. Due for how new KMM is, the community around
Kotlin Multiplatform Mobile is also very small.

Platforms Supported

In terms of platforms supported, the frameworks support at
current time the versions showed in following table 1 [8] [10]
[3] [7].

Framework iOS version
supported

Android version
supported

React Native iOS 10.0 or newer Android 4.1 (API 16)
or newer

Xamarin iOS 9.0 or newer Android 5.0 (API 21)
or newer

Flutter iOS 8.0 or newer Android 4.1 (API 16)
or newer

KMM iOS 7.0 or newer All versions

Table 1. Frameworks comparison

In both iOS [12] and Android [13], the four frameworks can be
used in more than 99 percent of devices, which means all four
give almost perfect compatibility with the mobile platforms.

Although not a differentiator factor, the version supported for
which platform is a critical requirement in any cross-platform
framework. The inability to support almost all the versions
used leads to many users not being able to use the SDK de-
veloped in this thesis, which in turn makes the selection of a
framework without this characteristic unsatisfactory.

Longevity

When analyzing the possible longevity of a framework, the two
main ways to assess it are the number of users and time since
launch. These two will give us some insight on the chance of
the framework being discontinued. React Native leads the way
in the number of users in 2020 and 2019 [11], maintaining a
substantial share of cross-platform developers and, as a result,
the number of applications developed. It was released in
March 2015, having time to mature as a framework, making
it the least likely to be discontinued in coming years. Flutter
has seen a rise in popularity in the last two years, especially in
2020, reaching a similar percentage to React Native. Flutter
was launched in May 2017, making it a relatively recent cross-
platform framework. Which could mean that the software did
not have enough time to fix some vital compatibility issues
[4].

Xamarin is the opposite case of Flutter. It was seen a downfall
in use and popularity in the last two years. Xamarin can
develop cross-platform applications since May 2014, making
it the oldest framework of the four [1].

https://reactnative.dev/
https://flutter.dev/
https://dotnet.microsoft.com/apps/xamarin
https://kotlinlang.org/docs/kmm-overview.html


Kotlin Multiplatform Mobile was a similar longevity to Flutter,
being released in November 2017. But contrary to Flutter, it
has a much lower usage percentage [14], making it the least
used framework of the four.

Selecting the Framework
The selection of the framework took into consideration the
above characteristics of the four analyzed frameworks. The
selected framework in the early phase of the project was React
Native due for the fact of excelling in all three of the criteria,
longevity, compatibility, and programming language. React
Native seemed the best option by far. This framework was
tested thoroughly to see if it had the capabilities to create
an SDK to be used in both Android and iOS systems. After
exhaustive tests and research, it was concluded that the sepa-
ration of the created SDK and the target application that uses
the SDK is not possible. All the outputs created with React
Native need to be executed with a React client. This makes
the integration with other native applications impossible. The
only possible way would be creating both the SDK and target
application in React Native, defeating the purpose of creating
an SDK that does not have integration capabilities with other
native applications.

This lead to the investigation of other alternatives, Flutter and
Xamarim were considered, but their capabilities and problems
were similar to that of React Native. Since this frameworks
could not create the separation needed of an SDK, the focus
of the research was switched to KMM. When researching the
capabilities of KMM, it was noticed that this was the only
framework that actually generates native binaries for the tar-
get mobile platform, this meant that in theory KMM could
generate a native SDK to which one of the mobile platform
while maintaining only one codebase and providing the nec-
essary separation of an SDK. It was at this point that Kotlin
Multiplatform Mobile was chosen.

Kotlin Multiplatform Mobile
As said before, Kotlin Multiplatform Mobile is a recent and
promising framework for cross-platform development released
in November 2017. KMM is still in alpha, meaning that its
development is growing rapidly but is not stabilized yet. Al-
though very new, KMM is based on the programming language
Kotlin, which was over a decade of existence and is widely
used as a more concise and secure language alternative to
Java in application development. KMM works by using the
multiplatform abilities of Kotlin and the features designed
for mobile development in which specif platform (iOS and
Android).

Kotlin Multiplatform Mobile is designed to help develop a
single codebase for persistence and business layers in Kotlin,
leaving the UI and some of the presentation layer for native
specific code. This makes KMM a perfect fit for our project
since our SDK functionalities are mainly focused on the per-
sistence and business layer.

