
Critical Review of Reinforcement Learning Based
Adaptive Traffic Signal Control

Miguel Ângelo Mendes Coelho

Thesis to obtain the Master of Science Degree in

Computer Science and Engineering

Supervisor(s): Prof. Francisco António Chaves Saraiva de Melo
Prof. José Alberto Rodrigues Pereira Sardinha

Examination Committee

Chairperson: Prof. José Luís Brinquete Borbinha
Supervisor: Prof. Francisco António Chaves Saraiva de Melo

Member of the Committee: Prof. Rui Miguel Carrasqueiro Henriques

December 2021

Acknowledgments

I would like to express my sincere gratitude to my supervisors, Prof. Francisco Melo and Prof. Alberto

Sardinha, for all the knowledge and guidance they provided during the entirety of my thesis. They were

always available when I needed any sort of help and showed me the right path when I had any doubts.

This thesis wouldn’t be possible without the help of Pedro Santos, who built the work this thesis leans

on and provided me with help, specially during this thesis’ project.

I especially thank Guilherme Varela, who worked with me side-by-side during the entire duration of

the development of this thesis and helped me with is knowledge and previous works.

I thank my family for always being there throughout the development of my thesis and my life and

showing me love when I needed it the most. In particular, my parents, who helped me in every step and

provided the financial support that enabled me to take this degree.

I also thank the GAIPS lab managers for maintaining the machines where this thesis experiments

were executed.

Finally, I would like to thank my friends who kept me company during my academic journey, especially,

Daniel Teixeira, Francisco Lopes, Bernardo Esteves, Ricardo Silva and João Gonçalves.

Thank you all for your support.

iii

Resumo

O controlo de sinais tráfego adaptativo é uma tarefa de desempenho crı́tico em sistemas de transporte

inteligentes: Pelo uso de sensores avançados, os controladores podem responder a condições reais

de tráfego nas intersecções e produzir polı́ticas capazes de mitigar impedimentos de tráfego e evitar

engarrafamentos. Os sistemas multi-agentes baseados na aprendizagem por reforço (MARL) fornecem

uma estrutura natural para lidar com a tarefa. Em MARL, cada agente controla uma intersecção e pode

se coordenar com seus vizinhos para obter uma polı́tica óptima em toda a rede. No entanto, é ainda

uma tarefa difı́cil comparar abordagens, pois há muitas composições possı́veis. Esta tese faz uma

comparação crı́tica entre diferentes controladores de tráfego encontrados na literatura. Mostramos que

o uso de aproximadores não lineares, mecanismos de coordenação e aumento da observabilidade em

cada intersecção são os principais factores de desempenho.

Palavras-chave: Sistemas de transporte inteligentes, Aprendizagem por reforço, Aprendiza-

gem por reforço multi-agente, Aprendizagem de máquina

v

Abstract

Adaptive traffic signal control is a performance-critical task in intelligent transportation systems: Through

the use of advanced sensors, controllers can respond to actual traffic conditions at intersections and

produce policies capable of mitigating bottlenecks and preventing gridlocks. Reinforcement learning-

based multi-agent systems (MARL) provide a natural framework to address the task. In MARL, each

agent controls one intersection and can coordinate with its neighbors to attain an optimal network-

wide policy. However, it remains a daunting task to compare approaches as there are many possible

compositions. This thesis makes a critical comparison across different traffic controllers found in the

literature. We show that using non-linear approximators, coordination mechanisms and increasing the

observability at each intersection are key performance drivers.

Keywords: Intelligent transportation systems, Reinforcement learning, Multi-agent reinforce-

ment learning, Machine learning

vii

Contents

Acknowledgments . iii

Resumo . v

Abstract . vii

List of Tables . xiii

List of Figures . xv

1 Introduction 1

1.1 Contributions . 3

1.2 Thesis Outline . 3

2 Background 5

2.1 Traffic control . 5

2.1.1 Traffic terms definition . 5

2.1.2 Traffic control objectives . 6

2.2 Single-agent reinforcement Learning . 7

2.2.1 Q-function approximation . 8

2.2.2 Actor-critic . 9

2.2.3 DQN . 10

2.3 Multi-agent Reinforcement Learning . 10

2.3.1 Coordination mechanisms . 11

2.3.2 Parameter sharing . 12

3 Related Work 13

3.1 Fixed-timing methods . 13

3.2 Adaptive systems . 14

3.3 Reinforcement learning . 14

3.3.1 Modeling . 15

3.3.2 Classic reinforcement learning . 17

3.3.3 Multi-agent reinforcement learning . 18

4 Methodology 23

4.1 Simulation setup . 23

ix

4.1.1 Traffic simulator . 24

4.1.2 Road networks topology . 24

4.1.3 Traffic demands . 25

4.2 MDP formulation . 25

4.3 Reinforcement learning methods . 27

4.4 Training . 27

4.5 Evaluation . 28

4.5.1 Hyper-parameter tuning . 29

4.5.2 Performance analysis and comparison . 29

5 Experimental Setup 31

5.1 Simulation Setup . 31

5.1.1 Traffic Simulator . 31

5.1.2 Road networks topology . 32

5.1.3 Traffic demands and routes . 32

5.2 Training and Evaluation . 33

5.3 Reinforcement learning methods . 33

5.3.1 Actor-critic . 33

5.3.2 DQN . 33

5.3.3 MARLIN . 34

5.4 Baseline methods . 35

5.4.1 Random . 35

5.4.2 Static . 35

5.4.3 Webster . 35

5.4.4 Max-Pressure . 36

5.5 Software . 36

6 Results 37

6.1 Arterial network . 37

6.2 Grid network . 40

7 Conclusion 43

7.1 Future Work . 45

Bibliography 47

A Experiment Hyper-parameters 51

A.1 Training . 51

A.2 Evaluation . 52

A.3 Baseline specific . 52

A.4 RL specific . 53

x

B Complete experimental results 55

xi

List of Tables

6.1 Arterial network results. 37

6.2 Grid network results. 40

A.1 Complete training Parameters. 51

A.2 Complete evaluation Parameters. 52

A.3 Webster controller parameters. 52

A.4 Static controller parameters. 52

A.5 Max-pressure controller parameters. 52

A.6 DQN controller parameters. 53

A.7 MARLIN-Continuous controller parameters. 53

A.8 Actor-critic controller parameters. 54

A.9 Discrete MARLIN controller parameters. 54

B.1 Complete arterial network results. 55

B.2 Complete grid network results. 55

xiii

List of Figures

2.1 Traffic intersection. 6

2.2 Sutton interaction loop. 8

4.1 Proposed methodology. 23

4.2 CityFlow simulator screenshot. 24

4.3 MARLIN-Continuous average training reward and speed. 28

4.4 Travel time distribution and policy analysis. 29

5.1 Networks used in experiments. 32

6.1 Actions taken by Webster and Max-Pressure in the arterial network. 38

6.2 Travel time histogram for the MARLIN-Rounded and MARLIN-Continuous implementation. 39

6.3 Training actions and speeds of the MARLIN-TileCoding model. 41

xv

Chapter 1

Introduction

The most recent growth in population led to an increase in social and economic activities that then

resulted in a higher demand for transportation. The adoption of modern transportation systems allows

city planners to cope with this escalating demand from transportation users while preventing the ever-

increasing infrastructure expenses. The effectiveness of current transportation systems is crucial to

ensure short travel times of individuals and goods while also having minimal impact on the ecological

environment. This high transportation demand has outclassed the existing traffic infrastructures that are

now incapable of handling everyday traffic congestions. The present traffic infrastructure uses traffic

lights, signaling and transit planning to minimize these congestions, where traffic lights are the most

typical control mechanism.

One way of increasing the traffic capacity is to expand the current road infrastructure. This is normally

avoided due to its monetary cost, extensive time commitment and environmental constraints.

Another approach is to create Intelligent Transportation Systems (ITS). The overarching goal of Intelli-

gent Transportation Systems (ITS) is to reduce congestion and provide safety for transportation users [1].

Adaptive traffic signal control (ATSC) in ITS has been consistently studied for more than 60 years now,

starting from the Webster method [2]. The field benefits from developments in computation power, cloud

infrastructure, and enhanced sensor capacity [3]. It plays a pivotal role in alleviating bottlenecks at inter-

sections and mitigating traffic congestions. Traffic congestions have a detrimental effect on the economy

since they waste valuable public and private resources, lower living standards for the population, and

harm the environment through increased emission of pollution [4].

Classic traffic signal control systems such as the Webster [2] method have three main limitations:

They use manual labor for data collection, historical data to design signal plans, and make some as-

sumptions, such as , the traffic patterns will hold until the next re-calibration. In contrast, adaptive traffic

signal controllers can react to instantaneous traffic conditions using sensors, without manual input or

any traffic assumption. For instance, the Max-Pressure [5] controller selects the phase with the maxi-

mum difference between vehicles in the incoming approaches and vehicles in the outgoing approaches

(pressure). This controller performs a rule-based local optimization, but it does not consider past traffic

patterns or optimize for network-wide traffic.

1

Another approach to developing ATSC systems is to combine machine learning algorithms into avail-

able traffic data sensors. The advantage is threefold: The system incorporates historic traffic patterns

and reacts, taking the best long-term action into account. The system can adapt automatically to new

traffic patterns as they emerge, i.e., online learning. And can optimize for plans for more than one

intersection [6].

Reinforcement learning (RL) is a machine learning paradigm, usually modeled by Markov decision

processes (MDP) [7]. MDPs describe sequential decision-making problems where an agent interacts

with an environment. The agent observes the environmental state, makes a decision based on its policy

and acts. In response, the environment transitions to another state and emits a reward signal based on

the relative improvement of the system. The agent’s objective is to search for a policy, the mapping from

state to actions, that maximizes the average cumulative reward over many rounds of interactions with

the environment.

The flexibility of the MDP framework comes with a drawback; there are many different ways to ex-

press a reinforcement learning agent system. The length of the queue can represent the environment’s

state [8], or the volume [9] in the incoming lanes, by the pressure on the intersection [5], among others.

Similarly, many approaches to the action scheme, reward design, and learning algorithm are beyond the

current work’s scope. Wei, et al. [10] provides a comprehensive survey on all the state formulations and

action schemes used in the literature.

A multi-agent reinforcement learning (MARL) system is a group of autonomous, interacting entities

sharing an environment, which they perceive with sensors and act with actuators. MARL provides an

alternative to a centralized system controlled by a single agent, when achieving centralized control might

be either costly or non-viable. In the particular case of reinforcement learning-based adaptive traffic

signal control (RLATSC), centralized control entails controlling hundreds or thousands of intersections,

leading to a high computation cost due to the scale of the state and action spaces. Besides, the potential

benefits from MARL include, according to [11]: Computational speed-up due to parallel processing.

Enhanced robustness as there is the possibility of neighbor agents assuming the task of a malfunctioning

agent. More effective policies due to the use of coordination mechanisms, allowing to maximize a

common goal without having a centralized system. As MARL provides a way to decompose a task, the

system can handle larger problem sets by adding more agents and scale quickly. Finally, learning agents

benefit from decreased learning cycles due to communication and information sharing.

The straightforward way to approach MARL is building many independent learners (ILs) who learn

oblivious to their neighbors. But, the dynamics of the environment may become unstable, i.e., causing

the non-stationary effect. Agents cannot differentiate environment changes that are caused by their ac-

tions, by other agents’ actions, or even intrinsic changes from the environment itself. This phenomenon

can prevent learning from happening altogether since the policy of an agent changes as their neighbors’

policy changes. In RLATSC, coordination strategies allow increasing road network sizes while mitigating

the non-stationarity effect.

As with the single-agent case, there are many ways to define multi-agent systems, including not

only the MDP formulation but also other factors, such as, the type of discretization used, if coordination

2

methods are applied and how much information is given to each system during training and execution.

Unless the many works in the literature are compared along the same axes, researchers are left unable

to assess the aspects that make multi-agent reinforcement learning systems work.

Thus rises the main question of this work: How do different methods of discretization, coordination

and observability affect traffic controllers when run on a homogeneous simulation environment?

1.1 Contributions

The major contributions of the current work are to create a stable environment and defined problem

formulation to compare different traffic control strategies.

Specifically, this work aims to:

• Prepare the simulator that will be used to train and evaluate the traffic controllers and create a set

of realistic scenarios for them to be tested on. In particular, a 1x3 arterial network and a 3x2 grid

network.

• Create an effective Markov Decision Problem (MDP) formulation that allows for a meaningful com-

parison between the different traffic control methods.

• Develop baseline traffic controllers that will be used to compare with the other reinforcement

learning-based controllers, in particular: a random controller, a fixed-time controller, a Webster

controller and a Max-pressure controller.