Architecture of Kotlin Multiplatform Mobile
As said before, KMM is a tool that allows sharing a single
codebase of business logic and back-end operations with iOS

and Android applications, maintaining the freedom of writing
platform-specific code whenever is needed. As we can see
in Figure 1, the shared code will be used by both iOS and
Android applications while maintaining code specific in the
same layer of KMM but separated from shared code. This
architecture also maintains a layer between the KMM code
and the applications which is why KMM can be integrated
where other frameworks such as React Native could not.

Figure 1. KMM Architecture

To further clarify the architecture of Kotlin Multiplatform
Mobile, we will present the development environment and the
folder system used in the creation of our project, as showed in
Figure 2.

The Shared folder is subdivided into three folders commom-
Main, androidMain and iosMain. In the commonMain folder,
we can find abstract Kotlin code that does not use specif de-
pendencies from iOS nor android. This folder is where we
can find all of the business logic-related code. This folder is
where most of our work will be done. The androidMain and
iosMain folders fulfill the same purpose for their correspond-
ing platforms. Their purpose is to write platform-dependent
Kotlin code, such as manipulation of platform-specific objects.
This code can then be called from the commonMain folder
depending on which platform the shared code is running.

Figure 2. KMM folder system

ARCHITECTURE

SEAMLESS SDK
Seamless SDK is a software development kit that offers a
collection of functionalities that allows the development of
applications for the seamless usage of public transportation.
Our Seamless SDK assumes some pre-established physical
components in public transportation, which are the existence
of BLE beacons inside the transport capable of transmitting
information to the user device and an QR code in each entry
point of the transportation infrastructure.



SEAMLESS SDK DESIGN
We will now go into an overview of the Seamless SDK usage
and surrounding components. We start with the interaction
between the user and the application (a). As shown in the
Figure 3, the SDK is a component of the application, which
means that all interactions between the user and SDK will be
mediated by the application in the form of requests.

When the application requests some SDK functionality, the
Seamless SDK will communicate with the server/API (b) to
either get information, report some event, or store data. If
the user requests the start of a trip, the validation process will
be triggered d). The validation mechanism consists of using
the user smartphone camera to read a QR-code present at the
transport. The information retrieved will be used by the SDK
for validation.

During the trip, the Seamless SDK will actively listen to the
surrounding BLE beacons signal c) to know in which station
the user is present.

Figure 3. Seamless SDK design.

ARCHITECTURE LAYERS
The Seamless SDK architecture will be described based on
Figure 4 and three layers of abstraction to better understand the
architecture, them being the View, Presenter and Model layers.
These layers will contain the various modules and components
necessary for the proper behaviour of which level. These
layers are part of a standard architecture pattern called MVP.
The MVP architecture was chosen because of its modularity
and maintainability. Both of these are vital factors taking into
consideration the nature of our project.

Modularity is fundamental for the replacement and integration
of modules quickly, which is very common in an SDK to be
implemented in different applications. Maintainability is a
must-have in a project that implements Kotlin Multiplatform
since platform specif conditions can make the codebase con-
fusing. By implementing an architecture pattern that makes
the codebase more clean and maintainable counterbalances
this aspect of KMM.

View Layer
The View layer is responsible for interacting with the user,
as described in Figure 4, making it a fundamental part of our

Figure 4. Seamless SDK Architecture

Architecture. This layer is implemented via an interface in
the application where our Seamless SDK runs. It is on this
layer where the UI of the application is and where all of the
user’s requests originate. This request is then forwarded to the
presenter.

Presenter Layer
The Presenter layer is responsible for the communication be-
tween the View and the Model Layer, acting as the middleman.
In this layer, we can found our presentation module. This
module will act as an intermediary between the functionalities
of the SDK and the application’s requests. The application
will initialize the module in the View Layer and gain control
of the View’s data. Whenever a request is made to the SDK, it
is made through this module that will forward the request to
the Model layer. After the request is processed, the presenta-
tion module requests some UI alterations or responds to the
application if no changes are needed in the UI.

Model Business Layer
The second layer is the Model Business layer. This layer
is where most of the data manipulation, business rules and
technology specif usage are. In the Model Business layer,
we can find three modules, the BLE module, the validation
module, and the user module.

Starting with the BLE module, this module monitors the BLE
beacons around the user device. This monitoring has quite a
few usages and tasks associated with it. The first one is making
sure that a BLE device found makes part of the grid of the
public transportation devices that the application is inserted.
In that endeavour, the device’s ID is compared to the one the
SDK possesses of that particular station, asserting if the device
is valid. Monitoring the BLE devices also has the purpose of
maintaining a list of stations that the user passed on so that
the Seamless SDK can return a list of stations passed during a
user trip.



The second module is the validation module. This module
starts the camera of the user smartphone and scans the QR
code present at the transportation entrance for the necessary
information for the validation of the trip. This module also
makes some confirmations regarding the location of the QR
code with the help of the BLE module.

In the BLE and validation modules, there is a division of code
related to the usage of the KMM. This division is necessary
due to the fact that the technologies used on these modules are
platform-specif technologies, which means that each has to be
coded in their specif platform folder (iosMain or androidMain).
Although some code is written in their platform-specif folders,
the modules are created with a Kotlin shared base that manages
all of the data manipulation and requests from other parts of
the Seamless SDK and the module itself.

The third and final module is the user module. This module
works closely with the backend module, which we introduce in
the next layer. The primary responsibility of the user module is
manipulating the user data received from the back end module
to be handed to the presenter layer.

Model Persistence Layer
The last layer of SDK is the Model persistence layer. On
this layer is where we can found the SQLite module and the
Backend module.

The SQLite module is where we perform the operations of
storing and retrieving data from our local database. This
module uses SQLite local database, which is a database that is
located in the user smartphone.

The other module present in the persistence layer is the Back-
end module, where all the calls to the server are made. The
primary purpose of this module is to consume a REST API
of a list of users and their various information’s. This module
works as a proof of concept in order to see if it is possible
to create a shared module of a working HTTP client for both
mobile platforms.

IMPLEMENTATION

VIEW LAYER
Although there is no module implemented in the View Layer,
the Seamless SDK contains some interfaces to be implemented
in this layer for the correct interaction between the View and
Presenter Layer. These Interfaces have a set of functions for
the manipulation of the UI of the application. After imple-
menting these functions, they will be called from the Presenter
Layer when a modification is required.

PRESENTER LAYER
The presenter module is present in every other module that
interacts with the UI of the application. It is a class that is
implemented to which module to interact with the application
and requests the modification of the UI for which individual
module. For example, the BeaconListPresenter is a class that
is instantiated in the View layer and then given the view class
of the current activity of the application, making the Beacon-
ListPresenter able to change the current View through the
use of the functions implemented in the view layer described

above. So, in this case, the BeaconListPresenter can forward a
request from the user to the BLE module, receive a response
from the BLE module, that would be a list of the surrounding
BLE beacons, the presenter can then present it by calling the
function "showBLEDevices" implemented in the View Layer.

MODEL BUSINESS LAYER

BLE Module
The BLE module has the general purpose of monitoring the
BLE devices around the user device and confirms if they are
part of the grid of BLE devices of the transport. To this end, it
was implemented the android beacon library Altbeacon. With
this library, we can assess the beacons that come close to the
user device by maintaining a call to a function with a one-
second frequency to estimate new beacons in the range of the
user device. This library also allows setting which type of
beacon layout we want to identify in the search. In our case,
the Eddystone UID layout was chosen. A BLE device can take
different roles for different purposes. In our system, the roles
will be Broadcaster for the BLE devices found on the transport
infrastructure and Observer for the user’s smartphone. This
role pair implements unidirectional, connection-less commu-
nications, meaning that all communications are one-way, from
the Broadcaster to the Observer. This also means that a connec-
tion is not established between the devices. Our Broadcaster
will periodically send advertising packets with data, following
the Eddystone UID format.

Eddystone is a BLE profile that contains several frame types,
including the UID format. This format can be divided into two
parts, as described in Figure 5, the first part is the Prefix Data.
The prefix is present in every format to identify the frame as
Eddystone format and has a size of 11 Bytes. The UID frame
data has a total of 20 Bytes and is divided into three subsets of
data. The first 4 Bytes is where we can find the Frame type,
in this case, the UID, and the Ranging Data that gives us the
distance in meters between the Broadcaster and the Observer.
The other two subsets together are, as mention in section , the
universally unique identifier or UUID of the BLE device. As
mention before, the UUID is a 128-bit number or 16 Bytes
that uniquely identify a beacon. The UUID is composed of
two subsets of data: the Namespace with 10 Bytes and the
Instance with 6 Bytes. These two subsets will allow obtaining
various pieces of information about the transport.