• Develop reinforcement learning-based traffic controllers, in particular: an Actor-Critic (ACAT) model

that uses tile coding [9], a Deep Q-Network (DQN) model [12] and three different implementations

of the MARLIN algorithm [8], based on Fictitious Play.

• Analyse how different methods of discretization, coordination and observability affect the baseline

and reinforcement learning-based traffic controllers, using a set of evaluations metrics to access

the performance of each controller in each of these 3 axis.

1.2 Thesis Outline

The next chapter covers some traffic light control terms and objectives as well as single and multi-agent

reinforcement learning theory that will be relevant for this thesis. Chapter 3 explores the different ap-

proaches that have been used to solve this problem, namely, fixed timing and RL based controllers.

Chapter 4 details the methodology used to set up the simulator, the MDP formulation used, what traffic

controllers were implemented and how these were trained, tuned and tested. Chapter 5 defines the con-

crete implementation and parameters of each algorithm used as well as simulation specific information.

Chapter 6 compiles and analyses some of the results obtained in this work, and finally, Chapter 7 recaps

the problem and solution presented in this work and explores possible avenues for future research.

3

Chapter 2

Background

This Section covers some traffic control concepts that will be used in latter chapters, followed by the

background on single-agent reinforcement learning that is modeled as a Markov Decision Process. It

also presents an extension of this model for multi-agent systems which will be relevant for the multi-agent

RL traffic controllers presented in this work.

2.1 Traffic control

In this Section, some traffic light control terms and objectives are defined. Mostly adapted from Wei, et

al. [10].

2.1.1 Traffic terms definition

A traffic network can be represented by a graph where junctions are the nodes and roads are the edges,

where each road contains a certain amount of lanes. An intersection is a type of junction where two

roads intersect and where traffic light controllers are usually placed. The edges of a road that meet

the intersection are labeled approaches and can be defined as incoming, when they lead traffic into the

intersection, or outgoing, if the traffic in that lane is leaving the intersection. Figure 2.1 represents a

traffic intersection with two incoming and two outgoing north-south approaches, each with two lanes,

and two incoming and two outgoing east-west approaches, each with three lanes.

A traffic movement consists of vehicles moving from an incoming approach to an outgoing approach.

These are usually defined as right-turn, through, left-turn or combinations of the previous three.

A movement signal is defined as a traffic movement that is allowed by the traffic controller. Figure

2.1 shows three valid movement signals, right-turn/through, through and left-turn. For example, in the

left-turn movement, vehicles can only go to the outgoing south approach.

A phase defines a combination of non-conflicting traffic movements—those that do not result in ve-

hicle collisions. The three movements represented in figure 2.1 are a valid phase.

A signal plan is a sequence of phases and their respective duration, or equivalently, their start time.

The time that takes to cycle through every phase in a signal plan is defined as cycle length.

5

Figure 2.1: A traffic intersection with labeled terminology.

2.1.2 Traffic control objectives

The ultimate objective in a traffic network is to make vehicle movement more efficient and safe. Safety is

mostly insured though phases with valid movements. Efficiency is usually quantified by different metrics,

such as:

• Travel time: The average travel time of all vehicles in the network. In other words, the average time

since each vehicle entered and exited the network.

• Vehicle Speed: The speed of the vehicles on a given phase, usually normalized by the speed limit

of the respective lane.

• Number of stops: The average number of stops for all vehicles in the network.

• Throughput: The number of vehicles that traverse one or more intersections in a certain period of

time, for example, in the last phase.

• Cumulative Delay: The sum of the times a vehicle as been stopped in any intersection.

• Queue Length: The sum of the number of waiting vehicles in a phase or set of lanes.

Thus, the objective is to minimize one or more of the previous metrics. The most important and most

used metric is the travel time since it is strongly related to congestion, has the same meaning in all

transportation modes and even those not familiar with traffic control terms can comprehend the concept.

To evaluate the traffic controllers developed in this work, the travel time and speed of vehicles will be

used. A more detailed explanation of this evaluation is done in Section 4.5.

6

2.2 Single-agent reinforcement Learning

As mentioned in the previous chapter, the reinforcement learning problem, introduced by [7] can be

described as a Markov decision process (MDP). An MDP is a sequential decision making model, where

an agent iteratively observes the environment, decides on an action to take and analyzes the reward for

the selected action.

We can formally define a MDP with the tuple (S,A,P,R, γ),:

• S = {s1, ..., sn} is the finite set of environmental states.

• A = {A(s), s ∈ S} where A(s) is the finite set of all possible actions in the state s.

• P : S × A × S → [0, 1] is a stochastic transition probability function, where P(s, a, s′) defines the

probability of moving to state s′ after choosing action a in state s.

• R : S × A → R is the reward function, where R(s, a) defines the expected reward the agent will

receive after choosing action a in state s.

• γ ∈ [0, 1] is the discount factor, that represents how much future rewards are valued when com-

pared to present rewards.

At each time step, t, the agent observes the current state of the environment st ∈ S, and chooses

an action at ∈ A(st). This action causes a change in the environment state, defined by the transition

probability function:

P(s′|s, a) = P [st+1 = s′ | st = s, at = a] . (2.1)

Upon executing an action at in state st, the agent receives a reward with expectation given by R(s, a).

The goal of the agent is to select its actions so as to maximize the expected total discounted reward

(TDR):

TDR = E

[∞∑
t=0

γtRt

]
. (2.2)

The long-term value of an action a in a state s is captured by the optimal Q-value Q∗(s, a), which can

be computed using, for example, the Q-learning algorithm [13]. The Q-learning algorithm estimates the

optimal Q-values as the agent interacts with the environment. Given a transition (s, a, r, s′) experienced

by the agent, Q-learning performs the update:

Q̂(s, a)← Q̂(s, a) + α
(
r + γ max

a′∈A
Q̂(s′, a′)− Q̂(s, a)

)
, (2.3)

where α is a step size. Upon computing Q∗, the agent can act optimally by selecting, in each state s,

7

the optimal action given by the policy: π∗(s) = arg maxaQ
∗(s, a). This policy that maps each state s to

the corresponding optimal action a is known as the optimal policy for the MDP.

Figure 2.2: The interaction loop between the environment and the agent [7].

2.2.1 Q-function approximation

For large real-world problems, where the state and actions can be continuous, building a real-valued

function that summarizes the long-term goodness of an action into a single number can be infeasible

due to the scale of these state and action spaces.

One way to build reinforcement learning models in these complex environments is by using function

approximation methods, these allow the models to scale by sacrificing representation power.

A function approximation can be defined as a feature map that transforms a discrete or continuous

input into a smaller, usually discrete, output. For example, a feature map φ(s) can associate a state

s ∈ S to some meaningful features. In the present domain, these features can be captured from the

traffic sensors, including, delay, number of vehicles, queue, or pressure. Since discrete and non-linear

Q-function approximation carry slightly different notations, they are presented separately.

Discrete approximation

For discrete, tabular methods, such as Q-learning, using a naive state space may lead to having a large

combination state space that impedes the agent’s ability to learn. For instance, in an intersection with

D = 4 incoming lanes, each with capacity for twenty vehicles, the Q-learning algorithm must account

for 204 = 160, 000 combinations. However, using a poor discretization method can result to losing the

model’s generalization, the ability of the model to perform well on unseen data.

It is possible to define a Q-function approximator Φ(~x) : ND → Nd, d ≤ D and range(Φ(~x)) <

range(~x), such as, tile coding [7]. Tile coding generalizes the state space into partitions called tilings.

Each tiling is composed of a set of non-overlapping tiles that are slightly offset in the state space.

Using the previous example with 4 lanes, applying tile coding with 5 tiles reduces the state space to

54 = 625 combinations.

Non-linear approximation

For non-linear Q-function approximation, an effective way to reduce the complexity of the system is to

use artificial neural networks. Let Q(s, a; θ) be Q-function with an artificial neural network as function

8

approximator with parameters θ. Suppose ~x ∈ {0, 1, · · · , 40}2 are the number of vehicles in the horizontal

and vertical lanes in the incoming approaches of the intersection on Fig. 2.1. Then θ = {W1,~b1,W2,~b2}

where W1 ∈ R2×u, b1 ∈ Ru, W2 ∈ Ru×2, b2 ∈ R2 fully defines a feed-forward neural network [14] with

some activation function and a certain number of actions as output. The forward pass is given with:

First layer propagation

~h = σ(W1~x+ ~b1)

Second layer propagation

~z = W2
~h+ ~b2

Softmax activation

(~q)i =
ezi∑
zj
ezj

,

where the first layer propagation also includes an activation function σ and (~q)i denotes the i-th

component of vector ~q. The output action can be recovered by performing an a = arg maxi (~q)i. This

creates a non-linear function approximator that can scale to large, continuous state spaces.

2.2.2 Actor-critic

An Actor-critic algorithm has two modules: A critic that estimates the action-value function Q(s, a) or

the state-value function V (s), following a given policy π, while starting from state s. This function is a

measure of how good a policy is on the long run. The actor’s role is to select an action a, given the state

s. Every time step, after the actor selects an action, the environment transitions to a new state and the

critic evaluates the quality of the action using the temporal difference (TD) error:

TD = δt+1 = rt+1 + γV (st+1)− V (st), 0 ≤ γ ≤ 1. (2.4)

Since past states also affect the TD error, eligibility traces can be added to the actor-critic algorithm

so that the error of previous time steps can be weighted in the value function updates, while only requiring

a single trace vector:

V (s) = V (s) + αδt+1et+1(s), s ∈ S

et+1(s) =

γλet(s) if s 6= st

γλet(s) + 1 if s = st

0 ≤ γ, λ ≤ 1.
(2.5)

After the actor selects an action, the values of state-action pairs are updated:

P (s, a) = P (s, a) + βδt+1et+1(s, a), s ∈ S, a ∈ A, (2.6)

where β is the actor’s learning rate.

9

2.2.3 DQN

Deep Q-network [12] is a well known RL method that approximates the Q-values with a neural network

Q̂(s, a; θ), where θ denotes the parameters of the model. At each step, the agent adds a transition

(s, a, r, s′) to a replay memory buffer, from which batches of transitions are sampled in order to optimize

the parameters of the model such that the following loss in minimized:

L(θ) =

(
r + γ max

a′∈A
Q̂(s′, a′; θ−)− Q̂(s, a; θ)

)2

. (2.7)

The gradient of the loss is back-propagated only into the behaviour network, Q̂(s, a; θ), which is used

to select actions. The term θ− represents the parameters of the target network, a periodic copy of

the behaviour network. This algorithm has been popularized due to its impressive performance when

playing Atari games [12].

2.3 Multi-agent Reinforcement Learning

In Adaptive Traffic Signal Control, the MDP formulation needs to be extended for a multi-agent setting,

where agents do not have access to the global environment state. This extension is called a Decentral-

ized MDP (DecMDP) [15].

For a system with N agents, its DecMDP can be described with the tuple:

(S, (A(n))Nn=1, (Z(n))Nn=1),P, (O(n))Nn=1,R, γ),

where:

• S is the state space for the entire system.

• A(n) is the action space for agent n. Where A denotes the action space for the whole system:

A = A1 × · · · × An · · · × AN .

An element of a ∈ A is called a joint action and corresponds to the tuple a = (a1, . . . , aN), an ∈ An.

• Z(n) is the observation space for agent n.

• P are the transition probabilities that describe the environment dynamics:

P(s′|s, a) = P [St+1 = s′|St = s, at = a] . (2.8)

• O(n) are the observation probabilities for agent n, describing the sensing process for that agent:

O(z(n)|s) = P
[
Z

(n)
t = z(n)|St = s

]
. (2.9)

10

• R is the expected reward function:

R(s, a) = E [rt+1|st = s, at = a] . (2.10)

• γ is the discount factor.

A policy for an agent n is a mapping π(n) : z(n) → ∆(A(n)) of the observation space of agent n to the

distribution over the actions of that agent. A joint policy is a mapping π : Z → ∆(A) that can be seen as

a tuple π = (π(1), π(2), . . . , π(N)). This policy maps the agents’ observations z ∈ Z to a distribution over

the joint actions A. The goal of the agents is to compute a policy π that maximizes:

J = E

[∞∑
t=0

γtrt+1|at ∼ π(zt)

]
. (2.11)

2.3.1 Coordination mechanisms

Since the actions of one agent can affect other agents in nearby intersections, having isolated self-

interested agents that only try to maximize the gain in their own intersection may lead to better local

performance for some agents but worse global performance when dealing with large networks. Thus,

some form of collaboration or information sharing between agents is necessary.

Coordination can be achieved by simply adding information about other intersections to the state

space. However, this can lead to an exponential growth that increases with the number of intersections

and is unfeasible in larger networks. Coordination can also be achieved with Coordination graphs [16],

that focus on the network topology and limit the agents’ interaction with its neighbors. Other coordination

methods where agents reason and represent about the other agents’ beliefs exist, mostly extending the

field of Game Theory. The most relevant coordination method for this work is Fictitious Play.