Figure 5. Eddystone-UID Frame



Since both the Namespace and Instance are customizable, we
can place information about the location of which individual
beacon in these fields. The information deemed necessary
for the proper identification of each beacon is described in
Figure 6. Depending on the type of transport, more data may
be required. With that in mind, the 16 Bytes were not fully
used.

For now, the fields to be advertised in the UUID will be the
beacon id, the stop in which the beacon is, and the line id of
the stop.

Figure 6. UUID Fields

By scanning which beacon the user device passes, the BLE
module can collect information from these fields and create a
list of stops that the user passed by. This list will contain the
beacons found sequentially, and which beacon will have the
time it was found, creating a detailed route that the user used
during his trip.

This module is responsible for three of our functional require-
ments, them being FR1 manage the state of the trip being
performed, FR2 provides information about the transportation,
such as lines our routes, and FR3 yield information about
current BLE beacons in range.

Validation Module
The validation module is responsible for starting a trip and
gathering the necessary information for the validation of a
trip . This module uses the library codescanner. With this
library, the module is able to read the content of a QR-code.
The module starts when a user requests the start of a trip, this
request is sent to the validation module, and the module will
use the camera of the user device to initialize the scanning of
a QR-code. After the QR-code is scanned, the camera preview
will stop. The information present in the QR-code placed in
the transport will be a unique identifier for the QR-code and
the station identifier in which the QR-code is present. This
information will then be confirmed against the surrounding
BLE beacons with the help of the BLE module. If the nearest
beacon has the same station Id as the QR-code and the QR-
code identifier is part of the corresponding station, the trip
will be validated and proceed to the next step. The functional
requirement that the validation module is responsible for is
FR4 validation of a trip.

User Module
The user module was implemented to facilitate the processing
of the users data that originates from the backend module. This
processing is responsible for mapping the received data to a
usable data class and introduce the necessary attributes to the
presenter layer of this module. Since this module is composed
solely of business rules and data classes for the manipulation

of data, it is exclusively written in the commonMain folder,
making it a truly shared module.

MODEL PERSISTENCE LAYER

SQLite Module
This module is responsible for creating and managing our lo-
cal SQLite database. Its main functionalities are fetching and
storing all data that requires a certain level of persistence in
our local database. Our implementation relies on the SQLDe-
light library, which is the standard in our Kotlin Multiplatform
Mobile environment. It has a simple implementation, which
requires few lines of code in the platform-specific folders ios-
Main and androidMain. The SQLDelight library generates a
database class associated with our Schema, which is a collec-
tion of SQL objects such as tables and queries. The database
class can be used to create our local database and run the type-
safe functions generated by SQLDelight. These functions are
generated at runtime from the queries defined in our Schema
and can be used directly in Kotlin.

This local database main functionality is allowing to maintain a
persistent map of the transport grid, to be used in the validation
and BLE modules.

Backend Module
As specified in our architecture, the Backend module is re-
sponsible for communicating with an API and consuming a
list of users. This module uses ktor, which is a framework
for networking. With it, we can build asynchronous clients
and communicate with servers. This framework was selected,
much like SQLDelight, because it is the standard in the Kotlin
Multiplatform Mobile environment and is very well docu-
mented.

The implementation of a ktor HTTP client requires no code in
the platform specif folders, meaning that the module is fully
implemented in the commonMain folder. To communicate
with a server, we create our HttpClient class and configure
it with the JSON features necessary for our response body’s
proper serialization and parsing. After our HttpClient is cre-
ated and configured, we can make our GET request to the
server. In order to make this request, we first need to create a
coroutine, which is conceptually similar to a thread meaning
that it runs a block of code concurrently with the rest of the
code. By executing a coroutine, we can make asynchronous
calls, as is the case with our GET request. The result of our
GET request is a list of fifty users, which user is composed of
the following attributes: id, first name, last name, username,
email, profile picture URL and gender. These users are then
forwarded to the User module upon request. The API used is
a public API that generates a random set of users, and the size
of this set can be changed according to the URL provided in
the GET request.

DEPLOYMENT
Our deployment follows three significant steps, transforming
our KMM project to a library, compile the project into his
native binaries and integrating the output to a native demo
application.



The second and third steps differ depending on which type
of platform they are being targeted to. So with that in mind,
these steps will have two subcategories for Android and iOS,
respectively.

The first step was to transform our KMM project from a run-
ning module to a library. In order to do this, some alterations
were made to the build.gradle file, this file is the build con-
figuration script of our project. The alterations consisted of
changing the task of compiling and building our project from
an application to a library and adding some required depen-
dencies for the libraries used in our project.

Secondly, it was necessary to change the targets to which our
SDK was compiled to. This is one of the KMM functionalities
called Kotlin/Native, which compiles Kotlin code to native
binaries.

Android:

The second step is relatively straightforward in Android, in the
build.gradle file, we add in the library extension configurations
the API level of our system and the target API level we are
compiling. After doing this, we can build our project, creating
an AAR, which is a bundle usable in Android applications.
This output is our packaged SDK.

iOS:

In iOS, the second step involves a bit more effort. First and
foremost, we require an iOS system to create our binaries, so
the project must be transferred to a macOS, for example. After
transferring the project and adjusting the gradle JVM to the
project, in our case, we used the corretto 11.

After setting up these configurations, we need to specify to
which platform we are compiling our project too. We can se-
lect iOSX64, which is used for iOS simulators, and iOSArm64
used in physical iOS devices. In our case, we will compile for
both, and to each, we give a name to identify that particular
output. Finally, we run the build option, and our binaries are
created in the form of a framework. A framework is a hierar-
chical directory that encapsulates shared resources, as is the
case of our SDK. The framework folder will have the name
structured as follows "nameGiven".framework.

In our third and final step, we need to integrate our Seamless
SDK in our native application demo.

Android:

To add our AAR file to the demo application, we need to copy
our AAR file to the libraries folders of our demo application
and add the SDK as one of our dependencies. To use the
resources of our SDK in the application, all we need is to
sync our project and import the resource we want from the
Seamless SDK to the code in the application.

iOS:

The third step is quite simple in iOS as well. First, we need
to add our framework folder to the iOS project folder. After
adding the framework, we need to go to the xcodeproj file,
which is a file that contains all the information regarding the
location of the source code as well as the usage of libraries

and frameworks. In this file, in the frameworks and libraries
section, we need to add the folder of our framework. Doing
this will make our Seamless SDK usable by importing it into
the code.

With these steps, a successful deployment can be made of the
Seamless SDK to both Android and iOS applications.

EVALUATION

IOS LIMITATIONS
As mentioned above there are a few limitations regarding the
iOS mobile platform that arose during the development of
the BLE and validation modules. This limitations are caused
by the Kotlin Multiplatform mobile framework, as described
in section 3.3, KMM is a very recent framework making it
susceptible to some limitations to a more specific project like
our Seamless SDK. The limitations originate from our ios-
Main folder where we write native Kotlin code that is able
to run in the iOS environment, this is a really powerful tool
and works perfectly with the main libraries of iOS that have
been migrated and adapted within the KMM framework. The
problems start when we require a library outside the scope
of the libraries provided by KMM as is the case with both of
our modules. Many hours of research were made in order to
find possible solutions for the external library problem, two
possible solutions were found but due for their complexity
and for the time constraint of the dissertation, neither were
implemented. Nevertheless, the two solutions will be de-
scribed since the future of this project is directly correlated
with overcoming these limitations and a formal description of
our founded results will save time in future developments.

To use a external library in the Seamless SDK there are two
possible options:

• Writing native Kotlin code to call functions in Objective C
libraries.

• Creating a Kotlin function with a callback from Objective
C / Swift that originates from the target application.

Starting with the first one, we must first import the Objective
C library to our project, this in itself has a level of complexity
but Kotlin provides some documentation on the subject [5], it
is also important to note that only Objective C libraries can
be imported, meaning that it is not possible to use pure Swift
libraries in this solution. The next step is creating bindings for
the external library, this bindings work like a bridge between
the native Kotlin code and the Objective C library. Although
the bindings are written in native Kotlin they are represen-
tations of Objective C classes, meaning that writing these is
almost like learning a new programming language making it
a extremely complex and a time demanding process, there is
also some documentation regarding this subject [6]. After the
last step we can use the functionalities of the external library.

The second option consists of creating a separated native mod-
ule written in Swift or Objective C that uses the external li-
braries and importing this module to the target application.
The SDK will then communicate with this module via call-
backs using the target application as a middle ground between
the two. Although this solution is much simpler, it also has



drawbacks, the mains ones being that the SDK is not encap-
sulated in just a single fully operational output and that the
target applications needs to handle some integration between
the native module and the SDK.