Fictitious Play

In the field of Game Theory, Fictitious Play is a learning rule where each player presumes that the

opponents are playing stationary strategies and, every round, all players best respond to the empirical

frequency of play of their opponents.

This can be applied in a collaborative RL-based setting, where each agent plays a game with all its

adjacent agents. During learning, the states and actions of each agent are shared with its neighbours so

they can build an estimation of the other agent’s policies. This estimation of policies is called a model.

Specifically, during training, each agent i builds a model that estimates the policy for each of its

neighbours, j ∈ NBi:

Mi,j([si, sj], aj) =
V ([si, sj], aj)∑

aj∈Aj
V ([si, sj], aj)

, (2.12)

11

where Q-values are updated by the following rule:

brki = maxai∈Ai

[∑
aj∈Aj

Qk
i,j([si, sj], [ai, aj])×Mi,j([si, sj], aj)

]

Qk
i,j([si, sj], [ai, aj]) = (1− α)Qk−1

i,j ([si, sj], [ai, aj]) + α[rki + γbrki].

(2.13)

During execution, each agent selects their actions using the estimated models of its neighbours:

ak+1
i = arg max

ai∈Ai

[∑
j∈1,2,...,|NBi|

∑
aj∈Aj

Qk
i,j([si, sj], [ai, aj])×Mi,j([si, sj], aj)

]
. (2.14)

This algorithm maintains an explicit coordination mechanism while addressing the curse of dimen-

sionality for large-scale problems (such as large-scale traffic networks) by exploiting the principle of

locality of interaction [17] since agents only build an estimate of the neighboring agents, and Modular

Q-Learning [18] where the state space is partitioned into partial state spaces that consist of two agents.

Hence, the size of this partial space is always |S|2, independently of the number of agents that are

learning, allowing for a scalabe coordinated MARL system.

2.3.2 Parameter sharing

Coordination and performance gains can also be achieved by sharing sensations, sharing experiences,

sharing policies.

Formally, agents share sensations when they either have immediate access to its neighbors’ obser-

vations or that a message being relayed by the neighbors is a representation of their current observation.

Sharing experiences, extends the previous concept by sharing the tuple (znt , a
n
t , z

n
t+1), that now contains

information about the action taken and how the environment reacted to that agent.

Sharing policies is the act of periodically having agents combining the policies, for example, in Deep

Reinforcement Learning (DRL) this is achieved by using common neural network parameters for the

policies of different agents or by performing model pooling, an averaging of the weights of many agents.

These methods form a technique called parameter sharing, that allows agents to learn at a faster

rate with a fewer number of total experiences.

12

Chapter 3

Related Work

Traffic signal controllers have evolved over the years to better respond to the growing traffic flow by

making use of the technological advancements in computation and the increasing data collected from

sensors. This Section explores previous approaches that also tried to solve traffic control problems.

3.1 Fixed-timing methods

Traffic signal controllers with fixed timings normally define different cycle profiles and alternate between

them depending on the time of day on an attempt to deal with the different traffic flows that are usually

observed.

Some of these methods are defined by mathematical models that use derivative calculus, linear

programming, and other optimization algorithms:

• Webster [2] is a closed form method that calculates the phase split ratio, using a fixed cycle length,

that minimizes the travel time for a single intersection, assuming the traffic flow is uniform during a

certain time period. This approach does not consider timing offsets for nearby traffic signals which

can degrade the efficiency of transportation when considering a more complex environment.

• GreenWave [19] is a method that implements coordination by optimizing the timing offsets of

nearby intersections to minimize the number of stops for vehicles moving in a certain direction.

• Maxband [20] also optimizes timing offsets by minimizing stops but now considers a two-way en-

vironment. It uses linear programming to achieve the maximal bandwidth in both ways for a set of

arterials.

Other methods use traffic simulators to build the traffic model. For example, Rouphail, et al. [21]

applied a genetic algorithm (GA) using the CORSIM simulator to minimize link delay and queue time in

a 9 intersection network but the results were limited by the slow convergence of the GA algorithm.

13

3.2 Adaptive systems

Later traffic controllers started using models that used sensor data to optimize different traffic metrics to

better adapt to the changes in traffic flow:

• Max-pressure [5] aims to balance the queue length of neighboring intersections. The pressure of

a phase is defined as the difference between the queue length of incoming and outgoing lanes. It

is shown that Max-pressure maximizes the throughput of the system if the pressure of the phases

is minimized.

• SCATS (Sydney Co-Ordinated Adaptive Traffic System) [22] iteratively selects the next signal plan,

from a set of pre-defined plans, depending on the current traffic conditions and a pre-defined

performance measure. The model infers the performance of all plans before each cycle and then

selects the plan that has better performance.

• Tubaishat, et al. [23] use a wireless sensor network to create a decentralized system that improves

the localized flow and coordination between neighbor traffic lights.

• RHODES [24] is a hierarchical system that predicts the traffic load on each link and allocates

phase time according to the predictions.

• Liu, et al. [25] developed a controller that identifies upstream and downstream vehicles, in intervals

of 15 minutes, to measure their delay and then choosing a signal timing plan that minimizes it.

• Tan, et al. [26] developed a traffic controller that senses the number of incoming vehicles and uses

fuzzy logic to determine the green time of a single intersection.

• Lee, et al. [27] also used a fuzzy logic controller but in multiple intersections. The controller takes

decisions based on vehicle data of adjacent junctions.

These systems generally outperform fixed-timing controllers but were tested in very simple scenarios

with a single intersection or with very restricted traffic assumptions, like uniform traffic flow and cannot

adapt well to real world city-level traffic.

3.3 Reinforcement learning

Earlier models were limited by simplistic simulations and lack of computation power, but with the latest

technological growths, highly complex simulators emerged and a became popular tool to develop traffic

control models.

Recently, reinforcement learning has become popular to build traffic signal controllers, since an agent

can learn traffic control policies by interacting with the environment, without having a pre-defined model

of the system.

14

The reinforcement learning framework fits naturally into the traffic light controller problem since we

can define the traffic controller as the agent, the traffic data as the state representation and the phase

controls as the agent’s actions.

Different learning models have been explored to build traffic signal controllers. However, it is hard

to compare the proposed solutions and results since the problem definition varies greatly between the

literature.

This Section provides an overview of the literature that adopted a reinforcement learning approach

to solve the traffic control problem. Section 3.3.1 explores the MDP definitions used in the literature,

namely, the most used states, actions and rewards. Section 3.3.2 explores the classic, single-agent

models used in the literature and Section 3.3.3 extends the previous model to allow for multi-agent

settings.

3.3.1 Modeling

Based on the MDP framework defined in Section 2.2, the most used representations for the states S,

actions A, and rewards R in the literature are described in this section.

In the context of the traffic control problem, the environment is the network of roadways that approach

the intersections and the vehicles that traverse these roadways. Since the traffic problem has a complex

and stochastic environment, most works rely on simulators that accommodate the RL framework. Even

though in these simulators the environment is fully observable, using all of the data available might prove

difficult when trying to apply the model to the real world.

State representation

Most works use state representations that are derived from data that real sensors would capture in a

typical urban roadway. The definition of the environment state in the literature is a combination of one or

more of the following parameters:

• Cumulative Delay: The sum of the times a vehicle as been stopped in any intersection.

• Phase: The information about the current phase. For example, the index of the current phase can

be used in systems that have pre-defined phases or the time passed since the signal turned red

to prevent a red signal from being active too long, promoting fairness between other lanes.

• Queue length: The total number of waiting vehicles in a certain lane or a set of lanes. In some

works, the number of approaching vehicles is also considered for this metric.

• Volume: The total number of vehicles, moving or not, in a certain lane or a set of lanes.

• Vehicle position: The position of each vehicle in the network, usually implemented with a boolean

matrix, where each cell represents a portion of of the network and a value of 1 represents that a

vehicle is in that location at a certain time.

15

• Vehicle Speed: The speed of the vehicles on a given phase, usually normalized by the speed limit

of the respective lane.

• Saturation: The ratio between the current traffic flow and the maximum traffic flow in an intersec-

tion.

These state definitions can be simpler or more complex depending on the number and complexity of

the metrics used. A more complex state representation is built in hopes to better represent reality, but

may lead to very big state spaces that can hinder the training performance, without actually boosting the

effectiveness of the model. It should be noted that some of these values are harder to obtain than others.

For example, vehicle speed and position might be difficult to accurately obtain from sensors positioned

in the roadway.

Action representation

In the traffic control problem, the set of actions, A, is the set of phase controls of the traffic controller.

The phase control actions that are available to the controller depend on the assumptions of the model

used. Specifically, if the controller needs to select phases from a pre-defined set of valid phases or can

choose them freely; if it needs to follow the order of a pre-defined phase plan or it learns the best order;

if the phase cycle time is fixed or variable.

Examples of actions used in the literature are:

• Phase duration: The agent chooses the current phase duration, following a pre-defined phase

plan.

• Phase ratio: Given a fixed cycle time, the agent defines the phase split ratio, usually taken from a

set of pre-defined split ratios.

• Keep or change phase: At every decision point, the agent decides to either extend the current

phase or change to next phase, following a pre-defined phase plan.

• Choose next phase: The agent decides what is the next phase, from a set of pre-defined phases.

This way the agent builds the phase plan, without explicitly following a cycle.

Reward representation

Regarding the reward function R, in the traffic control problem the objective is, ultimately, to minimize

the travel time of all vehicles in the network. However, this metric can be hard to obtain for every vehicle

since most times the vehicle destination is unknown.

Other metrics that can be more easily measured after each action is taken, in the hope that minimiz-

ing them also minimizes the travel time of all vehicles.

Some of the metrics used in the literature are the following:

• Cumulative Delay: The cumulative delay (as defined in the state representation) of all vehicles in

a set of lanes or phase.

16

• Queue length: The total number of waiting vehicles in a certain lane or a set of lanes.

• Volume: The total number of vehicles, moving or not, in a certain lane.

• Vehicle Speed: The speed of the vehicles on a given phase, usually normalized by the speed limit

of the respective lane.

• Throughput: The number of vehicles that traverse one or more intersections in a period of time, for

example, in the last phase.

The reward function can be defined as a weighted sum of one or more of the previous metrics, this

approach can be tricky since small changes in each weight can greatly impact the results of the model

and there is no straightforward way of tuning these weights. Thus, the weights are generally tuned

empirically or a single metric is used.

3.3.2 Classic reinforcement learning

The first distinction in the different reinforcement learning methods is if the transition probability function,

P, needs to be learned or not.

In model-based methods the agent learns a transition model that estimates the probability of moving

between states given the possible actions and then computes the rewards of each transition. Then,

using methods based on dynamic programming, it estimates the value function and makes decisions

based on this estimation.

While model-based methods need to learn P and R, model-free methods bypass this step and learn

the value function or policy by interacting with the environment and observing the rewards directly.

In the context of the traffic control problem, learning the transition probability function means model-

ing the environment, such that metrics like vehicle speed, position and acceleration can be predicted.

Wiering [28] used a model-based approach in a multi-agent model that operates in a 6 intersection

network where each intersection is controlled by an agent. Each controller receives the discretized posi-

tion and destination of each car in the approaching lanes, leading to 278 possible traffic situations. Even

though the defined RL-controllers outperform more simple controllers, like fixed time and Longest Queue

First (LQF)1, this model assumes that each car can communicate with each traffic light controller, which

is currently unfeasible. The network is also simplified since every street has the same number of lanes,

resulting in an unrealistic homogeneous traffic pattern. The author also mentions the possibility of hav-

ing smarter driving policies that avoid congested intersections, assuming the previous communication is

made possible.

The previous work was extended in [29] by adding the direction of each car to the state and tested on

a bigger network with 36 roads and 15 intersections. The RL controllers outperformed fixed controllers

and co-learning between cars and traffic lights minimized waiting time by 50%.

1A policy that sets green phases to approaches with the longest queue first.

17

Some works [28, 30, 31, 32] have tried model-based approaches but most of the research community

adopts model-free methods since it is difficult to fully model P, given the natural unpredictable behavior

of human drivers.

Most works using model-free methods rely on algorithms like Q-learning and SARSA to learn a op-

timal traffic control policy. Thorpe at al. [33] created a model-free system using SARSA and compared

the performance of 3 different state representations, namely, the volume and the presence of absence

of vehicles in each section of the network, by dividing each lane in equal and unequal distance sec-

tions. The RL model outperformed fixed time and greatest volume controllers, independently of the

state representation used, and the state with unequal distance sections outperformed the other 2 state

representations.