DEMO APPLICATIONS
In order to test our Seamless SDK functionalities, we first
developed the Android application for two main reasons, them
being that android development is within my knowledge scope,
and the integration of the Seamless SDK with the android en-
vironment is more straight-forwarded. Initially, it was also
presumed that some limitations could appear in the iOS envi-
ronment, like the one described in section 15, which was also
a factor when deciding which mobile testing environment to
develop first.

Android Application
The Android application first screen displays two options, the
first one with a button with the text "Fetch Test Users" and
the second one, a button with the text "QR Code Validation"
The first button will go to another screen, where a list of users
is showed, which user is composed of is first and last name
and their email. In this screen, the test application calls the
user and backend modules. As described in section 12.2, the
backend module retrieves a list of users of a public server,
and the user module manipulates and delivers the users to the
View layer in a presentable fashion. On the other hand, if the
second button of the first screen is pressed, the application
will start the smartphone camera to validate a QR code, as
shown in Figure 7. This screen is where the validation module
is activated and tries to validate the QR code.

Figure 7. Demo android application QR code.

If the QR code is accepted, the application will go to the next
screen, also showed in Figure 8. In this screen, the application
initializes the BLE module and requests a list of nearby BLE
beacons that are then shown on the screen. Which beacon
presented on-screen displays it BeaconId, StopId and Station

Name. At the bottom of this screen, we can also see the trip
being performed. This trip has two buttons, the "?" and "X"
buttons. The "?" button provides extra information about the
trip. The "X" button will request the BLE module to stop the
trip on the last station added, specified in the extra information
about the trip.

Figure 8. Demo android application BLE list and Trip.

iOS Application
The iOS demo application only has one screen that is depicted
in Figure 9. The screen shows a list of the fifty generated users,
provided by the Seamless SDK backend and users modules.

Figure 9. Demo iOS application Users List.

Also in this screen, is where the application initializes and
retrieves data from the local database through the SQLite
module.



The two demo applications developed in this dissertation pro-
vided some results and insight about the Seamless SDK and
the cross-platform framework we used. The main result ex-
tracted is that it is possible to develop a shared codebase SDK
in KMM and distributed it to different applications, this result
is one of the primary goals of this dissertation.

SHARED CODE ANALYSIS
The use of Kotlin Multiplatform Mobile in the development of
the Seamless SDK brought some questions during the devel-
opment of how compatible the shared files would be with the
native applications and how much specific code would have to
be written in the androidMain and the iosMain folders. With
this in mind, it was performed a count of how many lines of
code were produced in which folder, in order to analyse the
usefulness of the Kotlin Multiplatform Mobile framework in
the development of the Seamless SDK and extrapolate this
results for similar projects.

Although lines of code are not the most reliable metric if we
require a correlation to time, since defining a proper conver-
sion between the two is practically impossible, comparing the
number of lines of code between two possible projects that
achieve the same result as some merit in identifying the effec-
tiveness and usefulness of a toll in the scope of cross platform
development.

The percentages extracted from the Seamless SDK are dis-
played in Figure 10, the number of lines for which category
was 917 for the shared folder (commomMain), 204 for the
android folder (androidMain), and 114 for the iOS folder (ios-
Main).

Figure 10. Pie Chart of Lines of Code.

It is important to note that due to limitations of the iOS referred
in section 15, the line count of the iOS folder may not fully
represent the complete Seamless SDK number of lines. But
taking as an example the android folder percentage, we can

Lines of
Code

Improvement
compared to

Seamless SDK

Improvement
Percentage

Seamless
SDK 1235 - -

Android
SDK 1121 114 +10,7%

iOS SDK 1031 204 +19,8%
Android

+ iOS SDK 2152 -917 -42,6%

Table 2. Comparison example of developing a SDK in KMM against
Native

presume that the iOS folder would follow the same trend of
percentages since the implemented components are mostly
comparable.

With the previous statement we can also assume that the shared
percentage would range between 65 to 70 percent. To better
comprehend this result, we will make a simple calculation to
estimate how many lines of code would have to be written
to create two Seamless SDK’s for their respective mobile
platforms and languages. For the Android SDK, the line count
would be the sum of the lines in the shared and android folder
to a total of 1121 lines. As for the iOS SDK the logic applied
would be the same, making the sum of the iOS folder and
the shared folder, for the total of 1031 lines. By adding both,
we get a total of 2152 compared to the original 1235 lines,
effectively writing more 917 lines of code or 42,6 percent
more lines in total, this example is represented in table 2. This
example demonstrates how useful the 74 percent of shared
code really can be in a project.