Zhou, et al. [34] compared a SARSA model with a fixed time approach. The authors used the

saturation ratio between current and maximum flow and vehicle speed, both normalized in 7 discrete

values for a total of 49 states. The SARSA model had almost half travel time when compared to an

offline model when the traffic flow was low but had negligible difference in high traffic flow.

El-tantawy, et al. [35] compared different learning methods, state, action and reward representations

and action selection methods. For a single intersection, an approach based on TD(λ) with eligibil-

ity traces outperformed Q-learning and SARSA. RL-controllers generally outperformed pre-timed con-

trollers regardless of the state representation. When the arrival rate is uniform, the best approach was

to follow a pre-defined phase plan but when the arrival rate varies, letting the controller choose the order

and duration of each phase showed better results. For action selection mechanisms during learning, a

mix of ε-greedy and softmax had better online performance and faster convergence when compared to

both ε-greedy and softmax alone.

Touhbi, et al. [36] extended the network used by El-tantawy. et al. [35] with different traffic volumes

and a modified state definition, and compared different reward functions. For low traffic flow, the re-

ward definition is irrelevant for the controller performance. For high traffic flow a reward based on the

cumulative delay outperformed rewards based on queue length and throughput.

Earlier reinforcement learning based controllers are applied to a single intersection since the state

space grows exponentially with the number of intersections that are controlled. Given that single inter-

section models are oversimplified and cannot extrapolate to city level traffic, other works tried to apply

reinforcement learning to multiple traffic junctions by building multi-agent models.

3.3.3 Multi-agent reinforcement learning

In a multi-agent setting, each agent controls one intersection in a traffic network with several intersec-

tions. This way, the explosion of the state space is minimized by making each agent operate on a small

partition of the environment. In a non-collaborative approach, each agent tries to maximize a certain re-

ward, such as queue length or cumulative delay, of its own intersection by using the state that represents

that intersection. These are usually called Independent learners (ILs).

18

Independent Learners

Early systems comprised of independent learners (ILs) and few intersections. These perform better in

smaller intersections, but with time, researchers were able to adapt ILs to larger road networks.

Camponogara, et al. [37] created a multi-agent system based on Q-learning and modeled it as a

distributed stochastic game. The authors applied the system in a simple network with 2 connected

intersections and compared it with a random and Longest Queue First policy. The proposed multi-

agent model had significant performance gains over the other two policies. However, the agents did not

collaborate and the proposed scenario was very simplistic.

Aslani, et al. [9] uses a well-known reinforcement learning model, actor-critic, and a classical discrete

function approximation method, tile coding [7] to control 50 junctions in downtown Tehran.

Mnih, et al. [12] introduce the deep Q-network (DQN) in the domain of Atari learning environment

(ALE). The approach is characterized by the use of deep artificial neural networks [14], to estimate the

Q-function, and the use of a running replay buffer to store experiences, defined by tuples (s, a, r, s′),

that serve as input to the neural network. DQN is soon adapted for the task of ATSC controlling one

junction [38], outperforming common baselines.

Chu, et al. [39] verify that ILs using DQN under perform a greedy algorithm that selects the phase with

the largest number of cars. The DQN-ILs also under perform the much simpler Q-learning counterparts

for a 25 junctions road network. The results seem to suggest that there is a trade off between size and

performance.

Collaborative Learners

Since the actions of one agent can affect other agents in nearby intersections, having isolated self-

interested agents that only try to maximize the gain in their own intersection may lead to better local

performance for some agents but worse global performance, specially when dealing with large networks.

Thus, some form of collaboration or information sharing between agents is used to attempt to maximize

this global performance.

The naive approach would be to simply add information about all other intersections to the state

space. This leads to an exponential growth that increases with the number of intersections and is unfea-

sible in larger networks. Thus, the main challenge in the multi-agent setting is to implement coordination

and information sharing between the agents while maintaining a state-space with manageable size.

There are two types of collaborative MARL systems that are relevant for this work: Joint action learn-

ers (JALs), that explicitly build a model for coordinating agents’ actions, and agents that communicate.

Coordination graphs are a form of JAL and have been applied on reinforcement learning-based

adaptive traffic signal control.

Kuyer, et al. [40] use the Green Light District (GLD) simulator to design a vehicle-based model like

the model-based approach created by Wiering [28]. The system achieved coordination by using Max-

Plus, a coordination graph algorithm. The model was compared to the original Wiering model and to the

extension made by Steingröver [41] that adds a congestion bit to the state space. The devised model

19

outperformed the others in both small (3 to 4 intersections) and big (15 intersections) networks.

Van der Pol [42] applied a deep learning approach to single and multi-agent settings. The learning

agent uses a Deep Q-Network (DQN) algorithm with a binary matrix as input that represents if a vehicle

is present in a certain location or not. For a single intersection network, the DQN agent had better

stability and performance when compared to a baseline agent using linear approximation. The author

then applied the architecture made to play Atari games [12] in the traffic control problem, namely, batch

normalization, prioritized experience replay and double Q-learning. The performance and stability of

each method was tested. Apart from batch normalization, all methods had an improvement in stability

and performance. A fine-tuned DQN agent was then created from the previous experiments and used in

a multi-agent scenario in increasingly complex networks, applying the Max-Plus algorithm with transfer

learning, a method where the local joint function between agents is learned in a smaller problem, a 2x1

intersection network, and is then used as initialization for the local joint function for harder problems (a

3x1 and 2x2 network grids). The DQN agent with transfer learning had better performance than the

vehicle-based approach introduced by Wiering [28] and the Kuyer’s extension [40] that used the base

Max-Plus algorithm in Wiering’s model.

Another joint action learning approach is using a variant of fictitious play where an agent selects its

action according to the estimates their opponents’ reaction to its state. Aiming to reach a steady-state

condition, or an equilibrium where no agent has an incentive to deviate.

El-tantawy et al. [8] introduces a variant of fictitious play where agents observe the state of the envi-

ronment, each picks an action, and receives a local reward. The reward is based on reducing the delay

on the intersection and is known only to the intersection. Instead of communicating the following action,

each agent stores a model from their neighboring agents’ action. By counting the relative frequency that

a particular neighbour has picked an action, the agents can update their action model. The method uses

tabular Q-learning and was shown to control traffic in downtown Toronto, composed of 59 intersections.

Finally, some agents train communication messages end-to-end, follow a learning to communicate

paradigm [43].

In Wei [44], the agents communicate representations of the neighbors’ traffic state. Those repre-

sentations are estimated using a special DQN to learn data flows in graphs. Agents exchange repre-

sentations and ultimately share the parameters learned that compose the policy via parameter sharing

(weight averaging from multiple learned policies).

Zheng [45] proposes FRAP, a DQN that can learn phase representations that accommodate many

types of intersections by using parameter sharing.

Steingröver, et al. [41] extended the model-based system proposed by Wiering [28] by introducing

communication between agents by adding a bit to the state representation that represents the traffic

congestion in nearby intersections and by using this congestion information when estimating the optimal

action.

This model was also extended by Iša, et al. [46] by adding another bit to the state space that rep-

resents if a following lane is obstructed or not. The main problem in the previous approaches is the

exponential increase in state-space. For example, the space of the model of Iša, et al. [46], that adds

20

bits for congestion and obstruction is four times larger than the original model proposed Wiering [28].

Collaborative multi-agent systems are a way to handle the curse of dimensionality when consid-

ering complex traffic networks and are shown to outperform fixed-timing, single RL agents and non-

collaborative multi-agent RL models. However, most works rely on either directly adding information

about other agents to the state representation, which usually leads to a state-space explosion, or take

advantage of coordination graph approaches, like the Max-plus algorithm, that exploits the space locality

of the agents. The actual effectiveness of these coordination methods is hard to grasp since each work

defines a different set of state-action representations and testing scenarios.

This work is inspired on [47, 48] where comparisons are made between traffic controllers with a

fixed MDP formulation. To ensure fairness, a methodology inspired by Varela [49] is used for building

experiments and making evaluations.

21

Chapter 4

Methodology

Following a rigorous methodology is essential in making experiments reproducible and the results com-

parable. The methodology used is slightly adapted from Varela [49], a methodology for Reinforcement

Learning based Adaptive Traffic Signal Control for multiple coordinating agents. Whereas the original

methodology for independent learners consisted of four steps, in this work, step number two is expanded

into two distinct parts: MDP formulation and RL method. The five steps are as follows: the simulation

setup, the MDP formulation, the RL method, training and evaluation (Fig. 4.1).

Figure 4.1: Diagram illustrating the proposed methodology, composed of five stages. Solid arrows
denote the main development flow, whereas dashed arrows denote the iterative process of model tuning.

Since the Markov decision process (MDP) defines the optimization problem, any meaningful compar-

ison between Reinforcement Learning methods, must be have the same base MDP. Moreover, the MDP

formulation has a decisive impact on the performance of the reinforcement learning models, as it can be

demonstrated by holding the learning algorithms fixed and changing the base MDP formulation [50, 51].

In this work, a base MDP is fixed and several baselines and RL-based methods are compared, to test

distinct function approximators, coordination methods and observation scopes.

4.1 Simulation setup

The first step of the proposed methodology is the simulation setup. This consists on the choice of traffic

simulator used, where the agents will train in a realistic simulation and attempt to learn effective traffic

control policies, the topology of the networks used in said simulator, taken from the city of Lisbon and

finally, defining traffic demands.

23

4.1.1 Traffic simulator

In contrast to traffic macro-simulators, that simulate traffic flow as a whole, traffic micro-simulators like

Paramics [52], SUMO [53], AIMSUN1 and CityFlow 2[54] generate vehicle dynamics, i.e., each vehicle

property, such as position, speed, acceleration, route and emission rates are simulated for each vehicle.

These have been used to evaluate current traffic controllers and prototype new ones. In the reinforce-

ment learning context, they can be used to model the environment where the agent learns the traffic

policy.

This work uses the CityFlow2 micro-simulator [54] since it is open-source, simple to use and more

efficient than other widely used simulators like SUMO [53].

Figure 4.2: CityFlow simulator screenshot.

4.1.2 Road networks topology

Networks can be either synthetic or extracted from real world locations. Available open source ser-

vices, such as OPENSTREETMAP [55], allow segments of cities’ districts to be exported and, during the

simulation setup step, such information can be prepared and fed to the simulator, thus opening up the

possibility of simulating a rich set of networks relevant to real-world traffic signal control.

In this work, all networks use geospatial data from OPENSTREEMAPS to build the configuration files

to be used by the simulator. The following steps are required: (i) Extract the region of interest from

OPENSTREETMAP and open the resulting file with the JOSM3 editor, an extensible editor for OPEN-

STREETMAP files, in order to fine-tune the network; (ii) Convert the edited OPENSTREETMAP file into a

SUMO network format using the netconvert4 tool; (iii) Open the resulting SUMO network file with the

1http://www.AIMSUN.com, Transporting Simulation Systems (TSS).
2https://cityflow-project.github.io
3https://josm.openstreetmap.de/
4https://sumo.dlr.de/docs/netconvert.html

24

http://www.AIMSUN.com
https://cityflow-project.github.io
https://josm.openstreetmap.de/
https://sumo.dlr.de/docs/netconvert.html

netedit5 tool, a graphical network editor for SUMO, in order to ensure that all intersections are properly

setup; (iv) Convert the sumo network file to a CityFlow compatible network file using the converter tool

provided by CityFlow.

4.1.3 Traffic demands

In the domain of ATSC, the traffic demands that are simulated can be either derived from real-world data

or synthetically made.

Real-world data allows for the creation of realistic traffic demands that match real observations,

shortening the gap between the simulator and the real-world, where the implemented traffic controllers

are to be deployed at some point. However, this complicates the setup process due to the fact that this

data needs to be validated before being used and is usually network specific. This data can also be hard

to obtain, noisy or even unavailable. As such, data-driven traffic demands are outside of the scope of

this work.

For all experiments in this work, a constant synthetic traffic demand is used.

4.2 MDP formulation

An MDP consists of a state feature, a reward signal, an action schema and an observation scope. Like

defined in Section 2.3, in MARL, a group of collaborating agents is defined by a DecMDP that accounts

for the lack of observability and interactions between agents.

The DecMPD is defined by the tuple:

(S, (A(n))Nn=1, (Z(n))Nn=1),P, (O(n))Nn=1,R, γ). (4.1)

• State space S: s ∈ S is the state at time t, consisting of features of the incoming approaches of

an intersection. In this work, it is described by a feature map φ(s) composed of an internal state

and the data on its incoming approaches:

φ(s) = (xg, xt, x0, . . . , xp, . . . xP−1).

The internal state is defined by the index of the current green phase, xg ∈ {0, 1, . . . , P − 1}, where

P is the number of phases, and the time since this phase has been active, xt ∈ {10, 20, . . . , 90}.

The feature xp on the incoming approaches of any given agent n at phase p is defined by the

cumulative delay:

xp =
∑
v∈Vp

e−5(v/v
∗
p), (4.2)

5https://sumo.dlr.de/docs/netedit.html

25

https://sumo.dlr.de/docs/netedit.html

where vp are the velocities of the vehicles in the incoming approaches of phase p for the agent and

v∗p is the speed limit for phase p. If every vehicle travels at the speed limit for the phase, or there

aren’t any cars in the phase then there is no delay. As a vehicle travels slower than the speed

limit than delay becomes positive until it hits full stop (v = 0) and its delay becomes its maximum,

1. This choice was heavily influenced by the research done by Pedro [48], where several state

features are compared. This definition of cumulative delay has three main benefits: (i) It packs

the information of the number of cars and their velocities in one single number, having a reduced

state space when compared to other features; (ii) It doesn’t involve any assumptions w.r.t how slow

does a vehicle need to be to be considered stopped; (iii) Finally, the negative exponential helps to

balance situations where there are dominating influx in one phase.

• Action space A: At time t, each agent n must take an action ant ∈ An = {0, 1}. The action space

is homogeneous and binary where 0 means to keep the current phase active for the next decision

step and 1 means to switch to the next phase. The action schema has the following constraints:

– 5 seconds of yellow time,

– 5 seconds of minimum green time,

– 85 seconds of maximum green time,

– Agents decide every 10 seconds.

Hence, the signal plans are cyclical with variable cycle length from a minimum of 20 seconds and

a maximum of 180 seconds for the two existing phases.

• Observation space Z: Each agent n can observe only a partition of the state z(n)t –
⋃N

n z
(n)
t = st.

z
(n)
t is totally defined by the agent’s internal state and the data on its incoming approaches. The

feature space for agent n becomes φ((z(n))Nn=1).

• Reward R: The reward collected by an agent for selecting action a at state s is given by:

R(a, s) = −
P∑

p=0

xp, (4.3)

where p is the phase indicator, xp is the cumulative delay feature at phase p of agent n. The reward

is actually a penalty where each agent seeks to minimize the delay on the incoming approaches.

• Transition probability P: In RLATSC its usual to set P = ∅, meaning that the transition proba-

bilities are not explicitly estimated by the reinforcement learning algorithm. We must use model-

free [7] reinforcement learning methods, in which the agents learn only by interacting with the

environment.

• Observation probability O: Following the same logic, O = ∅.

• Discount factor γ: The discount factor 0 < γ ≤ 1 helps to shape the optimization problem, by

leaning the agents’ actions towards either minimizing the penalty on the short or long term. When

26

γ → 0 the agent acts myopically, conversely if γ = 1 then the agent is indifferent in relation to

instantaneous rewards and future rewards. In this work, γ = 0.98 is used.

The choices made in this MDP formulation were driven by previous research by P. Santos, et al. [51].

For a more detailed survey on the different MDP formulations used in the literature, refer to Wei [10].

4.3 Reinforcement learning methods

The Reinforcement learning methods consist in learning algorithms with different function approximation

methods, coordination methods and observability scopes.

In this work, the coordination between agents is accomplished by using the original MARLIN algo-

rithm, defined by El-tantawy et al. [8] for the ATSC domain and several variations of it.

It is worth noting that: (i) The original MARLIN algorithm receives a discrete state space, thus,

the state defined in the previous MDP formulation needs to be discretized. (ii) In this algorithm, each

intersection needs to share their states and actions during training and their states during the execution.

The concrete discretization methods used along with other algorithm specific implementations are

further explained in Chapter 5.

Specifically, five learning algorithms were trained and tested:

• A group of independent learners using an Actor-Critic model.

• A group of independent learners using a DQN model.

• A group of collaborative agents using MARLIN without function approximation.

• A group of collaborative agents using MARLIN with function approximation.

• A group of collaborative agents using a continuous MARLIN model.

A few baseline models will also be implemented to compare against the RL-based methods. Specifi-

cally, a random controller, a fixed time controller, a Webster controller and a Max-pressure controller will

be implemented. The concrete implementation of these baseline models is also defined in Chapter 5.

4.4 Training

During training, several simulation and algorithm specific procedures depend on random number genera-

tors. Simply changing the random seed of said generators can cause statistically significant differences

in the performance of the implemented traffic controllers. Because of this variance, to obtain perfor-

mance results that reflect how the traffic controller truly performs, multiple independent training runs are

seeded for every experiment and the results are then averaged for each controller. This random seeding

also makes every experiment fully replicable.

Since the learning methods have exploration and exploitation phases, during the simulation, a grid-

lock can happen in the network, preventing the vehicles to move through the road network. This can

27

happen more often during the agent’s exploration phase, where actions are selected randomly. When

a gridlock happens, the agents stop learning and the simulation essentially halts. To avoid gridlocks,

the reinforcement learning task is made episodic. The simulator is reset after a set time to ensure that

unfavorable outcomes do not carry on indefinitely.

There are two key performance parameters and two auxiliar performance parameters: The rewards

must increase during training, because the agents are able to make better decisions and the loss, for

deep reinforcement learning models, such as DQN (Eqn. 2.7), that indicates that the policies generated

are stable, is getting close to a steady state regimen. The other two auxiliar metrics are the average

number of vehicles in the road network and the average speed. As training progresses agents should

be able to make better decisions, reflecting on a decrease on the average number of vehicles in the

network, as they disperse faster and their average speed increases.

If rewards fail to increase or loss does not drop significantly then it’s not worth to proceed to the

evaluation phase and the RL method must be re-configured (dashed arrow 1 in Figure 4.1).

(a) Mean Rewards for the continuous MARLIN algorithm during
training.

(b) Mean Speed for the continuous MARLIN algorithm during
training.

Figure 4.3: Training metrics of the continuous MARLIN algorithm during training.

4.5 Evaluation

Similar to the training phase, every evaluation needs to have multiple independent runs to allow for

significant results and reproducibility.

As discussed in Section 2.1.2, the key metric used during evaluation is the average travel time.

Agents usually cannot observe the travel time instantaneously – as it depends on the route the vehicles

are traveling, on complex inter-vehicle dynamics and on future decisions made by other agents along

their route, thus, additional metrics, such as, vehicle speed and number of stops are also evaluated for

each model.

28

4.5.1 Hyper-parameter tuning

While the training evaluations determine if the agents are learning, the objective of the evaluation run is to

confirm that the average behavior of the policies of a given model is satisfactory. It’s often the case that,

during this evaluation, many rounds of fine tuning must ensue to arrive at a satisfactory parametrization.

Similar to the training run, if the travel time observed during the evaluation run of each method is

unreasonable, the RL method must be re-configured again (dashed arrow 2 in Figure 4.1). After the RL

methods are stabilized, the results of the best models can now compared and analysed.

Refer to Appendix A for a complete list of the fine-tuned hyper-parameters that were found during

this intermediate evaluation runs.

4.5.2 Performance analysis and comparison

To compare the different baseline and RL-based controllers, metrics such as, rewards, speeds, number

of stops, travel time, number of vehicles and waiting time are measured.

First, these metrics are compared by analysing their mean and standard deviation values. This

analysis provides an overview of the performance of each traffic controller.

Secondly, the distribution of these metrics can also be explored to determine the significance of the

previous analysis and to determine some controller properties, such as, fairness. For example, one

traffic controller might learn a policy where the road with most lanes gets the maximum green time and

conversely, the road with least lanes gets the minimum green time. This policy might obtain a reasonable

average travel time, but it is very unfair.

The policies can also be analysed by plotting the average actions of each agent over a series of time

steps. This describes the frequency that each intersection changes phases.

A concrete analysis of the results of the implemented controllers using the above methods is done in

Chapter 6.

(a) Travel time histogram for the DQN model in the arterial net-
work.

(b) Action plot for the random model in the arterial network.

Figure 4.4: Example of travel time distribution and policy analysis.

29

Chapter 5

Experimental Setup

For this work, 5 RL-based algorithms and 4 baseline algorithms were evaluated and compared, as

defined in Section 4.3. The following sections define the specific simulation setup and implementation

details for each RL-based and baseline algorithms. For the complete list of parameters used in training

and evaluation or other algorithm specific parameters, refer to Appendix A.

5.1 Simulation Setup

First, the specifics regarding the traffic simulation, network topology and traffic demands are defined.

5.1.1 Traffic Simulator

Regarding the simulation, for the aperiodic controllers (all except static and Webster), there is a minimum

of 5 seconds and a maximum of 85 seconds of green time and a fixed yellow time of 5 seconds. This

means that regardless of the agent’s action, the phase will always remain the same until it reaches a

duration of 10 seconds (5 yellow + 5 green) and it will always switch after it reaches a duration of 90

seconds (5 yellow + 85 green).

Every simulated time step corresponds to one second. However, the learning agents only observe

and take decisions every 10 seconds (or time steps). This is due to the fact that agents can take an

optimal action at a certain state but still receive a bad reward since the vehicles haven’t yet moved out

of the intersection, due to the observation rate being too frequent or the yellow light being in effect. It

is also worth noting that, while the agents decide every 10 seconds, the control actions of every traffic

light is enforced every 5 seconds, to allow traffic lights to switch from and to yellow, without having any

learning agent involvement.

Using this implementation, the agents are able to perform actions and observe the direct outcome of

their actions in the next observed state. In the particular case of switching phases, it allows an agent to

observe, send the switch signal and then have 5 seconds of yellow light and 5 seconds of green light,

that allows vehicles to progress through the intersection.

31

5.1.2 Road networks topology

For this works’ experiments, two scenarios depicting different types of road networks will be consid-

ered. However, using any other arbitrary network is easily done by following the steps mentioned in

Section 4.1.2 for that particular network. Both networks used in this work were extracted from real-world

locations, more specifically, from the city of Lisbon.

The first network is an arterial road, 1x3 road mesh, depicted on Fig. 5.1, characterized by having

the most traffic in the horizontal direction. This is located near the area of Saldanha and Marquês de

Pombal.

The second is a 3x2 network grid, also depicted on Fig. 5.1, located slightly north from the first

network, next to Campo Pequeno and Instituto Superior Técnico.

(a) The arterial road network. (b) Grid network with 6 traffic controllers.

Figure 5.1: Networks used in experiments.

All traffic lights in both networks are modeled with two phases: One allows right-turn and through for

vertical movement and the other allows right-turn and through for horizontal movement.

5.1.3 Traffic demands and routes

The traffic demands fed to the traffic simulator are synthetic, with constant weighted route emissions

probabilities, where routes with large avenues receive greater weights.

The routing is done according to the following guidelines:

• They are the shortest paths connecting incoming and outgoing edges from the road network.

• If a generated path results in at least a loop, where the vehicle needs to change cardinal directions

at least three times, the path is excluded from the final selection.

This filtering is necessary since those paths are extremely unlikely to happen in real life and may

cause simulation gridlocks.

32

5.2 Training and Evaluation

As referred in Section 4.4, the training and evaluation phases depend on specific random number gen-

erators. Thus, to obtain statistically significant results, every algorithm is trained using 30 independent

runs with set, unique random seeds. During training, every run is made episodic to avoid gridlocks

and other performance issues. Each episode runs for a total of 6 hours (21,600 seconds) and every

individual run trains for 80 episodes, totaling a simulated training time of 600 days.

To evaluate the algorithms, every training run performed is tested during one episode’s length (6

hours) and also with set, unique random seeds, totaling a simulated evaluation time of 30 episodes (7.5

days).

5.3 Reinforcement learning methods

The five RL methods considered are: an Actor-Critic based model, a DQN based model and three

variations of a fictitious play based model.

The exploration-exploitation phase of all RL-based algorithms is balanced using an ε-greedy policy,

where ε, the variable responsible for performing random action selection, decreases from 0.9 to 0.01

linearly during training, achieving the lowest value at the second to last episode.

All learning algorithms use the MDP formulation defined in Section 4.2. However, some specific algo-

rithms require slight adjustments, such as, state discretization for tabular algorithms. These adjustments

are also specified in the following sections.

5.3.1 Actor-critic

An Actor-critic algorithm, following the implementation of Aslani, et al. [9], with a 0.9 critic learning rate

(α), a 0.3 actor learning rate (β) and a trace decay (λ) of 0.55.

Since part of the state defined in the original MDP in Section 4.2 is continuous and this is a tabular

method, some discretization needs to be done. This is achieved by using tile coding, with one tilling

having 5 tiles, where each state variable is partitioned into a set of tiles and then the tiling is created by

combining the tiles in each state variable in a vector. For example, an observation of (1, 40, 5.0, 20.0)

would become (1,2,1,4) after discretized.

5.3.2 DQN

The DQN method trains a group of independent learners, with one agent per intersection, without any

method of coordination.