But not every project follows the exact proportions of business
rules to technology implementation as our Seamless SDK. By
analysing our Seamless SDK, it became apparent that the code
present in the iOS and android folders are implementations
related to the peripherals, such as the BLE and QR code,
almost exclusively. A project composed predominantly of
business rules, such as the user module, would have a much
higher percentage of shared code. A project consisting mainly
of peripherals implementations would have a much lower
shared code percentage.

This percentage of shared code also dramatically influences
the project’s maintainability since the higher the percentage
of shared code, the lower the likelihood is of a developer
maintaining two different implementations of a feature in the
iOS and Android folders.

CONCLUSION
The approach used nowadays for ticket validation in public
transports is largely based in smart card, most of the smart
cards shortcomings can be overcome by adopting new valida-
tion and ticketing mechanisms and applying them to smart-
phones. With this in mind, it was idealized the development
of an SDK that would be able to provide trip management and
ticket validation to Android and iOS applications.



This dissertation was developed alongside Card4B Systems,
S.A., and began with the research of the technologies that were
used in the development of our solution. The BLE technology
is a cornerstone technology for our SDK that provided a way
to track the smartphone inside the transport grid, to this end
we research the various communication mechanisms so we
could use this technology. One of fundamental goals of the
SDK is to be usable in Android and iOS applications and as
suggested by Card4B we started the research of cross-platform
development, the study of this topic was exhaustive since all
of our solution depended of these findings, it were analyzed
four different cross-platform frameworks, and after several
tests we selected the Kotlin Multiplatform Mobile framework.

The Seamless SDK is a software development kit that provides
seamless trip management and ticket validation functionalities
to transport applications that integrate it. The Seamless SDK
was designed taking into consideration the various possible
transport scenarios, making it flexible enough to be adapted
into different contexts. The SDK was architected into layers
comprised of different modules, which one with different re-
sponsibilities, the modularization of the architecture has the
goal of making the SDK easy to maintain and adapt. After im-
plementing the Seamless SDK, we reach a solution capable of
gathering all the information necessary for a ticket validation
through the scan of a QR code, track a user trip by scanning
the BLE beacons around the smartphone, manage a trip being
performed, communicate with an external server and storing
information in the local database. The next step was deploying
and integrating the Seamless SDK into different applications,
during this step we elaborated a procedure for future use.

To evaluate the Seamless SDK two demo applications were
developed, one in Android and another in iOS, these appli-
cations prove that is possible to integrate the Seamless SDK
into both mobile platforms as well as showing that the SDK
functionalities have the proper behaviour. This being said, we
also described some of limitations of the Seamless SDK in the
iOS platform that originate from the KMM framework. It was
also evaluated the usefulness of KMM in the development of
the Seamless SDK compared to native development.

To concluded, the results of the development of Seamless SDK
are positive, we successfully created a solution capable of be-
ing integrated in both mobile platforms while only having
one codebase and providing the basic functionalities for trip
management and ticket validation for an transport applica-
tion. Although not complete due for the limitations referenced
previously, it was suggested some possible solutions for this
shortcomings that will make the Seamless SDK much closer
to implementation in actively used transport applications.

REFERENCES
[1] Altexsoft. 2020. The Good and The Bad of Xamarin

Mobile Development. https://www.altexsoft.com/blog/
mobile/pros-and-cons-of-xamarin-vs-native/. (2020).
Online; accessed 26 December 2020.

[2] CLEARTECH. 2020. What is Cross Platform
Development? https://www.cleart.com/
what-is-cross-platform-development.html. (2020).
Online; accessed 21 December 2020.

[3] Flutter. 2020. What devices and OS versions does
Flutter run on? https://flutter.dev/docs/resources/faq.
(2020). Online; accessed 22 December 2020.

[4] Github. 2020. Flutter Issues.
https://github.com/flutter/flutter/issues. (2020).
Online; accessed 26 December 2020.

[5] Kotlin. 2021a. Add dependencies to KMM modules.
https://kotlinlang.org/docs/kmm-add-dependencies.

html#ios-dependencies. (2021). Online; accessed 27
September 2021.

[6] Kotlin. 2021b. Interoperability with C, Bindings. https:
//kotlinlang.org/docs/native-c-interop.html#bindings.
(2021). Online; accessed 27 September 2021.

[7] Kotlin. 2021c. Supported platforms. https://kotlinlang.
org/docs/kmm-overview.html#supported-platforms.
(2021). Online; accessed 14 September 2021.

[8] Microsoft. 2020. Xamarin.Forms supported platforms.
https://docs.microsoft.com/en-us/xamarin/get-started/

supported-platforms?tabs=windows. (2020). Online;
accessed 22 December 2020.

[9] Radixweb. 2020. Choosing the Best Cross Platform
Mobile App Development Framework. https://radixweb.
com/blog/cross-platform-app-development-frameworks.
(2020). Online; accessed 23 December 2020.

[10] React Native. 2020. Requirements. https:
//github.com/facebook/react-native#-requirements.
(2020). Online; accessed 22 December 2020.

[11] Statista. 2020a. Cross-platform mobile frameworks used
by software developers worldwide in 2019 and 2020.
https://www.statista.com/statistics/869224/

worldwide-software-developer-working-hours/. (2020).
Online; accessed 26 December 2020.

[12] Statista. 2020b. Mobile Android operating system
market share by version worldwide from January 2018
to January 2020. https://www.statista.com/statistics/
921152/mobile-android-version-share-worldwide/.
(2020). Online; accessed 23 December 2020.

[13] Statista. 2020c. Mobile Apple iOS operating system
market share by version worldwide from January 2018
to April 2020. https://www.statista.com/statistics/
1118925/mobile-apple-ios-version-share-worldwide/.
(2020). Online; accessed 23 December 2020.

[14] Statista. 2021a. Cross-platform mobile frameworks used
by software developers worldwide from 2019 to 2021.
https://www.statista.com/statistics/869224/

worldwide-software-developer-working-hours/. (2021).
Online; accessed 15 September 2021.

[15] Statista. 2021b. Most used programming languages
among developers worldwide, as of 2021.
https://www.statista.com/statistics/793628/

worldwide-developer-survey-most-used-languages/.
(2021). Online; accessed 12 September 2021.

https://www.altexsoft.com/blog/mobile/pros-and-cons-of-xamarin-vs-native/
https://www.altexsoft.com/blog/mobile/pros-and-cons-of-xamarin-vs-native/
https://www.cleart.com/what-is-cross-platform-development.html
https://www.cleart.com/what-is-cross-platform-development.html
https://flutter.dev/docs/resources/faq
https://github.com/flutter/flutter/issues
https://kotlinlang.org/docs/kmm-add-dependencies.html#ios-dependencies
https://kotlinlang.org/docs/kmm-add-dependencies.html#ios-dependencies
https://kotlinlang.org/docs/native-c-interop.html#bindings
https://kotlinlang.org/docs/native-c-interop.html#bindings
https://kotlinlang.org/docs/kmm-overview.html#supported-platforms
https://kotlinlang.org/docs/kmm-overview.html#supported-platforms
https://docs.microsoft.com/en-us/xamarin/get-started/supported-platforms?tabs=windows
https://docs.microsoft.com/en-us/xamarin/get-started/supported-platforms?tabs=windows
https://radixweb.com/blog/cross-platform-app-development-frameworks
https://radixweb.com/blog/cross-platform-app-development-frameworks
https://github.com/facebook/react-native#-requirements
https://github.com/facebook/react-native#-requirements
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/
https://www.statista.com/statistics/921152/mobile-android-version-share-worldwide/
https://www.statista.com/statistics/921152/mobile-android-version-share-worldwide/
https://www.statista.com/statistics/1118925/mobile-apple-ios-version-share-worldwide/
https://www.statista.com/statistics/1118925/mobile-apple-ios-version-share-worldwide/
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/
https://www.statista.com/statistics/869224/worldwide-software-developer-working-hours/
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/

	Introduction
	State of Art
	Cross-Platform Application Development 
	Frameworks
	Selecting the Framework
	Kotlin Multiplatform Mobile
	Architecture of Kotlin Multiplatform Mobile

	Architecture
	Seamless SDK
	Seamless SDK design
	Architecture Layers
	View Layer
	Presenter Layer
	Model Business Layer
	Model Persistence Layer

	Implementation
	View Layer
	Presenter Layer
	Model Business Layer
	BLE Module
	Validation Module
	User Module

	Model Persistence Layer
	SQLite Module
	Backend Module

	Deployment
	Evaluation
	iOS Limitations
	Demo Applications
	Android Application
	iOS Application

	Shared Code Analysis
	Conclusion
	References 