Every agent has a fully connected neural network with 3 layers that receives the agent’s state as input

and outputs the Q-values for every action for that same agent. The hidden layer has a ReLU activation

function and contains 32 units. The loss of every backwards-pass is calculated using the mean squared

33

error (squared L2 norm), the reward used is the delay for that intersection, as defined in Section 4.2,

and the optimization is done by the Adam algorithm.

The networks also use some modifications, such as:

• A warm-up period of 10000 steps where random actions are taken to initialize the weights.

• Double Q-learning, that counteracts overestimation problems with the traditional Q-learning, using

a synchronization rate of 500 time steps.

• Experience replay, making previous experiences more efficient and better model convergence

since the data is more i.i.d. (independent and identically distributed), which is assumed in most

learning convergence proofs. The replay buffer used holds a maximum of 50000 experiences.

• Batched learning, where every learning step is done in batches of 1000 experiences, taken from

the replay buffer.

5.3.3 MARLIN

The MARLIN algorithm, implemented by El-tantawy, et al. [8], is based on the fictitious play model, where

each agent plays a game with all its adjacent agents. In MARLIN, every agent saves a Q-table and a

policy estimation for every neighbour. The Q-table receives the concatenated state of both the agent

and the neighbour as input and outputs the Q-values for every combination of joint-actions between the

agent and the neighbour. In this specific case, it receives 8 features, 4 from each agent and outputs 4

Q-values, one for each possible binary action of both agents. The policy estimation is a simple frequency

count of the neighbours actions for every pair of the agent’s and neighbours concatenated states. The

specifics of this model are detailed in Section 2.3.1.

Since the original algorithm uses the number of waiting and approaching vehicles (WAVE), a discrete

state space, some modifications need to be made to apply MARLIN in the MDP formulation defined in

this work.

Three different variations were trained and tested: A rounded delay implementation, a tile coding

implementation and a continuous implementation.

Rounded Delay

The first method simply transforms every phase delay into the nearest integer, the algorithm then runs

just like the original, as defined before.

Tile Coding

The second method discretizes the state space by using the tile coding method applied in the Actor-critic

algorithm defined above, also using 5 tiles.

34

Continuous

The third method uses the continuous state space directly, replacing the tabular Q-learning and policy

estimator with deep Q-networks. Each agent now has two neural networks for each of its neighbours.

For the Q-values, similar to the tabular version, the first neural network receives the concatenated state

as input and outputs the Q-values for every possible joint action of the two agents. The reward given to

the network is the mean reward of both agents. This network is similar to the one described in the DQN

algorithm. It uses the same modifications, hidden layers and loss function.

The policy estimation is accomplished using a binary classifier with a network similar to the previous.

This network also receives the concatenated state as input and outputs the expected probability of every

action for the neighbour, using the Binary Cross Entropy as loss.

All of the networks, including the policy estimation networks, have parameter sharing, meaning they

share the same neural network parameters. This technique allows the agents to learn at a faster rate

with a fewer number of total experiences.

The action selection that is done after training remains unchanged, as defined in Section 2.3.1.

5.4 Baseline methods

A few baseline models will also be implemented to compare against the RL-based methods. Specifically,

a random controller, a fixed time controller, a Webster controller and a Max-pressure controller will be

implemented.

5.4.1 Random

The random controller simply chooses a random action at every decision point. It follows the same

action restrictions defined in Section 5.1.1 that are applied to the learning methods.

5.4.2 Static

The static controller follows a pre-defined phase plan, alternating green and red lights in fixed intervals.

This controller is periodic, requiring a fixed cycle length, a fixed yellow time and the decisions are made

every time step, instead of every 10 time steps.

For this experiment, the cycle time was set to 60 seconds, yellow was set to 6 seconds and the

specific phase plans executed were calculated using the global timings of the Webster method defined

in the next Section.

5.4.3 Webster

Similar to the static controller, the Webster method is also aperiodic, requiring a fixed cycle and yellow

time.

35

The Webster method observes the environment for a period of time, calculates the durations for

every phase given the fixed phase time using the number of vehicles in each lane and executes that

phase plan during the next observation period, where new data is received to calculate the next phase

durations. This algorithm assumes that, while the data is being collected, the traffic flow is uniform.

The cycle time was set to 60 seconds, the yellow time to 6 seconds and the data aggregation period

to 600 time steps (10 minutes).

After the algorithm finishes, the phase duration calculation can be performed on all the data collected

previously. These durations are called global timings and they are the phase plan used in the Static

controller defined in the previous Section.

5.4.4 Max-Pressure

The Max-Pressure algorithm defines a new feature labeled ”pressure”. The pressure of a phase is

defined as the difference between the queue length of incoming and outgoing lanes. This algorithm

maximizes the throughput of the system if the pressure of the phases is minimized. Similar to the

learning methods, this algorithm also follows the action restrictions defined in Section 5.1.1.

5.5 Software

As mentioned before, the traffic simulation is done by the CityFlow micro-simulator1 [54]. The tensor

computation used in the deep RL methods is done by the PyTorch library2 and the extra data manage-

ment that is not handled by PyTorch is done using the numpy3 and pandas4 libraries.

The Tensorboard5 toolkit was also used to provide measurements and visualizations of the learning

algorithm’s during the training phase.

1https://cityflow-project.github.io
2https://pytorch.org
3https://numpy.org
4https://pandas.pydata.org
5https://www.tensorflow.org/tensorboard

36

https://cityflow-project.github.io
https://pytorch.org
https://numpy.org
https://pandas.pydata.org
https://www.tensorflow.org/tensorboard

Chapter 6

Results

This chapter will present and discuss some of the results obtained from the experiments of the methods

defined in the previous Section in both the arterial and grid networks. For a complete list of results refer

to Appendix B.

6.1 Arterial network

The first network is an arterial network with 3 intersections, represented in Figure 5.1. The network

topology causes an imbalance of traffic flow since the horizontal road has more lanes than the other

three and the demands are created depending on the number of lanes of each road.

Method Travel Time Speed

Random 17.693±18.127 7.485±3.858
Static 13.882±12.585 8.644±3.660
Webster 13.665±12.453 8.670±3.647
Max-Pressure 10.872±8.917 8.867±3.004

ACAT 13.976±15.210 8.277±3.441
DQN 11.716±7.861 8.417±3.100
MARLIN-Rounded 12.622±12.230 8.358±3.277
MARLIN-TileCoding 10.788±7.290 8.505±2.924
MARLIN-Continuous 10.921±6.856 8.631±2.879

Table 6.1: Arterial network results.

Regarding the baselines, every traffic controller outperforms the random controller, as it is expected.

The Max-Pressure controller greatly outperforms the static and Webster controllers in every metric.

Since both the static and Webster controllers are periodic, they require a fixed cycle length (in this work,

60 seconds) and are thus less reactive when compared to the Max-Pressure or RL-based controllers.

Since these aperiodic controllers follow the keep/change action schema, they can cycle through the two

phases more frequently and vehicles are able to cross the intersections faster, being able to reach cycle

times of 20 seconds. These can be easily visualized in Figure 6.1 that depicts the average action taken

37

by each agent in the Webster and Max-pressure controllers during evaluation.

(a) Average action taken by each agent for the Webster con-
troller.

(b) Average action taken by each agent for the Max-pressure
controller.

Figure 6.1: Average action taken for the Webster and Max-pressure controllers in the arterial network,
where action 1 represents changing to next phase and action 2 represents keeping the current phase
active.

First, a comparison between the performance of the models that have different discretization methods

can be done both in the independent and coordinated learners.

When comparing the independent learners, the DQN model achieves an average travel time ≈ 2.3

seconds lower than the Actor-critic model. One factor that can influence this difference is the fact that

the Actor-critic controller uses a discrete discretization method (tile coding) to the state space, while the

DQN controller uses the continuous state directly, applying a non-linear approximator (neural network)

to estimate the Q-values.

When comparing the different coordinated learners, the MARLIN implementation that uses rounded

delay performs much worse than the other two, while the tile coding and continuous implementations

have similar performance. Since the rounded delay implementation simply transforms the continuous

state space by rounding the delay to the nearest integer, the resulting state space is too big for the agents

to learn effectively. This is due to the coordination mechanism applied that requires one Q-table for every

unique link, each indexed by the concatenated state of two agents, where each table cell contains the

Q-values for the joint action of both agents. For example, in the arterial network, where there are 4

unique links, 10 possible phase durations, the delay ranges between 0 and 21 in the first phase and

between 0 and 42 in the second phase and there are 4 possible joint actions between two agents, the

algorithm needs to learn 4,978,713,600 different Q-values, a much higher value when compared to the

tile-coding implementation with 5 tiles that only needs to learn 1,000,000 different Q-values. Figure 6.2

shows the density of the travel time obtained in the MARLIN-Rounded and the MARLIN-Continuous

implementations.

Thus, we can conclude that, regardless of the method of coordination used, the tabular methods

have higher average travel time and lower average vehicle speed when compared to methods that use

non-linear approximators, such as deep neural networks.

Secondly, a comparison between the performance of the models that have different coordination

mechanisms (or lack of) can be done in the RL-based controllers.

38

(a) Travel time histogram for the MARLIN-Rounded implemen-
tation.

(b) Travel time histogram for the MARLIN-Continuous imple-
mentation.

Figure 6.2: Travel time histogram for the MARLIN-Rounded and MARLIN-Continuous implementation.

Even with the size of the state space employed by the MARLIN-Rounded controller, the model still

outperformed its non-coordinated counter-part, the Actor-critic controller, by ≈ 1.36 seconds lower aver-

age travel time. The tile coding and continuous MARLIN implementations both outperformed the DQN

controller, where the tile coding MARLIN implementation achieves a lower average travel time of ≈ 0.93

seconds when compared to the DQN controller.

This shows that, in this network, the use of explicit coordination mechanisms allow controllers to

have a lower average travel time and higher average speed when compared to methods that use no

coordination, such as the independent learners and baselines.

It is worth noting that, even though the MARLIN implementation using tile coding outperforms every

other controller, the Max-Pressure baseline has a very similar average travel time, only being ≈ 0.09

seconds higher when compared to the MARLIN controller. It also has the highest average speed when

compared with any other method. This can be explained by the observability that this controller has

when compared to the other controllers.

In all the other baselines controllers and independent learner controllers, the agents in each intersec-

tion act by only using information that comes from the incoming lanes of that specific intersection. For

every individual intersection, the Webster controller uses the number of vehicles and the independent

learners use the delay in each incoming lane. The observability of these controllers is smaller when

compared to the Max-Pressure and MARLIN controllers.

The Max-Pressure controller minimizes the phase pressure, that is defined as the difference between

the queue length of incoming and outgoing lanes, thus, using information not only from the incoming

but also the outgoing approaches. It has also been shown in other works [48] that this baseline can

outperform other baselines and even RL-based methods.

The MARLIN algorithm only uses information about the incoming approaches. However, each agent

selects actions using the delay of its own intersection and the neighbouring intersections, thus, requiring

agents to share information during executing but having more observability than the independent learner

controllers.

We can conclude that for this network, when using function approximation methods, non-linear ap-

39

proximators outperform discrete approximators, applying coordination methods to the multi-agent sys-

tem allows controllers to obtain better performance when compared to non-coordinated ones and finally,

controllers with higher observability obtain better performance when compared to controllers that have

lower observability.

6.2 Grid network

The second network is a grid-like, 2x3 mesh, that also includes roads with a different number of lanes.

This network is represented in Figure 5.1.

Method Travel Time Speed

Random 26.388±25.875 7.103±3.798
Static 20.372±15.501 7.962±3.725
Webster 20.496±15.742 7.953±3.719
Max-Pressure 16.043±11.212 8.452±3.109

ACAT 21.093±22.830 7.783±3.451
DQN 16.772±10.026 8.112±3.003
MARLIN-Rounded* ———±——— ———±———
MARLIN-TileCoding 18.191±13.946 7.915±3.241
MARLIN-Continuous 17.184±9.623 7.858±2.955

Table 6.2: Grid network results.
*Too computationally extensive to finish.

Similar to the previous network, every traffic controller outperforms the random controller and the

Max-Pressure controller outperforms the static and Webster controller. Further reinforcing that con-

trollers that are more reactive, obtain better performance when compared to less reactive controllers,

such as aperiodic controllers.

Regarding the different discretization methods, the DQN model also outperforms the Actor-critic

model in both average travel time and average speed, showing that a non-linear approximator is more

efficient than a discrete discretization method when tested in a larger network.

For the coordinated learners, the MARLIN implementation that used rounded delay proved to be

too computationally extensive to finish the training phase. Following the same calculation done for the

previous network, in the grid network, the MARLIN-Rounded controller needed to learn 59,660,697,600

different Q-values. Even though the MARLIN-Continuous implementation has a lower performance than

the MARLIN-TileCoding in the simpler arterial network, when provided with a bigger and more complex

environment, such as the grid network, the MARLIN-Continuous achieves an average travel time ≈ 1

second lower than the MARLIN-TileCoding implementation, showing that the use of a non-linear ap-

proximator, such as a deep neural network, can outperform a discrete discretization method, such as

tile coding, when the complexity of the environment scales.

As in the arterial network, regardless of the method of coordination used, non-linear approximators

have higher performance when compared to tabular methods that use discrete function approximators.

40

Regarding the different coordination mechanisms in the RL-based controllers, both MARLIN imple-

mentations outperform the Actor-critic controller. However, the DQN controller outperforms both MARLIN

implementations, achieving an average travel time ≈ 0.41 seconds lower than the MARLIN-Continuous

implementation. This discrepancy might be explained due to the lack of training steps on a more com-

plex network. For example, by analysing Figure 6.3, displaying the average actions taken and average

vehicle speeds on the MARLIN-TileCoding controller during training, we can observe that the policy is

still very unstable and the average speeds are steadily increasing when the model finishes the training

phase.

(a) Average actions taken by the MARLIN-TileCoding model
during training in the grid network.

(b) Average vehicle speed in the MARLIN-TileCoding model
during training in the grid network.

Figure 6.3: Average Action and vehicle speeds in the MARLIN-TileCoding implementation during training
in the grid network.

In this grid network, the Max-Pressure baseline manages to outperform every other baseline and RL-

based controller in every metric except throughput. Achieving an average travel time of ≈ 0.73 seconds

lower than the best independent learner and an average travel time of ≈ 1.14 seconds lower than the

best coordinated learner. Showing that higher observability, achieved in this particular controller by using

environment information extracted from the outgoing lanes, leads to better performance.

Concluding, in this network, non-linear approximators outperform discrete approximators, regardless

of the coordination method used. The relevance of the coordination mechanisms was inconclusive due

to the fact that the learning models did not train enough. And controllers with higher observability obtain

better performance when compared to controllers with lower observability.

41

Chapter 7

Conclusion

This thesis provides a comparative study of varied traffic controllers with different discretization meth-

ods, coordination mechanisms and observability scopes, under a homogeneous environment and a

fixed MDP formulation. Every controller follows a multi-agent approach, where each agent controls one

intersection by observing a partial environment state and choosing to maintain the active green phase

or to switch to the next phase. This work compares a group of baselines and RL-based controllers,

specifically, two independent learners using an Actor-critic model and a DQN model, three different im-

plementations of the MARLIN algorithm and five baselines to compare to, including, a random controller,

a static controller, a Webster controller and a Max-pressure controller.

This comparative study follows a rigorous methodology, where first, the simulator is set up and the

networks and traffic demands are defined, then, a fixed MDP formulation is created. Afterwards, the

hyper-parameters of the RL-based methods are tuned using training and evaluation phases. Finally,

after being tuned, they are compared between each other and between the defined baseline controllers.

The results obtained by the current literature in the domain of RL in TLC use different methodologies,

including different traffic micro-simulators, MDP formulations and result analysis. Thus, they are very

hard to compare to newly created controllers or even between the existing literature. It is also hard

or even impossible to fully reproduce the traffic controllers and results in some works given the vague

methodology that is presented in them. Hence, following a rigorous methodology, such as the one in

this thesis, contributes to the application of RL in TLC by allowing different works to be compared, fully

reproduced at a later date and even possibly extended.

The simulator was set up and the process of obtaining the real-world networks used in this work is de-

fined, step by step, so it can be fully replicated and potentially extended to any other arbitrary real-world

network. Then, a fixed MDP formulation is defined following the results found by Pedro [48], where it is

shown that the cumulative delay representing the state and reward is found to have good performance,

when compared to other definitions, while packing the lane information into a single number, minimizing

the state space. It is also shown that aperiodic controllers usually outperform periodic controllers since

the former can react at a faster rate to traffic flow changes, thus, in this work a keep/change action

schema is used in all traffic controllers that allow it.

43

After the simulation is setup, the MDP is defined and the hyper-parameters of the algorithms are

tuned, the results of the evaluations were compiled and compared in two distinct networks, a 1x3 arte-

rial network and a 2x3 grid-like network, focusing on three different axes: The function approximation

method used. The coordination mechanism used. And finally, the observability that each controller has.

Results show that, when comparing the function approximation method used, in both networks, con-

trollers that use non-linear function approximators, such as deep neural networks, achieve higher per-

formance than controllers that use discrete discretization methods, such as tile coding, regardless of

the coordination method used. These controllers achieve up to ≈ 25% lower average travel time, when

compared to its discrete counterparts. It is also shown that for the smaller network, the tile coding and

continuous implementations of the MARLIN algorithm have similar performance, but for the bigger, more

complex network, the continuous implementation outperforms the discrete tile coding implementation.

When comparing uncoordinated and coordinated controllers, for the first network, the coordinated

MARLIN controller that uses tile coding is the best performing controller, followed by the Max-Pressure

baseline and the continuous MARLIN controller, showing that a controller that uses an explicit coordina-

tion mechanism can outperform every baseline and every independent learner that was implemented,

being able to achieve an average travel time of ≈ 8% lower when compared to the best independent

learner. For the second network, the coordinated methods only outperformed one of the two indepen-

dent learners due to lack of training steps.

Finally, the observability of the methods tested in this work can be separated in four classes: Meth-

ods that use no information. Methods that use, for each intersection, information about the incoming

approaches of that intersection. Methods that use, for each intersection, information about the incom-

ing and outgoing approaches of that intersection. And finally, methods that use, for each intersection,

information about the incoming approaches of that intersection and neighbouring intersections.

It is shown that methods that use no environment information, such as the Random controller, per-

form the worst, as is expected, followed by the aperiodic controllers and independent learners, that use

the incoming approaches of a single intersection. The best performing controllers are the Max-Pressure

controller and the MARLIN controller, that use information about the outgoing approaches and neighbor-

ing intersections, respectively. Thus, results show that, controllers with higher observability can obtain

better performance when compared to controllers with lower observability.

It is also worth noting that, while micro-simulators are used to develop RL-based traffic controllers

and provide a start to improve urban mobility, there are a multitude of factors, that mostly regard safety

and explainability, that need to be taken into account when moving from a simulator to the real-world.

For example, simulating vehicle collisions, different weather types, pedestrian crossing, sensor noise

and parking lanes are factors that could heavily influence the traffic environment that are not being

currently simulated in this work.

44

7.1 Future Work

For future work, a more extensive analysis of the policies learned by the agents could be done, including

Q-value and maximizing action graphs over the state space. For the non-coordinated algorithms, by

locking the active phase and its current duration, the q-values or actions can be plotted in two dimensions

(the phase delays). For the MARLIN algorithm where each agent selects an action based on its own

state and the state of all its neighbours, the multi-dimensional input could be analysed using PCA, a

predictive decision tree based on Q-values or an Andrews curve plot.

Different learning approaches regarding the coordinated algorithms could also be done, such as,

more training time or a different exploration-exploitation approach for the continuous MARLIN imple-

mentation, since it has a non-linear classifier that attempts to predict the actions taken and with the

current ε-greedy approach, during most of the experiment, the classifier is attempting to learn from a

random action selector.

There is also a multitude of factors that could be varied to assess the performance of the presented

controllers in different environments, such as: A variable traffic flow, emulating the real-world spectrum

between free-flow and rush hour, congested traffic. All the safety factors mentioned previously (vehicle

collisions, weather types, pedestrian crossing, sensor noise and parking).

45

Bibliography

[1] J. M. Sussman. Perspectives on Intelligent Transportation Systems (ITS). Springer, 2005. ISBN

978-0-387-23257-7.

[2] F. Webster. Traffic signal settings. Technical Report 39, British road res. Lab., 1958.

[3] Y. Wang, D. Zhang, Y. Liu, B. Dai, and L. Lee. Enhancing transportation systems via deep learning:

A survey. Transportation Research Part C: Emerging Technologies, 99:144 – 163, 2019.

[4] I. Ivanova, M. Stefanov, J. Verity, N.-E. Brokopp, E. Grassi, P. M. Mula, P. Pesce, A. Zych, and

M. Byalkova. Sustainable Urban Mobility in the EU: No substantial improvement is possible without

Member States’ commitment. Technical report, European Court Of Auditors, 2020.

[5] P. Varaiya. The max-pressure controller for arbitrary networks of signalized intersections. In Ad-

vances in Dynamic Network Modeling in Complex Transportation Systems, pages 27–66. Springer,

2013.

[6] Y. Wang, X. Yang, H. Liang, and Y. Liu. A review of the self-adaptive traffic signal control system

based on future traffic environment. Journal of Advanced Transportation, 2018:1–12, 2018.

[7] R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT Press, 1998.

[8] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad. Multiagent Reinforcement Learning for Integrated

Network of Adaptive Traffic Signal Controllers: Methodology and Large-Scale Application on Down-

town Toronto. IEEE Transactions on Intelligent Transportation Systems, 14(3):1140–1150, 2013.

ISSN 1524-9050, 1558-0016. doi: 10.1109/TITS.2013.2255286.

[9] M. Aslani, M. Mesgari, and M. Wiering. Adaptive traffic signal control with actor-critic methods in

a real-world traffic network with different traffic disruption events. Transportation Research Part C:

Emerging Technologies, 85:732 – 752, 2017.

[10] H. Wei, G. Zheng, V. Gayah, and Z. Li. A survey on traffic signal control methods. CoRR,

abs/1904.08117, 2019.

[11] L. Busoniu, R. Babuska, and B. De Schutter. A Comprehensive Survey of Multiagent Reinforcement

Learning. IEEE Trans. Syst., Man, Cybern. C, 38(2):156–172, Mar. 2008. ISSN 1094-6977, 1558-

2442. doi: 10.1109/TSMCC.2007.913919.

47

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A. Riedmiller.

Playing atari with deep reinforcement learning. CoRR, abs/1312.5602, 2013.

[13] C. Watkins. Learning From Delayed Rewards. PhD thesis, King’s College, 1989.

[14] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[15] R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman. Solving transition independent decentral-

ized markov decision processes. J. Artif. Int. Res., 22(1):423–455, Dec. 2004. ISSN 1076-9757.

[16] C. Guestrin, D. Koller, and R. Parr. Multiagent Planning with Factored MDPs. 14:1523–1530, 2021.

[17] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo. Networked distributed pomdps: A synthesis of

distributed constraint optimization and pomdps. volume 1, pages 133–139, 01 2005.

[18] N. Ono and K. Fukumoto. A modular approach to multi-agent reinforcement learning. In G. Weiß,

editor, Distributed Artificial Intelligence Meets Machine Learning Learning in Multi-Agent Environ-

ments, pages 25–39, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg. ISBN 978-3-540-69050-

4.

[19] R. P. Roess, E. S. Prassas, and W. R. McShane. Traffic Engineering. Pearson/Prentice Hall, 2004.

ISBN 978-0-13-191877-1.

[20] J. Little, M. Kelson, and N. Gartner. MAXBAND: A Program for Setting Signals on Arteries and

Triangular Networks. 795:40–46.

[21] N. M. Rouphail, B. B. Park, and J. Sacks. Direct Signal Timing Optimization: Strategy Development

and Results.

[22] P. R. Lowrie, Roads and Traffic Authority of New South Wales, and Traffic Control Section. SCATS,

Sydney Co-Ordinated Adaptive Traffic System: A Traffic Responsive Method of Controlling Urban

Traffic. Roads and Traffic Authority NSW, Traffic Control Section.

[23] M. Tubaishat, Y. Shang, and H. Shi. Adaptive Traffic Light Control with Wireless Sensor Networks.

doi: 10.1109/CCNC.2007.44.

[24] P. Mirchandani and L. Head. A real-time traffic signal control system: Architecture, algorithms, and

analysis. 9(6):415–432. ISSN 0968-090X. doi: 10.1016/S0968-090X(00)00047-4.

[25] H. Liu, J.-S. Oh, and W. Recker. Adaptive Signal Control System with Online Performance Measure

for a Single Intersection. 1811(1):131–138. ISSN 0361-1981. doi: 10.3141/1811-16.

[26] K. Khiang, M. Khalid, and R. Yusof. Intelligent Traffic Lights Control By Fuzzy Logic. 9:29–35.

[27] J.-h. Lee, K.-m. Lee, K. Seong, C. Kim, and H. Lee-kwang. Traffic Control Of Intersection Group

Based On Fuzzy Logic. In In Proceedings of the 6th International Fuzzy Systems Association World

Congress, pages 465–468.

48

[28] M. Wiering. Multi-Agent Reinforcement Learning for Traffic Light Control.

[29] M. Wiering, J. Veenen, J. Vreeken, and A. Koopman. Intelligent Traffic Light Control. .

[30] M. Wiering, J. Vreeken, J. Veenen, and A. Koopman. Simulation and Optimization of Traffic in a

City. . ISBN 978-0-7803-8310-4. doi: 10.1109/IVS.2004.1336426.

[31] A. Salkham and V. Cahill. Soilse: A decentralized approach to optimization of fluctuating urban

traffic using Reinforcement Learning. pages 531–538. doi: 10.1109/ITSC.2010.5625145.

[32] M. Khamis and W. Gomaa. Enhanced Multiagent Multi-Objective Reinforcement Learning for Urban

Traffic Light Control. 1:591. doi: 10.1109/ICMLA.2012.108.

[33] T. L. Thorpe and C. W. Anderson. Traffic Light Control Using SARSA with Three State Represen-

tations.

[34] X. Zhou, F. Zhu, Q. Liu, Y. Fu, and W. Huang. A Sarsa(λ)-Based Control Model for Real-Time Traffic

Light Coordination. 2014:e759097. ISSN 2356-6140. doi: 10.1155/2014/759097.

[35] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad. Design of Reinforcement Learning Parameters for

Seamless Application of Adaptive Traffic Signal Control. 18. doi: 10.1080/15472450.2013.810991.

[36] S. Touhbi, M. A. Babram, T. Nguyen-Huu, N. Marilleau, M. L. Hbid, C. Cambier, and S. Stinckwich.

Adaptive Traffic Signal Control : Exploring Reward Definition For Reinforcement Learning. 109:

513–520. ISSN 1877-0509. doi: 10.1016/j.procs.2017.05.327.

[37] E. Camponogara and W. Kraus. Distributed Learning Agents in Urban Traffic Control. 2902:335.

doi: 10.1007/978-3-540-24580-3 38.

[38] W. Genders and S. Razavi. Using a Deep Reinforcement Learning Agent for Traffic Signal Control.

[39] T. Chu, J. Wang, L. Codecà, and Z. Li. Multi-agent deep reinforcement learning for large-scale

traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 21(3):1086–1095,

2020. doi: 10.1109/TITS.2019.2901791.

[40] L. Kuyer, S. Whiteson, B. Bakker, and N. Vlassis. Multiagent Reinforcement Learning for Urban

Traffic Control Using Coordination Graphs. doi: 10.1007/978-3-540-87479-9 61.

[41] M. Steingrover, R. Schouten, S. Peelen, E. Nijhuis, and B. Bakker. Reinforcement Learning of

Traffic Light Controllers Adapting to Traffic Congestion.

[42] E. van der Pol. Deep Reinforcement Learning for Coordination in Traffic Light Control (MSc thesis).

[43] J. N. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson. Learning to communicate with deep

multi-agent reinforcement learning. In NIPS, 2016.

[44] H. Wei, N. Xu, H. Zhang, G. Zheng, X. Zang, C. Chen, W. Zhang, Y. Zhu, K. Xu, and Z. Li. CoLight:

Learning Network-level Cooperation for Traffic Signal Control. In Proc. of the 28th ACM International

49

Conference on Information and Knowledge Management, pages 1913–1922, 2019. doi: 10.1145/

3357384.3357902.

[45] G. Zheng, Y. Xiong, X. Zang, J. Feng, H. Wei, H. Zhang, Y. Li, K. Xu, and Z. J. Li. Learning phase

competition for traffic signal control. Proceedings of the 28th ACM International Conference on

Information and Knowledge Management, 2019.

[46] J. Isa, J. Kooij, R. Koppejan, and L. Kuijer. Reinforcement Learning of Traffic Light Controllers

Adapting to Accidents. page 14, Februrary 2, 2006. doi: 10.1.1.386.9994.

[47] M. Tan. Multi-agent reinforcement learning: Independent versus cooperative agents. In ICML,

1993.

[48] P. P. Santos. Trafic light control using deep reinforcement learning. Master’s thesis, Instituto Supe-

rior Técnico, Universidade de Lisboa, Jan. 2021.

[49] G. S. Varela, P. P. Santos, A. Sardinha, and F. S. Melo. A methodology for the development of

rl-based adaptive traffic signal controllers. arXiv:2101.09614, 2021.

[50] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad. Design of reinforcement learning parameters for

seamless application of adaptive traffic signal control. Journal of Intelligent Transportation Systems,

18(3):227–245, 2014. doi: 10.1080/15472450.2013.810991.

[51] P. P. Santos, G. S. Varela, A. Sardinha, and F. S. Melo. Reinforcement learning-based adaptive

traffic signal control: A critical survey. IEEE, 2021.

[52] G. D. B. Cameron and G. I. D. Duncan. PARAMICS—Parallel microscopic simulation of road traffic.

10(1):25–53. ISSN 1573-0484. doi: 10.1007/BF00128098.

[53] M. Behrisch, L. Bieker-Walz, J. Erdmann, and D. Krajzewicz. SUMO – Simulation of Urban MObility:

An Overview, volume 2011. ISBN 978-1-61208-169-4.

[54] H. Zhang, S. Feng, C. Liu, Y. Ding, Y. Zhu, Z. Zhou, W. Zhang, Y. Yu, H. Jin, and Z. J. Li. Cityflow:

A multi-agent reinforcement learning environment for large scale city traffic scenario. The World

Wide Web Conference, 2019.

[55] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org . https://www.

openstreetmap.org, 2017.

50

 https://www.openstreetmap.org
 https://www.openstreetmap.org

Appendix A

Experiment Hyper-parameters

The tables bellow show the hyper-parameters used in the training and evaluation phases and for the

baseline and RL algorithm that were optimized using the Evaluation phase described in Section 4.5.

A.1 Training

All algorithms were trained using the following parameters:

Parameter Value

Num. runs 30
Experiment time 1,728,000 Secs. (20 days)
Episode Length 21,600 Secs. (6 hours)
Num. of episodes 80
Initial ε (epsilon) 0.9
Final ε (epsilon) 0.01
Epsilon scheduled time 1,706,400 Secs. (19,75 days)
Discount factor (γ) 0.98
Random Seeds 0, 10, 20, . . . , 290

Table A.1: Complete training Parameters.

51

A.2 Evaluation

All RL algorithms were evaluated using the following parameters:

Parameter Value

Num. runs 30
Experiment time 21,600 Secs. (6 hours)
Num. of episodes 1 per run
Random Seeds 1, 11, 21, . . . , 291

Table A.2: Complete evaluation Parameters.

A.3 Baseline specific

Parameter Value

Fixed cycle time 60
Yellow duration 6
Agregation period 600

Table A.3: Hyper-parameters used in periodic Webster controller.

Parameter Value

Fixed cycle time 60
Yellow duration 6

Table A.4: Hyper-parameters used in periodic static controller, using the global phase timings calculated
by the Webster controller.

Parameter Value

Decision step 10
Yellow duration 5
Min green 5
Max green 85

Table A.5: Hyper-parameters used in aperiodic Max-pressure controller, following the action restrictions
applied in the RL-based controllers.

52

A.4 RL specific

Parameter Value

Optimizer Adam
Learning rate (α) 0.005
Warm up steps 10000
Batch size 1000
Replay size 50000
Target sync rate 500

Input layer 4
Multi-layer Hidden layer 32
Perceptron Activation ReLU

Output layer 2
Loss Function Mean Squared Error

Table A.6: Hyper-parameters used in the DQN controller, using double Q-learning, experience replay,
and an ε-greedy policy to balance exploration-exploitation. Following the MDP formulation defined in
Section 4.2. The input of the neural network is the state of an agent and the output are the Q-values for
every action for that agent.

Parameter Value

Optimizer Adam
Learning rate (α) 0.005
Warm up steps 10000
Batch size 1000
Replay size 50000
Target network update period 500

Input layer 8
Edge Multi-layer Hidden layer 32
Perceptron Activation ReLU

Output layer 4
Loss Function Mean Squared Error

Input layer 8
Policy Estimation Hidden layer 32
Multi-layer Perceptron Activation ReLU

Output layer 1
Activation Sigmoid

Loss Function Binary Cross Entropy

Table A.7: Hyper-parameters used in the continuous MARLIN controller that uses DQN with double
Q-learning, experience replay, and an ε-greedy policy to balance exploration-exploitation for both the
Q-value estimation and neighbour policy estimation. Following the MDP formulation defined in Section
4.2. The input of both neural networks is the concatenated state of two agents. The output of the edge
multi-layer perceptron are the Q-values for the joint action of both agents and the output of the policy
estimation multi-layer perceptron is the probability of the neighbour agent selecting each of its actions.

53

Parameter Value

Critic learning rate (α) 0.9
Actor learning rate (β) 0.3
Trace Decay (λ) 0.55

Tile Coding Num. Tilings 1
Tiles 5

Max. Size lanes capacity

Table A.8: Hyper-parameters used in the Actor-critic controller, using eligibility traces and tile coding.

Parameter Value

Learning rate (α) 0.9

Table A.9: Hyper-parameters used in both discrete MARLIN controllers.

54

Appendix B

Complete experimental results

Method Travel Time Speed Num. Stops Throughput

Random 17.693±18.127 7.485±3.858 0.464±0.650 26690.467±10.932
Static 13.882±12.585 8.644±3.660 0.266±0.445 26508.933±581.196
Webster 13.665±12.453 8.670±3.647 0.262±0.443 26696.500±12.851
Max-Pressure 10.872±8.917 8.867±3.004 0.219±0.432 26703.400±44.716

ACAT 13.976±15.210 8.277±3.441 0.362±0.619 26697.700±0.702
DQN 11.716±7.861 8.417±3.100 0.296±0.470 26712.833±2.914
MARLIN-Rounded 12.622±12.230 8.358±3.277 0.294±0.503 26704.100±12.307
MARLIN-TileCoding 10.788±7.290 8.505±2.924 0.232±0.459 26710.167±2.866
MARLIN-Continuous 10.921±6.856 8.631±2.879 0.227±0.444 26715.600±3.098

Table B.1: Complete arterial network results.

Method Travel Time Speed Num. Stops Throughput

Random 26.388±25.875 7.103±3.798 0.690±0.897 62999.733±34.261
Static 20.372±15.501 7.962±3.725 0.396±0.505 63047.967±2.025
Webster 20.496±15.742 7.953±3.719 0.398±0.503 62964.067±104.999
Max-Pressure 16.043±11.212 8.452±3.109 0.349±0.545 63078.200±41.153

ACAT 21.093±22.830 7.783±3.451 0.574±0.876 63031.700±36.157
DQN 16.772±10.026 8.112±3.003 0.417±0.530 63060.167±68.848
MARLIN-Rounded* ———±——— ———±——— ———±——— ———±———
MARLIN-TileCoding 18.191±13.946 7.915±3.241 0.463±0.641 63073.533±12.159
MARLIN-Continuous 17.184±9.623 7.858±2.955 0.473±0.563 63082.300±14.466

Table B.2: Grid network results.
*Too computationally extensive to finish.

55

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	1 Introduction
	1.1 Contributions
	1.2 Thesis Outline

	2 Background
	2.1 Traffic control
	2.1.1 Traffic terms definition
	2.1.2 Traffic control objectives

	2.2 Single-agent reinforcement Learning
	2.2.1 Q-function approximation
	2.2.2 Actor-critic
	2.2.3 DQN

	2.3 Multi-agent Reinforcement Learning
	2.3.1 Coordination mechanisms
	2.3.2 Parameter sharing

	3 Related Work
	3.1 Fixed-timing methods
	3.2 Adaptive systems
	3.3 Reinforcement learning
	3.3.1 Modeling
	3.3.2 Classic reinforcement learning
	3.3.3 Multi-agent reinforcement learning

	4 Methodology
	4.1 Simulation setup
	4.1.1 Traffic simulator
	4.1.2 Road networks topology
	4.1.3 Traffic demands

	4.2 MDP formulation
	4.3 Reinforcement learning methods
	4.4 Training
	4.5 Evaluation
	4.5.1 Hyper-parameter tuning
	4.5.2 Performance analysis and comparison

	5 Experimental Setup
	5.1 Simulation Setup
	5.1.1 Traffic Simulator
	5.1.2 Road networks topology
	5.1.3 Traffic demands and routes

	5.2 Training and Evaluation
	5.3 Reinforcement learning methods
	5.3.1 Actor-critic
	5.3.2 DQN
	5.3.3 MARLIN

	5.4 Baseline methods
	5.4.1 Random
	5.4.2 Static
	5.4.3 Webster
	5.4.4 Max-Pressure

	5.5 Software

	6 Results
	6.1 Arterial network
	6.2 Grid network

	7 Conclusion
	7.1 Future Work

	Bibliography
	A Experiment Hyper-parameters
	A.1 Training
	A.2 Evaluation
	A.3 Baseline specific
	A.4 RL specific

	B Complete experimental results

